当前位置: 仪器信息网 > 行业主题 > >

三烯丙基磷酸酯

仪器信息网三烯丙基磷酸酯专题为您提供2024年最新三烯丙基磷酸酯价格报价、厂家品牌的相关信息, 包括三烯丙基磷酸酯参数、型号等,不管是国产,还是进口品牌的三烯丙基磷酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三烯丙基磷酸酯相关的耗材配件、试剂标物,还有三烯丙基磷酸酯相关的最新资讯、资料,以及三烯丙基磷酸酯相关的解决方案。

三烯丙基磷酸酯相关的资讯

  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱  亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。  丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.     图1. Venusil HILIC 比传统正相色谱柱更稳定  样 品:VB1, VB6, VC, VB2  老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm     色谱柱: Atlantis C18 4.6×250mm,5μm  流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇  流 速: 1ml/min  柱 温: 25℃  检 测: UV 210nm     色谱柱:Venusil HILIC 4.6×250mm,5μm  流动相: A: 0.1%TFA水溶液,  B: 乙腈,  A:B=75:25  流 速: 1 mL/min  温 度: 25℃  检 测: UV 210 nm  图2. Venusil HILIC与C18分离井冈霉素对比色谱图  图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。  丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。     图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比  样品:葡萄糖标准品(购至Sigma)  检测:ELSD  色谱柱:4.6×250mm,5μm  色谱条件:乙腈/水(80:20),1mL/min,30℃  图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。  腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。     图4. 地西他滨有关物质分析色谱图  Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,  UV@244nm,室温Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p  近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。/pp  在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。/pp  上述研究工作得到国家自然科学基金委的资助。/pp style="text-align: center "img style="width: 500px height: 216px " title="W020160419304595129181.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width="500" height="216"//pp style="text-align: center "  span style="font-size: 14px "大连化物所铜催化不对称炔丙基转化研究取得新进展/span/pp style="text-align: center " /p
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函  卫办监督函〔2012〕441号  各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。  传  真:010-67711813  电子信箱:gb2760@gmail.com  二○一二年五月十六日食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)编号标准名称1食品添加剂 醋酸酯淀粉2食品添加剂 磷酸酯双淀粉3食品添加剂 氧化淀粉4食品添加剂 酸处理淀粉5食品添加剂 乙酰化二淀粉磷酸酯6食品添加剂 羟丙基淀粉7食品添加剂 羟丙基二淀粉磷酸酯8食品添加剂 乙酰化双淀粉己二酸酯9食品添加剂 氧化羟丙基淀粉10食品添加剂 辛烯基琥珀酸铝淀粉11食品添加剂 磷酸化二淀粉磷酸酯12食品添加剂 淀粉磷酸酯钠13食品添加剂 羧甲基淀粉钠14食品添加剂 松香甘油酯和氢化松香甘油酯15食品添加剂 天门冬氨酸钙16食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 【新品上新】SVHC清单物质更新至223项,坛墨打造全球屈指可数标准品!
    2022年4月随着经济全球化快速发展,reach法规的不断更新,企业面临的管控要求也越来越多。近日,欧盟化学品管理局(echa)将svhc候选清单正式更新为223项。新增4项物质信息如下:序号物质名称ec号cas号示例用途12,2' -亚甲基双-(4-甲基-6-叔丁基苯酚)204-327-1119-47-1橡胶润滑剂胶粘別油墨燃料2乙烯基-三(2-甲氧基乙氧基)硅烷213-934-01067-53-4橡胶塑料密封別3(±)-1,7,7-三甲基-3-[(4-甲基苯基)亚甲基]双环[2.2.1]庚-2-酮,包括任何单独的异构体和/或其组合(4-mbc)--化妆品4(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯401-850-92558s1-94-8润滑剂润滑酯紧跟国际法规,新品一睹为快坛墨紧跟国际法规,第一时间研发生产出配套标准品,为出口检测保驾护航!特别是最新添加进入svhc候选清单中的标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体),因其对研发工艺要求极高,该产品的生产商在全球屈指可数,坛墨作为中国标准品的领军企业,率先推出其标准品纯品、标准品溶液,帮助检测单位解决因产品稀缺带来的采购受阻这一难题。点击图片即可选购标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体)此次新增的4项svhc物质涉及领域较广,化妆品、橡胶、润滑剂、油墨及胶黏剂等工业用品、塑料均有应用。四种物质中的一种用于化妆品,并已被添加到候选清单中,它具有干扰人体激素的特性。其中两种用于橡胶、润滑剂和密封剂中,会对生育能力产生负面影响而被包括在内。第四种用于润滑剂和润滑脂中,因为它具有持久性、生物累积性和毒性,对环境也会产生危害。坛墨在此提醒广大中国企业需提高自己产品的风险意识,在物质列入svhc候选清单后六个月内,符合条件的企业需要完成物品中的svhc通报。建议企业及早对供应链展开调查,以从容应对法规变化。 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。  附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉项目指标干燥失重/(g/100g) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤ 0.5磷酸盐残留量(以P计)/(%) ≤马铃薯和小麦淀粉0.5;其他淀粉0.4注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5乙酰基含量/(%) ≤2.5乙酸乙烯酯/ (mg/kg) ≤(仅限用乙酸乙烯酯作为酯化剂)0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg)≤20砷/(mg/kg) (以As计) ≤0.5铅/(mg/kg) ≤1.0辛烯基琥珀酸基团/(%) ≤3.0辛烯基琥珀酸残留量/(%) ≤0.3注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯丙醇/(mg/kg) ≤1.0羧基含量/(%) ≤1.1羟丙基含量/(%) ≤7.0注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠项目指标干燥失重/(%) ≤10SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯化物(以cl计)/(%) ≤0.43硫酸盐(以SO4计)/(%) ≤0.96注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.5;其他淀粉0.4注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5羧基含量/(%) ≤1.1注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5乙酰基含量/(%) ≤2.5己二酸盐/(%) ≤0.135注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/( mg/kg ) ≤30重金属(以Pb计)/(mg/kg)≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯丙醇/(mg/kg) ≤1.0羟丙基含量/(%) ≤7.0注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。十一、磷酸化二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg)≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.14;其他淀粉0.04乙酰基含量/(%) ≤2.5乙酸乙烯酯残留量/(mg/kg) ≤(仅限用乙酸乙烯酯作酯化剂)0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.14;其他淀粉0.04羟丙基含量/(%) ≤7.0氯丙醇/(mg/kg) ≤1.0注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠项 目指 标硫酸盐(以SO4计),w/ % ≤0.49重金属(以Pb计)/(mg/kg) ≤20.0砷(以As计)/(mg/kg) ≤2.0残存单体,w/ % ≤1.0低聚合物,w/ % ≤5.0干燥失重,w/ % <6.0烧灼残渣,w/ % ≤76.0pH(0.1%水溶液)8~100.2%水溶液粘度(60rpm.20℃)250~430 cps注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。卫生部办公厅 2010年7月21日印发
  • ECHA将一阻燃剂列入致癌物质分类
    近日,欧洲化学品管理局(ECHA)风险评估委员会(RAC)同意了爱尔兰提出的建议,将阻燃剂TDCP(Tris[2-chloro-1-(chloromethyl)ethyl] phosphate)——三(1,3—二氯丙基)磷酸酯,列入欧盟致癌物质的分类中。  据悉,TDCP被用作阻燃剂使用,广泛应用于聚氯乙烯树脂,聚氨酯泡沫塑料,环氧树脂,酚醛树脂及各种纤维中,阻燃效果明显。此前该物质并不属于欧盟范围内划定的任何物质分类。
  • 欧盟委员会提议限制玩具中的阻燃剂
    2013年7月29日消息,欧盟委员会发布一份拟议草案,将根据欧盟玩具安全指令(Toy Safety Directive ,TSD)对玩具中的阻燃剂引进特定限值。  该要求将在采纳后的18个月后生效,一旦实施,所有进口至欧盟的玩具企业将要求确保其产品中的阻燃剂含量不超过5毫克/千克(ppm),这些物质包括:磷酸三(2-氯乙基)磷酸酯(tris(2-chloroethyl)phosphate ,TCEP)、磷酸三(2-氯-1-甲基乙基)酯(tris(2-chloro-1-methylethyl) phosphate,TCPP),和磷酸三(1,3-二氯异丙基)酯(tris[2-chloro-1-(chloromethyl)ethyl] phosphate ,TDCPP)  美国玩具行业协会(TIA)技术事务高级副总裁称,由于这些物质通常都不会添加到玩具中,因此这些要求只会增加合规成本,实际上不会提高玩具本身的安全性。此外,设置的总含量限制忽略了如暴露和风险等重要因素。欧盟委员会并无正当理由发布这些限制。  TIA将继续提倡科学合理、基于风险、跨越国界的国际玩具安全要求。欧盟目前正在接受有关该草案指令的评议意见 TIA将时刻通知各成员国该提案的发展动态。
  • 华盛顿州禁儿童产品中添加有毒TRIS 阻燃剂
    美国华盛顿州引入《无毒儿童法案》,对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:磷酸三(1,3-二氯丙基)酯和磷酸三(β-氯乙基)酯,颁布禁令。  该法案预计于2014年7月1日生效。  若法案通过,华盛顿州将成为美国继纽约后的第二个禁用TCEP的州和第一个禁用TDCPP的州。该拟议法案还要求目前使用磷酸酯类阻燃剂、甲醛、锑、双酚A等物质的产品制造商决定是否能在儿童产品生产过程中使用更为安全的材料。
  • 美佛蒙特州修订阻燃剂要求
    近日,美国佛蒙特州修订了关于阻燃剂的法律法规(Act 85)。与原来法律法规相比,其中新加入了对于阻燃剂TCEP(三(2-氯乙基)磷酸酯)和TDCPP((1,3-二氯异丙基)磷酸酯)的限制要求。即:  自2014年1月1日起,除零售商外,任何人不得在佛蒙特州制造、提供或销售含有TCEP或TDCPP含量超过0.1%(质量百分比)的儿童用品或住宅装饰型的家具(residential upholstered furniture)   自2014年7月1日起,任何零售商需停止销售或提供含有TCEP或TDCPP含量超过0.1%(质量百分比)的儿童用品或住宅装饰型的家具(residential upholstered furniture)。  此外,自2013年7月1日起,制造上述含有TCEP或TDCPP的产品的制造商需向销售该产品的人进行通报 自2013年7月1日起至2014年3月31日,除零售商外,任何在该州制造、分销、销售上述含有TCEP或TDCPP的产品的人,需向下游销售者进行通报,通报信息需以邮件的形式发送,并告知其中含有的TCEP或TDCPP的量。
  • 16项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。  传  真:010-67711813  电子信箱:gb2760@gmail.com二○一二年五月十六日《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)编号标准名称1.食品添加剂 醋酸酯淀粉2.食品添加剂 磷酸酯双淀粉3.食品添加剂 氧化淀粉4.食品添加剂 酸处理淀粉5.食品添加剂 乙酰化二淀粉磷酸酯6.食品添加剂 羟丙基淀粉7.食品添加剂 羟丙基二淀粉磷酸酯8.食品添加剂 乙酰化双淀粉己二酸酯9.食品添加剂 氧化羟丙基淀粉10.食品添加剂 辛烯基琥珀酸铝淀粉11.食品添加剂 磷酸化二淀粉磷酸酯12.食品添加剂 淀粉磷酸酯钠13.食品添加剂 羧甲基淀粉钠14.食品添加剂 松香甘油酯和氢化松香甘油酯15.食品添加剂 天门冬氨酸钙16.食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。  本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。  本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。  第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:  GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)  GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)  GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)  GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)  GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)  GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)  GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)  GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)  GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)  GB 29924-2013 食品添加剂标识通则  GB 29925-2013 食品添加剂 醋酸酯淀粉  GB 29926-2013 食品添加剂 磷酸酯双淀粉  GB 29927-2013 食品添加剂 氧化淀粉  GB 29928-2013 食品添加剂 酸处理淀粉  GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯  GB 29930-2013 食品添加剂 羟丙基淀粉  GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯  GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯  GB 29933-2013 食品添加剂 氧化羟丙基淀粉  GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉  GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯  GB 29936-2013 食品添加剂 淀粉磷酸酯钠  GB 29937-2013 食品添加剂 羧甲基淀粉钠  GB 29938-2013 食品用香料通则  GB 29939-2013 食品添加剂 琥珀酸二钠  GB 29940-2013 食品添加剂 柠檬酸亚锡二钠  GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)  GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)  GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)  GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)  GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)  GB 29946-2013 食品添加剂 纤维素  GB 29947-2013 食品添加剂 萜烯树脂  GB 29948-2013 食品添加剂 聚丙烯酸钠  GB 29949-2013 食品添加剂 阿拉伯胶  GB 29950-2013 食品添加剂 甘油  GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯  GB 29952-2013 食品添加剂 &gamma -辛内酯  GB 29953-2013 食品添加剂 &delta -辛内酯  GB 29954-2013 食品添加剂 &delta -壬内酯  GB 29955-2013 食品添加剂 &delta -十一内酯  GB 29956-2013 食品添加剂 &delta -突厥酮  GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮  GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯  GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮  GB 29960-2013 食品添加剂 二烯丙基硫醚  GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)  GB 29962-2013 食品添加剂 2-巯基-3-丁醇  GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)  GB 29964-2013 食品添加剂 二甲基二硫醚  GB 29965-2013 食品添加剂 二丙基二硫醚  GB 29966-2013 食品添加剂 烯丙基二硫醚  GB 29967-2013 食品添加剂 柠檬酸三乙酯  GB 29968-2013 食品添加剂 肉桂酸苄酯  GB 29969-2013 食品添加剂 肉桂酸肉桂酯  GB 29970-2013 食品添加剂 2,5-二甲基吡嗪  GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛  GB 29972-2013 食品添加剂 乙醛二乙缩醛  GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑  GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)  GB 29975-2013 食品添加剂 二糠基二硫醚  GB 29976-2013 食品添加剂 1-辛烯-3-醇  GB 29977-2013 食品添加剂 2-乙酰基吡咯  GB 29978-2013 食品添加剂 2-己烯醛(叶醛)  GB 29979-2013 食品添加剂 氧化芳樟醇  GB 29980-2013 食品添加剂 异硫氰酸烯丙酯  GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺  GB 29982-2013 食品添加剂 &delta -己内酯  GB 29983-2013 食品添加剂 &delta -十四内酯  GB 29984-2013 食品添加剂 四氢芳樟醇  GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)  GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮  GB 29987-2013 食品添加剂 丁苯橡胶  GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)  GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定  GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单  特此公告。  附件:75项食品安全国家标准及BHT第1号修改单.zip  国家卫生计生委  2013年11月29日
  • 美调查:50%以上受检婴儿床垫含TRIS阻燃剂
    原标题:美国调查发现半数以上受检婴儿床垫含TRIS阻燃剂  美国知名媒体《芝加哥论坛报》于日前发布一份针对婴儿床垫产品中磷酸三脂(TRIS)阻燃剂含量情况调查报告。来自民间调查的这批受检产品来自于Angeles,Babies R Us以及Foundations三家企业于2011年和2012年在售的27款婴儿床软垫,对当中的磷酸三(1,3-二氯丙基)酯(TDCPP,CAS:78-43-3)和磷酸三(β-氯乙基)酯(TCEP,CAS:115-96-8)以及磷酸三(2-氯丙基)酯(TCPP,cas号13674-84-5)含量进行统计分析。经检测,几乎在半数以上受检产品中发现上述阻燃剂的情况。  TDCPP、TCEP、TCPP三种物质因其对健康具威胁性,在婴儿床垫中的使用受限。TDCPP被世界卫生组织(W.H.O.)以及消费者安全协会(CPSC)鉴定为潜在致癌物质。美国国家毒理计划、欧盟委员会以及其他相关组织也认定TCEP具有潜在致癌性。对于TCPP的相关研究则较少,但因其结构与TCEP和TDCPP类似,也被怀疑具有相似的致癌特性。在产品适用过程和适用该产品的区域周围的空气粉尘皆可产生有毒化学品暴露。  20世界70年代的美国,TDCPP仅被用于儿童睡衣,目前该物质位列加州65致癌物清单以及华盛顿州儿童产品需高度关注物质(CHCC)清单之列 TCEP也在加州65致癌物清单中,同样也被华盛顿州和纽约州限制适用。加拿大已经禁止TCEP用于供三岁以下儿童适用的产品中。  仅仅在刚过去的2012年,美国民间和政府对化学阻燃剂的相关活动就不少:  2012年3月,美国最大儿童汽车座椅Britax向密歇根州儿童环境健康和生态中心承诺将逐步淘汰儿童产品中的溴化阻燃剂、氯化阻燃剂使用   2012年5月,美国参议院致信环境保护署(EPA)要求EPA全面调查阻燃剂安全性,限制有毒化学阻燃剂使用   2012年7月,美国儿童产品行业巨头Graco children's products Inc. 宣布在所有的产品系列中禁用有毒化学阻燃剂  2012年10月,美国华盛顿州引入《无毒儿童法案》(Toxic Free Kids Act),对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:TDCPP和TCEP颁布禁令。该法案预计于2014年7月1日生效。  化学阻燃剂的安全问题更多的为各界所关注,对环保阻燃剂和物理阻燃方式的呼声越来越热烈。这样的形势下,对企业的产品生产就提出了更多的要求,相关企业应重点关注法规变化,调整产品生产环节,保证产品顺利行销。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。  固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • 2011年度食品安全国家标准项目计划(第二批)征求意见
    卫生部办公厅关于公开征求《2011年度食品安全国家标准项目计划(第二批)(征求意见稿)》意见的函卫办监督函〔2011〕911号  各有关单位:  根据《食品安全法》和《食品安全国家标准管理办法》有关规定,为完善我国食品安全国家标准,做好食品安全国家标准项目管理工作,我部收集整理了近期接到的食品安全国家标准项目建议。根据食品安全国家标准审评委员会(以下简称审评委员会)确定的2011年度食品安全国家标准立项优先原则,审评委员会秘书处对各方提出的立项建议进行了整理和筛查,拟定了《2011年度食品安全国家标准项目计划(第二批)(征求意见稿)》。现公开征求意见,请于2011年10月14日前按以下方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。  二○一一年九月三十日2011年度食品安全国家标准项目计划(第二批)(征求意见稿)序号项目名称制/修订建议承担单位1辅食营养补充品通用标准修订中国疾控中心营养与食品安全所2食品添加剂使用标准修订中国疾控中心营养与食品安全所3食品用香料通则制定中国香料香精化妆品工业协会4干海参修订中国水产科学研究院黄海水产研究所5食品添加剂 天门冬氨酸钙制定哈尔滨医科大学公共卫生学院6食品添加剂 姜黄制定中国食品添加剂和配料协会7食品添加剂 丁苯橡胶制定江苏省卫生监督所8食品添加剂 离子交换树脂制定江苏省卫生监督所9食品添加剂 凹凸棒粘土制定国土资源部南京矿产资源监督检测中心10食品添加剂 1,3-二油酸2-棕榈酸甘油三酯制定中国石油北京化工研究院11食品添加剂 DL-苹果酸钠制定中国石油北京化工研究院12食品添加剂 聚氧乙烯聚氧丙烯季戊四醇醚制定中国石油北京化工研究院13食品添加剂 酶解大豆磷脂制定中国石油北京化工研究院14食品添加剂 单辛酸甘油酯制定中国石油北京化工研究院15食品添加剂 决明胶制定中国食品发酵工业研究院16食品添加剂 焦糖色(苛性硫酸盐法)制定中国食品发酵工业研究院17食品添加剂 溶菌酶制定中国食品发酵工业研究院18食品添加剂 棉子糖制定中国食品发酵工业研究院19食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜)制定中国食品发酵工业研究院20食品添加剂 硬脂酸钾 制定中国食品发酵工业研究院21食品添加剂 β-阿朴-8’-胡萝卜素醛制定中国食品发酵工业研究院22食品添加剂 红曲黄色素制定中国食品发酵工业研究院23食品添加剂 天然胡萝卜素制定中国食品发酵工业研究院24食品添加剂 槐豆胶制定中国食品发酵工业研究院25食品添加剂 桂醛制定中国食品发酵工业研究院26食品添加剂 纤维素制定中国食品发酵工业研究院27食品添加剂 萜烯树脂制定中国食品发酵工业研究院28食品添加剂 聚丙烯酸钠制定中国食品发酵工业研究院29食品添加剂 阿拉伯胶制定中国食品发酵工业研究院30食品添加剂 杨梅红制定中国食品发酵工业研究院31食品添加剂 甘油制定中国食品发酵工业研究院32食品添加剂 柠檬酸脂肪酸甘油酯制定中国食品发酵工业研究院33食品添加剂 异丙醇制定中国石油北京化工研究院34食品添加剂 乙醇制定中国石油北京化工研究院35食品添加剂 甘氨酸钙制定中国石油北京化工研究院36食品添加剂 甘氨酸锌制定中国石油北京化工研究院37食品添加剂 甘氨酸亚铁制定中国石油北京化工研究院38食品添加剂 磷酸酯双淀粉制定中国淀粉工业协会39食品添加剂 醋酸酯淀粉制定中国淀粉工业协会40食品添加剂 辛烯基琥珀酸铝淀粉制定中国淀粉工业协会41食品添加剂 乙酰化二淀粉磷酸酯制定中国淀粉工业协会42食品添加剂 氧化羟丙基淀粉制定中国淀粉工业协会43食品添加剂 氧化淀粉制定中国淀粉工业协会44食品添加剂 酸处理淀粉制定中国淀粉工业协会45食品添加剂 乙酰化双淀粉己二酸酯制定中国淀粉工业协会46食品添加剂 磷酸化二淀粉磷酸酯制定中国淀粉工业协会47食品添加剂 羟丙基淀粉制定中国淀粉工业协会48食品添加剂 羟丙基二淀粉磷酸酯制定中国淀粉工业协会49食品添加剂 羧甲基淀粉钠制定中国淀粉工业协会50食品添加剂 淀粉磷酸酯钠制定中国淀粉工业协会51食品添加剂 γ-辛内酯(丙位辛内酯)制定上海香料研究所52食品添加剂 δ-己内酯(丁位己内酯)制定上海香料研究所53食品添加剂 δ-壬内酯(丁位壬内酯)制定上海香料研究所54食品添加剂 δ-十四内酯(丁位十四内酯)制定上海香料研究所55食品添加剂 δ-十一内酯(丁位十一内酯)制定上海香料研究所56食品添加剂 δ-辛内酯(丁位辛内酯)制定上海香料研究所57食品添加剂 二氢茉莉酮酸甲酯制定上海香料研究所58食品添加剂 四氢芳樟醇制定上海香料研究所59食品添加剂 叶醇(顺式-3-己烯-1-醇)制定上海香料研究所60食品添加剂 6-甲基-5-庚烯-2酮制定上海香料研究所
  • 重磅!35项食品安全国家标准立项计划公示!
    各有关单位:为贯彻落实食品安全“最严谨的标准”要求,根据《中华人民共和国食品安全法》及其实施条例规定,我委制定了《2024年度食品安全国家标准立项计划》,现印发给你们,请认真组织落实,同时提出以下要求:一、标准研制应当以保障人民健康为宗旨,以食品安全风险评估结果为依据,充分考虑我国经济发展水平和客观实际需要,参考相关国际标准和风险评估结果,深入调查研究,确保标准指标设置科学合理。二、项目牵头单位负责组建标准起草协作组,提供项目所需人员、经费、科研等方面的资源和保障条件,确保项目承担单位分工协作、密切配合、优势互补,并充分调动发挥监管部门、行业组织、企业、科研院校和专业机构等相关单位和领域专家的作用。三、项目承担单位登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn),填报并打印2024年食品安全国家标准制定、修订项目委托协议书或购买服务合同,由项目承担单位相关负责人签字并加盖单位公章,于2024年8月10日前报送食品安全国家标准审评委员会秘书处办公室。四、项目承担单位应当制定工作计划、项目路线图和进度表,保证标准研制质量和工作进度,对所制定标准文本负全责,确保标准在起草、送审、修改、校对、印刷、解读等各环节准确无误。项目完成后,应当按规定向秘书处办公室提交经费决算报告,经费决算报告须由财务负责人和单位相关负责人签字并加盖公章。对未如期完成项目的将采取追回经费、取消再次申请资格等方式。国家卫生健康委办公厅2024年7月16日2024年度食品安全国家标准立项计划序号项目名称制定/修订承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会食材供应链分会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心、中轻食品工业管理中心、中国食品科学技术学会3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂质量规格标准 14项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院、大连工业大学15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院18食品添加剂 结冷胶修订国家食品安全风险评估中心、中国食品添加剂和配料协会19食品添加剂 镍修订中海油天津化工研究设计院有限公司食品中放射性物质标准 1项20食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、浙江省疾病预防控制中心、福建省职业病与化学中毒预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 5项21食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心、深圳市计量质量检测研究院22食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心23食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院24食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心25食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学微生物检验方法与规程标准 2项26食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心、北京市食品检验研究院(北京市食品安全监控和风险评估中心)27食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项28食品安全性毒理学评价程序修订国家食品安全风险评估中心、农业农村部农药检定所、中国兽医药品监察所、中国农业大学生产经营规范标准 2项29湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院30食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会、上海市食品化妆品质量安全管理协会营养与特殊膳食食品标准 5项31食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心32食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会33食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会34食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学35食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。  美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。  赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。  昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。  偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?  网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺  偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。  偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?  记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。  面包配方对口感影响很大  张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。  赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。  添加剂是面包配方的一部分  CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。  在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。  在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。  简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。  关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。  食品工业少不了添加剂  本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。  面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。  面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。  此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。  它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。  为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。  杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。  偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。  偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。  偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。  偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 监测前沿交流 | 高风险的微污染物——多重人为胁迫增加了大型城市淡水生态系统的风险
    第一作者:陈苗通讯作者:金小伟、徐建通讯单位:中国环境监测总站、中国环境科学研究院图片摘要成果简介近日,中国环境监测总站金小伟教授级高工团队与中国环境科学研究院徐建研究员团队合作在环境领域著名学术期刊Journal of Hazardous Materials上发表了题为“Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale”的研究论文。该文研究了大型城市(北京市)淡水生态系统中包含农药、PPCPs、非法药物和工业化学品在内的133种微污染物对不同营养级水生生物的生态风险,考查了不同空间尺度土地利用对生态风险的影响,并利用结构方程模型(SEM)分析了多重胁迫对微污染物生态风险的效应,定量了人类活动和气候条件对微污染物风险效应的相对权重。该结果说明淡水生态系统中微污染物的生态风险不可忽略,气候、土地利用、水文条件等因素均会影响微污染物的生态风险,在进行水域管理时必须综合考虑多重胁迫因素。引言人类世以来,淡水生态系统越来越多的受到人类活动的直接或间接影响。气候变化、水文调节、土地利用和化学污染物是威胁河流生态系统结构和功能的主要因素。同时,随着土地利用和城市化的加剧,许多淡水生态系统正面临着生物多样性丧失和功能改变。除土地利用外,水环境中的有机微污染物也因其普遍分布和潜在的生态风险而引起广泛关注,长期接触微污染物会对水生生物和人类健康构成重大风险。在流域尺度的自然环境中,多种复杂的胁迫因素相互作用,对淡水生态系统造成破坏,很难确定其主要驱动因素。已知有机污染物与城市、耕地等人类土地利用有关,然而,以前的研究侧重于定性探索,缺乏对土地利用与多种微污染物暴露模式或生态风险之间的定量研究。以往对流域微污染物的研究主要集中在环境暴露、毒性和潜在生态风险。部分研究侧重于单一类别微污染物或某类污染物与土地利用之间的定性关系,而忽略了土地利用的多尺度影响。先前的研究没有确定土地利用和气候条件对多类型微污染物风险效应的相对权重。本研究主要关注大型城市淡水系统中微污染物的分布模式、生态风险及其受气候和人类活动的影响效应,特别是土地利用的多尺度效应及多重胁迫的影响,以期为流域尺度水域治理和管控提供有效的保护策略。图文导读微污染物的分布特征图1 北京市地表水中13类微污染物的浓度(a,*:P0.05)及在不同区域的分布(b,d.枯水期;c,e.平水期),不同字母表示显著差异(P0.05)微污染物的浓度总体表现为新烟碱农药(NEOs)有机磷酸酯(OPEs)抗病毒药(ANVIs),枯水期平均浓度分别为483、225和150 ngL−1。不同行政区域和河流中微污染物的分布和相对组成不同。南部区域的浓度明显高于北部区域,这与人类活动和污水处理厂分布显著相关。微污染物的生态风险图2 不同类别微污染物对不同营养级水生生物造成风险的比例(a.枯水期,b.平水期)。根据平均浓度(c)和最大浓度(d)确定的优控污染物(TUs1)在平水期,96.7%、100%和100%区域的藻类、无脊椎动物和鱼类受微污染物的慢性影响,这一比例高于枯水期(分别为41.7%、98.3%和100%)。在平水期,8.3%、33.3%和1.7%区域的藻类、无脊椎动物和鱼类处于高风险,而枯水期的比例分别为11.7%、3.3%和0%。有机磷农药(OPPs,杀虫剂)、三嗪类农药(TPs,除草剂)和OPEs占鱼类、藻类和无脊椎动物风险的最大比例,在枯水期分别占47.9%、46.6%和 56.5%。与平水期相比,不同的是拟除虫菊酯对鱼类风险的占比最大(图2a-2b)。这些结果表明,微污染物是威胁水生生物和生态系统的重要因素。根据微污染物的平均浓度,对其生态风险进行排序(图2c-2d)。18种微污染物被确定为优控污染物,其中高风险和中风险分别有7种和11种。TU分别为445.9、300和182.4的λ-氯氟氰菊酯、六嗪酮和磷酸三(2-乙基己基)酯(TEHP)的风险最大,验证了农药和OPEs的潜在风险。此外,敌敌畏、吡虫啉、毒死蜱和三(1-氯-2-丙基)磷酸酯(TCPP)表现出较高的环境风险。该优控清单有助于管理和控制北京市甚至其他类似大型城市地表水中的微污染物。不同空间尺度土地利用对生态风险的影响图3 枯水期(a、b和c)和平水期(d、e和f)河岸带不同尺度(0.1~15km)内耕地、不透水表面和植被地与藻类、无脊椎动物和鱼类生态风险的关系研究了不同空间尺度土地利用对不同营养级水生生物慢性风险的影响(图3)。当河岸带缓冲区分别超过5 km和2 km时,耕地对无脊椎动物和藻类的慢性风险有显著影响(p0.05),相关系数(R)呈现先增加后减少,然后再增加的趋势(图3a)。在所有空间尺度(0.1~15 km)的缓冲区中,不透水表面对藻类、无脊椎动物和鱼类的慢性风险显示出显著影响(p0.05)(图3b和3c),平水期影响最大的是缓冲区范围分别为1 km、2 km和5 km(图3e)。对于植被地,所有尺度缓冲区的土地利用(宽度为0.1 km的缓冲区除外)对慢性风险表现出显著的负效应(p0.05),并且最大的相关系数位于不同的空间尺度上(图3c和3f)。河岸带缓冲区中大于2 km的土地利用类型对三类水生生物的慢性风险有显著影响,表明太宽泛的河岸带缓冲区范围并不能解释当地的污染状况。在规划土地利用策略时,必须考虑最佳河岸带缓冲区,这有利于以较低成本获得理想的生态效益。图4 结构方程模型显示的气候条件和人类土地利用对藻类、无脊椎动物和鱼类慢性风险的直接和间接效应(a)及相应的直接效应、间接效应和总效应系数(b)利用SEM确定了人类土地利用和气候条件对三种不同营养级水生生物生态风险的直接和间接效应(图4,χ2=14.784,df=17,CFI=1,RMSEA=0.000)。人类土地利用对水质参数(WQPs)和新污染物浓度有显著的正效应,尤其是对NH3-N(标准化路径系数β = 0.40, P0.05)、OPEs(β = 0.91, P0.001)、OPPs(β = 0.69, P0.05)和大环内酯类抗生素(MACs)(β = 0.87, P0.01)。此外,气候条件对WQPs和新污染物的浓度有轻微的直接效应,气温和降雨量分别与三类生物的慢性风险呈正相关和负相关关系。OPPs受到人类土地利用的正效应(β=0.69,P0.05),在无脊椎动物的慢性风险中起着主要作用(β=0.75,P0.001)。同样,OPEs受到人类土地利用的正效应(β=0.91,P0.0001),并且人类土地使用对藻类的慢性风险有很高的效应值(β=0.027,P0.05),总磷和NH3-N两种营养物质分别对无脊椎动物的慢性风险有显著的负效应和正效应,其标准化路径系数分别为-0.40(P0.001)和0.26(P0.05)。人类土地利用对新污染物构成的风险具有正的总效应,而降水具有负的总效应(图4b)。且人类土地利用的总效应大于气候条件的总效应,表明人类土地利用对新污染物造成生态风险的贡献更大。经济的显著增长和城市化率的不断提高,改变了大型城市的空间结构及微污染物对淡水生态系统的影响。结果表明,反映人为压力源的土地利用可以作为解释不同营养级物种慢性风险的重要驱动因素。小结对大型城市淡水生态系统中133种微污染物进行了分析和风险评估,发现除草剂、OPEs和杀虫剂分别对藻类、无脊椎动物和鱼类的风险最大。确定了18种优控污染物,该清单可能有助于大型城市的微污染物管理和控制。不同空间尺度土地利用对不同营养级水生生物的慢性风险效应不同,其结果对规划土地利用管理和流域生态保护具有重要意义。多重胁迫因素,包括气候条件、污染排放,尤其是人类土地利用,影响着微污染物的生态风险。在控制流域内的微污染物时,有必要同时考虑这些多重因素。然而,气候变化是一个复杂而长期的影响,它与污染物之间的相互作用可能在短期内不明显。未来的研究可以更多地关注微污染物与长期气候变化之间的相互作用。淡水生态系统中多重压力源的相互作用仍然存在很大的不确定性,在以后的研究中应该重视这些相互作用的机制研究。本项目得到了国家自然科学基金委和国家重点研发计划的资助。
  • 复配食品添加剂:加强进口监管严防企业政策规避
    p  strong什么是复配食品添加剂/strong/pp  复配食品添加剂是指为了改善食品品质、便于食品加工,将两种或两种以上单一品种的食品添加剂,添加或不添加辅料,经物理方法混匀而成的食品添加剂。主要包括复配营养强化剂、复配防腐剂、复配抗氧化剂、复配甜味剂等。常见的已经商业化的复配食品添加剂如泡打粉、塔塔粉等。/pp  复配食品添加剂具有使各种单一食品添加剂的作用得以互补、协同增效、改善食品添加剂性能等优点。/pp  用于复配食品添加剂的各种食品添加剂,应符合GB2760《食品安全国家标准 食品添加剂使用标准》和卫计委相关公告的规定,具有共同的使用范围 在达到预期的效果下,应尽可能降低在食品中的使用量 在生产过程中不应发生化学反应,不应产生新的化合物,以保证不会对人体产生任何健康危害。/pp  根据复配的添加剂功能可以将复配食品添加剂分为两类:1.将不同功能的食品添加剂复配在一起,起着多功能的作用 2.同一功能的食品添加剂,但彼此效果有差异,复配之后能叠加,显著大于各自单一品种的功能。/pp  strong什么是含有添加剂的单一食品添加剂/strong/pp  在单一食品添加剂中,为了保持添加剂的性能或者更好地发挥作用,有时会添加功能性的辅料,有些辅料本身也是食品添加剂。比如,在着色剂中添加抗氧化剂或护色剂,以保持颜色鲜艳、不被氧化。/pp  可以看出,复配食品添加剂和含有辅料且辅料本身为添加剂的单一食品添加剂有共同之处。均含有两种或两种以上的食品添加剂。/pp  为何要区分复配食品添加剂和含有添加剂的单一食品添加剂/pp  之所以要对这两者加以区分,主要是基于以下两个原因:/pp  1.两者适用标准不同。/pp  《食品安全法》第九十二条规定,进口的食品、食品添加剂、食品相关产品应当符合我国食品安全国家标准。目前我国食品添加剂的食品安全国家标准正在不停的制修订过程中,但仍不完备,还有部分产品没有相应的标准。而复配食品添加剂的国家标准已经发布,并且没有要求复配食品添加剂中的所有成分都需要有单独的国家标准。所以,在检验食品添加剂时,需要注意区分复配食品添加剂和含有添加剂的单一食品添加剂。/pp  2.两者的标签标注要求不同。/pp  依据GB7718-2011《食品安全国家标准 预包装食品标签通则》及其问答,预包装食品中使用复配食品添加剂时,应当在中文标签的配料表中一一标注在终产品中具有功能作用的每种食品添加剂,如复配增稠剂(大豆膳食纤维、小麦纤维、羟丙基二淀粉磷酸酯、单甘油硬脂酸酯)、复配酸度调节剂(碳酸钾、碳酸钠)。而在预包装食品中使用单一食品添加剂,含有的辅料不在终产品中发挥功能作用时,不需要在配料表中标示。两者在终产品中的标注要求是不同的。/pp  strong检验检疫应当如何加强监管/strong/pp  复配食品添加剂一般用于某种指定产品。不是几种单一食品添加剂的简单混配,而是针对目标食品的要求,依据添加剂的作用原理和应用实验结果而设计的。比如,乳化剂用于起酥类食品时,单,双甘油脂肪酸酯加聚甘油酯效果最佳,但是如果用于冷冻面团,那么加上丙二醇酯效果更好。因此,复配食品添加剂进口时,可以向进口商了解是否有目标食品,结合对成分功能的说明,作为判断的依据。/pp  同时,监管部门可以根据含量来判断是不是能够在终产品中发挥作用。单一食品添加剂中的用作辅料的添加剂为了达到使用目的,有一定的含量要求。超过此含量要求,那么可以认为该辅料添加剂可能在终产品中发挥作用,可以视作复配食品添加剂。/pp  目前,对于加在单一食品添加剂中的添加剂的限量,除极少数新的食品安全国家标准中有所提及外,基本还是一项空白,CODEX正在讨论单一食品添加剂中添加剂的使用规定,我国也有待专业人士和部门尽快加以完善。/pp  监管部门应当认真区分以下几种情况:/pp  当食品或者食品原料由于没有国家标准无法进口时,部分企业为了规避此政策,会将其申报为添加剂,比如食用植物油中添加了不允许使用的添加剂,但企业申报为添加剂(将食用油申报为添加剂辅料),检验时也需要认真区分。/pp  单一食品添加剂中添加的辅料是食品添加剂时,这种辅料可以作为辅料也可以作为食品添加剂,比如,丙二醇可以用作辅料也可用作添加剂。这时,需要依据企业声明来判断究竟是用作辅料还是添加剂。/p
  • 食品包装中的防油剂可致血液污染
    美欧各国加强监测多氟烷基磷酸酯  加拿大多伦多大学科学家发现,垃圾食品包装材料及微波爆米花袋上的化学物质会转移到食物中去,并被人体吸收,导致血液化学污染。该研究成果发表在近日出版的《环境与健康展望》杂志上。  全氟羧酸(PFCAs)是一种可分解的化学物质,主要用于制造不粘锅及食品包装材料的防水剂、防污剂。而全氟辛酸(PFOA)目前已在全世界各地的人体内发现。  由多伦多大学化学系的杰西卡和斯科特马伯里领导的研究小组推测,人体内全氟羧酸的来源可能与多氟烷基磷酸酯(PAPS)有关。PAPS在快餐食品包装材料或微波爆米花袋中作为防油剂使用。  研究人员让大鼠口服或注射PAPS三个星期,并监测其血液中多氟烷基磷酸酯和全氟羧酸的代谢物及全氟辛酸的浓度。虽然研究人员尚不能证明多氟烷基磷酸酯是人体内发现的全氟辛酸和全氟羧酸的唯一来源,但此项研究发现,多氟烷基磷酸酯代谢物是全氟辛酸和全氟羧酸的主要来源,因此人体内发现的全氟辛酸很可能与人们平时接触多氟烷基磷酸酯有关。  目前世界各国政府对于监测多氟烷基磷酸酯的兴趣不断增长。加拿大、美国及欧洲各国政府已经表示要长期监测这些化学物质。新研究为监管机构制定相关政策提供了有价值的信息。
  • 三部委联合印发《优先控制化学品名录(第二批)(征求意见稿)》
    p  为落实《中共中央 国务院 关于全面加强生态环境保护 坚决打好污染防治攻坚战的意见》关于“评估有毒有害化学品在生态环境中的风险状况,严格限制高风险化学品生产、使用、进出口,并逐步淘汰、替代”的要求,在《优先控制化学品名录(第一批)》的基础上,生态环境部会同工业和信息化部、卫生健康委组织编制了《优先控制化学品名录(第二批)(征求意见稿)》。/pp  《优先控制化学品名录(第二批)(征求意见稿)》 共计2,4,6-三叔丁基苯酚、异丙基化磷酸三苯酯、五氯苯硫酚、苯并[a]芘等7种类多环芳烃类物质、五氯苯等3种氯苯类物质、氰化物、苯、甲苯、磷酸三(2-氯乙基)酯、邻苯二甲酸二(α-乙基己基)酯等4种邻苯类物质、1,2-二氯丙烷、1,1-二氯乙烯、2,4-二硝基甲苯、邻甲苯胺、铊及其化合物、多氯二苯并对二噁英和多氯二苯并呋喃、全氟辛酸及其盐类和相关化合物、六氯丁二烯、五氯苯酚及其盐类和酯类等19种类化学物质, 涉及石化、塑料、橡胶、制药、纺织、染料、皮革、电镀、有色金属冶炼、 采矿等行业。/pp  详情如下:/pp  附件:a href="https://www.instrument.com.cn/download/shtml/949508.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "1.优先控制化学品名录(第二批)(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949509.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "2.各化学物质环境风险分析说明/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949510.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "3.《优先控制化学品名录(第二批)(征求意见稿)》编制说明/span/a/p
  • EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用
    EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用哈希公司哈希EZ7300 ATP(三磷酸腺苷)在线分析仪是一个全自动化的微生物检测系统,符合国际认可的ASTM D4012-81标准方法。传统的用于评估饮用水和工业用水中的细菌安全的方法由于采样频率、菌种筛选和操作不当、污染等限制,通常需要较长的反应时间。等到分析结果出来了,水已经被使用了。哈希为现有的检测方法提供了一个替代方案。哈希EZ7300 ATP(三磷酸腺苷)在线分析仪使用生物荧光法来测量ATP的含量,从而获得快速且准确的结果。该在线分析仪可以自动进行采样、分析和数据处理,可在0-250 ng/mL ATP (或者 0-500 pM ATP)的范围内快速对水中微生物负荷进行反馈。影响电厂冷却塔杀菌剂投加方案的主要因素有两个。首先,是排放许可证的要求,会对投加药剂的速度或时间有要求,第二,需要根据水中的微生物负荷来制定投加药剂的方案,且该方案会根据水的来源和是否需要循环利用而不同。印第安纳州一个发电厂的操作员需要实时信息来优化杀菌剂加药方案。操作员需要这些数据来确定否间歇加药或连续加药(氯胺浓度较低)哪种加药方式更有效且更具成本效益。减少冷却水回路和冷却塔中的总微生物负荷,减少生物膜的形成以及大型冷却塔军团杆菌爆发的相关风险也是必要的。发电厂对哈希EZ7300 ATP(三磷酸腺苷)在线分析仪进行为期2个月的试验,清楚地证明了连续监测的优势,间歇使用杀菌剂的数据显示与不使用杀菌剂相比,间歇使用杀菌剂对ATP水平和微生物负荷有显著影响。在试验之后,工厂订购了一台仪表并对两路水流进行连续监测,从而优化杀菌剂的剂量并降低潜在风险。其姊妹电厂也订购了一台EZ7300用于监测供水系统的微生物负荷。END
  • 欧盟修订食品添加剂磷酸三钙的相关规定
    据欧盟网站消息,3月20日欧盟发布(EU)No 244/2013号法规,修订了(EC)No 1333/2008法规附件III中关于磷酸三钙用于婴儿以及儿童食品的规定。  最新规定如下:E341(iii)磷酸三钙作为P2O5的最大残留量150mg/kg,并在钙,磷与钙的限量内:氮磷比见2006/141/EC指令中的规定所有营养物婴儿奶粉以及较大婴儿奶粉见2006/141/EC指令中的规定成品中以P2O5计的最大限量为1000 mg/kg见附件II中E部分13.1.3条规定所有营养物用于婴儿与儿童的加工类谷物食品以及儿童食品见2006/125/EC指令中的规定  新规定将自公布20天后生效。  原文链接:  http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:077:0003:0004:EN:PDF
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。  加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。  目前该通报正在征求意见中。
  • 41项在研/拟制订!新污染物生态环境监测分析方法标准水质篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与水质相关的分析方法标准56项,按编制状态分类,已发布15项、在研7项、拟制订34项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素水质 抗生素的测定 大体积进样/液相色谱-三重四极杆质谱法A在研2水质 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A在研3水质 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A在研4水质 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5水质 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6水质 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7水质 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8水质 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9水质 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订10三氯杀螨醇水质 三氯杀螨醇的测定 气相色谱-质谱法A拟制订11水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(HJ 699-2014)A已发布12微塑料水质 微塑料的测定 傅里叶变换显微红外光谱法A拟制订13水质 聚乙烯等5种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订14多氯萘水质 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订15六溴联苯水质 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订16毒杀芬水质 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订17有机磷酸酯类水质 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订18水质 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订19麝香类水质 麝香类化合物的测定 气相色谱-质谱法C拟制订20N,N'-二甲苯基-对苯二胺水质 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订21甲醛和乙醛水质 丙烯腈和丙烯醛的测定 吹扫捕集/气相色谱法(修订HJ 806-2016)C拟制订增加乙醛指标22水质 甲醛的测定 乙酰丙酮分光光度法(HJ 601-2011)C已发布23苯胺类(邻甲苯胺)水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1048-2019)C已发布24多环芳烃水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法(HJ 478-2009)C已发布25烷基汞水质 烷基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 977-2018)C已发布26硝基苯水质 硝基苯类化合物的测定 气相色谱法(HJ 592-2010)C已发布27水质 硝基苯类化合物的测定 气相色谱-质谱法(HJ 716-2014)C已发布28邻苯二甲酸酯类水质 6 种邻苯二甲酸酯类化合物的测定 液相色谱-三重四极杆质谱法 (HJ 1242-2022)D已发布29水质 邻苯二甲酸二异丁酯、邻苯二甲酸二异壬酯和邻苯二甲酸二异癸酯的测定液相色谱-三重四极杆质谱法D拟制订30水质 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订31紫外吸收剂水质 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订32水质 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订33卡拉花醛水质 卡拉花醛的测定 气相色谱-质谱法D拟制订34有机锡化合物(三丁基锡)水质 三丁基锡等 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法(HJ 1074-2019)D已发布35得克隆水质 得克隆的测定 气相色谱-质谱法A B拟制订36多氯联苯水质 多氯联苯的测定 气相色谱-质谱法(HJ 715-2014)A B已发布37水质 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订38有机氯农药水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法(修订 HJ 699-2014)A B拟制订39二噁英类水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订HJ 77.1-2008)B C在研40多溴二苯醚水质 多溴二苯醚的测定 气相色谱-质谱法(HJ 909-2017)A B C已发布41水质 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法A B C拟制订42中链氯化石蜡水质 中链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订43短链 氯化石蜡水质 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订44水质 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订45五氯苯酚水质 2,4-二氯酚、2,4,6-三氯酚、五氯酚和双酚 A 的测定高效液相色谱-三重四极杆质谱法A B C在研46水质 酚类化合物的测定 气相色谱-质谱法(HJ 744-2015)A B C已发布47水质 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订48挥发性有机物水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(修订 HJ 639-2012)A C D拟制订增加 1,3-丁二烯和 1-溴丙烷指标49壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚水质 9 种烷基酚类化合物和双酚 A 的测定 固相萃取/高效液相色谱法(HJ 1192-2021)A C D已发布50水质 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订51水质 烷基酚和双酚 A 的测定 气相色谱-质谱法A C D在研52六溴环十二烷双酚 A水质 六溴环十二烷和四溴双酚 A 的测定 液相色谱-质谱法A B C D在研53全氟化合物类水质 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定 液相色谱-三重四极杆质谱法A B C D拟制订54水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333-2023)A B C D已发布55水质 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订56氯苯类水质 氯苯类化合物的测定 气相色谱法(HJ 621-2011)A B C D已发布*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 食品添加剂问题不等于标准问题
    近年来,老百姓对于食品添加剂是“谈虎色变”。国家《食品添加剂使用标准》也一再去除其中非必要的添加剂种类,尽管反对人士认为,目前并没有证据证明有些被禁用的添加剂是有害的。不过,专家指出,食品添加剂问题并不等同于标准问题,标准并不能确保食品安全。  2011年版的《食品添加剂使用标准》中,大米被允许添加双乙酸钠(防腐剂)、淀粉磷酸酯钠(增稠剂)、和脱乙酸甲壳素(又名壳聚糖,增稠剂、被膜剂)。根据2011版标准,淀粉磷酸酯钠使用的范围是粮食和粮食制品,包括大米、面粉、杂粮、块根植物、豆类和玉米提取的淀粉等(不包括原粮及焙烤食品),用量为“按生产适量使用”。双乙酸钠在大米中的最大使用量为0.2g/kg,但残留量要小于等于30mg/kg。壳聚糖在大米中使用量为0.1g/kg。  这三种食品添加剂立刻引起了粮食领域专家的注意,有专家表示,大米主要是淀粉、蛋白质和少量脂肪,淀粉和蛋白质相对稳定,在安全水分下,微生物变化非常小。大米可以保持其原有品质,不需要添加任何东西。而且添加的这三种物质在防虫上也没有作用。  国家粮食局标准质量中心原高级工程师谢华民对2011年的这次大米添加剂的风波记忆犹新。他认为,媒体的连续关注,让这三种完全没有必要出现在大米中的食品添加剂引起了社会的广泛关注。在今年的3月15日,国家卫生部公开信息中公布的新版《食品添加剂使用标准》征求意见稿中,这三种添加剂的使用范围都进行了调整,大米彻底从添加剂中解放出来。淀粉磷酸酯钠的使用范围去掉了粮食和粮食制品一类,在双乙酸钠和壳聚糖两种添加剂的使用范围中都没有了大米的身影。  而在两年前的3月,一场持续了几年的关于面粉增白剂的存废之争最终有了结果。卫生部等部门3月1日正式发布公告,撤销食品添加剂过氧化苯甲酰、过氧化钙,自2011年5月1日起,禁止生产、在面粉中添加这两种物质。过氧化苯甲酰、过氧化钙已无技术上的必要性,因此卫生部联合工业和信息化部等部门联合发布公告,撤销过氧化苯甲酰和过氧化钙作为食品添加剂。  尽管如此,反对方始终认为,没有任何证据证明增白剂是有害于健康的,国际食品发展委员会的食品添加剂也是允许使用的,在60mg/kg这一限量标准下使用,不会引起安全问题。  同时指出,加拿大批准的最大添加量为150mg/kg,菲律宾批准的最大添加量为150mg/kg,日本批准的最大添加量为300mg/kg,而美国批准“按生产需要添加”,并未给出最大添加量限值。  在记者采访中,不少专家表示,对于食品添加剂而言,不是必需品,原则上不建议列入《食品添加剂使用标准》。但是,范志红告诉《中国科学报》记者,食品添加剂的问题其实并非标准问题。  仍以面粉为例,绝大多数消费者每天吃的面制品,比如现做现卖的烙饼、馒头、面条、包子、饺子等无论在超市、早市还是早点摊,都不属于预包装食品,也就是说,这类食品是不需要有食品标签对添加剂作任何说明的。事实上,包括各类餐馆提供的食物在内,理论上,消费者无法保证它们是绝对安全的。在李里特看来,再严苛的法律或是标准、条例,关键还在于监管部门的执行和企业的自律。  不过,范志红提到,食品安全是一项双向教育,买方市场同样需要反思自己的行为。她认为,老百姓在理性层面选择安全,但在感性层面却选择享受。  “酸奶追求黏稠,面粉追求细白,面包追求筋道……如此一来,那些没有任何添加剂的产品是得不到市场的。”因此,她认为,老百姓如何选择食品,一定程度上也影响着非法添加或者食品造假的市场。
  • 广东省环境科学学会公开征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见
    各分支机构、各会员单位和有关单位:由广东省生态环境监测中心、华南师范大学等单位共同提出并主持编制的《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》三项团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年9月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)2.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明3.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)4.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明5.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)6.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明 7.广东省环境科学学会标准征求意见反馈表 广东省环境科学学会2024年8月19日关于征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见的函.pdf附件1:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件2:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件3:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件4:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件5:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件6:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件7:广东省环境科学学会标准征求意见反馈表.doc
  • 36项在研/拟制订!新污染物生态环境监测分析方法标准土壤和沉积物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与土壤和沉积物相关的分析方法标准52项,按编制状态分类,已发布16项、在研3项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素土壤和沉积物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2土壤和沉积物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3土壤和沉积物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4土壤和沉积物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5土壤和沉积物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6土壤和沉积物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7土壤和沉积物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8土壤和沉积物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇土壤和沉积物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料土壤和沉积物 微塑料的测定 傅里叶变换显微红外光谱法A拟制订11土壤和沉积物 聚乙烯等 5 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订12多氯萘土壤和沉积物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订13六溴联苯土壤和沉积物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订14毒杀芬土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(HJ 1290-2023)B已发布15有机磷酸酯类土壤和沉积物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订16土壤和沉积物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订17麝香类土壤和沉积物 麝香类化合物的测定 气相色谱-质谱法C拟制订18N,N'-二甲苯基-对苯二胺土壤和沉积物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订19甲醛和乙醛土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法(HJ 997-2018)C已发布20苯胺类(邻甲苯胺)土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1210-2021)C已发布21多环芳烃土壤和沉积物 多环芳烃的测定 高效液相色谱法(HJ 784-2016)C已发布22烷基汞土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 1269-2022)C已发布23硝基苯土壤和沉积物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订24邻苯二甲酸酯类土壤和沉积物 6 种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法(HJ 1184-2021)D已发布25土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)D已发布26紫外吸收剂土壤和沉积物 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订27土壤和沉积物 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订28卡拉花醛土壤和沉积物 卡拉花醛的测定 气相色谱-质谱法D拟制订29有机锡化合物(三丁基锡)土壤和沉积物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订30得克隆土壤和沉积物 得克隆的测定 气相色谱-质谱法A B拟制订31多氯联苯土壤和沉积物 多氯联苯的测定 气相色谱-质谱法(HJ 743-2015)A B已发布32土壤和沉积物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订33有机氯农药土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017)A B已发布34土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017)A B已发布35二噁英类土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.4-2008)B C在研36多溴二苯醚土壤和沉积物 多溴二苯醚的测定 气相色谱-质谱法(HJ 952-2018)A B C已发布37土壤和沉积物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订38短链 氯化石蜡土壤和沉积物 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订39土壤和沉积物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订40土壤和沉积物 短链氯化石蜡的测定 电子捕获负化学源低分辨质谱法A B C在研41五氯苯酚土壤和沉积物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订42土壤和沉积物 酚类化合物的测定 气相色谱法(HJ 703-2014)A B C已发布43土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)A B C已发布44挥发性有机物土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(HJ 605-2011)A C D已发布45土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法(HJ 741-2015)A C D已发布46壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚土壤和沉积物 19 种酚类化合物的测定 液相色谱-三重四极杆质谱法A C D拟制订47土壤和沉积物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订48六溴环十二烷双酚 A土壤和沉积物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D在研49全氟 化合物类土壤和沉积物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订50土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334-2023)A B C D已发布51土壤和沉积物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订52氯苯类土壤和沉积物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。仪器信息网将在5月7-9日举办“第五届土壤检测技术与应用”网络会议,其中”土壤新污染物检测“专场将为大家分享最新的分析技术进展与应用,点击免费报名:第五届土壤检测技术与应用网络会议_3i讲堂_仪器信息网 https://www.instrument.com.cn/webinar/meetings/soil240507/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制