当前位置: 仪器信息网 > 行业主题 > >

苯硼酸频那醇酯

仪器信息网苯硼酸频那醇酯专题为您提供2024年最新苯硼酸频那醇酯价格报价、厂家品牌的相关信息, 包括苯硼酸频那醇酯参数、型号等,不管是国产,还是进口品牌的苯硼酸频那醇酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯硼酸频那醇酯相关的耗材配件、试剂标物,还有苯硼酸频那醇酯相关的最新资讯、资料,以及苯硼酸频那醇酯相关的解决方案。

苯硼酸频那醇酯相关的资讯

  • 【培训】要开班啦——食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 【培训】食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。  根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。  资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。  2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。  宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。  中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。  5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。  李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。  5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。  李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。  在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。  此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测培训通知
    p  食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测/pp  培训班简介/pp  中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!/pp  适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员 2.各级食品安全监管部门及检测机构技术人员 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员 4.其他相关行业意向本次培训班的机构及个人/pp  主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会/pp  协办单位:天津阿尔塔科技有限公司/pp  培训基地:中粮集团营养健康研究院/pp  费用说明/pp  培训费: 课程A 3500元/人(含食宿),时间: 2天/pp  课程B 3000元/人(含食宿),时间:2天/pp  课程A依据新颁布国家食品安全标准GB5009.191-2016/pp  课程B依据美国油脂化学协会AOCS Official Method Cd 29a-13/pp  课程A与课程B分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书/pp  培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)/pp  培训内容:/pp  课程A:食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法 (食品安全国家标准 GB5009.191-2016)/pp   GC-MS基本原理及应用/pp   3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解/pp   演示实验/pp   实际操作/pp  课程B:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(AOCS Official Method Cd 29a-13)/pp   3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解/pp   演示实验/pp   实际操作/pp  报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。/pp  联系人:姜平月/pp  电话:15620189828/022-65378550/pp  QQ: 2850791078/pp  培训要点/pp  氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。/pp  目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为AOCS的标准。而国内近期刚刚颁布了GB 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。/pp  3-氯丙醇及2-氯丙醇检测方法:/pp  方法一:国标GB 5009.191-2016方法/pp  采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用GC-MS测定。该方法用时较短。/pp  方法二:基于AOCS Official Method Cd 29a-13方法/pp  采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用GC-MS测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。/pp style="text-align: center "img width="479" height="109" title="11.png" style="width: 390px height: 86px " src="http://img1.17img.cn/17img/images/201708/insimg/3967d1a0-e05d-4afe-9c20-075b41169847.jpg"//pp  缩水甘油酯检测方法:/pp  基于AOCS Official Method Cd 29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用GC-MS测定。该方法具有较好的稳定性,精密度、重复性及回收率。/pp style="text-align: center "img width="479" height="92" title="12.png" style="width: 422px height: 73px " src="http://img1.17img.cn/17img/images/201708/insimg/f90cb986-2897-4c72-b6c3-9c8fadaf68e4.jpg"//pp  附件 培训申请表/ptable width="549" border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 27px "td width="549" height="27" valign="top" style="background: none padding: 0px border: 1px solid black " colspan="2"p style="background: white text-align: center line-height: 27px "strongspan style="color: rgb(47, 47, 47) "span style="font-family: 宋体 "附件/span/span/strongstrong /strongspan style="font-family: 宋体 "strongspan style="color: rgb(47, 47, 47) "培训申请表/span/strong/span/p/td/trtr style="height: 27px "td width="549" height="27" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "姓名:/span/p/td/trtr style="height: 23px "td width="549" height="23" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "单位(及邮编):/span/p/td/trtr style="height: 29px "td width="549" height="29" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "地址:/span/p/td/trtr style="height: 34px "td width="287" height="34" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px "p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "手机:/span/p/tdtd width="262" height="34" valign="top" style="background: none border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px "p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "传真:/span/p/td/trtr style="height: 37px "td width="549" height="37" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: " new="" times=""Email:/span/p/td/trtr style="height: 42px "td width="549" height="42" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "您还希望接受哪一类主题的培训?我们将尽力安排相关课程/span/pp style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: " new="" times=""span style="font-family: 宋体 " /span/span/pp style="line-height: 150% text-indent: 32px "span style="text-decoration: underline "span style="line-height: 150% font-family: " new="" times="" /span/span/p/td/tr/tbody/tablep/p
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。  王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。  该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。  其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。  然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。  RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。  中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。  宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。  5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。  作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。  宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。  “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。  据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。  针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。  有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。  有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。  在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。  表格一 拟议的统一分类和标签以及物质使用范例。物质名称EC号CAS号拟议统一分类和标签使用范例环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮218-499-02164-08-1对水生环境有危害对水生环境的危害未分类作为一种除草剂硼酸233-139-210043-35-3生殖毒性硼酸被用于许多行业和专业应用,被添加在消费品中。硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。  *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn博纳艾杰尔网站www.agela.com.cn 1.水性样品此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。4.1 动植物油脂样品的处理取0.2g样品,用1mL正己烷溶解,作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:7mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待检液。检测:GC/MS检测。4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。 5.复杂样品此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例:取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。检测:GC/MS检测。 附件一:高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L)流动相:A:水,B:甲醇:乙腈=50:50Time/minA/%B/%060402505010406012307020307031010040010040.016040流 速:1.0 mL/min波 长:242 nm进样量:5 µ L(100ppm),50µ L(10ppm)样 品:15种邻苯二甲酸酯浓 度:100 ppm(正己烷),10 ppm(40%流动相A)溶 剂:正己烷 /40%流动相A柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm)(邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP)结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS色谱条件:色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1&mu L流速:1 mL/min 质谱条件:接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min监测方式:SIM模式,监测离子见下表 序号保留时间/min中文名称英文缩写SIM离子18.265邻苯二甲酸二甲酯DMP163、7729.135邻苯二甲酸二乙酯DEP149、177310.888邻苯二甲酸二异丁酯DIBP149、223411.637邻苯二甲酸二丁酯DBP149、223511.979邻苯二甲酸二(2-甲氧基)乙酯DMEP59、149、193612.72邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149、251713.044邻苯二甲酸二(2-乙氧基)乙酯DEEP45、72813.41邻苯二甲酸二戊酯DPP149、237915.552邻苯二甲酸二己酯DHXP104、149、761015.694邻苯二甲酸丁基苄基酯BBP149、911117.153邻苯二甲酸二(2-丁氧基)乙酯DBEP149、2231217.81邻苯二甲酸二环己酯DCHP149、1671318.056邻苯二甲酸二(2-乙基)己酯DEHP149、1671420.444邻苯二甲酸二正辛酯DNOP149、2791522.98邻苯二甲酸二壬酯DNP57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下:表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号保留时间/min中文名称英文缩写回收率18.337邻苯二甲酸二甲酯DMP87.82%29.214邻苯二甲酸二乙酯DEP72.31%310.996邻苯二甲酸二异丁酯DIBP81.97%411.759邻苯二甲酸二丁酯DBP77.33%512.11邻苯二甲酸二(2-甲氧基)乙酯DMEP83.87%612.864邻苯二甲酸二(4-甲基-2-戊基)酯BMPP83.83%713.201邻苯二甲酸二(2-乙氧基)乙酯DEEP109.08%813.576邻苯二甲酸二戊酯DPP86.36%915.757邻苯二甲酸二己酯DHXP84.67%1015.923邻苯二甲酸丁基苄基酯BBP98.33%1117.377邻苯二甲酸二(2-丁氧基)乙酯DBEP101.30%1218.041邻苯二甲酸二环己酯DCHP92.47%1318.28邻苯二甲酸二(2-乙基)己酯DEHP132.32%1420.718邻苯二甲酸二正辛酯DNOP89.73%1523.303邻苯二甲酸二壬酯DNP70.10% 某植物油中15种邻苯二甲酸酯的添加回收率按正文第4.1项方法进行某种牛奶的添加回收率实验,得到的数据如下:表2、某植物油中添加15种邻苯二甲酸酯(在样品中的浓度为500&mu g/L)的回收率结果列表序号保留时间/min中文名称英文缩写回收率18.308邻苯二甲酸二甲酯DMP149.97%29.185邻苯二甲酸二乙酯DEP93.49%310.96邻苯二甲酸二异丁酯DIBP125.70%411.716邻苯二甲酸二丁酯DBP136.89%512.064邻苯二甲酸二(2-甲氧基)乙酯DMEP90.84%612.778邻苯二甲酸二(4-甲基-2-戊基)酯BMPP82.29%713.144邻苯二甲酸二(2-乙氧基)乙酯DEEP106.38%813.518邻苯二甲酸二戊酯DPP88.14%915.686邻苯二甲酸二己酯DHXP75.32%1015.844邻苯二甲酸丁基苄基酯BBP89.56%1117.295邻苯二甲酸二(2-丁氧基)乙酯DBEP105.05%1217.967邻苯二甲酸二环己酯DCHP72.94%1318.206邻苯二甲酸二(2-乙基)己酯DEHP124.27%1420.625邻苯二甲酸二正辛酯DNOP78.19%1523.297邻苯二甲酸二壬酯DNP75.27%
  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol,化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇,分子式:C19H24N2O4分子量:344.17结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》货号:CDBO-1100726中文名:苯乙醇胺A(克伦巴胺)参考品规格:10mg/L于甲醇,纯度99%,1mL价格请询。欲了解更多信息,请与我司业务员联系。电话:021-54890099。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 标准品和高纯试剂的区别
    标准品,国内和国际上有很多叫法,不同体系的称呼也不同,这里只是遵循国际上常规的称呼,即用RM即Reference Materials作为标准品的统称。在ISO体系中有参考物质(RM)和认证参考物质(CRM)两种计量的标准物质。根据ISO Guide 30规定, 参考物质/标准物质是含有一种或多种特定属性值并且足够均匀和稳定的物质,专用于测量过程,评价测量方法或给材料赋值的材料或物质。认证参考物质的特点是通过可计量的有效程序指定一个或多个属性,并连同一证书,提供指定属性的值,相关的不确定度,以及计量的可追溯性的声明。认证参考物质和参考物质的相同点和不同点主要见下表:标准品是按照ISO 17034:2016《标准物质/标准样品生产者能力认可准则》来指导生产,那么什么是ISO 17034?• ISO 17034是标准物质/标准样品生产者能力认可的国际标准。• 从原材料选择、生产、质量控制、运输和储存到售后实行质量监管。• 生产:原材料选择和纯化,生产计划和控制;• 描述:检测方法、不确定度、溯源性;• 批次稳定性评估;• ISO Guide 34 从2016年11月已经正式更名ISO 17034。试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。1.优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度zui高,杂质含量zui低,适合于重要jing密的分析工作和科学研究工作,使用绿色瓶签。2.分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。3.化学纯(CP),又称三级试剂,≥99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)瓶签。4.实验试剂(LR:Laboratory reagent),又称四级试剂。纯度远高于优级纯的试剂叫做高纯试剂(≥99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度zui高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种jing密分析的要求。除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(ExtraPure)、超纯、光谱纯等不同叫法。[1]高纯试剂通常应用于色谱使用的色谱纯试剂、光谱使用的光谱纯试剂,此外,电路、液晶等领域都有各自行业标准的高纯试剂。但是高纯试剂通常不使用在分析纯试剂使用的领域,如配制标准溶液、滴定剂等,高纯的单质例外。也就是说高纯试剂不是一个计量学概念的物质,而标准品是在计量学范畴内的。高纯试剂遵循的生产标准是ISO9001。不同行业使用的高纯试剂有各自的标注方式,通用的标注是用9的数目来表示。例如,纯度为99.999%,含五个九则表示为5N;纯度为99.995%,含四个九一个五,表示为4.5N。高纯试剂不需要确定不确定度,溯源性,主要是对试剂的纯度和杂质的控制,没有计量学的要求,所以标准品的生产在jing准方面,要求会更高。月旭提供的A2S在生产有机标准品方面已经通过ISO9001, ISO Guide 34 (现ISO17034)资质认证,目前可以提供高品质纯品型标准品、单标溶液、混标溶液,并且可以为客户提供混标个性化定制服务,如GB2763、GB23200系列多农残查混标定制,欢迎大家咨询选购!
  • 化妆品pH值测定技术规范解读+实验,值得您仔细品读!
    随着经济的高速发展,物质水平也得到极大提升,化妆品已步入生活的方方面面,在干燥寒冷的冬季,我们使用保湿霜、保湿乳液保持皮肤角质层有适度水分,在烈日炎炎的夏季使用防晒霜来屏蔽或吸收紫外线,减轻日晒引起的皮肤损伤。化妆品行业飞速发展,化妆品使用越来越广泛的同时,其安全事件也频繁发生,爽身粉含致癌物质石棉、婴儿沐浴液检出甲醛等事件一次次刺痛消费者的心,2017年国家化妆品不良反应监测系统收集到仅特殊类化妆品不良反应高达12790份。 面对化妆品安全事件频发现状,政府对化妆品安全的监管日益严苛,监管体系日趋完善,先后颁布实施了《化妆品卫生监督条例》、《化妆品行政许可检验管理办法》、《化妆品安全技术规范》。其中,2015版《化妆品安全技术规范》由国家食品药品监督管理总局批准颁布,于2016年12月1日起实施,规范不仅规定了禁用限用组分清单,也收载了多达77个理化检验方法。 今天,小编为大家解读的是《化妆品安全技术规范》中pH值测定的技术规范,将以化妆水pH值测定为例,通过解读实验的步骤,让更多用户熟悉合规的pH值测定方法和步骤。 《化妆品安全技术规范》pH值测定方法的适用范围本方法规定了酸度计测定化妆品pH值。本方法适用于化妆品pH值的测定。 pH值检验方法提要 以玻璃电极为指示电极,饱和甘汞电极为参比电极,同时插入被测溶液中组成一个电池。此电池产生的电位差与被测溶液的pH有关,它们之间的关系符合能斯特方程式: E = E0 +0.059 lg [H+] (25℃) E = E0 -0.059 pH 式中E0为常数。 在25℃时,每单位pH相当于59.1mV电位差。即电位差每改变59.1mV,溶液中的pH相应改变1个单位。可在仪器上直接读出pH值。 试剂和材料: 本方法所用试剂除另有说明外,均为优级纯试剂。所用水指不含CO2的去离子水。 3.1苯二甲酸氢钾标准缓冲溶液:称取在105℃烘干2h的苯二甲酸氢钾(KHC8H4O4)10.12g溶于水中,并稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为4.00。 3.2磷酸盐标准缓冲溶液:称取在105℃烘干2h的磷酸二氢钾(KH2PO4)3.40g和磷酸氢二钠(Na2HPO4)3.55g,溶于水中,并稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为6.88。 3.3 硼酸钠标准缓冲溶液:称取四硼酸钠(NaB4O710H2O)3.81g,溶于水中,稀释至1L,储存于塑料瓶中。此溶液20℃时,pH为9.22。 以上三种标准缓冲溶液的pH值随温度变化而稍有差异,见下表。 奥豪斯提供符合《化妆品安全技术规范》的三种pH缓冲液,免除用户购买试剂材料、制备pH缓冲液的烦恼。瓶装pH=4.01标准缓冲溶液,250ml,25℃瓶装pH=6.86标准缓冲溶液,250ml,25℃瓶装pH=9.18标准缓冲溶液,250ml,25℃技术规范规定使用的仪器设备: 4.1精密酸度计(精度0.02) 4.2复合电极或玻璃电极和甘汞电极4.3磁力搅拌器(附有加温控制功能)4.4烧杯,50mL4.5天平 作为具有111年悠久历史的实验室设备供应商,奥豪斯可为用户提供高精度pH计、电极及稳定可靠的天平等产品。 分析步骤 5.1.1 稀释法 称取样品1份(精确到0.1g),加不含CO2的去离子水9份,加热至40℃,并不断搅拌至均匀,冷却至室温,作为待测溶液。 如为含油量较高的产品,可加热至70℃—80℃,冷却后去油块待用;粉状产品可沉淀过滤后待用。 5.1.2 直测法(不适用于粉类、油基类及油包水型乳化体化妆品) 将适量包装容器中的样品放入烧杯中待用或将小包装去盖后直接将电极插入其中。 5.2 测定 5.2.1 电极活化 复合电极或玻璃电极(4.2)在使用前应放入水中浸泡24h以上。 5.2.2 校准仪器 按仪器(4.1)出厂说明书,选用与样品pH相接近的两种标准缓冲溶液在所规定的温度下进行校准或在温度补偿条件下进行校准。 5.2.3 样品测定 用水洗涤电极,用滤纸吸干后,将电极插入被测样品中,启动搅拌器,待酸度计读数稳定1min后,停搅拌器,直接从仪器上读出pH值。测试两次,误差范围±0.1,取其平均读数值。测定完毕后,将电极用水冲洗干净,其中玻璃电极浸在水中备用。 精密度 多家实验室对19种市售化妆品样品,用稀释法进行6 - 22次平行测定,其相对标准偏差为0.16%—1.94%。 奥豪斯ST5000pH计可存储1000个测量数据及10个电极各10个校准数据,测量数据可通过U盘保存至电脑或经RS232接口打印输出,满足用户数据统计和分析的需求。 市面常见化妆水pH值测定步骤: 本实验选用市面常见化妆水为样品、高精度ST5000pH计和易用的复合玻璃电极STMICRO5(pH玻璃电极和参比电极组合在一起)为pH值测定仪器。奥豪斯ST5000是一款0.001pH级别、彩色触摸屏实验室台式pH计,仪表无任何按键,操作直观便捷。 (ST5000pH计)STMICRO5是可充式pH复合电极,参比溶液有较高的渗透速率,液接界电位稳定重现,测量精度较高,当参比电极减少或受污染后可以补充或更换KCl溶液。(STMICRO5二合一电极)pH值测定:第一步,样品制备:因本实验测量的样品是化妆水,适用于《化妆品安全技术规范》5.1.2直测法测量化妆水pH值。第二步,取样:取样前剧烈振摇容器,使样品混合均匀,打开容器,取出5ml待分析样品,取样后密封容器。(STMICRO5电极应用图片) ST5000pH计校准步骤:i) 接通电源,点亮仪表屏幕。在开机屏幕中选择语言,点击右下角开机按键进入主界面。ii) 点击缓冲液组,把缓冲液组设置为中国组(pH1.68、4.01、6.86、9.18、12 .46 25℃)。iii) 将电极用纯水清洗,并吸干水珠,避免纸巾摩擦电极头部。放入第一个缓冲液中,点击"Cal"开始校准,等待约30s数值稳定,完成第一个pH点的校准操作。iv) 从第一个校准液中取出电极用去离子水清洗后,拭干置于第二个校准液中,点击 "Next",等待约30s数值稳定,完成第二个pH点的校准操作。v) 重复(iv)步骤进行第三个pH点的校准,校准完成后仪表会显示校准斜率值(slope)和零点电位(offset)。第四步,将校准后的STMICRO5电极用纯水冲洗干净,放入化妆水样品中测试两次,取均值,测量完毕后,将电极冲洗干净。若需测量多组平行样品的pH值,重复pH值测定的第四步即可,无需再次校准仪表,方便快捷,且测试数据通过RS232接口打印输出或经U盘保存至电脑,便于用户进行数据统计和分析。(化妆水pH值测定实验) 怎么样,通过阅读本文,对《化妆品安全技术规范》pH值测定的技术规范有更清晰、直观的认识吧,也熟悉了使用ST5000pH计和STMICRO5微量电极测定化妆水pH值的实验步骤,具有111年历史的美国奥豪斯不仅提供pH值检测仪器,也提供功能强大的离心机、涡旋振荡器及天平等产品。小编将继续推出更多应用化妆品相关的安全应用类文章,欢迎围观~~
  • 原装进口高纯助熔剂特价回报客户
    为回报中国广大新老用户对我公司总代理的澳大利亚XRF Scientific Ltd公司高纯助熔剂产品的厚爱,我公司决定:对澳大利亚XRF Scientific Ltd高纯助熔剂以特惠价1200元/千克进行促销,每位客户最低多限订购100千克,有效期为2009年9月1日至2009年12月31日 在熔融中加入硼酸盐助熔剂是一种*的粉末样品熔融处理技术。这样品处理方法在X-射线荧光光谱(XRF)、原子吸收光谱(AA)、电感耦合等离子体发射光谱(ICP)等分析技术中有着广泛的应用。因为这种助熔剂是一种样品溶剂,选择这种溶剂对实现质量分析具有非常重要的作用。 澳大利亚XRF Scientific Ltd公司在助熔剂技术方面20多年来的专业技术值得信耐,并能帮您改进分析技术。我们提供的硼酸盐助熔剂有以下显著特点: &bull 熔融物获得完美的均质性 &bull 严格可控的粒度分布 &bull 高密度:1.2-1.4 g/cm3 &bull 极低的灼烧减量:一般<0.05% &bull 防尘,易流动 &bull 高纯品质:>99.98% &bull 分析保证:经过分析认证 XRF Scientific 的助熔剂由四硼酸锂(Li2B4O7),四硼酸钠(Na2B4O7)或偏硼酸锂(LiBO2)制得。 我们也提供完整的其它添加剂,如氧化剂、除湿剂 (NWA)等。 通过认证的批量生产硼酸盐助熔剂的纯度:99.98%+ 我们可按您的要求定制助熔剂。 关于XRF Scientific Ltd 澳大利亚XRF Scientific Ltd公司是世界领先的激光诱导击穿光谱仪(LIBS)、熔样机、高纯助熔剂、铂金/铂合金器皿制造商。 它生产的助熔剂以其高品质在世界钢铁行业内被广泛使用,已成为X荧光光谱用户首选的进口助溶剂之一。 关于上海凯来实验设备有限公司 总部设在中国上海,成立于2004年。作为德国Haver & Boecker公司、Bϋ rkle公司、英国Optical Activity公司和Index Instruments公司、美国Ahura公司、Inorganic Venture公司、Reichert公司和W.S. Tyler公司、澳大利亚XRF Scientific 公司、瑞士SONOSWISS公司等在中国的总代理,以及作为德国Hirschmann、HosokawaAlpine的南方区总代理和Dionex液相产品上海区总代理。凯来公司致力于为生命科学和化学分析实验室用户提供优质的科学仪器及服务,同时希望不断完善自身,为客户提供更多更好的解决方案。更多信息请登录www.chemlabcorp.com了解。
  • PerkinElmer化学化工解决方案:分析含乙醇的汽油终产品中的苯和甲苯
    化学化工解决方案:使用PerkinElmer Clarus 680 GC 和Swafer 技术分析含乙醇的汽油终产品中的苯和甲苯 请即点击了解详细的解决方案有关化学化工的招聘转发给朋友我想询问ASTM D3606,设计使用双柱反吹的填充柱设定来检测汽油中苯和甲苯的含量。这一已建方法在最初建立时所用于分析的汽油并不含有乙醇。然而乙醇作为一种生物燃料被添加到现代的汽油中以提高燃烧效率。各国在汽油中添加有效的汽油量不尽相同——比如美国为10%(E10)而巴西为25%(E25)。当使用D-3606时,样品中大量存在的乙醇就会因和苯色谱共流出而带来问题。经修订后的方法(D-3606-07)加入了一根备选的柱子以处理存在的乙醇,但仍有共流出的问题被报道,且正考虑更进一步的色谱柱设定。本应用所描述的方法也是基于ASTM D-3606的。主要的不同在于使用了毛细柱。这一方法完全消除了乙醇带来的色谱干扰(甚至是纯的乙醇溶液也可以运行),整体改进了色谱图,并显著缩短了分析时间(根据色谱柱的不同可达50%或75%)。
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP)Dimethyl phthalate (DMP)131-11-3邻苯二甲酸二乙酯(DEP)Diethyl phthalate(DEP)84-66-2邻苯二甲酸二异丁酯(DIBP)Phthalic acid, bis-iso-butyl ester84-69-5邻苯二甲酸二丁酯(DBP)Di-n-butyl phthalate 84-74-2邻苯二甲酸双(2-甲氧基乙)酯(DMEP)Phthalic acid, bis-methylglycol ester117-82-8邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester146-50-9邻苯二甲酸双-2-乙氧基乙酯Phthalic acid, bis-2-ethoxyethyl ester605-54-9邻苯二甲酸二戊酯(DPP) Diamyl phthalate131-18-0邻苯二甲酸二正己酯(DNHP)Dihexyl phthalate84-75-3邻苯二甲酸丁苄酯(BBP)Benzyl butyl phthalate85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP)Phthalic acid,bis-butoxyethyl ester117-83-9邻苯二甲酸二环己酯(DCHP)Dicyclohexyl phthalate84-61-7邻苯二甲酸二(2-乙基)己酯(DEHP)Di(2-ethyl hexyl) phthalate (DEHP)117-81-7邻苯二甲酸二苯酯Diphenyl phthalate84-62-8邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯Phthalic acid, bis-nonyl ester84-76-4相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 博纳艾杰尔提供食品中邻苯二甲酸酯检测相关方法
    日前,台湾在食品添加物起云剂中违法加入有害健康的邻苯二甲酸酯类物质(其中包括邻苯二甲酸二甲酯)。导致多家知名饮料及食品污染,并且流入市面。 邻苯二甲酸酯(DEHP)是一种被广泛使用的增塑剂,用DEHP代替棕榈油配制的有毒起云剂能产生和乳化剂相似的增稠效果。但是,DEHP作为塑化剂并不属于食品香料原料,DEHP不仅不能被添加在食物中,甚至不允许使用在食品包装上。DEHP的作用类似于人工荷尔蒙,会损害男性生殖能力并促使女性性早熟,长期大量摄取会导致肝癌。由于幼儿正处于内分泌系统生殖系统发育期,DEHP对幼儿带来的潜在危害会更大。 对于食品中邻苯二甲酸酯的检测,主要使用方法国标GB/T21911-2008《食品中邻苯二甲酸酯的测定》。此标准适用于食品中16种邻苯二甲酸酯类物质。含油脂样品中各邻苯二甲酸酯化合物的检出限为1.5mg/kg,不含油脂样品中各邻苯二甲酸酯化合物的检出限为0.05mg/kg。 GB/T 21911-2008的原理是:各类食品提取、净化后经气相色谱-质谱联用仪进行测定。采用特征选择离子监测扫描模式(SIM),以碎片的丰度比定性,标准样品定量离子外标法定量进行检测。不含油脂类物质采用正己烷提取,含油脂类物质采用乙酸乙酯、环己烷提取,凝胶渗透色谱(GPC)净化,GC-MS分析。 针对饮料中的邻苯二甲酸酯的检测,如果用有机溶剂以液液萃取的方法提取,容易造成不同样品的测试结果不稳定的问题。博纳艾杰尔可以提供固相萃取的方法解决这一问题,采用Cleanert PEP玻璃固相萃取柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后可以用液相色谱或者GC/MS进行检测。可提供相关产品包括邻苯二甲酸酯标准品Cleanert PEP玻璃管SPE前处理小柱(完全解决传统塑料SPE小柱本身带有邻苯二甲酸酯的问题,更低本底)气相柱DA-5MS(用于国标GC-MS检测)Venusil ASB-C18(用于HPLC检测)邻苯二甲酸酯检测服务关于博纳艾杰尔更多请访问www.agela.com.cn客服电话400-606-8099
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 美国环境保护署豁免苯甲醇在作物及农产品上的残留限量
    世界农化网中文网报道: 美国环境保护署(EPA)近日豁免了CJB应用技术公司(CJB)申请的苯甲醇在作物和原始农产品采前和采后的残留限量。   CJB致力于作物保护、特种化学品、生物制品和其他工业市场的产品开发解决方案,在产品和制剂开发方面帮助客户更快进入新市场,提高竞争优势。CJB表示,使用苯甲醇专利技术配制的产品,将增强其活性成分(AI)性能,该公司预计将苯甲醇授权给农业化学品制造商。   苯甲醇是一种工业、消费品、家庭和商业产品中广泛使用的化合物。作为农药助剂和制剂中罐装成分的苯甲醇的试验表明,苯甲醇可增强活性成分的有效性,包括对耐药性的抵抗力。苯甲醇可用于作物采前和采后,以及草坪、苗圃和观赏植物等非作物用途。   CJB的商务总监Jim Loar表示:″出于农业中耐药病原体的威胁,我们一直寻找能够延长活性成分有效性的技术,使其作为防治作物病害的有效工具,由此开发了苯甲醇,并获得了将其用于农业制剂的专利。EPA豁免了苯甲醇的残留限量,将使这项技术有效帮助客户提高产品性能。我们打算在农业制剂中大规模应用这项专利技术,我们的团队将为客户预测可能面临的挑战,并为其找到解决方案。″
  • SPE-GC/MS法检测纯油脂中邻苯二甲酸酯类化合物
    ——《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之二 一、实验目的以某食用植物油为样品,利用GC/MS和Cleanert PAE固相萃取柱建立对16种邻苯二甲酸酯类化合物的检测方法。 二、仪器及试剂仪器:Agilent7890/5975 GC/MS;离心机;万分之一天平;涡旋混合器;超声仪;氮吹仪;试剂: Cleanert PAE柱为天津博纳艾杰尔科技有限公司产品;16种邻苯二甲酸酯混标(1000ppm);乙腈(色谱纯);正己烷(色谱纯);乙酸乙酯(色谱纯); 三、实验过程3.1 样品处理用万分之一天平取0.1g食用植物油,置于玻璃样品瓶中,加入3mL乙腈,涡旋2min,超声2min,以4000r/m离心2min,将上清液转移至另一干净样品瓶中,于40℃氮气吹干,加入1mL正己烷,摇匀,作为待净化液。SPE过程如下:(1)活化:用5mL正己烷活化Cleanert PAE柱;(2)上样:将待净化液全部上样;(3)淋洗:10mL乙酸乙酯/正己烷(1:99,v/v);(4)洗脱:5mL乙酸乙酯/正己烷(1:1,v/v);将洗脱液于40℃下氮气吹干,加入1mL乙腈,涡旋混合1min,超声1min,4000r/m离心2min,取上清液进GC/MS测定。3.2 标准曲线绘制将16种邻苯二甲酸酯混标用正己烷稀释成20ppb、50ppb、100 ppb、200 ppb、500 ppb、1ppm、2ppm,用GC/MS进行测定,根据定量离子绘制标准曲线。所选定量离子及各个物质的标准曲线见附录1、附录3。3.3 GC/MS条件色谱柱:DA-5MS 30m*0.25mm*0.25μm进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1μL流速:1 mL/min接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min 四、实验结果4.1 谱图在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1 16种邻苯二甲酸酯类化合物选择离子色谱图(500ppb)出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 4.2 加标回收率及精密度取5份食用油,在食用油中加入一定量的标准品,按照样品处理方法(3.1)做5份平行样品,回收率及方法精密度见表1。所得色谱图见附录2。 表1 食用油中16种邻苯二甲酸酯类化合物的添加回收率及精密度 峰号化合物简称保留时间加标浓度100ppb加标浓度500ppb平均回收率RSD(n=5)平均回收率RSD(n=5)1邻苯二甲酸二甲酯DMP8.315150.35%15.19%165.61%3.72%2邻苯二甲酸二乙酯DEP9.185141.48%15.09%109.62%2.99%3邻苯二甲酸二异丁酯DIBP10.96121.48%8.11%70.87%6.94%4邻苯二甲酸二丁酯DBP11.72380.13%15.75%91.53%25.75%5邻苯二甲酸二(2-甲氧基)乙酯DMEP12.073111.25%10.09%98.52%5.55%6邻苯二甲酸二(4-甲基-2-戊基)酯BMPP12.828102.90%8.50%82.96%3.85%7邻苯二甲酸二(2-乙氧基)乙酯DEEP13.167104.08%7.08%95.11%3.73%8邻苯二甲酸二戊酯DPP13.5492.05%6.62%88.51%4.17%9邻苯二甲酸二己酯DHXP15.71891.04%5.48%89.17%4.95%10邻苯二甲酸丁基苄基酯BBP15.875100.67%5.69%97.01%5.20%11邻苯二甲酸二(2-丁氧基)乙酯DBEP17.34289.50%5.72%96.64%5.34%12邻苯二甲酸二环己酯DCHP18.00684.37%6.96%88.87%5.52%13邻苯二甲酸二(2-乙基)己酯DEHP18.24379.39%5.31%80.02%8.67%14邻苯二甲酸二苯酯—18.39370.02%9.31%66.12%3.96%15邻苯二甲酸二正辛酯DNOP20.66979.56%7.48%82.41%5.88%16邻苯二甲酸二壬酯DNP23.2477.41%13.90%74.98%5.95% 说明:由于邻苯二甲酸二甲酯、邻苯二甲酸二异丁酯、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基)己酯是常见的增塑剂,在溶剂中会有些残留,容易在检测时造成它们的回收率和RSD不理想。建议计算时扣除溶剂空白。 附录1表2 16种邻苯二甲酸酯类化合物定量离子及辅助定量离子 序号保留时间/min中文名称英文缩写定量离子辅助定量离子18.315邻苯二甲酸二甲酯DMP1637729.185邻苯二甲酸二乙酯DEP149177310.96邻苯二甲酸二异丁酯DIBP149223411.723邻苯二甲酸二丁酯DBP149223512.073邻苯二甲酸二(2-甲氧基)乙酯DMEP59149、193612.828邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149251713.167邻苯二甲酸二(2-乙氧基)乙酯DEEP4572813.54邻苯二甲酸二戊酯DPP149237915.718邻苯二甲酸二己酯DHXP149104、761015.875邻苯二甲酸丁基苄基酯BBP149911117.342邻苯二甲酸二(2-丁氧基)乙酯DBEP1492231218.006邻苯二甲酸二环己酯DCHP1491671318.243邻苯二甲酸二(2-乙基)己酯DEHP1491671418.393邻苯二甲酸二苯酯—225771520.669邻苯二甲酸二正辛酯DNOP1492791623.24邻苯二甲酸二壬酯DNP14957、71 附录2 食用油样品加标色谱图图2 食用油中加标色谱图(最后定容浓度为100ppb)图3 食用油中加标色谱图(最后定容浓度为500ppb) 图2、图3中,样品出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 附录3 16种邻苯二甲酸酯类化合物的标准曲线(20ppb~2ppm)
  • 化妆品要做哪些检测,你知道吗?
    化妆品常规检测项目常规检测项目:铅、砷、汞、甲醇等。卫生指标:PH、镉、锶、总氟、总硒、氢氧化物、硼酸和硼酸盐、甲醛、苯酚、防晒剂、防腐剂、染料、抗生素、维生素、可溶性锌盐等。化学禁用、限用物质:二甘醇、重金属、色素、防腐剂、甲醇、甲醛等。微生物指标:细菌总数、粪大肠菌群、铜绿假单胞菌、金黄色葡萄球菌、霉菌和酵母菌等 。 激素含量:糖皮质激素、性激素、雌激素、孕激素等。新的《化妆品安全技术规范》自 2016年12月1日起施行《化妆品安全技术规范》是原卫生部印发的《化妆品卫生规范》( 2007 年版) 的修订版。 2015年11月经化妆品标准专家委员会全体会议审议通过, 2015年12月23日由国家食品药品监督管理总局批准颁布,自2016年12月1日起施行。 一、《化妆品安全技术规范》(2015年版)特点1、化妆品安全性保障进一步提高调整了化妆品中的禁限用组分要求调整了部分准用组分的限量要求和限制条件调整了铅、砷的管理限值要求增加了镉的管理限值要求收录了二噁烷和石棉的管理限值要求2、适应性与可操作性进一步提高 对《技术规范》中涉及的名词和术语提供了释义,细化和明确相关概念,重点增加化妆品产品技术要求内容、通用检测方法等与化妆品质量安全密切相关的技术标准与要求在保留《卫生规范》原有相关检验方法的基础上,收录了国家食品药品监管部门颁布的60个针对有关化妆品中禁限用物质的检验方法,满足化妆品技术研发和安全监管的需要。二、化妆品安全通用要求化妆品上市前应进行必要的检验,检验方法包括相关理化检验方法、微生物检验方法、毒理学试验和人体安全试验方法等。
  • 欧盟修订双苯三唑醇等农残最大残留限量
    p  2016年7月7日,欧盟委员会发布G/SPS/N/EU/168通报,拟修订法规(EC)396/2005号附件II和V中部分食品的双苯三唑醇(bitertanol)、吡螨胺(tebufenpyrad)和矮壮素(chlormequat)等3种农残最大残留限量。部分限量修订情况见下表:/pp/ptable border="1" cellpadding="0" cellspacing="0" width="600"tbodytrtd width="38"p style="text-align:center "序号/p/tdtd width="104"p style="text-align:center "农残名称/p/tdtd width="227"p style="text-align:center "产品名称/p/tdtd width="123"p style="text-align:center "现行残留量(mg/kg)/p/tdtd width="116"p style="text-align:center "拟修残留量(mg/kg)/p/td/trtrtd width="38"p style="text-align:center "1/p/tdtd width="104"p style="text-align:center "双苯三唑醇/p/tdtd width="227"p style="text-align:center "荞麦、小米、黄米、燕麦、大米等/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "2/p/tdtd width="104"p style="text-align:center "吡螨胺/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "3/p/tdtd width="104"p style="text-align:center "矮壮素/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.1/p/tdtd width="116"p style="text-align:center "0.01/p/td/tr/tbody/tablep/p
  • 欧盟更新用于食品塑料接触材料的添加剂清单
    欧盟委员会近期发布了一份用于食品塑料接触材料及物品的添加剂临时清单更新版本(请见:http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/080410_provisional_list_7_211009.pdf)。本次用于食品塑料接触材料及物品的添加剂临时清单包含2006年12月31日有效申请中涉及的添加剂。这些添加剂尚未得到欧共体授权。  自2010年1月1日起,2002/72/EC指令规定用于食品塑料接触材料及物品的添加剂清单将明确排除其他一切非清单列出的添加剂。这份临时清单上的物质可根据各国立法在2010年1月1日以后继续使用,直到临时清单做出其他扩充或缩减的更改决定。  该清单包括动物及蔬菜油脂和脂肪中的酸性物质、油脂(C8-C22),直链类,单羟基、初级的饱和脂肪族醇(C3-C22),(丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯)共聚物,银含量低于0.5%的含银玻璃(银-镁-铝-钠-磷酸盐-硅酸盐-硼酸盐)等物质。指令对过渡期做出指示:2010年11月1日前含2,4,4’-三氯-2’ 联羟基联苯乙醚的塑料材料及物品生产制造和市场投放,可按各国立法持续到2011年11月1日。  清单上的物质并非必须经由EFSA评估。有关安全评估状态的详细信息,请查询EFSA官方网站www.efsa.europa.eu。这些添加剂皆由各成员国规定。有关添加剂的合法验证信息,请咨询各成员国主管机构。相关评议意见请见:http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_ScientificDocuments.htm
  • 台湾禁止化妆品中使用杜鹃醇
    据9月9日发布的通知,为保护消费者产品使用安全,台湾食品药品监督管理署(TFDA)自9月9日起停止台湾化妆品中使用杜鹃醇物质(化学名称:4-(4-羟基苯基)-2-丁醇)。化妆品生产企业被下令停止生产含杜鹃醇的化妆品 化妆品进口商禁止进口任何含杜鹃醇的化妆品。如未来企业有进一步的安全性评估资料,可另行评估。  2013年7月4日,日本佳丽宝公司公布消费者使用含杜鹃醇成分的美白化妆品,造成消费者产生肤色不均现象。台湾立即要求台湾佳丽宝公司做下架处理,并要求其提供完成的安全性评估资料。在台湾食品药品监督管理署就安全性相关资料,对经济和风险评估结果进行议会讨论后,决定禁止杜鹃醇在化妆品中的使用。  同期,国家食品药品监督管理总局(CFDA)也收到了日本佳丽宝公司的召回通知。核实后,CFDA表示佳丽宝公司确曾向原国家食品药品监管局提出过化妆品新原料“杜鹃醇”(化学名称:4-(4-羟基苯基)-2-丁醇)的行政许可申请,但未通过安全性审批,含有该成分的化妆品均未获批上市销售。
  • 欧盟撤销农药活性物质联苯三唑醇的许可
    2013年8月9日,欧盟委员会发布实施条例(EU)No 767/2013,修改条例(EU)NO 540/2011附件,撤销农药活性物质联苯三唑醇(Bitertanol)的许可,欧盟成员国应自2014年3月1日起撤销含有联苯三唑醇活性物质的植物保护产品的授权,赋予成员国的宽限期最晚在撤销许可后的12个月。法规自公布20日起生效。  (EU)No 767/2013详见:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:214:0005:0006:EN:PDF
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制