当前位置: 仪器信息网 > 行业主题 > >

吗啉硫代羰酰肼

仪器信息网吗啉硫代羰酰肼专题为您提供2024年最新吗啉硫代羰酰肼价格报价、厂家品牌的相关信息, 包括吗啉硫代羰酰肼参数、型号等,不管是国产,还是进口品牌的吗啉硫代羰酰肼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吗啉硫代羰酰肼相关的耗材配件、试剂标物,还有吗啉硫代羰酰肼相关的最新资讯、资料,以及吗啉硫代羰酰肼相关的解决方案。

吗啉硫代羰酰肼相关的论坛

  • 代糖潜在风险

    1. 癌症风险 早期研究:早期的研究曾经提出糖精(Saccharin)可能与膀胱癌有关,但后来的研究并没有证实这一点,并且糖精已被重新评价为安全。 其他甜味剂:目前没有确凿证据表明其他常用的甜味剂(如阿斯巴甜、甜蜜素、蔗糖素等)会导致癌症。 2. 代谢影响 血糖控制:一些研究表明,长期摄入代糖可能会影响人体的胰岛素反应和血糖控制能力。 体重管理:尽管代糖的初衷是为了帮助控制体重,但一些研究发现代糖的摄入可能反而会增加食欲,导致体重增加。 3. 微生物群影响 肠道菌群:研究表明,代糖可能会影响肠道微生物群的组成,进而影响宿主的健康。 代谢变化:代糖可能会改变肠道菌群的功能,影响人体对食物的代谢。 4. 心血管健康 高血压:一些研究发现,长期摄入代糖可能与高血压的风险增加有关。 心血管疾病:有研究提示代糖的摄入可能与心血管疾病的发生有关,但这些关联尚需更多研究验证。 5. 神经系统影响 头痛:部分人群报告称摄入代糖后会出现头痛等症状。 认知功能:长期摄入代糖是否会影响认知功能,目前尚无明确结论。 6. 成瘾性 甜味偏好:长期摄入代糖可能会增强个体对甜味的偏好,从而影响饮食习惯。 7. 孕妇和儿童 孕妇:对于孕妇而言,某些代糖的安全性仍需进一步研究,特别是阿斯巴甜对胎儿的影响。 儿童:儿童摄入代糖的安全性和长期影响也是一个研究热点。 8. 替代品的安全性 天然甜味剂:一些天然来源的甜味剂,如甜菊糖苷(Stevia),被认为比合成甜味剂更安全,但同样需要谨慎使用。

  • 【求助】求助烯酰吗啉在黄瓜及土壤上最新MRl值!

    各位尊敬的老师: 学生因实验需要,需知道烯酰吗啉在黄瓜和土壤上的MRL值,中国,欧盟,美国的尽量全一些的。 网上查询得到下列信息:澳、新修改《澳大利亚新西兰食品标准法典》 《澳大利亚和新西兰食品标准法典》是澳大利亚和新西兰共同建立并由独立的澳大利亚、新西兰食品标准局负责。除个别标准单独适用于澳大利亚或新西兰外,绝大部分为两国通用标准,适用于两国所有的食品生产和食品进口,涉及食品构成成分、食品添加物质、标识、污染物、残留物等。 本次修订将撤销个别农药的最大残留限量,增加和改变一些农药在某些食品中的最大残留限量或临时最大残留限量,包括皮蝇硫磷、虫螨畏、三唑酮、二硫代氨基甲酸酯、除虫菊酯、苄呋菊酯、烯酰吗啉、环氧三宝、戊炔草胺、吡氟氯禾灵、啶虫脒、烯酰吗啉、二硫代氨基甲酸酯、氟胺氰菊酯、草甘膦、苯霜灵、噻嗪酮、环唑醇、甲霜灵、虫酰肼等。涉及我国常用的农药有[B]丙环唑、烯酰吗啉、[/B]啶虫脒、噻嗪酮、三唑酮、草甘膦、甲霜灵、虫酰肼,这些农药目前广泛使用于蔬菜、水果、粮食作物和肉蛋类农产品。 麻烦老师指点,是否有最新的关于烯酰吗啉MRL值的相关数据,请告知学生,非常感谢!

  • 【原创大赛】为何「无糖」食品,味也甜?代糖安全吗?

    当代人在生活中常常面对一个巨大的矛盾——在健康养生和口腹之欲中间反复横跳,一边养生,一边放纵。但当你看到自己「吨吨吨」喝的奶茶换算成一堆方糖时,还是会觉得吓人。近年来,控糖、抗糖、戒糖成为了热门概念。不少商家推出了「无糖奶茶」、「无糖饼干」、「无糖可乐」等各种「无糖」概念食品。「无糖」食品的兴起响应着当代人的养生需求,满足了口腹之欲的快乐,也多了一层心理补偿。我喝的是无糖的呀。但是,你是否有过这样的疑惑:为啥我喝的无糖XX水是甜的?下面小C给大家揭秘「无糖」食品[b][size=18px]「糖」的标准定义[/size][/b]首先了解「无糖」中的「糖」是指什么?「糖」是指“所有的单糖和双糖”。[1][img=,450,]https://pic1.zhimg.com/80/v2-dbcbfa333402620a5e31a63710de90ed_720w.jpg[/img]很多天然食物(例如水果、蜂蜜等)中都含有「糖」,吃起来会觉得甜。因为糖的摄入会给人体提供能量,所以糖吃多了,容易发胖。1g的「糖」可产生16.7kJ的能量。小伙伴可能会疑问,常说的淀粉吃多了也会胖,那这个淀粉是「糖」吗?不是的哦!淀粉是指「多糖」[1]。像小麦粉、米粉、土豆这类食物中,淀粉含量都比较高。不同于「糖」,淀粉不会产生明显的甜味口感,但是在进入人体后,会被消化分解成麦芽糖和葡萄糖。所以,淀粉吃多了也会「月半」的。[size=18px][b]「无糖」的标准定义[/b][/size]商家的产品如果「糖」含量小于或等于0.5g/100g(固体)或100ml(液体),它的产品广告就可以声称「无糖或不含糖」[2]。「无糖」并非绝对意义上的完全「不含糖」。小伙伴可能会好奇,含「糖」量这么少,为什么吃起来还是很甜?是不是加了食品添加剂?Bingo~[b][size=18px]「无糖」食品为什么甜?[/size][/b]「无糖」食品有甜味,主要是食品中添加了食品添加剂(甜味剂)来代替糖—简称代糖。这类代糖(甜味剂)可根据是否产生热量分为:营养型代糖(可(chi)以(le)产(ye)生(hui)热(pang)量(de))和非营养型代糖(无热量)。▬ ▬ ▬ 营养型代糖常见的是糖醇类:山梨醇、木糖醇、甘露醇、麦芽糖醇、赤藓糖醇等。食用后依然会产生热量,只是相比于传统「糖」比较低。同样1g的量,「糖」的热量是营养型代糖的1.7倍。当然有个特殊的存在,赤藓糖醇能量系数为0kJ/g,一点热量贡献没有。非营养型代糖分为:人工合成类(如糖精钠、阿斯巴甜、安赛蜜、甜蜜素等)和天然类(甜菊糖苷、甘草、罗汉果糖等)。这些代糖,也不会提供热量。代糖又甜蜜又热量低,貌似完美,但是安全吗?[b][size=18px]代糖安全吗?[/size][/b][img=,652,]https://pic4.zhimg.com/80/v2-c2e52cd8f743d9a72cc819407f927e0f_720w.jpg[/img]常常有人谈添加剂色变,但是脱离剂量谈危害,都是耍流氓的行为哦!只要按照GB 2760《食品安全国家标准 食品添加剂使用标准》使用甜味剂,那就满足国家标准要求,安全放心。但小C温馨提醒,部分特殊群体应该要注意代糖的摄入,比如:█ 苯丙酮尿症(PKU)的人群,要避免摄入阿斯巴甜。添加了阿斯巴甜的食品其标签要标注“阿斯巴甜(含苯丙氨酸)”。█ 肠胃不好的人群,建议控制糖醇的摄入量,避免胃胀、胃痛等消化问题。█ 糖精钠和甜菊糖苷对于孕妇和哺乳期妇女的风险未知,建议控制摄入量。参考资料:[1] GB/Z 21922《食品营养成分基本术语》[2] GB 28050《食品安全国家标准预包装食品营养标签通则》

  • 糖精安全吗?

    从小,我们就被教育,糖精是有害物质,不能多吃。当然,能不吃尽量不吃。糖精是有机化工合成产品,除了在味觉上引起甜的感觉外,对人体无任何营养价值。相反,当食用较多的糖精时,会影响肠胃消化酶的正常分泌,降低小肠的吸收能力,使食欲减退。百度百科中介绍糖精时,写到:据国外资料记载,1997年加拿大进行的一项多代大鼠喂养实验发现,摄入大量的糖精钠可以导致雄性大鼠膀胱癌。因此,美国等发达国家的法律规定,在食物中使用糖精时,必须在标签上注明“使用本产品可能对健康有害,本产品含有可以导致实验动物癌症的糖精”的警示。(这是真的吗?http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif)确切消息称,2014年12月24日,美国FDA发布通告说,再次认可糖精(advantame)作为食品添加剂。自发布批准糖精的终期条例以来,美国FDA收到了部分反对意见。然而对这些反对意见进行评审后发现,这些意见缺少更改或者撤回终期条例的基础。最终,美国FDA再次重申糖精可以作为非营养性甜味剂用于食品(不包括肉、禽产品)。现在,你认为糖精到底是安全的还是不安全的呢?

  • 关于硫代硫酸钠相信大家应该不陌生,那么有试过用它来洗污渍吗?

    [color=#333333]代硫酸钠,又名次亚硫酸钠、大苏打、海波(来源于其别名 sodium hyposulfite)。常见的硫代硫酸盐,无色透明的单斜晶体。 硫代硫酸钠易溶于水,遇强酸反应产生硫和二氧化硫[/color][color=#3366cc][/color] [color=#333333] 。硫代硫酸钠为氰化物的解毒剂。其为无色、透明的结晶或结晶性细粒;无臭,味咸;在干燥空气中有风化性,在湿空气中有潮解性;水溶液显微弱的碱性反应。在硫氰酸酶参与下,能与体内游离的或与高铁血红蛋白结合的氰离子相结合,形成无毒的硫氰酸盐由尿排出而解氰化物中毒。此外还能与多种金属离子结合,形成无毒的硫化物由尿排出,同时还具有脱敏作用。临床上用于氰化物及腈类中毒,砷、铋、碘、汞、铅等中毒治疗,以及治疗皮肤瘙痒症、慢性皮炎、慢性荨麻疹、药疹、疥疮、癣症等[/color][color=#3366cc][/color] [color=#333333] 。[/color][color=#333333]关于硫代硫酸钠的应用,算是一个小贴士的就是它可以吸被碘酒弄脏的衣物[/color]

  • 硫代卡巴肼

    有没有人知道硫代卡巴肼的分析方法,或者提点见意

  • 【求助】标硫代硫酸钠时,出现的问题

    大家好,我在标定硫代硫酸钠时出现些问题,空白变化范围,0.02ml到0.08ml,总是不稳定。为什么?还有硫代硫酸钠放二个月后,再次标定溶液浓度是否变高了?标定溶液精确度范围是多少?望各位不吝赐教!

  • CNS_19.001_糖精钠

    CNS_19.001_糖精钠

    [align=center][/align][align=left][font='calibri'][size=13px]CNS[/size][/font][font='calibri'][size=13px]-[/size][/font][font='calibri'][size=13px]19.001糖精钠[/size][/font][/align][align=left][font='宋体'][size=18px]李一辰[/size][/font][/align][align=left][/align][align=center][font='宋体'][size=18px]二〇[/size][/font][font='宋体'][size=18px]二一[/size][/font][font='宋体'][size=18px]年[/size][/font][font='宋体'][size=18px]七[/size][/font][font='宋体'][size=18px]月[/size][/font][font='宋体'][size=18px]二十二[/size][/font][font='宋体'][size=18px]日[/size][/font][/align]1、 [size=18px]概述及理化性质[/size]糖精钠(Saccharin Sodium),学名邻苯甲酰磺酰亚胺钠,化学式C[font='calibri'][size=13px]7[/size][/font]H[font='calibri'][size=13px]4[/size][/font]NO[font='calibri'][size=13px]3[/size][/font]SNa,结构式见右图。糖精钠是糖精的钠盐,又被称可溶性糖精,颜色呈无色或略带白色,无臭或有微弱香气,呈结晶性粉末,干燥样品熔点为226℃-230℃,易溶于水,略溶于乙醇,水溶液呈微碱性,其在水溶液中的热稳定性优于糖精。因其甜度较高,约为蔗糖的400倍,故而应用较为广泛。糖精钠于1879年开发,是最早应用的人工合成非营养型甜味剂。1879年,约翰霍普金斯大学的研究生康斯坦丁法尔伯格正在进行甲苯系列衍生物合成的研究,他在午餐的时候偶然间发现手中的面包特别的甜,于是对实验过程中合成的一系列甲苯化合物进行了分析研究,最后发现了糖精。1886年,康斯坦丁 法尔伯格迁居到德国,进入一家从煤焦油中提炼糖精的工厂进行工作研究和产品推广,此后糖精作为人工甜味剂被人们广泛使用,自此正式进入人类的生活之中。[font='calibri'][size=13px][1][/size][/font]在甜度方面,糖精钠分解出来的阴离子有强甜味,而在分子状态下没有甜味,反感到苦味,故糖精钠的稀溶液显强甜味,浓度高时显苦味。在酸性条件下,加热会使糖精钠分解成带有苦味的[font='arial'][size=13px][color=#333333]邻氨基磺酰苯甲酸[/color][/size][/font],使溶液甜味消失;在弱碱性条件下,加热会使糖精钠分解为邻磺酰胺苯甲酸,但溶液甜味不变。2、 [size=18px]糖精钠的应用[/size]1. [size=16px]代糖[/size]糖精钠[font='arial'][size=13px][color=#333333]是最早应用的人工合成非营养型甜味剂[/color][/size][/font][font='arial'][size=13px][color=#333333],[/color][/size][/font][font='arial'][size=13px][color=#333333]只提供甜味,不提供热量,只要使用很少的量即可获得目标的甜味,被广泛使用于食品及医药生产中。糖精钠的成本在合成甜味剂中相对很低,某些非法商家可能会在生产时超量投入,以代替天然甜味剂,以牟取更大的利润。这种行为侵犯了消费者的合法权益,是不可取的。[/color][/size][/font]2. [size=16px]电镀光亮剂[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027054694_9905_1608728_3.png[/img]随着国民经济的发展和人民生活水平的提高,要求电镀镀层兼具功能性和装饰性,向镀液中加入一定成分的光亮剂,能有效提高镀层的光泽度,改善镀层的装饰效果。糖精钠作为最常用的电镀镍基合金镀层的初级光亮剂,不仅能提高镀层的平整性和光泽度,还能提高镀层的耐蚀性。这是因为糖精钠的加入降低了镀层沉积过程中形成的内应力,使镀层表面裂纹减少;同时,随着糖精钠的质量浓度的增加,阴极极化作用增强,阴极过电位提高。阴极过电位越高,形核率越大,电结晶越细密。分析糖精钠的质量浓度对阴极极化曲线的影响(如右图),可知:向镀液中加入糖精钠,阴极极化曲线负移,并且随着糖精钠的质量浓度的增加,阴极极化曲线负移的程度增大,阴极极化作用增强,沉积过电位提高。沉积过程中,糖精钠微粒吸附在阴极表面,阻碍金属离子还原沉积。同时,部分糖精钠还能与金属离子发生配位反应,使金属离子的放电变得困难,阴极极化作用增强,有利于形成致密、光亮的镀层。分析糖精钠的质量浓度对镍基镀层的沉积速率及阴极电流效率的影响(如下右图)。可知:随着糖精钠的质量浓度的增加,镀层的沉积速率和阴极电流效率均降低。一方面,糖精钠微粒选择性地吸附在阴极表面,减小了反应的有效表面积,起到封闭作[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027056568_157_1608728_3.png[/img]用,抑制金属离子在阴极的还原沉积;另一方面,增加糖精钠的质量浓度,使阴极极化增强,析氢副反应加剧,析氢消耗的电能增大。[font='calibri'][size=13px][2][/size][/font]3. [size=16px]其他[/size]因为糖精钠热量为0,不易被细胞吸收,但可以随大小便排出体外,所以也被用作血液循环测定剂等用途。3、 [size=18px]糖精钠的限量标准[/size]糖精钠作为人工合成甜味剂,对于人体的影响无法忽视,并认为由于会改变尿液理化性质,可能存在致癌风险。所以各国对糖精钠的使用进行了限量。根据GB1886.18-2015,我国对糖精钠的使用进行了如下限制。[font='calibri'][size=13px][3][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027057164_3811_1608728_3.png[/img][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027058052_2948_1608728_3.png[/img][/align][align=center][/align][align=center][/align][align=center][/align][align=left][/align][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027059384_1653_1608728_3.png[/img]使用五种人工甜味剂(糖精钠、三氯蔗糖、安赛蜜、甜蜜素、阿斯巴甜)处理Caco-2细胞 24 h后,测定细胞的增殖活力削减程度,结果如下图。由图可知,五种甜味剂的细胞抑制率均表现出剂量正相关性,且糖精钠对Caco-2细胞的活力影响更大,说明糖精钠的使用确实会对肠胃造成一定的影响,对糖精钠使用的限量具有其必要性。[font='calibri'][size=13px][4][/size][/font]4、 [size=18px]糖精钠的检测方法[/size]1. [size=16px]液相色谱-质谱连用法[/size]根据国标GB5009.28-2016,可以使用液相色谱法,通过外标法对糖精钠的含量进行分析,分析步骤如下:1)标准溶液配制糖精钠(以糖精计)标准储备溶液(1000mg/L):准确称取糖精钠0.117g(精确到0.0001g),用水溶解并定容至100mL。于4℃贮存,保存期为6个月。苯甲酸、山梨酸和糖精钠(以糖精计)标准中间溶液(200mg/L):准确吸取糖精钠标准储备溶液10.0mL于50mL容量瓶中,用水定容。于4℃贮存,保存期为3个月。糖精钠(以糖精计)标准系列工作溶液:准确吸取糖精钠标准中间溶液0mL、0.05mL、0.25mL、0.50mL、1.00mL、2.50mL、5.00mL和10.0mL,用水定容至10mL,配制成质量浓度分别为 0 mg/L、1.00 mg/L、5.00 mg/L、10.0 mg/L、20.0 mg/L、 50.0mg/L、100mg/L和200mg/L的标准系列工作溶液。临用现配。2) 材料:水相微孔滤膜:0.22μm; 塑料离心管:50mL。3) 仪器和设备:高效液相色谱仪:配紫外检测器 ;分析天平:感量为0.001g和 0.0001g; 涡旋振荡器 ;离心机:转速8000r/min ;匀浆机 ;恒温水浴锅 ;超声波发生器。[align=left][font='fzhtk--gbk1-0'][size=12px][color=#000000]试样制备[/color][/size][/font][/align]4) 试样制备取多个预包装的饮料、液态奶等均匀样品直接混合 非均匀的液态、半固态样品用组织匀浆机匀浆 固体样品用研磨机充分粉碎并搅拌均匀 奶酪、黄油、巧克力等采用50 ℃~60 ℃加热熔融,并趁热充分搅拌均匀。取其中的200g装入玻璃容器中,密封,液体试样于4 ℃保存,其他试样于-18 ℃保存。5)试样提取[font='宋体']①[/font]一般性试样准确称取约2g(精确到0.001g)试样于50mL具塞离心管中,加水约25mL,涡旋混匀,于50℃水浴超声20min,冷却至室温后加亚铁氰化钾溶液2mL和乙酸锌溶液2mL,混匀,于8000r/min离心 5min,将水相转移至50mL容量瓶中,于残渣中加水20mL,涡旋混匀后超声5min,于8000r/min离 心5min,将水相转移到同一50mL容量瓶中,并用水定容至刻度,混匀。取适量上清液过0.22μm 滤膜,待液相色谱测定。[font='宋体']②[/font]含胶基的果冻、糖果等试样准确称取约2g(精确到0.001g)试样于50mL具塞离心管中,加水约25mL,涡旋混匀,于70℃水浴加热溶解试样,于50 ℃水浴超声20min,之后的操作同[font='宋体']①[/font]。[font='宋体']③油脂、巧克力、奶油、油炸食品等高油脂试样[/font][font='宋体']准确称取约2g(精确到0.001g)试样于50mL具塞离心管中,加正己烷10mL,于60℃水浴加热约5min,并不时轻摇以溶解脂肪,然后加氨水溶液(1+99)25mL,乙醇1mL,涡旋混匀,于50 ℃水浴 超声20min,冷却至室温后,加亚铁氰化钾溶液2mL和乙酸锌溶液2mL,混匀,于8000r/min离心 5min,弃去有机相,水相转移至50mL容量瓶中,残渣同①再提取一次后测定。[/font]6)[font='宋体']仪器参考条件[/font][font='宋体']①色谱柱:C18柱,柱长250mm,内径4.6mm,粒径5μm,或等效色谱柱。 [/font][font='宋体']②流动相:甲醇+乙酸铵溶液=5+95。[/font][font='宋体']③流速:1mL/min。[/font][font='宋体']④检测波长:230nm。[/font][font='宋体']⑤进样量:10μL。[/font][font='宋体']注:当存在干扰峰或需要辅助定性时,可以采用加入甲酸的流动相来测定,如流动相:甲醇+甲酸-乙酸铵溶液= 8+92。[/font]7) 标准曲线的制作将标准系列工作溶液分别注入液相色谱仪中,测定相应的峰面积,以标准系列工作溶液的 质量浓度为横坐标,以峰面积为纵坐标,绘制标准曲线。8)试样溶液的测定将试样溶液注入液相色谱仪中,得到峰面积,根据标准曲线得到待测液中糖精钠(以糖精计)的质量浓度。9)分析结果的表述试样中苯甲酸、山梨酸和糖精钠(以糖精计)的含量按式(1)计算:[align=left][size=13px]…………………………………………(1)[/size][/align]式中:X ———试样中待测组分含量,单位为克每千克(g/kg) ρ ———由标准曲线得出的试样液中待测物的质量浓度,单位为毫克每升(mg/L) V ———试样定容体积,单位为毫升(mL) m ———试样质量,单位为克(g) 1000———由 mg/kg转换为g/kg的换算因子。结果保留3位有效数字。10) [color=#000000]精密度[/color][color=#000000]在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的10 %。[/color]11) [color=#000000]其他[/color][color=#000000]按取样量2g,定容50mL时,糖精钠(以糖精计)的检出限为0.005g/kg,[/color][color=#000000] [/color][color=#000000]定量限为0.01g/kg[/color][color=#000000].[/color][font='calibri'][size=13px][5][/size][/font]2. [size=16px]滴定法[/size]根据国标GB1886.18-2015,可以用滴定法测定样品中糖精钠的含量。1) 试剂和材料冰乙酸;乙酸酐;结晶紫指示液 5g/L 高氯酸标准滴定溶液:c(HClO[font='calibri'][size=13px]4[/size][/font])=0.1mol/L。2) 分析步骤称取约0.3g干燥后的试样,精确至0.0002g,加入20mL冰乙酸和5mL乙酸酐,溶解后,加2滴结晶紫指示液,用高氯酸标准滴定液滴定至溶液呈蓝绿色。3) 结果计算糖精钠含量的质量分数[font='宋体']ω[/font][font='calibri'][size=13px]1[/size][/font][font='calibri'],按式(2)计算:[/font][align=left]………………………………(2)[/align][font='cambria math']式中:[/font][font='cambria math']V——消耗的高氯酸标准滴定溶液的体积,单位为毫升(mL);[/font][font='cambria math']M——1mL 0.1mol/L高氯酸标准滴定溶液相当于0.02052g的糖精钠(C[/font][font='cambria math'][size=13px]7[/size][/font][font='cambria math']H[/font][font='cambria math'][size=13px]4[/size][/font][font='cambria math']NNaO[/font][font='cambria math'][size=13px]3[/size][/font][font='cambria math']S) [/font][font='cambria math']m——试样的质量,单位为克(g)。[/font][font='cambria math']取两次平行测定结果的算数平均值为测定结果,平行测定结果的绝对差值不得超过算术平均值的0.2%。[/font]3. [font='cambria math'][size=16px]其他定性检测方法[/size][/font][font='cambria math']根据国标GB1886.18-2015,还有以下定性检测样品中是否含有糖精钠的方法:[/font]1) [font='cambria math']溶液变色反应[/font][font='cambria math']取约20mg试样,加约40mg间苯二酚,混合后加硫酸10滴,用微火加热,至显深绿色,放冷,加10mL水与10mL的氢氧化钠溶液,即成绿色有荧光的溶液。[/font]2) [font='cambria math']焰色反应[/font][font='cambria math']取铂丝,用盐酸溶液湿润后,蘸取试样,在无色火焰中燃烧,火焰即显鲜黄色。[/font]3) [font='cambria math']苯甲酸盐和水杨酸盐试验[/font][font='cambria math']称取0.5g试样,溶于10mL水,加5滴乙酸,再加3滴氯化铁试液,若无沉淀或紫色出现,则试样中不含糖精钠。[/font][font='calibri'][size=13px][6][/size][/font]5、 [size=18px]糖精钠的工业合成[/size]糖精钠生产工艺有多种,按生产采用的主要原料划分可分为甲苯法、苯酐法、邻甲基苯胺法和苯酐二硫化物法,其中甲苯法和苯酐法更常在实际生产中使用,故不详述另两种方法。[size=16px]1.甲苯法[/size]甲苯法是糖精发明者 Fakllerg 最早采用的方法,后人进行了多次改进,成为生产糖精钠较简便的方法,也是我国较早生产糖精钠的方法。其主要生产原料有无水甲苯、氯磺酸、氨水、活性炭、液体氢氧化钠、盐酸、高锰酸钾、亚硫酸钠和碳酸氢钠等,包括氯磺化、胺化、氧化、酸析、中和等化学反应。此法的一种生产方法列举如下:将无水甲苯逐渐加入装有氯磺酸的氯磺化锅中,低温反应,加完后反应 3 h,反应完毕,冷却,使氯磺酸完全分解,放出酸液,然后将所得的磺酰氯油状物进行水洗,于-15~-20℃冷冻12 h,滤出对位异构体结晶,液体即为邻甲苯磺酰氯。在氨化锅内预先放入氨水,加入邻甲苯磺酰氯,在 60℃反应 2 h,冷却,过滤,滤饼经活性炭脱色,在精制锅中分别用盐酸和氢氧化钠溶液精制,得邻甲苯磺酰胺。将邻甲苯磺酰胺、水和液体氢氧化钠加入氧化锅内,于25~35℃将高锰酸钾分次投入,加毕,保温反应 7 h,降温至 25℃,慢慢加入亚硫酸钠溶液至氧化溶液呈无色为止,过滤,含二氧化锰滤饼水洗至无甜味时,合并滤液,加稀盐酸至 pH 为 3,析出未氧化物,过滤,滤液中加入浓盐酸至完全析出沉淀,过滤,滤饼用微酸水洗涤,最后得不溶性糖精。在盛有水的中和锅内交替投入不溶性糖精和碳酸氢钠,加热溶解反应,在反应温度达 70℃时调节反应液至中性,趁热过滤,滤液经结晶、干燥即得糖精钠成品。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027060753_1124_1608728_3.png[/img]该法的生产流程如下图:该法的主要特点是原料来源广泛、工艺成熟、反应简单、生产技术易于掌握。有采用铬酸氧化邻甲苯磺酰胺的,也有采用电解法将邻甲苯磺酰胺进行电解的,从而达到节约原料、减少污染、降低劳动强度的目的,但总体来讲污染性产物较多且不易治理,且产率相对较低,总收率通常不足40%。[size=16px]2.苯酐法[/size]苯酐法为我国独创,所用原料有苯酐、甲醇、氨水、液体氢氧化钠、液氯、盐酸、硫酸、亚硝酸钠、硫酸铜、液体二氧化硫、甲苯、碳酸氢钠、活性炭等,包括酰胺化、霍夫曼降级、酯化、重氮、置换、氯化、胺化、酸析、中和等化学反应。此法的一种生产方法列举如下:将苯酐和冷冻的氨水依次加入酰胺化反应锅内,升温后缓慢加入氢氧化钠溶液,调 pH=11~12,保温 0.5 h 反应,再排氨3.5 h,得邻甲酰胺苯甲酸钠溶液(简称酰胺化液)。在酯化锅内将酰胺化液降温后,加入冷冻的甲醇和次氯酸钠溶液,在 0℃下反应 45 min 后升温至 30℃,以淀粉碘化钾溶液测试呈无色反应,然后加入适量的亚硫酸氢钠溶液,料液转稀后,再加入热水溶解,静置后分离、过滤,分取油层得邻氨基苯甲酸甲酯(简称甲酯)。先将由水、硫酸与盐酸配制好的混酸置于重氮锅内,冷却后开始缓加甲酯和亚硝酸钠溶液的混合液,重氮温度保持在 25℃以下,反应终点时淀粉碘化钾溶液显淡紫色,产物为邻硫酸(盐酸)重氮苯甲酸甲酯溶液(简称重氮液)。在置换锅内将重氮液降温至 10℃,加入硫酸铜,通二氧化硫进行置换,析出邻亚磺酸苯甲酸甲酯,约 1 h 后用 H 酸测试反应终点应褪色。然后加入甲苯,通氯气氯化,以 2% 联苯胺乙醇溶液测试显深墨绿色为终点,静置分层,有机层为邻甲酸甲酯苯磺酰氯甲苯溶液(简称磺酰氯)。依次将磺酰氯和水加入胺化锅,在 10℃时加氨水胺化,温度可达70℃,pH 值9以上,静置后取下层铵盐液为邻甲酰苯磺酰亚胺铵溶液(简称胺化液)。将胺化液放入酸碱化锅内,加入甲苯和30%的盐酸到 pH 值为 1,酸析后降温至20℃,取甲苯层水洗去氯化铵得不溶性糖精甲苯溶液。将此溶液加热,加入碳酸氢钠中和,调 pH 值至 3.8~4,静置后取水层,加活性炭脱色、过滤,调滤液pH值至7,在70~75℃减压浓缩,趁热过滤,滤液经结晶、干燥得糖精钠。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262027061659_4297_1608728_3.png[/img]该法的生产流程如下图:该法的主要特点是产品收率高、产品质量稳定且有保证、污染能治理、生产周期比甲苯法短等。生产过程中还可以根据市场需要随时调整生产工艺,采用不用甲苯进行氯化反应或酸析反应,可以得到固体邻甲酸甲酯苯磺酰氯或不溶性糖精,两者都可以用作农药中间体。[size=16px]3.邻甲基苯胺法及苯酐二硫化物法[/size]邻甲基苯胺法采用邻甲基苯胺先在酸性条件下与亚硝酸钠发生重氮反应,然后通二氧化硫进行置换,用液氯进行氯化,从而得到邻甲苯磺酰氯,然后与甲苯法相同,经过胺化、氧化、酸析和中和反应,得到糖精钠。苯酐二硫化物法中苯酐先与氨水和氢氧化钠进行酰胺化反应,之后在碱性条件下与次氯酸钠进行霍夫曼降级反应制得邻氨基苯甲酸,邻氨基苯甲酸与亚硝酸钠在酸性条件下进行重氮反应,接着与二硫化钠进行置换反应得到邻二硫二苯甲酸,邻二硫二苯甲酸与甲醇酯化反应后再被液氯氯化,其后与苯酐法相同,进行胺化、酸析和中和反应,生成糖精钠。上述邻甲基苯胺法受到原料邻甲基苯胺来源限制,原料成本较高,因而不适合于工业化生产。苯酐二硫化物法由于邻二硫二苯甲酸结构上的空间障碍,与甲醇酯化需在高压釜中进行,反应条件较苛刻,对反应设备要求太高,也不适合于工业化生产。[font='calibri'][size=13px][7][/size][/font]6、 [size=18px]参考文献[/size][1] 朱利杰.人工甜味剂糖精钠生产废水处理实验研究.天津工业大学.2020.01[2] 孟庆波,齐海东,卢帅,郭昭,杨海丽.糖精钠对脉冲电沉积Ni-Sn-Mn合金镀层性能的影响[A].电镀与环保,2019,39(1),40-44[3] GB1886.18-2015[4] 张丽颖.山梨酸钾和糖精钠联合对小鼠小肠细胞生长发育的影响.2020.01[5] GB5009.28-2016[6] GB1886.18-2015[7] 李美菊,蒲帅天,张万青,苏鸿钧.糖精钠生产工艺评述.广东化工,2007,34(1),70-72

  • 【原创大赛】茶叶中灭线磷、久效磷、对硫磷的测定

    【原创大赛】茶叶中灭线磷、久效磷、对硫磷的测定

    【生活中的仪器分析】食品安全——“菜”米油盐酱醋茶大检测摘要:本文参照SN/T1950-2007标准,采用气相色谱安捷伦7890A对茶叶中的灭线磷、久效磷、对硫磷进行检测,在优化后的色谱条件下,灭线磷、久效磷、对硫磷这三种有机磷得到了良好的基线分离,样品也均未检出这三种有机磷农药残留。仪器:气相色谱安捷伦7890A(配火焰光度FPD检测器);电子分析天平FA1604标液配制见下表:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221402_483940_2166779_3.png色谱条件:DB-17MS型石英毛细管色谱柱(30m ×0.25mm×0.25um),色谱柱初始温度为70℃,保持1min,以30度/分钟升温至 130度,以5℃/min升温至250℃,再以10度/min升温至300℃,保持3min;进样量为1uL;进样方式为不分流进样;柱流量为1.2mL/min(恒流模式);进样口温度为250℃;检测器:FPD检测器; 检测器温度为250℃; 载气氮气流速:2.0mL/分钟, 尾吹气氮气流速:60mL/分钟, 氢气流速; 150mL/分钟; 空气流速: 110mL/分钟。样品处理简述:称样0.5g于10ml试管中,加入1~1.5ml水,浸泡10min,加入无水硫酸钠使之饱和,用2×2ml乙酸乙酯提取2次,离心后收集上层有机相,残渣再用2ml乙酸乙酯-正己烷(1+1)提取1次,合并上层有机相,待净化。净化:在活性炭固相萃取柱上端装入1cm高无水硫酸钠,用乙酸乙酯预淋洗小柱后,加入上层有机相,再用4ml乙酸乙酯和2ml乙酸乙酯-正己烷(1+1)洗脱,收集全部流出液,浓缩定容至2.0ml后进行GC分析。灭线磷、久效磷、对硫磷在上述色谱条件下的分离色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221407_483941_2166779_3.png样品的测定结果色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312221408_483942_2166779_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312221408_483943_2166779_3.png结论:在上述的色谱条件下,灭线磷、久效磷、对硫磷得到了良好的分离,茶叶样品的这三种有机磷农药残留也均未检出。

  • 【求助】有关硫代硫酸钠试剂

    请教大家我们有一瓶2003年的硫代硫酸钠,以前用的时候一直挺好的,最近一次配制时发现,按书上的浓度配制硫代硫酸钠溶液,用重铬酸钾标定时,硫代硫酸钠溶液的浓度发生了很大的改变,浓度降为应配制浓度的1/2,请问这是硫代硫酸钠溶液变质了吗?这个试剂还能用吗?光看试剂表面,仔细看才会发现微有些结晶,变化不大.

  • 【分享】欧盟建议修改杀菌剂环氟菌胺和烯酰吗啉的最大残留限量标准

    2011年5月13日,欧盟建议修改杀菌剂环氟菌胺和烯酰吗啉的最大残留限量标准。1.环氟菌胺:在苹果、梨、小胡瓜中的最大残留限量由0.02 mg/kg修改为0.05 mg/kg;鲜食葡萄和酿酒葡萄中的最大残留限量由0.02 mg/kg修改为0.15 mg/kg;黄瓜和西瓜中的最大残留限量由0.02 mg/kg修改为0.04 mg/kg。2.烯酰吗啉: 在橙子中的最大残留限量由0.05 mg/kg修改为0.8 mg/kg; 水芹、陆地芹、红芥末、叶用和球茎用芸苔属植物中的最大残留限量由1mg/kg修改为10mg/kg。

  • 乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8,别名阿基瑞林,是一种优质的祛皱化妆品原料, 其抗皱活性高, 副作用小,已在各高端化妆品系列中应用。【详情请咨询国肽生物】它能局部阻断神经传递肌肉收缩讯息,影响皮囊神经传导,使脸部肌肉放松,达到平抚动态纹、静态纹及细纹;有效重新组织胶原弹力,可以增加弹力蛋白的活性,使脸部线条放松,皱纹抚平改善松弛。可用于化妆品内,作为抗皱成分,且效果极佳。产品参数----乙酰基六肽-8/阿基瑞林中文名称:乙酰基六肽-8/阿基瑞林/六胜肽/乙酰六胜肽-3英文名称:Acetyl Hexapeptide-8/Argireline/Acetyl Hexapeptide-3, CAS号:616204-22-9纯度:≥99%分子量 :888.91g/mol分子式 :C34H60N14O12S外观:白色粉末或液体储存条件:2 ℃~8 ℃包装规格(粉末):1g, 10g, 100g包装规格(液体):20ml/瓶,1KG/瓶应用:化妆品原料功效与应用----乙酰基六肽-8/阿基瑞林抗皱抗衰老改善皮肤质量脸部、颈部和手护理品可添加到美容护肤品中,如乳液、面膜、早晚霜、眼部精华液等作用机理----乙酰基六肽-8/阿基瑞林乙酰基六肽-8参与竞争 SNAP - 25 在融泡复合体的位点, 从而影响复合体的形成。当融泡复合体稍有不稳定, 囊泡不能有效释放神经递质, 从而致使肌肉收缩减弱,防止皱纹的形成。[img=,690,143]https://ng1.17img.cn/bbsfiles/images/2020/10/202010141430498557_1196_3531468_3.jpg!w690x143.jpg[/img]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物

  • 【何洪巨专家讲座】:7月6日 第一讲: 十字花科蔬菜硫代葡萄糖苷及其降解产物分析

    【专家讲座】:第一讲: 十字花科蔬菜硫代葡萄糖苷及其降解产物分析【讲座时间】:2015年07月06日 14:00【主讲人】:何洪巨:博士、研究员,主要从事蔬菜营养品质、生物活性物质提取、鉴定与保健功能研究;蔬菜质量安全、追溯系统与风险评估研究;蔬菜营养与质量安全快速分析技术。【会议简介】 内容简介“介绍了十字花科蔬菜种类及在膳食营养中的作用,主要的营养成分与生物活性物质的种类与保健功能,硫代葡萄糖苷及其降解产物分析的原理与技术,不同十字花科蔬菜中的活性成分含量与评价”。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年07月06日 13:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14674、报名及参会咨询:QQ群—379196738

  • 欧盟拟修订多种蔬菜中烯酰吗啉的最大残留限量

    据欧盟食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧盟食品安全局提议修订烯酰吗啉(dimethomorph)在白菜、甘蓝、西兰花等蔬菜中的最大残留限量。 据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,德国收到一家公司要求修定蔬菜中烯酰吗啉最大残留限量的申请。 为协调烯酰吗啉的最大残留限量(MRL),德国建议提高烯酰吗啉的最大残留限量。 德国依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧盟食品安全局。欧盟食品安全局对评估报告进行评审后,做出如下决定: 代码 产品种类 现行MRL(mg/kg) 建议MRL(mg/kg) 0243010 白菜 0.05 / 0.01(b) 3 0243020 羽衣甘蓝 0.05 / 0.01(b) 3 0243990 其它 0.05 / 0.01(b) 3 0251030 菊苣 1 / 0.1(b) 6 0241010 花椰菜 0.05* / 1(b) 2 / 5 0242020 结球甘蓝 0.05* / 2(b) 2/ 7 0251020 莴苣 10 20 0256030 芹菜 10 15 0220010 大蒜 0.15 0.6 0220020[

  • 【资料】食品中甲胺磷和乙酰甲胺磷农药残留量的测定方法

    食品中甲胺磷和乙酰甲胺磷农药残留量的测定方法1.适用范围本方法适用于谷物、蔬菜和植物油中甲胺磷和乙酰甲胺磷的残留量分析,其最小检出限分别为7.79×10-12g和1.79×10-11g。2.原理概要含有机磷的样品在富氢焰上燃烧,以HPO碎片的形式,放射出波长526nm的特征光,这种特征光通过滤光片选择后,由光电倍增管接收,转换成电信号,经微电流放大器放大后,被记录下来,样品的峰高与标准品的峰高相比,计算出样品相当的含量。3.主要试剂和仪器3.1.主要试剂丙酮;二氯甲烷:重蒸;无水硫酸钠;活性炭:用3mol/L盐酸浸泡过夜,抽滤,用水洗至中性,在120℃下烘干备用;甲胺磷(methamidophos):≥99%;乙酰甲胺磷(acephate):≥99%;甲胺磷和乙酰甲胺磷标准溶液的配制:分别准确称取甲胺磷和乙酰甲胺磷的标准品,用丙酮分别制成0.1mg/mL的标准储备液。使用时用丙酮稀释配制成单一品种的标准使用液(1mg/mL)和混合标准工作液(每个品种浓度为1mg/mL)。贮藏于冰箱中。3.2.仪器气相色谱仪:具有火焰光度检测器;电动振荡器;K-D浓缩器或旋转蒸发器;离心机。4.试样的制备取谷物实验样品经粉碎机粉碎,过20目筛后,制成谷物试样。取蔬菜实验样品洗净,晾干,去掉非食部分后剁碎或经组织捣碎机捣碎,制成蔬菜试样。5.过程简述5.1.提取和净化蔬菜:称取蔬菜试样10g,精确至0.001g,用无水硫酸钠(因蔬菜含水量不同而加入量不同,约50~80g)研磨呈干粉状,倒入具塞锥形瓶中,加入0.2~0.4g活性炭(根据蔬菜色素含量)及80mL丙酮,振摇0.5h,抽滤,滤液浓缩定容至5mL,待气相色谱分析。谷物:称取谷物试样10g,精确至0.001g,置于具塞锥形瓶中,加入40mL丙酮,振摇1h,抽滤,浓缩,定容至5mL,待气相色谱分析。小麦:称取小麦试样10g,精确至0.001g,置于具塞锥形瓶中,加入0.2g活性炭及40mL丙酮,振摇1h,抽滤,浓缩,定容至5mL,待气相色谱分析。植物油:称取植物油试样5g,用45mL丙酮分次洗入50mL的离心管内,加入5mL水,混匀,在3 000r/min下离心5min,吸取上清液,下面油层再加10mL水和10mL丙酮,离心5min,吸取上清液,合并两次上清液,用K-D浓缩器浓缩近干,残渣和水加入40g无水硫酸钠,研磨呈干粉状,倒入具塞锥形瓶中,加入0.3g活性炭、60mL二氯甲烷,振荡0.5h,抽滤,定容至5mL,待气相色谱分析。5.2.色谱条件色谱柱:玻璃柱,内径3mm,长0.5m,内装2%dEGS/Chromosorb W AWdMCS,80~100mesh。气流:载气,氮气70mL/min,空气0.7kg/cm2,氢气1.2kg/cm2。温度:进样口200℃,柱温180℃。5.3.测定定性:以甲胺磷和乙酰甲胺磷农药标样的保留时间定性。定量:用外标法定量,以甲胺磷和乙酰甲胺磷农药已知浓度的标准样品溶液作外标物,按峰高定量。6.结果计算Xi=hi•Esi•V1hsi•V2•m式中:Xi——样品中i组分有机磷含量,mg/kg;Esi——注入标样中i组分有机磷的含量,ng;hi——样品的峰高,mm;hsi——标样中i组分的峰高,mm;V1——浓缩定容体积,mL;V2——注入色谱样品的体积,μL;m——样品的质量,g。7.方法的精密度添加回收试验中甲胺磷和乙酰甲胺磷的变异系数分别为2.36%和3.95%。8.甲胺磷和乙酰甲胺磷的保留时间在5.2的气相色谱条件下,甲胺磷的保留时间为0.9min,乙酰甲胺磷的保留时间为1.9min。9.来源:GB 14876—94

  • 【求助】硫代硫酸钠标定

    硫代硫酸钠标定时,重铬酸钾溶解后加2克碘化钾,稀硫酸,静置10分钟后,250毫升水稀释,再用硫代硫酸钠滴定至临近终点,即浅黄绿色时加入淀粉指示剂溶液呈深蓝色,继续滴两滴硫代硫酸钠,此时深蓝色瞬间消失,溶液呈淡蓝色,不是亮绿色,再继续滴入硫代硫酸钠,溶液颜色不变化。请问,溶液呈淡蓝色是终点了吗?怎么颜色不对啊?这是为什么呢?

  • 【求助】硫代硫酸钠滴定液标定

    硫代硫酸钠标定时,重铬酸钾溶解后加2克碘化钾,稀硫酸,静置10分钟后,250毫升水稀释,再用硫代硫酸钠滴定至临近终点,我的问题是,近终点时往往要把滴定管尖端的液体碰到碘量瓶内壁上,摇匀,能不能用洗瓶把滴定管尖端的滴定液冲到碘量瓶中?

  • 【求助】标定硫代硫酸钠溶液

    突然发现了一个问题,我这里的基准物质只有邻苯二甲酸氢钾和无水碳酸钠,本来为了需要标定硫代硫酸钠溶液,但国标里要用重铬酸钾去标定,有没有什么间接的方法标定硫代硫酸钠啊?

  • 唐林以优异的成绩考入华西医科大学法医专业

    1999年9月,唐林以优异的成绩考入华西医科大学法医专业,读本科的时候,虽然对自己的专业不感兴趣,但为了工作,她还是很努力地学习,由于成绩优异被保研,本打算放弃,但看到很多同学为了考上研究生努力地拼搏着,唐林还是舍不得这难得的机会.2006年12月,眼镜上了五年本科和三年研究生的唐林决定放弃学业,走创业路.这让周围很多人不解,都说她疯了."只有我最清楚,如果继续读下去,我才会疯掉,因为我读了一个自己不喜欢的专业.""一错再错",唐林这样形容自己的决定.上了研究生以后,每天都有专业课,每天都要面对解剖,化验和福尔马林,她对上课开始反感,一进解剖楼就会恶心不止.慢慢地,她开始旷课和逃学,思想每天都在斗争:是放弃还是坚持 如果放弃,几年的付出将付之东流,但可以从头开始;眼脸部防护系列如果坚持,或许自己会痛苦一辈子."我不能再这样过了,不能再浪费时间了,我要改变自己,改变生活."经过两年多的思想斗争,2006年12月,正在读研三的她放弃了8年的法医专业,打了退学报告S200A亚洲款防护眼镜.除了大一,唐林自己供自己读完了本科和研究生,由于积累了一些销售经验和具备一定的商业头脑.就凭这点能力,保护眼镜她成功说服父母让她留下来,开始一条不寻常的创业路."创业真是一条艰辛的路,可是我都喜欢,它充满挑战,我失败了再起来,再失败又起来,人生本来就是一个不断奋斗的过程."于是,她成立了她的"大学生眼镜网".坚持 看好大学生眼镜市场这个决定无疑给家里丢了一记重磅炸弹,唐林的父母特地从宁波赶来成都,逼女儿改变决定.劝说无望后,又硬拉着她回老家,并多番走动,为她谋得当地一家银行的工作.安全眼镜可是既然连研三退学的事都干得出来的女儿又岂能轻易被动摇决心,有一个主意慢慢在她心里生成——自己创业.就这样,唐林选择了肩背大送货包,奔波在城区各条公交线上.即使如此,最开始的经营也并不如意,最困难的时候,防尘眼镜唐林甚至要靠做家教兼职来养活网站.并不是每一个顾客都能理解这份创业的艰辛,有的甚至会刁难.记得有一次,为了送一瓶10元钱的护理液,因为堵车,唐林坐了3个小时的公交车,又坐了15元的出租车才把货送到顾客手中,可顾客怨气很大,一直抱怨没有按时送货,唐林没有辩解,只得一个劲地道歉."这种时候非常委屈,但我想,阳光终会化解冻土,只要我们服务好,质量保证,相信市场终会属于我们的."大学生是一群很有共性的群体,对他们的营销要从"内部"下手.建立特有的高校品牌,仅仅通过口碑营销是不行的,仅靠唐林一个人也是不行的.在一家专门发布兼职信息的网站上,劳保眼镜唐林发布了一则招聘消息,面向高校大学生,长期有效.目前已经有相对固定的50多人的兼职团队在为大学生眼镜网的销售奔走.努力 彻底告别地摊生涯据大学生眼镜网对成都市20多家高校进行的眼镜市场调查结果显示,戴眼镜人数约占学生人数的89.6%.据2008年成都市国民经济和社会发展统计公报,2008年成都市高校在校生人数为56.9万人,市场潜力不可估量.防护眼镜正因为看中了这个市场,再苦再累唐林也要坚持,即使目前的盈利看起来微不足道.每天下午5点到7点,川大桃李餐厅门口总会聚集这样一群人,在五颜六色的地摊上出售学生们所需的各类生活用品,手套,发夹,书籍,小电器……不一而足.只要不下雨,你总能在此看到唐林和她的合伙人,从他们手里买到你所需要的各类眼镜.想不到为了自己的创业决定,唐林会再次回到这种摆摊的生活.以前读书的时候曾跟同学一起摆过地摊,不过那时候更多的是乐趣,而现在,经常被校园内的城管赶得到处跑,护目镜经常错过正常的吃饭时间,夏天晒得很黑……虽然累,她却说值得.欣慰 拥有千余忠实顾客创业是艰辛的,当不被理解时,心中的苦痛难以言说,但当得到顾客认可和满意的笑容时,也会感到快乐和欣慰.网站开业以来,唐林遇到很多欣慰和感动的事镜片擦拭纸.QQ留言里她意外地发现了一个来自安徽淮南的购买消息,原来是多年前曾在网站上购买过隐形眼镜的体院学生沈萍.面屏其实摆地摊的收入相对于目前从事的电子商务网站销售而言微乎其微,但就品牌经营的角度来说,在固定的场所为客户提供一个售后服务的平台,面对面地接触客户,了解他们的需求,这是其他电子商务企业可能不屑也不方便操作的事情,却正是大学生眼镜网独有的特色.所以无论多辛苦,唐林等人都固守着这个阵地.除此之外,积极参与社会公益活动也是其占领市场,树立品牌的举措.第一次购买大学生眼镜网的商品时,沈萍在体院读大二,跟许多人一样,仅凭宣传单选定的购买纯粹是个偶然行为,谁知道这一买就延续到毕业.回到安徽老家以后,同样面临戴眼镜的问题,再次购买的时候她第一时间想到的就是大学生眼镜网焊接护目镜.这不是增加了货运成本吗 难道当地没有便宜的购买渠道 面对记者在电话里的追问,沈萍显得十分感性,她始终感动于唐林等人不辞辛劳给她送货的情谊,那些时候,他们不仅能足不出户就收到价廉物美的眼镜,还能享受免费试戴新品的机会,时不时地还能收到伴侣盒等赠品.这让沈萍等人受宠若惊,于是将她的感动告诉给身边的好友,同学,将他们齐齐介绍给大学生眼镜网电焊防护面罩.回来的路上,依然是下着大雨,可唐林一点感觉也没有,只惦记着兜里的咖啡和顾客那句鼓励的话.从此,这个顾客不仅给唐林介绍了很多客户,还成了她的好朋友.电焊防护她把顾客送的4袋咖啡放在办公桌上,"每每看着它们,我就会充满自信和力量.""记得川大一个女生买了我们的美瞳彩片,戴上防护眼镜后感觉不舒服,像在流泪,我们就派工作人员去换,当她戴上满意后我们才安心,后来她给网站介绍了她寝室的很多同学.这样做虽然我们亏本了,但是却赢得了顾客的心,这就是我们的服务."……类似这样的例子唐林能一口气讲出很多,也正是因为沈萍,李艳霞等人的存在,"被期待","被需要"的感觉让唐林感受到自己和企业存在的意义,坚定了她走下去的决心.洗眼装置从怀疑到信任再到转为介绍,客户群体就这样一点点滚雪球似地成长起来,"从最初的几个,到几十个,到几百个,再到现在的1000多个."唐林是有点欣欣然的,因为这些客户跟沈萍一样,忠诚度非常高,几乎因为一次购买就能成为忠实的回头客焊接头盔."从年初开始到现在,我们每个月的业绩都在上升,看到我的飞信上那么多顾客,看到QQ上那么多新加的人时候,我在想我们一定能够做好.我们每天要进的货越来越多,也就意味着销量越来越大."通过两年多的运营,对于网站,对于客户洗眼器,唐林都有一种说不出来的情绪,或许这就能解释她退学开店的原因.也许某一天你也会从某个熟悉或陌生的QQ群里,某个网站上听到"大学生眼镜网"这个名字,那时候,请别怀疑,点开网页,看看全新的电子商务和贴心的服务给你的生活所带来的便利吧.2009年9月11日晚,川大华西顾客李艳霞在网上订了一副隐形眼镜,洗眼器附件本来定在12日送的,可她原来的眼镜11日下午掉了,高度近视的她离开眼镜很不方便,于是唐林答应她晚上8点送货.可不巧的是那天晚上突然下起大雨,从配镜工作室到华西校区要骑20多分钟的车.怎么办 同事劝她给顾客打个电话说明情况,次日再送.可唐林不忍辜负顾客的期待,"只有这次给您100%的满意,您才会给我下次再次为您服务的机会."这是他们曾给出的服务承诺,一定要兑现.7点半,雨还在下,唐林披上雨衣出发.7:55,当她在电话里告诉顾客自己已经到宿舍楼下时,顾客感到很惊讶.取了货,交付货款后,李艳霞从口袋里抓了一把咖啡塞给唐林说:"你辛苦了,想不到下这么大的雨你们还送货,你们的服务太好了移动推车."防护眼镜是一种起特殊作用的眼镜,使用的场合不同需求的眼镜也不同。如医院用的手术眼镜,电焊的时候用的焊接眼镜,激光雕刻中的激光防护眼镜,等等。防护眼镜又称劳保眼镜,分为安全眼镜和防护面罩两大类,作用主要是防护眼睛和面部免受紫外线、红外线和微波等电磁波的辐射,粉尘、烟尘、金属和砂石碎屑以及化学溶液溅射的损伤。

  • 糖精无害限量可作食品添加剂使用?

    据美国联邦公报消息,2014年12月24日美国FDA发布通报,再次认可糖精作为食品添加剂。自发布批准糖精的终期条例以来,美FDA收到了部分反对意见。然而对这些反对意见进行评审后发现,这些意见缺少更改或者撤回终期条例的基础。因此美国FDA再次重申糖精(Advantame)可以作为非营养性甜味剂,用于食品(不包括肉、禽产品)。在我国好多人认为饮料、食品里加糖精对身体有害?但其实记者经过大量采访、调查发现—— 糖精,也称糖精钠,是最古老的甜味剂。糖精于1878年被美国科学家发现,很快就被食品工业界和消费者接受。糖精的甜度为蔗糖的300倍—400倍,它不被人体代谢吸收,在各种食品生产过程中都很稳定。缺点是风味差,有后苦,这使其应用受到一定限制。糖精很多年来都是世界上唯一大量生产与使用的合成甜味剂,尤其是在第二次世界大战期间,糖精在世界各国的使用明显增加。 糖精安全性一波三折 关于糖精是否有害的争论从20世纪初就开始了,FDA的第一任主席哈维·卫列(Harvey Wiley)是认为糖精有害的代表人物,而老罗斯福总统则坚持糖精无害。这种争论一直持续了几十年。 糖精专家张卫民曾撰文介绍,为糖精平反的是美国,当初制造糖精冤案的始作俑者也是美国。记者经过大量查询了解到: 1958年,美国食品药品管理局(FDA)开始对食品添加剂的使用进行管理,当时糖精已经能够在美国广泛使用了,因此它被列入最早的 675种“公认安全”( GRAS)的食品原料名单之中。1960年,一项研究表明大量食用糖精会导致老鼠膀胱癌的发生,随后不同的研究也表明糖精可能是一种导致动物癌症的物质。1970年,美国威斯康辛大学校友会科研中心发表研究报告,他们分别用含糖精0.05%、0.5%、5.0%浓度的代饲料喂养雄、雌鼠各20只,其中F1代断奶后喂以代饲料持续100周。F1代从母体怀孕期就开始接触糖精,之后哺乳、成长至终身均持续摄取糖精。在5.0%糖精试验组中(相当于食品正常添加量的300多倍,在此浓度下,食品甜得会让人无法下咽),F1代的泌尿膀胱中发现了明显的具有统计学意义上的肿瘤病变现象。1971年美国取消了糖精的GRAS(公认安全物质称号)。 1977年,加拿大的一项多代大鼠喂养实验发现,大量的糖精可导致雄性大鼠膀胱癌,禁止了糖精的使用,而美国的FDA也有同样的打算。但是,糖精是当时唯一的合成甜味剂,这一打算遭到了公众尤其是糖尿病人的强烈反对。迫于公众压力,国会没有批准这项提案,并通过一项议案延缓禁用。只要求所有含糖精食品注明糖精有可能是一种致癌物。 此后,糖精与癌症的关系得到了大量的进一步研究。颇有戏剧性的是,没有严格可靠的研究表明糖精与人类的癌症发生有关系。同时人们搞清楚了糖精导致动物癌症的作用机理,而那一机理在人体中并不存在。1991年,美国FDA根据一些研究结果撤回了禁止糖精使用的提议。但由于上述原因,在美国使用糖精仍需在标签上注明“使用本产品可能对健康有害,本产品含有可以导致实验动物癌症的糖精”。 基于这样的结果,美国环境卫生科学研究院在2000年建议把糖精从“已知或者疑似致癌物”的名单中去掉。2000年5月15日,美国政府发表最新致癌问题报告,把糖精删除出可能致癌的黑名单之外。发表这份每两年一次报告的美国国家环境健康科学研究所指出,由于测试显示,超大剂量糖精导致老鼠患癌的情况并不适用于人类,所以他们不再把糖精列为可能会致癌的物质。2001年,克林顿签署法令,撤销了含糖精食品必须标明可能致癌的要求。目前,许多国家允许使用糖精但是有用量的限制,而有的国家干脆禁止。 在国际上,糖精的使用也因为这些关于大鼠致癌的研究发表后受到一定影响,欧美国家糖精的使用量不断减少。但仍有人持不同观点,认为糖精是安全的。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制