当前位置: 仪器信息网 > 行业主题 > >

七甲基三硅氧烷

仪器信息网七甲基三硅氧烷专题为您提供2024年最新七甲基三硅氧烷价格报价、厂家品牌的相关信息, 包括七甲基三硅氧烷参数、型号等,不管是国产,还是进口品牌的七甲基三硅氧烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合七甲基三硅氧烷相关的耗材配件、试剂标物,还有七甲基三硅氧烷相关的最新资讯、资料,以及七甲基三硅氧烷相关的解决方案。

七甲基三硅氧烷相关的资讯

  • 中国氟硅有机材料工业协会批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准
    中国氟硅有机材料工业协会批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准,详见附件(发布公告),现予以公布。 关于批准发布《有机硅污水中甲基环硅氧烷含量的测定》团体标准的公告(2024年第1号).pdf
  • 中国氟硅有机材料工业协会发布团体标准《有机硅污水中甲基环硅氧烷的测定》团体标准
    经项目征集、审核、发布审议等程序,氟硅协会拟于2024年1月发布《有机硅污水中甲基环硅氧烷的测定》团体标准,为保障项目立项的公正性,现对本项氟硅团体标准进行公示,公示时间2024年1月19日至1月28日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。附件:1、《有机硅污水中甲基环硅氧烷的测定》报批稿.pdf 中国氟硅有机材料工业协会 2024年1月19日
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 言"硅"正传,论硅油的正确打开方式
    油浴在科研实验室中的使用非常普遍,特别是有机合成实验室,处处弥漫着硅油的气息。小编走过了全国各地多个高校及研究所,看见学弟学妹们娇小的身影穿梭其中,作为曾经的学长,不经陷入沉思: “我走过许多地方的高校,行过许多地方的研究所,看过许多次数的实验,闻过许多种类的硅油,却开始担心自己的身体。”于是心中惴惴不安地百度了一下: 做有机合成的同学,吸了这么多硅油,大家身体有什么感觉吗? 小编喝着枸杞菊花茶,跟某知名品牌的硅油厂商工程师纠缠了半天,终于搞到了实验室油浴秘籍,我看大家聪慧好学,决定结合ika的应用秘籍,分享考考大家:1. 实验油浴的硅油建议选择哪一种?a.羟基硅油 b . 苯基硅油 c.二甲基硅油 d. 花生油就行注意:如果使用高粘度硅油作为实验油浴,由于导热性能差,容易产生控温不准确,且伴随温度过高的安全隐患。答案:C ,二甲基硅油又叫“三甲基硅氧基封端的二甲基硅氧烷”,不含有害成分。But 当二甲基硅油加热到发烟或者燃烧时,会产生:碳氧化物、硅氧化物、甲醛等对人体有危害的产物。是众多疾病的诱因,可能引发急性中毒或慢性中毒。并且,如使用不合格的甲基硅油,化学成分复杂,沸程变宽,杂质碳化后污染硅油,降低导热能力;同时也更容易产生蒸汽, 严重时可能造成呼吸道黏膜过敏。2. 实验油浴应该选择多大粘度的硅油?a. <100 cs b.500 cs c. 1000 cs d.看采购老师心情答案:A, 不同粘度的硅油对应不同的行业应用,常见几种应用如下:注意:如果使用高粘度硅油作为实验油浴,由于导热性能差,容易产生控温不准确,且伴随温度过高的安全隐患。3.实验油浴如何控温更准确?a.选用低粘度二甲基硅油b.加热时同时搅拌c.温度传感器放置正确d.让师兄帮忙做答案:ABC,选用粘度小于100 CS的二甲基硅油;加热时同时搅拌有利于热传导,防止产生温度过冲现象;温度探头浸入介质深度至少20 mm,距离容器底部至少 10 mm,避免直接接触容器底部。单身建议选D。4.如何防止实验油浴温度过高,冒烟或燃烧产生危害?a.在通风橱中进行实验b.磁力搅拌器设置安全温度c.使用金属加热块代替油浴d.会爆炸么?不会?那还怕什么!答案:ABC,在通风橱中进行可以及时排出硅油蒸汽;磁力搅拌器设置安全温度可以避免硅油温度达到闪点;使用加热块代替油浴,升温更快,温度均匀性更好,同时保持实验台清洁无油污。5. 使用磁力搅拌器设置安全温度时,应参照硅油哪个参数进行设置?a.组成成分 b. 粘度 c.开杯闪点 d.保质期答案:C,仪器安全温度设定值应该至少低于硅油开杯闪点25°C,如某品牌粘度50 CS的二甲基硅油,其开杯闪点是318℃(达到这个温度遇到火源容易出现闪燃),那么建议磁力搅拌器的安全温度设置为293℃。同时应注意硅油保质期,通常为出厂起36个月,超过保质期影响口感,哦不,可能变质。如上秘籍小编已经修炼成熟,顺便给大家几点建议: 1.选择合格的二甲基硅油(小编用的是道康宁的pmx 200 50cs)2.将仪器设定合适的安全温度(ika hs 7 control,手动机械调节安全温度,更可靠)3.在通风橱中使用(虽然我知道你们通风橱经常不给力)4.注意个人防护措施(虽然我知道说了你们懒得戴口罩)好了就这样,下期再见。哦,对了,忘了打个广告 我明白你会来,所以我等
  • 二次公示|关于药包材环氧乙烷测定法标准草案的公示
    2023年12月7日,国家药典委发布关于药包材环氧乙烷测定法标准草案(第二次),拟向社会各界征求意见。公示期自发布之日起三个月。 环氧乙烷是一种可刺激体表并引起强烈反应的易燃性气体,能对体内的多个器官系统产生损害。1994年国际癌症研究机构(IARC)将其划分为人类致癌物质(一类)。 本标准适用于采用环氧乙烷灭菌的药包材中环氧乙烷残留量的测定,在一定温度下,用水萃取试样中所含环氧乙烷,用顶空气相色谱法测定环氧乙烷的含量,照气相色谱法(通则0521)测定。本标准制修订依据YBB00242005-2015环氧乙烷残留量测定法,增加了第三法(气质联用色谱法),以对环氧乙烷进行定性验证。基于试验验证,本标准对YBB00242005 环氧乙烷残留量测定法中的色谱条件进行了优化,给出了供参考的色谱条件。环氧乙烷在药包材中的使用主要是作为灭菌剂,乙醛也是药包材中经常存在的成,二者极性相似,不容易分离。根据反馈意见,在标准中增加了适用于本测定法的色谱柱的相关描述。可实现环氧乙烷和乙醛完全分离的中等极性色谱柱,其固定相一般为(6%)氰丙基苯-(94%)二甲基硅氧烷,如DB-624 (30m×0.25mm×1.4μm) 和DB-VRX (30m×0.25mm×1.4μm)。 根据反馈意见,在系统适用性部分,明确连续进样次数,将“对照品溶液应连续进样不少于3次,所得待测物峰面积的RSD应不大于10%”修改为“对照品溶液连续进样5次,所得待测物峰面积的RSD应不大于10%”。 根据反馈意见,明确标准曲线线性相关系数r应不小于0.995。附件:4209 药包材环氧乙烷测定法.docx附件2-反馈意见表.xlsx
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 关于巴拉圭冬青叶(马黛茶叶)等9种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对巴拉圭冬青叶(马黛茶叶)等3种物质申请新食品原料、食用单宁等2种物质申请食品添加剂新品种、N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]等4种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年11月23日巴拉圭冬青叶(马黛茶叶)等3种新食品原料.pdf一、新食品原料解读材料(一)巴拉圭冬青叶(马黛茶叶)巴拉圭冬青叶(马黛茶叶)是以冬青科冬青属植物巴拉圭冬青(Ilex paraguariensis A.St.-Hil.)的叶为原料,经采摘、烘烤、切碎、干燥等工艺制成。主要营养成分为碳水化合物、粗纤维、蛋白质、脂肪、维生素、矿物质和氨基酸等,且含有少量的多酚、黄酮和皂苷类等物质。巴拉圭冬青叶(马黛茶叶)在美国被作为“一般认为安全的物质(GRAS)”管理,欧盟批准其作为新食品原料使用,加拿大批准其作为天然健康食品使用,巴西批准巴拉圭冬青的叶和茎可用于制茶。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对巴拉圭冬青叶(马黛茶叶)的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于巴拉圭冬青叶(马黛茶叶)在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。(二)酵母蛋白酵母蛋白是以酿酒酵母(Saccharomyces Cerevisiae)为菌种,经培养、发酵、离心后收集获得菌体原料,经去除核酸、离心、酶解、提取、纯化、分离、灭菌、干燥等工艺制成。主要营养成分为蛋白质(≥70.0g/100g)、脂肪、膳食纤维和水分等。目前,美国已批准酿酒酵母蛋白作为营养补充剂添加到食品中,欧盟已批准酿酒酵母蛋白作为新食品原料,均未做食用量限定。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对酵母蛋白的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于酵母蛋白在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)儿茶素儿茶素是以茶叶为原料,经醇提取、浓缩、分离、萃取、酶解、浓缩、干燥等工艺制成。其中主要成分为儿茶素类,包括表儿茶素(EC)、表没食子儿茶素(EGC)、水合表儿茶素没食子酸酯(ECGH2O)、水合表没食子儿茶素没食子酸酯(EGCGH2O)、没食子儿茶素没食子酸酯(GCG)、儿茶素(dl-C),儿茶素类总含量(以干基计)≥90 g/100g,其中EGCG含量≥50 g/100g。原卫生部2010年第17号公告批准表没食子儿茶素没食子酸酯(EGCG)为新资源食品,每日推荐食用量为≤300毫克/天(以EGCG计)。绿茶儿茶素已被日本批准为特定保健食品用功能配料。本产品推荐食用量为≤300毫克/天(以儿茶素类总量计)(即儿茶素类总含量为100 g/100g的原料的推荐食用量为≤300毫克/天,含量为90-100 g/100g的按照实际含量折算)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对儿茶素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于儿茶素在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)食用单宁1.背景资料。食用单宁作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于黄酒、啤酒、葡萄酒和配制酒的加工工艺,油脂脱色工艺。本次申请扩大使用范围用于制糖工艺。日本厚生劳动省允许其作为加工助剂用于各类食品。2.工艺必要性。该物质作为食品工业用加工助剂用于制糖工艺,提高澄清效果。其质量规格执行《食品安全国家标准食品添加剂食用单宁》(GB 1886.303)。(二)乙酸乙酯1.背景资料。乙酸乙酯作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于配制酒的加工工艺、酵母抽提物的加工工艺。本次申请扩大使用范围用于茶叶提取物的加工工艺。欧盟委员会、澳大利亚和新西兰食品标准局允许其作为提取溶剂用于各类食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-25mg/kgbw。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶提取物的加工工艺,用于提取茶多酚和茶氨酸。其质量规格执行《食品安全国家标准食品添加剂乙酸乙酯》(GB 1886.190)。三、食品相关产品新品种解读材料(一)N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]1.背景资料。该物质在常温常压下为白色固体粉末。《食品安全国家标准食品接触材料及制品用添加剂使用标准》(GB 9685)已批准其作为添加剂用于橡胶和聚乙烯(PE)、聚丙烯(PP)等多种塑料材料及制品中。本次申请将其使用范围扩大至聚氨酯(PU)传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(二)2,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯 四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯1.背景资料。该物质在常温常压下为白色固体粉末。GB 9685批准其作为添加剂用于橡胶、涂料及涂层、黏合剂以及PE、PP等多种塑料材料及制品中。本次申请将其使用范围扩大至PU传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(三)咖啡渣1.背景资料。该物质为烘焙咖啡豆经水萃取咖啡后的剩余物料,在常温下为褐色(棕色)至深咖啡色的粉末状细颗粒,不溶于水。葵花籽壳和木质纤维等类似材料已被美国食品药品管理局和欧盟委员会允许用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为填充料,用于聚乳酸(PLA)和聚丁二酸丁二醇酯(PBS)塑料材料及制品中,可改善材料的综合力学性能、成型加工性能和产品的使用性能。(四)甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物1.背景资料。该物质不溶于水,几乎不溶于正辛醇等有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,可用于水性涂料,涂膜附着力强,耐腐蚀性较好。“三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布17条征求意见,共涉及62种化合物。(2023年“三新食品”公示名单汇总!)点击了解更多“三新食品”》》》关于“三新食品”目录及适用的食品安全标准的公告及解读》》》国家卫生健康委员会关于桃胶等15种“三新食品”的公告》》》解读《关于蓝莓花色苷等14种“三新食品”的公告》》》》关于文冠果种仁等8种“三新食品”的公告与解读》》》关于蓝莓花色苷等14种“三新食品”的公告
  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 腾辰生物完成数千万元A轮融资,加速质谱甲基化肿瘤早筛早诊临床
    近日,南京腾辰生物宣布完成数千万元A轮融资,本轮融资由树兰俊杰资本领投,知名个人投资人跟投,探针资本担任独家财务顾问。本轮融资主要用于biomarker专利库和临床样本的进一步积累,加速后续产品管线的研发,着重推进肺结节良恶性判别IVD产品的注册检及后续的医疗器械证申报,以及LDT产品的商业化落地。腾辰生物成立于2018年,专注于针对恶性肿瘤的核酸质谱早筛早诊产品研发。从公司成立之初开始,就着手与国内顶尖医院合作,建立全球高水平的早期癌症样本库。截至目前已经积累了两万余例临床样本,并基于真实世界的临床样本开发原研靶点阵列,布局了一系列分子标志物专利,建立专利护城河。同时,围绕核酸质谱平台优化工艺流程,自研自产基础试剂盒,在提高产品壁垒的同时大大降低检测成本,提升临床可及性及数据稳定性。肿瘤早筛早诊市场规模达千亿,其中分子诊断市场近几年增长迅速。DNA甲基化被认为是极佳的肿瘤体外早诊分子标志物,可以针对包括肺癌、乳腺癌、甲状腺癌、结直肠癌、宫颈癌等一系列恶性肿瘤进行早期检测。尽管目前针对DNA甲基化已经有多款产品上市(适应症包括结直肠癌、宫颈癌等),但大部分的产品所检测的疾病范围尚集中在能够获取肿瘤附近组织样本的类型。而恶性肿瘤早期体外诊断最佳的介质是血液,因为其采样简单且几乎适用于所有癌种,但早期恶性肿瘤患者血液中甲基化信号弱、背景噪音强,想要精准捕捉相应信号的难度极大。目前,针对甲基化的检测主要有三种方式,分别为qPCR、二代测序及定量核酸质谱。其中,qPCR检测相对简单、生信分析要求较低,且相应的仪器在临床端较为普遍,IVD报证先例较多。然而qPCR只适用于检测位点相对较少的产品(1-5个位点最佳),且检测的精密度相对较低,因此不适用于血液样本的检测。而基于NGS做甲基化检测的精密度相对较高,可同时检测成千上万个DNA位点,但其操作相对复杂,生信要求和成本均较高,更适用于位点的筛选。而定量核酸质谱操作相对简单,生信要求低,数据稳定性高,适用于10-100个DNA位点的检测范围,符合血液样本临床检测的应用场景。然而,在应用核酸质谱检测过程中几乎所有步骤的试剂盒均需进口,如何降低检测成本、优化检测流程,且如何选取合适的分子标志物阵列,均为应用该技术平台需要解决的难题。目前,围绕核酸质谱检测平台,腾辰生物共布局了近10条产品管线,覆盖包括肺癌、乳腺癌、甲状腺癌、前列腺癌等恶性肿瘤。其中,肺癌早诊产品已经完成了4000余例临床验证(其中I期肺癌比例大于90%),对于2cm以下的极早期肺癌的灵敏度与特异性均>80%。与竞品相比,腾辰生物的肺癌早诊产品”菲捷明“拥有采血量低、对样本要求低、成本及终端价格低等优势,目前正在推进商业化落地和准备启动IVD报证工作。随着公司产品研发进度的加快和资源的不断注入、公司管线日益丰富,腾辰生物吸引了一批优秀的人才加入,组建了一支能力卓越、经验丰富的研发、生产及销售团队。腾辰生物创始人,CEO杨蓉西博士表示:我们很高兴连续获得知名专业基金和投资人的认可和支持。腾辰生物拥有十余年的技术积累,具有国际领先的持续原研能力,致力于开发高效稳定低成本的癌症早筛早诊的分子标志物,以及相关的底层技术和检测体系。经过四年的成长,公司团队逐渐完善,临床数据快速积累,市场销售开始布局。未来我们将与合作方携手共进,持续推进研发和注册申报,为临床医生和患者提供优质的肿瘤早筛早诊服务和产品。树兰俊杰资本创始合伙人许迪龙表示:我们很高兴作为领投方参与腾辰生物的A轮融资。树兰俊杰医疗资本扎根产业,深耕医疗领域投资,近年来一直以务实的眼光关注肿瘤早筛早诊赛道,寻找有创业精神,有持续原研能力且最终能落地的项目。腾辰生物坚持原研十余年,积累了30余项发明专利、数千例临床数据和自有的工艺流程,从而建立了很高的技术壁垒。核酸质谱平台的应用在大幅提高数据的精密度和稳定性的同时也大大降低了成本和提高了工作效率。我们对腾辰生物的后续发展充满了期待。探针资本合伙人杨丹宁表示:腾辰生物拥有一流的IVD产品研发和落地能力,围绕核酸质谱快速布局多条产品管线,并建立自己的分子标志物阵列及自研试剂专利壁垒,在研发具有高度差异化、高精准度及特异性的IVD产品同时进一步降低检测成本、增加检测结果稳定性,更加贴近疾病早筛早诊应用场景。公司自创立起,便与国内多家知名医院展开合作,共同推进项目落地,相信未来一定会实现爆发增长。我们非常荣幸参与到腾辰生物此次的融资工作中,并期待公司在CEO的带领下进一步建立研发壁垒、完善产品管线,助力行业更好地发展。关于腾辰生物南京腾辰生物科技有限公司座落于南京市江北新区“南京生物医药谷”,是一家由留德海归博士创办、致力于开发新一代肿瘤及心脑血管等重大疾病体外早诊技术及产品的高科技生物企业。公司在疾病早诊、预后评估、疗效评估和复发监控等方面拥有领先的自主技术,并已获得多家国内一线风投机构的投资。公司已与国内多家三甲医院建立合作,积极筹建肿瘤体外诊断研发基地,进一步提升研发创新能力、丰富大数据积累和完善知识产权布局。公司创始人曾担任德国国家癌症研究中心和德国排名第一的海德堡大学医学院研究员,其研究成果于2016年获得了欧洲知名的Claudia von schilling基金会颁发的乳腺癌研究贡献奖,并在德国有丰富的创业经验并多次获奖,其创立的肿瘤体外诊断体系先后获得了德国国家经济部高科技转化大奖及欧盟创业大赛生物技术类一等奖。关于树兰俊杰资本树兰俊杰资本由树兰医疗集团早期投资人和创始团队共同发起组建,在全球范围内以临床资源服务于医学科技产业转化,通过建设科技投资基金、SATOL生命科技加速器、SATOL全球医学创新创业中心,承办世界生命科技大会、全球医学创新创业大赛,以社群服务、基金投资、科研孵化三项核心业务来推动医学临床、科研、产业一体化发展,助力医学科技人才创新创业,在数字诊疗、生物技术、创新疗法等领域投资了一批优秀的科技企业。关于探针资本探针资本成立于2017年,是一家专注医疗健康与生命科技的精品投行,旗下业务包括财务顾问、直接投资、产业咨询和创新孵化。创始团队来自业内一线私募股权投资机构、财务顾问机构、管理咨询公司和医疗垂直媒体。自成立以来,探针资本每年均完成两位数的私募融资与并购交易,累计交易金额近百亿元人民币。在企业增值服务方面,探针资本团队拥有成熟的产业经验。2020年探针新医疗基金成立,截止目前已投资十余家业内头部公司。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U / mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 北京工商大学孙宝国院士团队:综合多种方法探究芝麻香型白酒中二甲基三硫与香气活性化合物间的相互作用
    2023年1月,北京工商大学孙宝国院士团队在国际食品Top期刊Food Chemistry(Q1,IF: 8.8)发表题为“Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient”的研究性论文。北京工商大学硕士研究生杨世琪为第一作者,通讯作者为北京工商大学中国轻工业酿酒分子工程重点实验室副研究员李贺贺。芝麻香型白酒作为十二大香型之一,以其独特风味受到消费者的喜爱。但迄今为止芝麻香型白酒特征风味物质尚不明确,越来越多的研究推测芝麻香型白酒特征风味的形成源自于香气活性化合物间的相互作用。本研究以芝麻香型白酒中关键风味物质为研究对象,综合利用S型曲线法、OAV法、分配系数法等探究了芝麻香型白酒中二甲基三硫与酯类、醇类、酸类、醛类间的相互作用类型及规律。结果表明,物质的结构和特征香气是影响相互作用结果的重要原因之一,并且在52%乙醇-水溶液中,二甲基三硫与己酸乙酯、癸酸乙酯、糠醇香气的释放呈促进作用。分配系数法证明了二甲基三硫的添加会导致酯类化合物的峰面积和分配系数的变化,而化合物挥发性的变化是相互作用影响香气感知的原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。此外,初步提出了相互作用预测模型为 y = 2.0112 ln(x) + 0.1461,预测模型表明当酯类化合物的嗅觉阈低于33.80 μg/L时更易于二甲基三硫发生正向作用。本研究为风味物质间相互作用规律和影响因素的探究提供了新思路,有助于相互作用机制的揭秘,同时也为芝麻香型白酒特征风味物质的揭示以及国标的建立奠定了基础。研究亮点首次探究了芝麻香型白酒中关键风味物质间的相互作用。证明了结构和相比会影响二甲基三硫添加后酯类化合物挥发性的变化。首次建立了相互作用预测模型,实现了二元混合物间相互作用的快速判定。研究结论通过S型曲线法和OAV法明确了二甲基三硫与18种关键香气活性化合物间的相互作用类型,证明了二甲基三硫可以促进某些呈水果香气和烤香物质的挥发,如己酸乙酯、糠醇等。分配系数法结合OAV法和S型曲线法进一步证明了物质挥发性的变化是相互作用影响人体嗅觉感知的重要原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。如分配系数法证明二甲基三硫添加后己酸乙酯的峰面积与分配系数增大,同时S型曲线法与OAV法表明两者为加成作用;且随着体系相比的增加,己酸乙酯峰面积的增大程度逐渐加强。根据相互作用结果建立了二甲基三硫与酯类化合物间相互作用预测模型,实现了二元混合物间相互作用类型的快速判断。预测模型表明33.80 μg/L的酯类化合物嗅觉阈值浓度是二甲基三硫与酯类化合物之间相互作用类型变化的临界值。原文链接https://doi.org/10.1016/j.foodchem.2023.135451
  • 2022年臭氧计量标准A类国家计量比对首次会议顺利召开
    2022年5月31日,中国环境监测总站(简称“监测总站”)和中国计量科学研究院(简称“中国计量院”)作为主导实验室通过线上会议的方式组织召开臭氧计量标准A类国家计量比对项目(项目编号:2022-A-07)首次会议,来自全国各省、市计量技术机构、监测机构的27家参比实验室的相关人员和技术专家参加了会议。   目前,臭氧已成为环境空气中仅次于PM2.5的重要污染物,PM2.5与臭氧污染的协同控制,成为我国“十四五”及更长时期的一个重要任务。为实现全国臭氧监测数据的量值准确、统一,并考核技术机构和计量人员专项技术能力,今年4月,监测总站和中国计量院共同申报并成功获批由国家市场监督管理总局统一组织实施的臭氧计量标准国家计量比对(市监计量发[2022]36号),是生态环境部门第一次主导国家计量比对项目。按照程序要求,监测总站和中国计量院组织召开臭氧国家计量比对首次会议。会上,主导实验室介绍了此次比对前期准备工作情况,组织审议通过了《2022年臭氧计量标准计量比对项目实施方案》,并现场回答了各参比实验室提出的技术问题。   下一步,监测总站和中国计量院将严格按照《2022年臭氧计量标准计量比对项目实施方案》要求加快实施进度,开展传递标准的稳定性测试、星形计量比对、结果统计分析与比对报告编制,高质量完成臭氧比对任务,助力全国臭氧量值的准确、可比。
  • 国家税务总局官方解读来了:仪器制造业企业享受研发费用加计扣除还需要符合这些条件!
    近日,财政部、税务总局发布《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)将制造业研发费用加计扣除比例由75%提高到100%,这对于国内仪器研发企业节省研发成本是重大利好。然而,部分仪器企业也十分想要知道:享受到这项政策红利是否还有其他的附加条件?今日,国家税务总局发布官方解读:《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)仅将制造业研发费用加计扣除比例由75%提高到100%,其他政策口径和管理要求没有变化,继续按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)、《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号)、《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号)等文件规定执行。小编将以上公告进行了归纳整理,以便于仪器企业加深了解此项政策的“前世今生”。《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告财政部 税务总局公告2021年第13号    为进一步激励企业加大研发投入,支持科技创新,现就企业研发费用税前加计扣除政策有关问题公告如下:    一、制造业企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2021年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2021年1月1日起,按照无形资产成本的200%在税前摊销。    本条所称制造业企业,是指以制造业业务为主营业务,享受优惠当年主营业务收入占收入总额的比例达到50%以上的企业。制造业的范围按照《国民经济行业分类》(GB/T 4574-2017)确定,如国家有关部门更新《国民经济行业分类》,从其规定。收入总额按照企业所得税法第六条规定执行。    二、企业预缴申报当年第3季度(按季预缴)或9月份(按月预缴)企业所得税时,可以自行选择就当年上半年研发费用享受加计扣除优惠政策,采取“自行判别、申报享受、相关资料留存备查”办理方式。    符合条件的企业可以自行计算加计扣除金额,填报《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》享受税收优惠,并根据享受加计扣除优惠的研发费用情况(上半年)填写《研发费用加计扣除优惠明细表》(A107012)。《研发费用加计扣除优惠明细表》(A107012)与相关政策规定的其他资料一并留存备查。    企业办理第3季度或9月份预缴申报时,未选择享受研发费用加计扣除优惠政策的,可在次年办理汇算清缴时统一享受。    三、企业享受研发费用加计扣除政策的其他政策口径和管理要求,按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知 》(财税〔2018〕64号)等文件相关规定执行。    四、本公告自2021年1月1日起执行。    特此公告。  财政部税务总局2021年3月31日《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知财税〔2015〕119号各省、自治区、直辖市、计划单列市财政厅(局)、国家税务局、地方税务局、科技厅(局),新疆生产建设兵团财务局、科技局:  根据《中华人民共和国企业所得税法》及其实施条例有关规定,为进一步贯彻落实《中共中央 国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》精神,更好地鼓励企业开展研究开发活动(以下简称研发活动)和规范企业研究开发费用(以下简称研发费用)加计扣除优惠政策执行,现就企业研发费用税前加计扣除有关问题通知如下:  一、研发活动及研发费用归集范围。  本通知所称研发活动,是指企业为获得科学与技术新知识,创造性运用科学技术新知识,或实质性改进技术、产品(服务)、工艺而持续进行的具有明确目标的系统性活动。  (一)允许加计扣除的研发费用。  企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,按照本年度实际发生额的50%,从本年度应纳税所得额中扣除;形成无形资产的,按照无形资产成本的150%在税前摊销。研发费用的具体范围包括:  1.人员人工费用。  直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费用。  2.直接投入费用。  (1)研发活动直接消耗的材料、燃料和动力费用。  (2)用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费。  (3)用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。  3.折旧费用。  用于研发活动的仪器、设备的折旧费。  4.无形资产摊销。  用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。  5.新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费。  6.其他相关费用。  与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费等。此项费用总额不得超过可加计扣除研发费用总额的10%。  7.财政部和国家税务总局规定的其他费用。  (二)下列活动不适用税前加计扣除政策。  1.企业产品(服务)的常规性升级。  2.对某项科研成果的直接应用,如直接采用公开的新工艺、材料、装置、产品、服务或知识等。  3.企业在商品化后为顾客提供的技术支持活动。  4.对现存产品、服务、技术、材料或工艺流程进行的重复或简单改变。  5.市场调查研究、效率调查或管理研究。  6.作为工业(服务)流程环节或常规的质量控制、测试分析、维修维护。  7.社会科学、艺术或人文学方面的研究。  二、特别事项的处理  1.企业委托外部机构或个人进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方研发费用并计算加计扣除,受托方不得再进行加计扣除。委托外部研究开发费用实际发生额应按照独立交易原则确定。  委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。  企业委托境外机构或个人进行研发活动所发生的费用,不得加计扣除。  2.企业共同合作开发的项目,由合作各方就自身实际承担的研发费用分别计算加计扣除。  3.企业集团根据生产经营和科技开发的实际情况,对技术要求高、投资数额大,需要集中研发的项目,其实际发生的研发费用,可以按照权利和义务相一致、费用支出和收益分享相配比的原则,合理确定研发费用的分摊方法,在受益成员企业间进行分摊,由相关成员企业分别计算加计扣除。  4.企业为获得创新性、创意性、突破性的产品进行创意设计活动而发生的相关费用,可按照本通知规定进行税前加计扣除。  创意设计活动是指多媒体软件、动漫游戏软件开发,数字动漫、游戏设计制作;房屋建筑工程设计(绿色建筑评价标准为三星)、风景园林工程专项设计;工业设计、多媒体设计、动漫及衍生产品设计、模型设计等。  三、会计核算与管理  1.企业应按照国家财务会计制度要求,对研发支出进行会计处理;同时,对享受加计扣除的研发费用按研发项目设置辅助账,准确归集核算当年可加计扣除的各项研发费用实际发生额。企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。  2.企业应对研发费用和生产经营费用分别核算,准确、合理归集各项费用支出,对划分不清的,不得实行加计扣除。  四、不适用税前加计扣除政策的行业  1.烟草制造业。  2.住宿和餐饮业。  3.批发和零售业。  4.房地产业。  5.租赁和商务服务业。  6.娱乐业。  7.财政部和国家税务总局规定的其他行业。  上述行业以《国民经济行业分类与代码(GB/4754 -2011)》为准,并随之更新。  五、管理事项及征管要求  1.本通知适用于会计核算健全、实行查账征收并能够准确归集研发费用的居民企业。  2.企业研发费用各项目的实际发生额归集不准确、汇总额计算不准确的,税务机关有权对其税前扣除额或加计扣除额进行合理调整。  3.税务机关对企业享受加计扣除优惠的研发项目有异议的,可以转请地市级(含)以上科技行政主管部门出具鉴定意见,科技部门应及时回复意见。企业承担省部级(含)以上科研项目的,以及以前年度已鉴定的跨年度研发项目,不再需要鉴定。  4.企业符合本通知规定的研发费用加计扣除条件而在2016年1月1日以后未及时享受该项税收优惠的,可以追溯享受并履行备案手续,追溯期限最长为3年。  5.税务部门应加强研发费用加计扣除优惠政策的后续管理,定期开展核查,年度核查面不得低于20%。  六、执行时间  本通知自2016年1月1日起执行。《国家税务总局关于印发〈企业研究开发费用税前扣除管理办法(试行)〉的通知》(国税发〔2008〕116号)和《财政部 国家税务总局关于研究开发费用税前加计扣除有关政策问题的通知》(财税〔2013〕70号)同时废止。财政部 国家税务总局 科技部2015年11月2日《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知财税〔2018〕64号各省、自治区、直辖市、计划单列市财政厅(局)、科技厅(局),国家税务总局各省、自治区、直辖市、计划单列市税务局,新疆生产建设兵团财政局、科技局:    为进一步激励企业加大研发投入,加强创新能力开放合作,现就企业委托境外进行研发活动发生的研究开发费用(以下简称研发费用)企业所得税前加计扣除有关政策问题通知如下:    一、委托境外进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方的委托境外研发费用。委托境外研发费用不超过境内符合条件的研发费用三分之二的部分,可以按规定在企业所得税前加计扣除。    上述费用实际发生额应按照独立交易原则确定。委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。    二、委托境外进行研发活动应签订技术开发合同,并由委托方到科技行政主管部门进行登记。相关事项按技术合同认定登记管理办法及技术合同认定规则执行。    三、企业应在年度申报享受优惠时,按照《国家税务总局关于发布修订后的〈企业所得税优惠政策事项办理办法〉的公告》(国家税务总局公告2018年第23号 )的规定办理有关手续,并留存备查以下资料:    (一)企业委托研发项目计划书和企业有权部门立项的决议文件;    (二)委托研究开发专门机构或项目组的编制情况和研发人员名单;    (三)经科技行政主管部门登记的委托境外研发合同;    (四)“研发支出”辅助账及汇总表;    (五)委托境外研发银行支付凭证和受托方开具的收款凭据;    (六)当年委托研发项目的进展情况等资料。    企业如果已取得地市级(含)以上科技行政主管部门出具的鉴定意见,应作为资料留存备查。    四、企业对委托境外研发费用以及留存备查资料的真实性、合法性承担法律责任。    五、委托境外研发费用加计扣除其他政策口径和管理要求按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号 )、《财政部 税务总局 科技部关于提高科技型中小企业研究开发费用税前加计扣除比例的通知》(财税〔2017〕34号 )、《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(国家税务总局公告2015年第97号 )等文件规定执行。    六、本通知所称委托境外进行研发活动不包括委托境外个人进行的研发活动。    七、本通知自2018年1月1日起执行。财税〔2015〕119号文件第二条中“企业委托境外机构或个人进行研发活动所发生的费用,不得加计扣除”的规定同时废止。财政部 税务总局 科技部2018年6月25日《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号)国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告国家税务总局公告2015年第97号自2019年12月9日起《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告 》(国家税务总局公告2015年第97号 )第五条中“并在报送《年度财务会计报告》的同时随附注一并报送主管税务机关”的规定和第六条第一项、附件6《研发项目可加计扣除研究开发费用情况归集表》同时废止。根据《中华人民共和国企业所得税法 》及其实施条例(以下简称税法)、《财政部国家税务总局科学技术部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号 ,以下简称《通知》)规定,现就落实完善研究开发费用(以下简称研发费用)税前加计扣除政策有关问题公告如下:一、研究开发人员范围企业直接从事研发活动人员包括研究人员、技术人员、辅助人员。研究人员是指主要从事研究开发项目的专业人员;技术人员是指具有工程技术、自然科学和生命科学中一个或一个以上领域的技术知识和经验,在研究人员指导下参与研发工作的人员;辅助人员是指参与研究开发活动的技工。企业外聘研发人员是指与本企业签订劳务用工协议(合同)和临时聘用的研究人员、技术人员、辅助人员。二、研发费用归集(一)加速折旧费用的归集企业用于研发活动的仪器、设备,符合税法规定且选择加速折旧优惠政策的,在享受研发费用税前加计扣除时,就已经进行会计处理计算的折旧、费用的部分加计扣除,但不得超过按税法规定计算的金额。(二)多用途对象费用的归集企业从事研发活动的人员和用于研发活动的仪器、设备、无形资产,同时从事或用于非研发活动的,应对其人员活动及仪器设备、无形资产使用情况做必要记录,并将其实际发生的相关费用按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。(三)其他相关费用的归集与限额计算企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。在计算每个项目其他相关费用的限额时应当按照以下公式计算:其他相关费用限额=《通知》第一条第一项允许加计扣除的研发费用中的第1项至第5项的费用之和×10%/(1-10%)。当其他相关费用实际发生数小于限额时,按实际发生数计算税前加计扣除数额;当其他相关费用实际发生数大于限额时,按限额计算税前加计扣除数额。(四)特殊收入的扣减企业在计算加计扣除的研发费用时,应扣减已按《通知》规定归集计入研发费用,但在当期取得的研发过程中形成的下脚料、残次品、中间试制品等特殊收入;不足扣减的,允许加计扣除的研发费用按零计算。企业研发活动直接形成产品或作为组成部分形成的产品对外销售的,研发费用中对应的材料费用不得加计扣除。(五)财政性资金的处理企业取得作为不征税收入处理的财政性资金用于研发活动所形成的费用或无形资产,不得计算加计扣除或摊销。(六)不允许加计扣除的费用法律、行政法规和国务院财税主管部门规定不允许企业所得税前扣除的费用和支出项目不得计算加计扣除。已计入无形资产但不属于《通知》中允许加计扣除研发费用范围的,企业摊销时不得计算加计扣除。三、委托研发企业委托外部机构或个人开展研发活动发生的费用,可按规定税前扣除;加计扣除时按照研发活动发生费用的80%作为加计扣除基数。委托个人研发的,应凭个人出具的发票等合法有效凭证在税前加计扣除。企业委托境外研发所发生的费用不得加计扣除,其中受托研发的境外机构是指依照外国和地区(含港澳台)法律成立的企业和其他取得收入的组织。受托研发的境外个人是指外籍(含港澳台)个人。四、不适用加计扣除政策行业的判定《通知》中不适用税前加计扣除政策行业的企业,是指以《通知》所列行业业务为主营业务,其研发费用发生当年的主营业务收入占企业按税法第六条规定计算的收入总额减除不征税收入和投资收益的余额50%(不含)以上的企业。五、核算要求企业应按照国家财务会计制度要求,对研发支出进行会计处理。研发项目立项时应设置研发支出辅助账,由企业留存备查;年末汇总分析填报研发支出辅助账汇总表,并在报送《年度财务会计报告》的同时随附注一并报送主管税务机关。研发支出辅助账、研发支出辅助账汇总表可参照本公告所附样式(见附件)编制。六、申报及备案管理(一)企业年度纳税申报时,根据研发支出辅助账汇总表填报研发项目可加计扣除研发费用情况归集表(见附件),在年度纳税申报时随申报表一并报送。(二) 研发费用加计扣除实行备案管理, 除“备案资料”和“主要留存备查资料” 按照本公告规定执行外,其他备案管理要求按照《国家税务总局关于发布〈企业所得税优惠政策事项办理办法〉的公告 》(国家税务总局公告2015年第76号 )的规定执行。(三)企业应当不迟于年度汇算清缴纳税申报时,向税务机关报送《企业所得税优惠事项备案表》和研发项目文件完成备案,并将下列资料留存备查:1.自主、委托、合作研究开发项目计划书和企业有权部门关于自主、委托、合作研究开发项目立项的决议文件;2.自主、委托、合作研究开发专门机构或项目组的编制情况和研发人员名单;3.经科技行政主管部门登记的委托、合作研究开发项目的合同;4.从事研发活动的人员和用于研发活动的仪器、设备、无形资产的费用分配说明(包括工作使用情况记录);5.集中研发项目研发费决算表、集中研发项目费用分摊明细情况表和实际分享收益比例等资料;6.“研发支出”辅助账;7.企业如果已取得地市级(含)以上科技行政主管部门出具的鉴定意见,应作为资料留存备查 8.省税务机关规定的其他资料。七、后续管理与核查税务机关应加强对享受研发费用加计扣除优惠企业的后续管理和监督检查。每年汇算清缴期结束后应开展核查,核查面不得低于享受该优惠企业户数的20%。省级税务机关可根据实际情况制订具体核查办法或工作措施。八、执行时间本公告适用于2016年度及以后年度企业所得税汇算清缴。特此公告。附件:(点击此链接打包下载下列附件) 1.自主研发“研发支出”辅助账2.委托研发“研发支出”辅助账3.合作研发“研发支出”辅助账4.集中研发“研发支出”辅助账5.“研发支出”辅助账汇总表6.研发项目可加计扣除研究开发费用情况归集表 国家税务总局2015年12月29日《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号)国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告国家税务总局公告2017年第40号  为进一步做好研发费用税前加计扣除优惠政策的贯彻落实工作,切实解决政策落实过程中存在的问题,根据《财政部国家税务总局科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)及《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(国家税务总局公告2015年第97号)等文件的规定,现就研发费用税前加计扣除归集范围有关问题公告如下:  一、人员人工费用  指直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费用。  (一)直接从事研发活动人员包括研究人员、技术人员、辅助人员。研究人员是指主要从事研究开发项目的专业人员;技术人员是指具有工程技术、自然科学和生命科学中一个或一个以上领域的技术知识和经验,在研究人员指导下参与研发工作的人员;辅助人员是指参与研究开发活动的技工。外聘研发人员是指与本企业或劳务派遣企业签订劳务用工协议(合同)和临时聘用的研究人员、技术人员、辅助人员。  接受劳务派遣的企业按照协议(合同)约定支付给劳务派遣企业,且由劳务派遣企业实际支付给外聘研发人员的工资薪金等费用,属于外聘研发人员的劳务费用。  (二)工资薪金包括按规定可以在税前扣除的对研发人员股权激励的支出。  (三)直接从事研发活动的人员、外聘研发人员同时从事非研发活动的,企业应对其人员活动情况做必要记录,并将其实际发生的相关费用按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。  二、直接投入费用  指研发活动直接消耗的材料、燃料和动力费用;用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费;用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。  (一)以经营租赁方式租入的用于研发活动的仪器、设备,同时用于非研发活动的,企业应对其仪器设备使用情况做必要记录,并将其实际发生的租赁费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。  (二)企业研发活动直接形成产品或作为组成部分形成的产品对外销售的,研发费用中对应的材料费用不得加计扣除。  产品销售与对应的材料费用发生在不同纳税年度且材料费用已计入研发费用的,可在销售当年以对应的材料费用发生额直接冲减当年的研发费用,不足冲减的,结转以后年度继续冲减。  三、折旧费用  指用于研发活动的仪器、设备的折旧费。  (一)用于研发活动的仪器、设备,同时用于非研发活动的,企业应对其仪器设备使用情况做必要记录,并将其实际发生的折旧费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。  (二)企业用于研发活动的仪器、设备,符合税法规定且选择加速折旧优惠政策的,在享受研发费用税前加计扣除政策时,就税前扣除的折旧部分计算加计扣除。  四、无形资产摊销费用  指用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。  (一)用于研发活动的无形资产,同时用于非研发活动的,企业应对其无形资产使用情况做必要记录,并将其实际发生的摊销费按实际工时占比等合理方法在研发费用和生产经营费用间分配,未分配的不得加计扣除。  (二)用于研发活动的无形资产,符合税法规定且选择缩短摊销年限的,在享受研发费用税前加计扣除政策时,就税前扣除的摊销部分计算加计扣除。  五、新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费  指企业在新产品设计、新工艺规程制定、新药研制的临床试验、勘探开发技术的现场试验过程中发生的与开展该项活动有关的各类费用。  六、其他相关费用  指与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费,职工福利费、补充养老保险费、补充医疗保险费。  此类费用总额不得超过可加计扣除研发费用总额的10%。  七、其他事项  (一)企业取得的政府补助,会计处理时采用直接冲减研发费用方法且税务处理时未将其确认为应税收入的,应按冲减后的余额计算加计扣除金额。  (二)企业取得研发过程中形成的下脚料、残次品、中间试制品等特殊收入,在计算确认收入当年的加计扣除研发费用时,应从已归集研发费用中扣减该特殊收入,不足扣减的,加计扣除研发费用按零计算。  (三)企业开展研发活动中实际发生的研发费用形成无形资产的,其资本化的时点与会计处理保持一致。  (四)失败的研发活动所发生的研发费用可享受税前加计扣除政策。  (五)国家税务总局公告2015年第97号第三条所称“研发活动发生费用”是指委托方实际支付给受托方的费用。无论委托方是否享受研发费用税前加计扣除政策,受托方均不得加计扣除。  委托方委托关联方开展研发活动的,受托方需向委托方提供研发过程中实际发生的研发项目费用支出明细情况。  八、执行时间和适用对象  本公告适用于2017年度及以后年度汇算清缴。以前年度已经进行税务处理的不再调整。涉及追溯享受优惠政策情形的,按照本公告的规定执行。科技型中小企业研发费用加计扣除事项按照本公告执行。  国家税务总局公告2015年第97号第一条、第二条第(一)项、第二条第(二)项、第二条第(四)项同时废止。国家税务总局2017年11月8日解读:关于《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》的解读  一、公告出台背景  为进一步做好研发费用税前加计扣除优惠政策的贯彻落实工作,切实解决政策落实过程中存在的问题,根据《财政部国家税务总局科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)及《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(国家税务总局公告2015年第97号,以下简称“97号公告”)等文件的规定,制定本公告。  二、公告的主要内容  本公告聚焦研发费用归集范围,在现行规定基础上,结合实际执行情况,完善和明确了部分研发费用掌握口径,在体例上适度体现系统性与完整性。  (一)细化人员人工费用口径  保留97号公告有关直接从事研发活动人员范围的界定和从事多种活动的人员人工费用准确进行归集要求,增加了劳务派遣和股权激励相关内容。  1.适当拓宽外聘研发人员范围。《国家税务总局关于企业工资薪金和职工福利费等支出税前扣除问题的公告》(国家税务总局公告2015年第34号)将劳务派遣分为两种形式,并分别适用不同的税前扣除规定:一种是按照协议(合同)约定直接支付给劳务派遣公司的费用作为劳务费支出在税前扣除,另一种是直接支付给员工个人的费用作为工资薪金和职工福利费支出在税前扣除。在97号公告规定的框架下,直接支付给员工个人的工资薪金属于人员人工费用范围,可以加计扣除。而直接支付给劳务派遣公司的费用,各地理解和执行不一。考虑到直接支付给员工个人和支付给劳务派遣公司,仅是支付方式不同,并未改变企业劳务派遣用工的实质,为体现税收公平,公告明确外聘研发人员包括与劳务派遣公司签订劳务用工协议(合同)的形式,将按照协议(合同)约定直接支付给劳务派遣公司,且由劳务派遣公司实际支付给研发人员的工资薪金等,纳入加计扣除范围。  2.明确对研发人员的股权激励支出可以加计扣除。由于股权激励支付方式的特殊性,对其能否作为加计扣除的基数有不同理解。鉴于《国家税务总局关于我国居民企业实行股权激励计划有关企业所得税处理问题的公告》(国家税务总局公告2012年第18号)已明确符合条件的股权激励支出可以作为工资薪金在税前扣除,为调动和激发研发人员的积极性,公告明确工资薪金包括按规定可以在税前扣除的对研发人员股权激励的支出,即符合条件的对研发人员股权激励支出属于可加计扣除范围。需要强调的是享受加计扣除的股权激励支出需要符合国家税务总局公告2012年第18号规定的条件。  (二)细化直接投入费用口径  保留97号公告有关直接投入费用口径和多用途的仪器、设备租赁费的归集要求,细化研发费用中对应的材料费用不得加计扣除的管理规定,进一步明确材料费用跨年度事项的处理方法。  97号公告规定企业研发活动直接形成产品或作为组成部分形成的产品对外销售的,研发费用中对应的材料费用不得加计扣除。但实际执行中,材料费用实际发生和产品对外销售往往不在同一个年度,如追溯到材料费用实际发生年度,需要修改以前年度纳税申报。为方便纳税人操作,公告明确产品销售与对应的材料费用发生在不同纳税年度且材料费用已计入研发费用的,应在销售当年以对应的材料费用发生额直接冲减当年的研发费用,不足冲减的,结转以后年度继续冲减。  (三)细化折旧费用口径  保留97号公告有关仪器、设备的折旧费口径和多用途仪器、设备折旧费用归集要求,进一步调整加速折旧费用的归集方法。  97号公告明确加速折旧费用享受加计扣除政策的原则为会计、税收折旧孰小。该计算方法较为复杂,不易准确掌握。为提高政策的可操作性,公告将加速折旧费用的归集方法调整为就税前扣除的折旧部分计算加计扣除。  97号公告解读中曾举例说明计算方法:甲汽车制造企业2015年12月购入并投入使用一专门用于研发活动的设备,单位价值1200万元,会计处理按8年折旧,税法上规定的最低折旧年限为10年,不考虑残值。甲企业对该项设备选择缩短折旧年限的加速折旧方式,折旧年限缩短为6年(10×60%=6)。2016年企业会计处理计提折旧额150万元(1200/8=150),税收上因享受加速折旧优惠可以扣除的折旧额是200万元(1200/6=200),申报研发费用加计扣除时,就其会计处理的“仪器、设备的折旧费”150万元可以进行加计扣除75万元(150×50%=75)。若该设备8年内用途未发生变化,每年均符合加计扣除政策规定,则企业8年内每年均可对其会计处理的“仪器、设备的折旧费”150万元进行加计扣除75万元。如企业会计处理按4年进行折旧,其他情形不变,则2016年企业会计处理计提折旧额300万元(1200/4=300),税收上因享受加速折旧优惠可以扣除的折旧额是200万元(1200/6=200),申报享受研发费用加计扣除时,对其在实际会计处理上已确认的“仪器、设备的折旧费”,但未超过税法规定的税前扣除金额200万元可以进行加计扣除100万元(200×50%=100)。若该设备6年内用途未发生变化,每年均符合加计扣除政策规定,则企业6年内每年均可对其会计处理的“仪器、设备的折旧费”200万元进行加计扣除100万元。  结合上述例子,按本公告口径申报研发费用加计扣除时,若该设备6年内用途未发生变化,每年均符合加计扣除政策规定,则企业在6年内每年直接就其税前扣除“仪器、设备折旧费”200万元进行加计扣除100万元(200×50%=100),不需比较会计、税收折旧孰小,也不需要根据会计折旧年限的变化而调整享受加计扣除的金额,计算方法大为简化。  (四)细化无形资产摊销口径  保留97号公告有关无形资产摊销费用口径和多用途摊销费用的归集要求,进一步调整摊销费用的归集方法。  明确加速摊销的归集方法。《财政部国家税务总局关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》(财税〔2012〕27号)明确企业外购的软件作为无形资产管理的可以适当缩短摊销年限。为提高政策的确定性,本公告明确了无形资产缩短摊销年限的折旧归集方法,与固定资产加速折旧的归集方法保持一致,就税前扣除的摊销部分计算加计扣除。  (五)明确新产品设计费、新工艺规程制定费、新药研制的临床试验费和勘探开发技术的现场试验费口径  此类费用是指企业在新产品设计、新工艺规程制定、新药研制的临床试验、勘探开发技术的现场试验过程中发生的全部费用,即,包括与开展此类活动有关的各类费用。  (六)细化其他相关费用口径  保留97号公告有关其他相关费用口径等内容,适度拓展其他相关费用范围。  明确其他相关费用的范围。除财税〔2015〕119号列举的其他相关费用类型外,其他类型的费用能否作为其他相关费用,计算扣除限额后加计扣除,政策一直未明确,各地也执行不一。为提高政策的确定性,同时考虑到人才是创新驱动战略关键因素,公告在财税〔2015〕119号列举的费用基础上,明确其他相关费用还包括职工福利费、补充养老保险费、补充医疗保险费,以进一步激发研发人员的积极性,推动开展研发活动。  (七)明确其他政策口径  1.明确取得的政府补助后计算加计扣除金额的口径。近期,财政部修订了《企业会计准则第16号——政府补助》。与原准则相比,修订后的准则在总额法的基础上,新增了净额法,将政府补助作为相关成本费用扣减。按照企业所得税法的规定,企业取得的政府补助应确认为收入,计入收入总额。净额法产生了税会差异。企业在税收上将政府补助确认为应税收入,同时增加研发费用,加计扣除应以税前扣除的研发费用为基数。但企业未进行相应调整的,税前扣除的研发费用与会计的扣除金额相同,应以会计上冲减后的余额计算加计扣除金额。比如,某企业当年发生研发支出200万元,取得政府补助50万元,当年会计上的研发费用为150万元,未进行相应的纳税调整,则税前加计扣除金额为150×50%=75万元。  2.明确下脚料、残次品、中间试制品等特殊收入冲减研发费用的时点。97号公告明确了特殊收入冲减的条款,但未明确在确认特殊收入与研发费用发生可能不在同一年度的处理问题。本着简便、易操作的原则,公告明确在确认收入当年冲减,便于纳税人准确执行政策。  3.明确研发费用资本化的时点。税收上对研发费用资本化的时点没有明确规定,因此,公告明确企业开展研发活动中实际发生的研发费用形成无形资产的,其开始资本化的时点与会计处理保持一致。  4.明确失败的研发活动所发生的研发费用可享受加计扣除政策。出于以下两点考虑,公告明确失败的研发活动所发生的研发费用可享受加计扣除政策:一是企业的研发活动具有一定的风险和不可预测性,既可能成功也可能失败,政策是对研发活动予以鼓励,并非单纯强调结果;二是失败的研发活动也并不是毫无价值的,在一般情况下的“失败”是指没有取得预期的结果,但可以积累经验,取得其他有价值的成果。  5.明确委托研发加计扣除口径。一是明确加计扣除的金额。财税〔2015〕119号要求委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。实际执行中往往将提供研发费用支出明细情况理解为委托关联方研发的需执行不同的加计扣除政策,导致各地理解和执行不一。依据政策本意,提供研发支出明细情况的目的是为了判断关联方交易是否符合独立交易原则。因此委托关联方和委托非关联方开展研发活动,其加计扣除的口径是一致的。为避免歧义,公告在保证委托研发加计扣除的口径不变的前提下,对97号公告的表述进行了解释,即:97号公告第三条所称“研发活动发生费用”是指委托方实际支付给受托方的费用。二是明确委托方享受加计扣除优惠的权益不得转移给受托方。财税〔2015〕119号已明确了委托研发发生的费用由委托方加计扣除,受托方不得加计扣除。此为委托研发加计扣除的原则,不管委托方是否享受优惠,受托方均不得享受优惠。公告对此口径进行了明确。三是明确研发费用支出明细情况涵盖的费用范围。由于对政策口径的理解不一,导致对研发费用支出明细涵盖的费用范围的理解也不一致,诸如受托方实际发生的费用、受托方发生的属于可加计扣除范围的费用等口径。在充分考虑研发费用支出明细情况的目的和受托方的执行成本等因素后,公告将研发费用支出明细情况明确为受托方实际发生的费用情况。比如,A企业2017年委托其B关联企业研发,假设该研发符合研发费用加计扣除的相关条件。A企业支付给B企业100万元。B企业实际发生费用90万元(其中按可加计扣除口径归集的费用为85万元),利润10万元。2017年,A企业可加计扣除的金额为100×80%×50%=40万元,B企业应向A企业提供实际发生费用90万元的明细情况。  三、明确执行时间和适用对象  在执行时间上,公告适用于2017年度及以后年度汇算清缴。本着保护纳税人权益、降低税务风险的考虑,明确对以前年度已经进行税务处理的,均不再调整。财税〔2015〕119号文件中明确了研发费用加计扣除政策可以追溯享受。由于本公告放宽了部分政策口径,本着有利追溯的原则,对企业涉及追溯享受情形的,也可以按照本公告规定执行。从适用对象上讲,科技型中小企业研发费用加计扣除事项也应适用本公告。
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 中国氟硅有机材料工业协会《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准公示
    经项目征集、审核、发布审议等程序,氟硅协会拟于2023年3月发布《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准,为保障项目立项的公正性,现对13项氟硅团体标准进行公示,公示时间2023年3月16日至3月25日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。1、FGJ2021001《含氢硅油中含氢量的测定 顶空气相色谱法》报批稿.pdf2、FGJ2021002《乙烯基硅油、甲基乙烯基硅橡胶中乙烯基含量的测定 顶空气相色谱法》报批稿.pdf3、FGJ2021033《“领跑者”标准评价要求 硅酮建筑密封胶》报批稿.pdf4、FGJ2021034 《硅橡胶组合物 分类与命名》 报批稿.pdf5、FGJ2021034《六甲基二硅烷》报批稿.pdf6、FGJ2021040《乙烯基三甲基硅烷》报批稿.pdf7、FGJ2021041《低挥发性环甲基硅氧烷端乙烯基硅油》报批稿.pdf8、FGJ2021042《低挥发性甲基环硅氧烷的二甲基硅油》(报批稿).pdf9、FGJ2021057 《缩合型甲基苯基硅树脂》 报批稿.pdf10、FGJ2021052《纸张用无溶剂型有机硅离型剂》报批稿.pdf11、FGJ2021046 《乙烯基三甲氧基硅烷》 报批稿.pdf12、FGJ2021048《274#高真空扩散泵油》报批稿.pdf13、FGJ2021049 《275#高真空扩散泵油》报批稿.pdf14、FGJ2021050《通讯基站冷缩套管用硅橡胶》报批稿.pdf15、FGJ2021051《新能源汽车线缆用硅橡胶》报批稿.pdf16、FGJ2021056《加成型硅凝胶》报批稿.pdf17、FGJ2021013《保护膜用加成型有机硅压敏胶》报批稿.pdf18、FGJ2021016《按键用液体硅橡胶》(报批稿).pdf19、FGJ2021017《冷缩电缆附件用液体硅橡胶》(报批稿).pdf20、FGJ2021036《绝缘栅双极型晶体管用有机硅凝胶》(报批稿).pdf21、FGJ2021009《全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚》 报批稿.pdf22、FGJ2021010《全氟乙基乙烯基醚》报批稿.pdf23、FGJ2021011《全氟甲基乙烯基醚》报批稿.pdf24、FGJ2021012《全氟正丙基乙烯乙基醚》报批稿.pdf25、FGJ2021059《乙烯-三氟氯乙烯共聚物(ECTFE)树脂》(报批稿).pdf
  • 没有七年之痒,只有历久如一的产品高性能 ——回访稳健(桂林)乳胶用品有限公司
    稳健(桂林)乳胶用品有限公司(原桂林乳胶厂)是1966年由原化工部投资兴建的乳胶制品企业,原国家计生委定点生产企业,联合国人口基金安全套产品供应商,为中国乳胶行业协会所在地及理事长单位。主要产品为避孕套、医用手套、防护手套三大类。稳健(桂林)乳胶用品有限公司于2015年购买了一台欧美克LS-609智能全自动激光粒度仪,用于检测乳胶制品原材料。至今,仪器已迈过“七年之痒”。近期由于仪器使用人员的变动,新接任的工程人员对于仪器使用和维护方面略有疑问。收到客户的来电后,欧美克协调区域销售工程师上门进行桂林地区老客户回访之旅。根据现场客户介绍,他们研发部和质量部都需要使用激光粒度仪检测原料的细度,以便更好地改善工艺、研发新品以及产品性能和品质的严密控制。涉及的样品复杂多样,包括了硫磺、白炭黑、丁基胶乳、碳酸钙、二氧化硅、氧化锌等十几种样品,并且已通过仪器软件设置分别建立了相应的SOP操作流程,日常测试操作相当便捷。新接任的工程人员基本能快速上手实现操作。但由于上一任工程人员离职后,进样系统的循环管路一直都没有清洗过,仪器测试背景偏高,导致现在的测试结果与之前的有所出入。“受之以鱼不如授之以渔”,为了让工程人员掌握仪器的基本维护,欧美克工程师现场演示湿法进样器及循环管路的清洗操作,并告知工程人员可以通过“欧美克仪器”抖音账号、微信视频号等新媒体平台了解学习仪器测试操作和日常维护经验。“欧美克仪器”《湿法进样器及循环管道清洗》操作视频通过清洗维护,仪器测试背景恢复正常,几个样品的测试结果均符合预期。工程人员以及研发部主任、生产部主任对于欧美克LS-609仪器七年如一日的测试性能以及及时贴心的回访服务赞不绝口。像稳健(桂林)乳胶用品有限公司那样使用仪器数年且仪器性能历久如一的客户,在万千欧美克仪器的老客户里比比皆是,早已打破了“国产仪器只能用3-5年”的普遍认知。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。自2010年加入英国思百吉集团、成为马尔文帕纳科旗下品牌以后,新一代产品性能也是“百尺竿头,更进一步”,质量持久耐用深受行业客户的青睐。特别是LS-609激光粒度分析仪,它是欧美克仪器公司在LS-POP(9)优良测试性能基础上,升级开发的一款智能化、高性能的全自动激光粒度分析仪。LS-609采用进口He-Ne激光器作为光源,激光功率更加稳定,预热时间短。结合其现代化的智能测量控制分析软件和全自动进样测量系统,使得激光粒度仪的使用体验得到前所未有的提升,粒度测试流程更加简洁高效、测试结果更稳定可靠、粒度检测报告的对比更加直观简单。使用7年的LS-609性能如故,为客户产品质控保驾护航!欧美克LS-609激光粒度分析仪在实际的生产质控过程中,激光粒度仪测试结果的变化可能来源于众多因素,例如样品的取样、样品的分散、分散颗粒的稳定性、测试参数、仪器的状态等等。对于激光粒度仪的应用,仪器的稳定性和一致性一直是困扰广大使用者的一个主要问题。在2018年农药培训班上,针对因会出现奥氏熟化现象而测试不稳定的嘧菌酯水悬浮剂样品,欧美克现场选取了3台不同年份批次的智能全自动激光粒度仪LS-609,其具有智能仪器状态判断并自主调节功能,避免了仪器状态不良导致测试结果偏差,同时具有全自动多样品标准化测试流程(SOP)的功能,除依次加样的动作外,所有操作均由仪器自动完成,最大化减少多种不确定因素引起的测量结果偏差。通过设定相同的SOP标准化测试流程,并设定许可加样遮光比范围5~12%,3台仪器各选取20名实验室操作人员进行25%嘧菌酯水悬浮剂的粒径测试,值得一提的是这些操作人员中大多数人均是经过简单的演示后第一次使用LS-609粒度仪,测试结果汇总如下图。采用完全相同设置的SOP测量,例如自动排气泡、折射率吸收率参数、泵速超声等分散条件等,3台LS-609激光粒度仪各对应的20位操作员的D50测试结果分别以红绿蓝色曲线显示,所有结果均在1.76um附近小幅波动,3台仪器测试结果D50最大最小值的偏差依次为2.4%、2.6%、2.3%,显示了粒度仪在SOP测试的方式下明显更小的质控风险。同时仪器与仪器之间结果也几乎完全一致,详情请看下表统计结果。各仪器20人次取样测量汇总特征粒径平均值,um测量重现性,相对标准偏差D10D50D90D10D50D90LS609,#10.761.764.231.2%0.7%0.4%LS609,#20.771.764.200.9%0.7%0.6%LS609,#30.771.764.200.8%0.6%0.6%LS-609智能化仪器状态识别并自主调节的功能、全自动控制的循环分散系统、高品质的光学零部件及其装配工艺也为测试结果在不同仪器上的一致性提供了有力的保障!作为深耕粉体行业近30年的国内知名粒度仪器制造商,欧美克仪器始终和行业客户共同发展、偕同并进,用专业的服务和优质的仪器为行业用户提供专业高效的粒度解决方案,让“国产仪器只能用3-5年”的普遍认知不再成为客户的“心头之痒”;始终致力于成为行业客户值得信赖的粒度检测与控制专家!
  • 重要进展|首款 2Tb/s 三维集成硅光芯粒成功出样
    随着人工智能应用的快速发展,AI算力系统对于高效能互连技术的需求呈现爆发性增长态势。为了满足这一挑战,业界正大力研发更大容量、更高速率、更高集成度的硅基光互连芯片解决方案,把硅光收发芯片直接集成到计算芯片附近或同一封装内,将极大地减少信号传输的延迟和功耗,从而显著提升算力系统的整体性能。然而,面向下一代单通道200G以上(200G per lane)的光接口速率需求,硅光方案在速率、功耗、集成度等方面面临着巨大挑战。近日,国家信息光电子创新中心(NOEIC)和鹏城实验室的光电融合联合团队完成了2Tb/s硅光互连芯粒(chiplet)的研制和功能验证,在国内首次验证了3D硅基光电芯粒架构,实现了单片最高达8×256Gb/s的单向互连带宽。团队在2021年1.6T硅光互连芯片的基础上,进一步突破了光电协同设计仿真方法,研制出硅光配套的单路超200G driver和TIA芯片, 并攻克了硅基光电三维堆叠封装工艺技术,形成了一整套基于硅光芯片的3D芯粒集成方案。2Tb/s 硅基3D集成光发射芯粒2Tb/s 硅基3D集成光接收芯粒硅光互连芯粒的侧向显微镜结构该方案充分利用了硅光与CMOS封装工艺兼容的特点,相比于传统wirebond方案,3D芯粒能解决电芯片与光芯片间高密度、高带宽电互连的困难,显著降低射频信号在光-电芯片互连过程中的严重衰减。经系统传输测试,8个通道在下一代光模块标准的224Gb/s PAM4光信号速率下,TDECQ均在2dB以内。通过进一步链路均衡,最高可支持速率达8×256Gb/s,单片单向互连带宽高达2Tb/s。8×224Gb/s硅基光发射芯粒输出眼图该工作充分展现了3D集成硅光芯粒的优越互连性能,以及联合团队的领先自主研发水平。成果将广泛应用于下一代算力系统和数据中心所需的CPO、NPO、LPO、LRO等各类光模块产品中,为国内信息光电子技术的率先突围探索出可行路径。
  • 新规丨24项国家计量技术规范发布
    市场监管总局关于发布《密度计量器具检定系统表》等24项国家计量技术规范的公告根据《中华人民共和国计量法》有关规定,现批准《密度计量器具检定系统表》等24项国家计量技术规范发布实施。
  • 天瑞仪器ICP2060T直接进样法测定汽油中的硅
    简介 当今世界的发展,汽车数量与日俱增,汽油的需求数量也越来越大,汽油的产品质量要求,越来越高。汽油中的一些微量元素的控制是能否提供清洁燃料的关键之一。在石油冶炼制过程中,有时会加入一些含有硅化合物的试剂,或在燃油炼制完成后将一些废溶剂掺入到汽油中而造成汽油中含有硅。汽油中硅含量即使很低也会导致氧气传感器失效,同时在发动机中催化转换器上产生大量沉积物,这种汽油在不超过一箱油的范围内就可使催化系统失效。汽油中的重金属元素在使用时会对环境造成污染。近年来, 世界各国越来越强调环境保护, 为了控制环境污染, 许多国家强制推行车用汽油无铅化, 控制添加抗爆剂有机锰化合物、有机铁化合物。准确快速地测定汽油中元素含量是目前亟待解决的问题.目前, 测定汽油中铁、锰、铅含量, 一般采用火焰原子吸收光谱法。标准方法有GB/T8020 -1987、SH/T0711-2002 和SH/T0712-2002,三种方法都使用火焰原子吸收光谱法。该方法在测定锰和铁时能得到较满意的结果, 但测定铅时出现灵敏度低、测定值较难稳定等问题;而现有的国家标准和石化行业标准均无汽油中微量硅检测方法。本文采用有机溶剂稀释法和标准加入法测定汽油样品。 测定方法简单、快速, 所得结果的重复性、稳定性均优于火焰原子吸收光谱法(AAS) , 尤其解决了低含量铅样品的灵敏度低、测量值较难稳定的问题。实验部分 仪器介绍 ICP-2060T系列电感耦合等离子体单道扫描发射光谱仪,具有优异的分辨率、测试准确度与精密度,广泛应用于稀土工业、石油化工、矿石分析、金属冶炼、地质研究、药品安全、实验研究、环境检测、食品安全等行业。ICP2060T主要技术参数 高频发生器工作频率27.12MHz频率稳定性≤0.05%输出功率800—1600W输出功率稳定性≤0.05%扫描分光器光路Czerny turner型焦距1000mm光栅规格离子刻蚀全息光栅,刻线密度4320 l/mm或3600 l/mm;刻划面积(80×110)mm线色散倒数0.026nm/mm分辨率≤0.005nm(4320 l/mm);≤0.008nm(3600 l/mm)整机技术指标扫描波长范围190nm~500nm(3600L/mm光栅);190nm~450nm(4320 l/m光栅)重复性RSD≤1.5%稳定性RSD≤2.0% 天瑞仪器ICP2060T电感耦合等离子体发射光谱仪石化油品分析的显著特点:1.半导体制冷进样装置提高了进样的稳定性和灵敏度,测试更加精准、可靠。 2.汽油专用炬管,保证等离子体的长期稳定和降低基体背景。 3.增加氧气辅助进样,维持等离子体的稳定和防止积碳。 4.自主研发的RF固态射频发生器自动匹配方式,适合有机及高基体等样品直接进样。 5.等离子体观测高度自动调节,可准确定位最佳观测位置。6.极高的分辨率,可完全分开P213.618nm、Cu213.598nm及P214.911nm、Cu214.897nm的波长。方法提要采用半导体制冷进样装置,汽油样品分别采用标准加入法,测定以消除油品样品基体不同导致的测试误差。试剂 ICP专用混合标油 ICP专用稀释剂 汽油或原料油实际样品实验耗材 移液器,0-5ml 万分之一电子天平 50ml容量瓶 高纯氧气 纯氩汽油样品的处理及测试 称取四分不同质量ICP专用混合标油和ICP专用稀释剂,然后加入同样质量的汽油样品,保证总质量是相同的。 上机直接测试,运用ICP2060T标准加入法的专业石化测试试软件,直接得到结果。测定结果相关元素谱图及曲线:硅元素谱图及曲线锰元素谱图及曲线铅元素谱图及曲线铁元素谱图及曲线测定结果 元素铁(Fe)锰(Mn)铅(Pb)硅(Si)方法检出限/(mg/L)0.0300.0260.120.042 汽油实际样品分析结果 元素测定值/(mg/L)RSD/%铁(Fe)3.60.56锰(Mn)17.50.23铅(Pb)1.81.38硅(Si)2.40.92 汽油样品加标回收率 序号加标量(mg/L)铁(Fe)锰(Mn)铅(Pb)硅(Si) 测定值(mg/L)回收率/%测定值(mg/L)回收率/%测定值(mg/L)回收率/%测定值(mg/L)回收率/%10.450.43696.90.468104.00.43296.00.465103.320.90.88798.60.913101.40.86896.40.919102.1 结论 用ICP-AES法直接测定汽油中硅、铁、锰、铅相对消解法有较高的准确度及较好的重现性,并且测试速度快,大大提高了工作效率,也节省了大量的人力及物力成本,同时相对于进口ICP需较高配置和成本而言,天瑞仪器ICP2060T具有成本低,速度快,准确度高等特点,可直接测定汽油样品中的硅、铁、锰、铅元素,完全可以满足石化行业中客户的测试要求。
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图四乙基铅和甲基叔丁基醚的化学结构式EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标 四乙基铅和甲基叔丁基醚总离子流色谱图 四乙基铅的标准曲线 甲基叔丁基醚的标准曲线 绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 砥砺前行 再创佳绩 三德科技SDPS全通制样系统连续中标燃料智能化建设项目
    近期,市场一线传来捷报,三德科技先后与神华国能宁夏鸳鸯湖发电有限公司(以下简称“神华鸳鸯湖”)、珠海Y公司(最终用户为中国铝业股份有限公司兰州分公司,以下简称“中铝兰州”)和中粮生物化学(安徽)股份有限公司(以下简称“中粮生化”)成功签约,为其提供SDPS全通制样系统。神华鸳鸯湖采购的自动制样系统主要用于电厂二期2×1000MW级超超临界机组扩建工程。该工程位于宁夏自治区毛乌素沙漠内,机组为目前全国最大间接空冷超超临界百万级燃煤发电机组,是国家“一带一路”、“西电东送”战略高地的重要支点。该项目建设内容包含自动制样系统、自动存查柜系统及除尘系统,是三德科技与神华集团签订的首套自动制样系统项目,将为该电厂“无人化”制样、“无人化”存取样的实现提供智能硬件支撑。 神华鸳鸯湖冬季施工全景(图片来源自网络) 神华鸳鸯湖SDPS全通制样系统方案效果图中铝兰州位于甘肃省兰州市,是国家“二五”期间在大西北建设的第一家电解铝厂,迄今已有五十多年发展历史。中铝兰州自备电厂燃煤机组容量3×300MW,2008年12月全面建成投产,来煤以火车煤、汽车煤为主。本次项目建设内容主要是对电厂来煤入厂及采制样环节进行智能化改造,具体包括:新建全自动制样系统;新建汽车机械采样机及配套的集样间;完善火车、汽车入厂自动识别系统等。项目建成后,将有效促进中铝兰州燃料智能化管理及企业经营绩效提升。中铝兰州(图片来源自网络)中铝兰州SDPS全通制样系统方案效果图中粮生化位于安徽省蚌埠市,是我国农产品深加工大型骨干企业、国家农业产业化龙头企业,该公司热电厂新建自动制样系统,希望燃煤样品采制样环节真正实现自动、环保、无人值守。鉴于此,经多次调研、对比其他同类型发电企业产品选型与应用情况,最终综合评标采购了三德科技SDPS全通制样系统(含采制对接、自动制样、气动传输、斗提装置等)。中粮生化(图片来源自网络)中粮生化SDPS全通制样系统方案效果图 目前,上述三个项目的标的产品正在交付过程中。
  • 月旭科技推出饮料中4-甲基咪唑的整体解决方案
    近日,一份源自美国监督机构环境健康中心的报告,再次将百事可乐推至焦糖色素风波中。该报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。焦糖色素是一种允许使用的着色剂,但是,我国现行的食品质量标准中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。 可乐中的4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的,焦糖色素能使可乐饮料变成棕褐色。4-甲基咪唑能导致动物长肿瘤,有可能给人体带来致癌风险。目前,我国国标中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 针对此次事件,月旭科技迅速建立了饮料中4-甲基咪唑的前处理和检测方法。本方法使用月旭Welchrom P-SCX (60mg/3mL)富集饮料中4-甲基咪唑,所建立的固相萃取方法能够极大程度排除饮料中杂质的干扰,保证检测结果的准确性。1. 仪器及材料材料:饮料;超纯水;4-甲基咪唑标准品;月旭Welchrom SCX 固相萃取小柱(60mg/3mL);玻璃移液管;洗耳球;烧杯,固相萃取装置等。2. 实验步骤2.1 SPE净化SPE柱:Welchrom SCX(60mg/3mL)1)活化:3mL甲醇,3mL水;2)上样:3mL 饮料样品溶液,弃去上样液3)淋洗:3mL 100%甲醇,弃去淋洗液;4)洗脱:3mL 10%氨化甲醇;收集洗脱液。挥干定容至0.5mL,进液相分析。2.2 液相色谱测定色谱柱:月旭Ultimate XB-C18(4.6× 250mm, 5µ m)流动相:缓冲液/甲醇=80/20缓冲液的配置方法:将6.8g KH2PO4和1g庚烷磺酸钠至900mL,用H3PO4调pH为3.5,再定容至1000mL,即得。检测波长:210nm流速:1.0mL/min进样量:20µ L 图1:4-甲基咪唑标准色谱图 3. 添加回收率试验结果表1: 10µ g/mL添加回收实验结果(n=5)次数12345回收率98.2%92.2%95.1%96.4%93.6%
  • 岛津Nexis视角 | 十问十答助您玩转环氧乙烷检测
    背景2020年2月11日,世界卫生组织总干事谭德塞在瑞士日内瓦宣布,将新型冠状病毒感染的肺炎命名为“COVID-19” (Corona Virus Disease 2019)。截止到2020年3月23日,全球累计确诊人数超过31万人。随着疫情蔓延以及防控力度不断增大,全球多地医疗及防疫物资告急,各地许多相关物资生产企业,加班赶制医疗及防疫物资,同时各地加开了多条口罩、防护服等防护用品和消杀用品的生产线。医疗防护用品生产量的急剧提高,也伴随而来环氧乙烷残留量检测的需求也急剧增大。 岛津气相色谱仪Nexis GC-2030 1、为什么用环氧乙烷进行消毒灭菌?环氧乙烷(Ethylene oxide,EO)是一种最简单的环醚,化学式是C2H4O,属于杂环类化合物。环氧乙烷在低温下为无色透明液体,沸点10.4℃,在常温下是无色带有醚刺激性气味的气体。环氧乙烷气体的蒸气压高,30℃时可达141kPa,这种高蒸气压决定了环氧乙烷熏蒸消毒时的扩散和穿透力较强。 环氧乙烷是继甲醛之后出现的第2代化学消毒剂,至今仍为最好的冷消毒剂之一,也是目前四大低温灭菌技术(低温等离子体、低温甲醛蒸汽、环氧乙烷、戊二醛)最重要的一员。 环氧乙烷灭菌的优点是: ① 能杀灭所有微生物,包括细菌芽孢。 ② 灭菌物品可以被包裹、整体封装,可保持使用前呈无菌状态。 ③ 相对而言,EO不腐蚀塑料、金属和橡胶,不会使物品发生变黄变脆。 ④ 能穿透形态不规则物品并灭菌。 ⑤ 可用于那些不能用消毒剂浸泡,干热、压力、蒸汽及其他化学气体灭菌之物品的灭菌。 2、环氧乙烷主要用于哪些物品的消毒灭菌?环氧乙烷对细菌芽孢、结核杆菌、真菌和病毒等各种微生物均有灭杀作用,属于广谱灭菌剂,而且对金属不腐蚀,无残留气味,因此在医学消毒和工业灭菌上用途广泛。常常用于洗涤、制药、印染、纺织物以及其他方法的不能消毒或不能耐受高温消毒的物品以及外科器材等的灭菌工艺中。 常见的应用对象主要有:电子仪器、光学仪器、医疗器械、书籍、文件、皮毛、棉、化纤、塑料制品、木制品、陶瓷及金属制品、内镜、透析器和一次性使用的诊疗用品等。在医疗器械和医疗防护用户行业中一般使用环氧乙烷灭菌装置来进行灭菌,典型应用产品有: 3、环氧乙烷残留的危害有哪些?环氧乙烷是确定的人体致癌剂,是一种中枢神经抑制剂、刺激剂和原浆毒物,因此灭菌后的产品如果环氧乙烷气体没有充分挥发,残留达到一定量时就会对人体产生危害。 因此,医疗器械和医疗防护用品中如果采用了环氧乙烷灭菌处理,则应该严格控制环氧乙烷灭菌后的残留量。 4、医疗防护用品针对环氧乙烷残留量的限量值是多少?依据什么标准检测?我国对医疗器械和医疗防护用品中环氧乙烷残留量指标有着严格要求,典型的标准名称、适用范围、限量值和检测方法如下表所示:5、环氧乙烷残留量检测的标准方法是什么?2-氯乙醇是否也需要进行检测? 关于环氧乙烷残留量的检测方法,有两个非常重要的标准: ① 医疗防护用品标准中引用的环氧乙烷残留量测定方法主要是依据《GB/T 14233.1-2008 医用输液、输血、注射器具检验方法 第1部分:化学分析方法》。这个标准中包含了气相色谱法(仲裁法)和比色法这两种方法,其中第9部分详细介绍了采用模拟方法浸提或极限浸提+顶空进样+气相色谱法分析的流程,这也是目前环氧乙烷残留量测定主要采用的测定方法。 ② 《GB/T 16886.7-2015医疗器械生物学评价 第7部分:环氧乙烷灭菌残留量》对经环氧乙烷(EO)灭菌的单件医疗器械上EO及2-氯乙醇(ECH)残留物的允许限量、EO及ECH的检测步骤(模拟浸提和极限浸提)以及确定器械是否可以出厂的方法进行了详细说明。该标准使用翻译法等同采用ISO 10993-7:2008《医疗器械生物学评价 第7部分:环氧乙烷灭菌残留量》。 关于2-氯乙醇(ECH),一般医疗防护用品的国家标准中没有规定此项目,因此可不进行检测,而医疗器械评价的ISO标准和翻译等同采用的GB标准,均有明确的限量描述和检测要求,此时需要进行检测。 6、模拟使用浸提法和极限浸提法的区别是什么?根据《GB/T 14233.1-2008 医用输液、输血、注射器具检验方法 第1部分:化学分析方法》,在进行环氧乙烷检测时,样品浸提方法主要有两种:标准中指出:若未规定浸提方法,则均按照极限浸提方法进行提取。若用极限浸提法对产品测试后残留量在规定的范围之内,则没有必要再用模拟使用浸提法进行测试。 当然现在首选应该是顶空法直接进样分析,按照极限浸提的参数也可以测定样品上绝大多数 EO 残留。岛津HS-20顶空进样器所具有的Trap模式可以实现更高灵敏度的分析要求。 7、制作环氧乙烷标准曲线时的标准溶液如何配置?制作环氧乙烷标准曲线时,需要配置不同浓度的标准溶液或气体,此时有两种标准品选择:标准溶液或标准气体。由于标准气体操作时容易受操作人员的操作手法影响,如果操作不注意,则结果的准确度不高,因此为了安全性和精确性的考虑,建议购买已标定浓度的市售EO标准溶液进行配制。另有以下注意事项: ①环氧乙烷极易挥发, 因此环氧乙烷标准储备溶液从冰箱取出后应尽快地完成稀释,以防止环氧乙烷损失。 ②每个实验室最好通过稳定性研究来确定环氧乙烷标准物的有效期。据标准中资料显示:乙醇中EO标准溶液25μg/mL在冰箱温度(5℃)贮存60d,其浓度变化在10%以内。 ③配制过程中所有步骤和样品溶液应尽量在冰浴条件下进行,相关的接触耗材应提前进行冷冻操作。 8、岛津针对环氧乙烷残留量检测的推荐配置方案是什么?岛津深耕气相色谱领域60余年,在技术方面不断突破创新,积累了丰富的经验,一直保持着气相色谱及其相关技术的领先水平,是全球重要的气相色谱及相关产品的专业生产厂家之一。针对环氧乙烷残留量检测,岛津推荐的仪器配置方案如下:9、岛津针对环氧乙烷残留量检测的推荐色谱柱有哪些?医疗防护用品标准中所引用的《GB/T 14233.1-2008 医用输液、输血、注射器具检验方法 第1部分:化学分析方法》第9.2章节中对分析方法的规定是:任何气相色谱分析方法,只要证明分析可靠(足够的准确度、精密度、选择性、线性和灵敏度),都可以进行环氧乙烷的检测(需要进行必要的方法学评价),因此没有具体规定的色谱柱类型。一般来说,岛津推荐首选6%氰丙基苯基-94%甲基聚硅氧烷石英毛细管色谱柱,长度30m或60m,内径推荐0.32mm或0.53mm,膜厚推荐厚液膜1.8μm或3μm。比如SH-Rxi-624Sil MS, 30/60m×0.32mm×1.8μm等。另外其他中等极性、强极性色谱柱(厚液膜)以及Plot色谱柱均可使用。据文献报道,也有部分用户使用比如SH-Rtx-5这样的弱极性色谱柱来进行检测。 10、岛津推荐的环氧乙烷残留量检测的具体方法参数是什么?如下所示是岛津推荐的方法参数和在该方法下得到的谱图/标线信息,各实验室在具体分析时可根据具体样品和情况,对相关方法参数进行再优化调整。*注:以上内容中的部分科普信息来自于网络公开资料,如有侵权请联系删除。
  • 仪器仪表企业看过来!事关研发费用加计扣除!
    创新是引领发展的第一动力。党的二十大报告指出,坚持创新在我国现代化建设全局中的核心地位,强化企业科技创新主体地位。近年来,研发费用加计扣除政策持续优化完善,呈现出年年加力、步步扩围、层层递进的特点,对支持企业投入研发、鼓励科技创新起到重要作用。为坚决贯彻落实党中央、国务院决策部署,税务部门、科技部门高度重视贯彻落实工作,充分发挥部门合力,推动政策红利精准高效直达创新经营主体。   2018年,税务总局所得税司联合科技部政策法规与创新体系建设司首次发布《研发费用加计扣除政策执行指引(1.0版)》,从政策概述、主要内容、核算要求、备案和申报管理等方面对研发费用加计扣除政策进行了全面解读,在指导基层税务人员准确理解把握政策,帮助企业及时、充分、准确享受政策红利等方面发挥了积极作用。   税务总局所得税司联合科技部政策法规与创新体系建设司对现行研发费用加计扣除相关政策进行全面梳理,编写了《研发费用加计扣除政策执行指引(2.0版)》,力求全方位、多维度、深层次、更精炼展示政策要义。   2.0版指引按照“实用性、全面性、专业性”的原则编写,旨在政策查询更加便捷、成文体系更加完善、文字表述更加专业,为企业提供“菜单式”政策查询服务。2.0版指引主要有以下四方面的特征:   一是注重体系化,展现政策要义“一览无余”。2.0版指引将1.0版指引中分散的政策要点进一步整合,并以“模块化”的形式展现“研发活动界定”“研发项目管理”“政策主要内容”“研发费用核算要求”“申报和后续管理”等内容,力求系统性、深层次展现政策要义。   二是注重实用性,力求政策内容“一目了然”。2.0版指引以“通用政策+口径比较+流程解读+税务处理”等多种形式展现政策内容,逻辑清晰,一目了然,力求让纳税人和基层税务人员更加便捷查询、理解政策,更加准确适用政策。   三是注重全面性,剖析政策要点“一清二楚”。2.0版指引根据最新文件要求,对研发活动界定、研发项目管理、费用核算要求、申报和后续管理等进行了全面介绍,能有效帮助基层税务人员正确理解和把握政策执行有关要求,帮助纳税人依法依规享受研发费用加计扣除政策。   四是注重专业性,助企业创新“一臂之力”。2.0版指引加强对研发活动界定与研发项目管理的解读,专门在第二章和第三章中增加了“研发活动边界的典型说明”与“研发项目流程管理说明”的内容,从正、反两方面对研发活动与其他产业活动、其他科技活动的边界进行解读,并对研发项目从立项、实施、结题与资料等不同环节的管理要点予以说明等。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 三部门发文进一步提高科技型中小企业研发费用税前加计扣除比例
    近日,为进一步支持科技创新,鼓励科技型中小企业加大研发投入,财政部、税务总局、科技部发布《关于进一步提高科技型中小企业研发费用税前加计扣除比例的公告》(财政部 税务总局 科技部公告2022年第16号),就提高科技型中小企业研究开发费用(以下简称研发费用)税前加计扣除比例有关问题公告如下:  一、科技型中小企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2022年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2022年1月1日起,按照无形资产成本的200%在税前摊销。  二、科技型中小企业条件和管理办法按照《科技部 财政部 国家税务总局关于印发科技型中小企业评价办法的通知》(国科发政〔2017〕115号)执行。  三、科技型中小企业享受研发费用税前加计扣除政策的其他政策口径和管理要求,按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知 》(财税〔2018〕64号)等文件相关规定执行。  四、本公告自2022年1月1日起执行。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制