当前位置: 仪器信息网 > 行业主题 > >

丙烯腈的聚合物

仪器信息网丙烯腈的聚合物专题为您提供2024年最新丙烯腈的聚合物价格报价、厂家品牌的相关信息, 包括丙烯腈的聚合物参数、型号等,不管是国产,还是进口品牌的丙烯腈的聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烯腈的聚合物相关的耗材配件、试剂标物,还有丙烯腈的聚合物相关的最新资讯、资料,以及丙烯腈的聚合物相关的解决方案。

丙烯腈的聚合物相关的论坛

  • 胶黏剂-丙烯酸酯聚合物标准

    根据GBT--13553-1996 胶黏剂分类,丙烯酸酯聚合物的编号是531,分在大类5 合成热塑性材料/小类 5.3丙烯酸酯聚合物类/组别 丙烯酸酯聚合物,是否有这一类产品的相关标准?国标/行标等?谢谢

  • 【原创】聚丙烯腈的鉴定

    鉴定聚丙烯腈Polyacrylonitrile,根据具体情况可采用IR,MS,NMR技术。早期IR是主要工具,但IR对Polyacrylonitrile的立体化学细节稍嫌乏力,这方面NMR,特别是13CNMR具有强大威力,可以鉴定Polyacrylonitrile由于催化剂,反应条件不同造成的等规度的不同,等规度不同的聚丙烯腈其性质是有差异的。聚丙烯腈的平均分子量通常是很大,可用飞行时间MS来测定。IR鉴定Polyacrylonitrile和acrylonitrile共聚物有其独特的好处,比如断定CN基的吸收峰很灵敏,这一点比用13CNMR还方便,我鉴定此类聚合物都是NMR和IR结合。附Polyacrylonitrile average Mw 150,000 的IR图谱,附Polyacrylonitrile average Mw 150,000 的IR图谱,供欣赏。

  • 【求助】急! 求GB/T 21059-2007 和能快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法

    急求1、GB/T 21059-2007 塑料 液态或乳液态或分散体系聚合物/树脂 用旋转黏度计在规定剪切速率下黏度的测定 …… 全文2、快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法其中异丙醇浓大约为50%、丙烯腈和苯乙烯约为5%以下请大虾们指教色谱柱型号、色谱条件、溶剂、内外标物质等等?需要自己装柱的也行,烦请告知固定相、担体、柱长、直径等。万分感谢!

  • 丙烯腈的作用

    丙烯腈 【名称】:丙烯腈【化学式】:CH2═CHCN三维模型【化学性质】:分子量 53.06辛辣气味的无色液体。熔点-82℃。密度0.806g/cm3。闪点-1.1℃(开杯)。自燃点48l℃。折射率1.388。溶于水、乙醚、乙醇、丙酮、苯和四氯化碳。与水形成共沸物。易挥发,有腐蚀性。有氧存在下,遇光和热能自行聚合.易燃,遇火种、高温、氧化剂有燃烧爆炸的危险,其蒸气与空气形成爆炸性混合物。极毒!不仅蒸气有毒,而且经皮肤吸入也能中毒。生气中的容许浓度为20ppm。【物理性质】:为无色液体,沸点77.3℃,属大宗基本有机化工产品,是三大合成材料——合成纤维、合成橡胶、塑料的基本且重要的原料,在有机合成工业和人民经济生活中用途广泛。【应用】:丙烯腈用来生产聚丙烯纤维(即合成纤维腈纶)、丙烯腈-丁二烯-苯乙烯塑料(ABS)、苯乙烯塑料和丙烯酰胺(丙烯腈水解产物)。另外,丙烯腈醇解可制得丙烯酸酯等。丙烯腈在引发剂(过氧甲酰)作用下可聚合成一线型高分子化合物——聚丙烯腈。聚丙烯腈制成的腈纶质地柔软,类似羊毛,俗称“人造羊毛”,它强度高,比重轻,保温性好,耐日光、耐酸和耐大多数溶剂。丙烯腈与丁二烯共聚生产的丁腈橡胶具有良好的耐油、耐寒、耐溶剂等性能,是现代工业最重要的橡胶,应用十分广泛。

  • 甲醛交联聚丙烯酰胺聚合物的红外光谱分析

    甲醛交联聚丙烯酰胺聚合物的红外光谱分析

    [color=#444444]对照了半天 只认出来一个峰3407.49 N-H的伸缩振动 想问问其它峰是什么 有没有成功制得甲醛交联聚丙烯酰胺聚合物 谢谢[/color][color=#444444][img=,690,350]https://ng1.17img.cn/bbsfiles/images/2019/09/201909180938563964_6201_1823055_3.png!w690x350.jpg[/img][img=,690,432]https://ng1.17img.cn/bbsfiles/images/2019/09/201909180938560383_8150_1823055_3.jpg!w690x432.jpg[/img][/color]

  • 一些聚合物英文简称

    ABS Acrylonitrile-Butadiene-Styrene(resin) 丙烯腈-丁二烯-苯乙烯树脂 AS Acrylonitrile-Styrene(resin) 丙烯腈-苯乙烯树脂 ASA Acrylic-styrene-acrylonitrile 丙烯酸-苯乙烯-丙烯腈 CA Cellulose Acetate 醋酸纤维素 CAP Cellulose Acetate Propionate 醋酸丙酸纤维素酯 CB Cellulose Butyrate 纤维素酪酸酯 CP Cellulose Propionate 丙酸纤维素酯 CN Collodion wool 硝酸纤维素CTFE Polychlorotrifluoroethylene 聚一氯三氟乙烯 EAA Ethylene Acrylic Acid 乙烯丙烯酸 EAE Ethylene Acrylic Ester copolymer 乙烯-丙烯酸乙酯 共聚物EC Ethyl cellulose 乙基纤维素ECTFE Ethylene-chlorotrifluoroeethylene 乙烯-一氯三氟乙烯共聚合物 EMA Ethylene Methyl Acrylate copolymer 乙烯-甲基丙烯酸酯 共聚物EMAA Ethylene Methacrylic Acid copolymer 乙烯丙烯酸甲酯 共聚物ENBA Ethylene N-Butyl Acrylate copolymer 乙烯-丙烯酸丁酯 共聚物EP Epoxy resin 环氧树脂ETFE Copolymer of ethylene and chlorotetrafluoroethylene 乙烯一氯四氟乙烯共聚物 EVA Ethylene Vinyl Acetate copolymer 乙烯-醋酸乙烯共聚物EVOH Ethylene-Vinyl alcohol copolymer 乙烯-乙烯醇共聚物FEP Fluorinated ethylene-propylene copolymer 氟化乙丙共聚物 HDPE High density Polyethylene 高密度聚乙烯 HDPE High density Polyethylene 高密度聚乙烯 LCP Liquid crystal polyester 液晶聚酯 LCP Liquid crystal polymer 液晶聚合物LDPE Low density Polyethylene 低密度聚乙烯 IONOMER ionomer 离子聚合物 LCP Liquid crystal polyester 液晶聚酯 LDPE Low density Polyethylene 低密度聚乙烯 LLDPE Linear Low density Polyethylene 线性低密度聚乙烯 MBS 甲基丙烯酸甲酯-丁二烯-苯乙烯 共聚物MDPE Medium density Polyethylene 中密度聚乙烯 PA Polyamide 聚酰胺 PA11 Polyamide 11 聚酰胺 11 PA12 Polyamide 12 聚酰胺 12 PA4/6 Polyamide 4/6 聚酰胺4/6 PA6 Polyamide 6 聚酰胺 6 PA6/10 Polyamide 6/10 聚酰胺 6/10 PA6/12 Polyamide 6/12 聚酰胺 6/12 PA6/6 Polyamide 6/6 聚酰胺 6/6 PA6/9 Polyamide 6/9 聚酰胺 6/9 PAI Polyamide-imide 聚酰胺酰亚胺 PBT Polybutylene terephathalate 聚对苯二甲酸二丁酯 PC Polycarbonate 聚碳酸酯 PCL Polyamide-6 layer sheet 聚己内酰胺PCT Polycarbonate hexandimethanol Terephthalate 聚环已醇二乙酯 PE Polyethylene 聚乙烯PEC Polyethylene-Chlorinated 氯化聚乙烯PEG Polyethylene glycol 聚乙二醇PEI Polyethyleneimineimpregnated 聚乙烯亚胺PEO Polyoxyethylenesorbitan 聚氧化乙烯PEEK Polyetheretherketone 聚醚醚酮 PEI Polyetherimide 聚醚酰亚胺 PES Polyethersulfone 聚醚砜 PET Polyethylene terephathalate 聚对苯二甲酸二乙酯 PFA Perfluoroalkoxy 过氟烷氧基 PI Polyimide 聚酰亚胺 PK Polyketone 聚酮 PMMA Polymethylmethacrylic 聚甲基丙烯酸甲酯 (有机玻璃)PMP Polymethylpentene 聚甲基戊烯 Polyolefin -- 聚烯烃 POM Polyoxymethylene 聚甲醛 PP Polypropylene 聚丙烯 PPE Polyphenylene Ether 聚苯醚 PPO Polypropylene Oxide 聚环氧丙烷 PPS Polyphenylene Sulfide 聚苯硫醚 PS Polystyrene 聚苯乙烯 PSF Polysulfone 聚砜 PTFE Polytetrafluorothylene 聚四氟乙烯 PU Polyurethane(TP) 聚氨基甲酸乙酯 PVA Polyvinylalcohol 聚乙烯醇PVB Polyvinylbutyral 聚乙烯醇缩丁醛PVC Polyvinyl Chloride(TP) 聚氯乙烯 PVDC Polyvinyl Dichloride 聚偏氯乙烯 PVDF Polyvin ylidene fluoride 聚偏氟乙烯 PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮SAN(AS) Styrene-Acrylonitrile 苯乙烯-丙烯腈 SBR Styrene-Butadiene Rubber 苯乙烯-丁二烯橡胶 SMA Styrene Maleic Anhydride 苯乙烯-马來酸酐 TPE Thermoplastic Elastomer (TPE) 热塑性弹性体 TPO Thermoplastic Polyolefin(TPO) 热塑性聚烯烃

  • 聚合物的分类

    按来源分类按来源可把高分子分成天然高分子和合成高分子两大类。按性能分类可把高分子分成塑料、橡胶和纤维三大类。塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。橡胶包括天然橡胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。按主链结构分类可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。碳链高分子的主链是由碳原子联结而成的。杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母、水晶等,合成无机高分子如玻璃。高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙-6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。

  • 聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?

    在水处理行业中,有时候为了达到完美的处理结果,就需要多种净水药剂配合使用。其中,最常见的就是聚丙烯酰胺与聚合氯化铝配合使用;或者是聚丙烯酰胺与聚合硫酸铁配合使用。相对来说,大家对于聚丙烯酰胺与聚合硫酸铁配合使用的情况直到的最少,那么,在哪些情况下?聚丙烯酰胺适合与聚合硫酸铁配合使用呢?  聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?  一、聚丙烯酰胺概述  聚丙烯酰胺简称PAM,俗称絮凝剂或凝聚剂,分子式为:+CH2-CHn线状高分子聚合物,分子量在400-2000万之间,固体产品外观为白色或略带黄色粉末,液态为无色粘稠胶体状,易溶于水,温度超过120℃时易分解。  聚丙烯酰胺分子中具有阳性基团(-CONH2),能与分散于溶液中上悬浮粒子吸附和架桥,有着极强的絮凝作用,因此广泛用于水处理以及治金、造纸、石油、化工、纺织、选矿等领域。  聚丙烯酰胺分为:阳离子聚丙烯酰胺,阴离子聚丙烯酰胺,非离子聚丙烯酰胺,两性离子聚丙烯酰胺。  三、阴离子聚丙烯酰胺概述  阴离子聚丙烯酰胺,外观为白色粉末颗粒,具有絮凝性,增稠性,抗剪切性等多种性能,易溶于水,几乎不溶于有机溶剂,广泛用于采油,造纸,化工,选矿等行业。阴离子聚丙烯酰胺(PAM)产品描述:阴离子聚丙烯酰胺分子量从600万到2500万水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。有效的PH值范围为7到14,在中性碱性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。  二、聚合硫酸铁概述  聚合硫酸铁是淡黄色无定型粉状固体,极易溶于水,10%(重量)的水溶液为红棕色透明溶液,具有吸湿性。在水处理行业中,聚合硫酸铁主要的用途包括:饮用水、工业用水、各种工业废水、城市污水、污泥脱水等的净化处理。  聚合硫酸铁作为近年来广泛使用的一种水处理絮凝剂,已经被广大客户所认可,它在水处理中的絮凝兼除铁效果无可替代。我们公司生产的聚合硫酸铁自从投入生产后年产量达到6000吨左右,产品销往全国各大电力,钢铁,冶金行业。因质量好,絮凝快,除铁明显而收到客户高度好评。  液体聚合硫酸铁已经可以处理污水,但由于运输,储藏麻烦,所以要经过干燥聚合成固体的,但现在有客户还是要求液体的,其实只是为了在使用过程中方便加药。其实大可不必,买一套加药设备只需要3000元左右,这样就可以把固体硫酸铁稀释成液体的,而且是自动加药,省时省力。固体硫酸铁运输方便,储存简单,能大大减少客户的费用。生产聚合硫酸铁的工艺方法,以硫酸亚铁、硫酸为原料。硝酸为氧化剂。在常压级慢搅拌的条件下生成液体聚合硫酸铁,最后进入反应釜于50°一100℃进行反应聚合。形成喷雾型聚合硫酸铁。本工艺方法反应时间短,生产周期短,提高了生产效率。产品质量稳定纯净,用途广泛,氧化剂硝酸可循环使用,利用了原料的溶解热和反应热,耗能少,成本低,操作方便,对大气环境没有污染。  四、聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?  以下是小编为大家总结的几点聚丙烯酰胺与聚合硫酸铁配合使用的情况:  1、当水质条件属于低温低浊时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  2、当水中不含氯铝离子时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  3、要求沉淀速率快时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  4、要求沉淀的污泥密实时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  5、对于在哪些情况下该选择聚合硫酸铁,还是其他的净水药剂配合聚丙烯酰胺使用,主要是看处理水的工艺和水质特点。不过需要注意的是,聚丙烯酰胺配合聚合硫酸铁使用的时候,一定要分开溶解,分开投加,不能混用。

  • 废气中的聚合物监测

    如果排气筒废气中的污染物有聚合物,例如氯化聚烯烃、丙烯酸酯聚合物等,该如何监测?能测试单体的排放浓度代替聚合物的浓度吗?

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 【求助】请问这样的聚合物能做透射吗

    大家好!我想请问一个问题,我看一个聚合物的聚合结构,该聚合物是聚甲基丙烯酸酯类的,结构里面含有苯环,我做了切片和染色后,还是一点东西都看不到,只看到一层膜,请问这样的物质能通过透射看结构吗?可以的话是要用特殊的染色剂吗?谢谢大家!

  • 聚丙烯腈纤维检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-36500.html[/url]聚丙烯腈纤维检测样品名称 聚丙烯腈纤维工程部位:路基附属工程、沟渠、涵洞框架桥、护坡及冲刷防护、改河(沟渠)、水泥混凝土路面聚丙烯腈纤维检测判定依据 CECS 38-2004《纤维混凝土结构技术规程》,TB/T 2965-2018《铁路桥梁混凝土桥面防水层》GB/T22282-2008聚丙烯腈纤维检测项目:1.密度,2.吸水性,3.安全性,4.纤维杂质含量,5.直径,6.熔点,7.抗拉强度,8.弹性模量,9.极限伸长率,10.长度。

  • 热降解对三类聚合物分子量分析的影响

    热降解对三类聚合物分子量分析的影响

    聚合物分子量分析,样品溶解是一个很重要的因素,溶解时间过长,可能会造成聚合物热降解,特别是氧化降解,下面我们来看一下热降解对聚丙烯PP、聚苯乙烯PS及高密度聚乙烯HDPE的GPC分析结果的影响:http://ng1.17img.cn/bbsfiles/images/2015/10/201510191001_570312_1664_3.jpg图一、热降解对不同聚合物的GPC分析结果的影响从上图我们可以看出,热降解对PP的影响更大,不同受热时间的同一样品分析结果差别较大,而对PS和HDPE影响较小,但是多少也会有一些影响,如何保证样品分析结果不受或者减少热降解的影响,是很多从业人员关心的问题,如果我们保证了同一样品的受热时间一致,那么分析结果的重复性自然会很好。

  • 【求助】问聚合物核磁的问题

    我在做一个PDMAA(聚N,N-二甲基丙烯酰胺)的核磁,但主峰很宽,峰下的毛刺中我不知怎么确定哪一些是端基的峰。另外,端基的位移会变吗?我用2-溴丙酸甲酯(这个的核磁没有任何问题,非常清晰)引发,但在聚合物的相应位置我没有找到引发剂峰,而在移开的一些位置上有一些我怀疑是引发剂的小峰。

  • 【资料】“偏光显微镜法”观察“聚合物”球晶

    【资料】“偏光显微镜法”观察“聚合物”球晶

    聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形式。球晶可以长得比较大,直径甚至可以达到厘米数量级.球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。因此,普通的偏光显微镜就可以对球晶进行观察.因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过500—1000倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。 球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。 光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波.即偏振光。—束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。如图2—1是共聚聚丙烯在145℃时的球晶照片。在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812011816_121451_1604910_3.jpg[/img]

  • 聚合物分子量怎么比较准确检测?

    各位老大? 一种聚合物 "聚丙烯酸钠分散剂 "含量大约42%左右的液体,怎么测分子量啊?不要极限黏数法(个人因素影响太大) 也不要端基法测聚丙烯酸的,谁还有其他的方法啊?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制