当前位置: 仪器信息网 > 行业主题 > >

二羧酸二乙基酯

仪器信息网二羧酸二乙基酯专题为您提供2024年最新二羧酸二乙基酯价格报价、厂家品牌的相关信息, 包括二羧酸二乙基酯参数、型号等,不管是国产,还是进口品牌的二羧酸二乙基酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二羧酸二乙基酯相关的耗材配件、试剂标物,还有二羧酸二乙基酯相关的最新资讯、资料,以及二羧酸二乙基酯相关的解决方案。

二羧酸二乙基酯相关的资讯

  • 土壤/水质中11种邻苯二甲酸酯类混标全新上市!
    11种邻苯二甲酸酯类混标迪马科技根据《ISO 13913-2014 /ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法》定制了11种邻苯二甲酸酯类混标。 产品信息:DIKMA NO:46907DESCRIPTION:Custom Mixed phthalate esters Standard(11 Analytes) ,1000 μg/mL in Ethyl acetate 1mL中文名称:邻苯二甲酸酯混标(11种化合物),1000 μg/mL在乙酸乙酯中,1 mL/安瓿 适用于ISO 13913-2014/ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法,1000 μg/mL在乙酸乙酯中,1 mL/安瓿,Cat. No.: 46907序号化合物英文名CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二丙酯Dipropyl phthalate(DPP)131-16-84邻苯二甲酸二异丁酯Diisobutyl phthalate (DiBP)84-69-55邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-26邻苯二甲酸丁苄酯Butylbenzyl phthalate (BBzP) 85-68-77邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-78邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-79邻苯二甲酸二正辛酯Dioctyl phthalate (DOP)117-84-010邻苯二甲酸二癸酯Didecyl phthalate(DDcP)84-77-5111,2-苯二羧酸双十一烷基酯Diundecyl phthalate(DUP)3648-20-2
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 美国发明航天器细菌快速检测新技术
    美国航天局科研人员最近开发出一种能快速检测航天器细菌的新技术。这项技术也能同时运用于军事、医疗、制药等领域,如检测可引发炭疽病的炭疽杆菌。  美航天局下属喷气推进实验室的科研人员在10月刊的《应用与环境微生物学》(Applied and Environmental Microbiology)杂志上报告说,这项新技术能找到构成细菌芽孢的主要物质吡啶二羧酸,从而发现细菌芽孢的位置。而芽孢是细菌生长到一定阶段在细菌体内形成的一种微生物体,其数量及其生长状况等是鉴定细菌的依据之一。  该项技术的工作原理是,先在被检测物表面约一角钱硬币大小的地方涂上铽 ,然后将其置于紫外线灯下照射,几分钟内,人们通过显微镜和特殊相机便能看到是否有细菌芽孢,因为铽能把细菌芽孢的主要物质吡啶二羧酸变成明亮的绿色。铽是一种化学金属元素,它的化学符号是TB,被用于生成电视机屏幕上的绿色。  参与开发这一新技术的艾德里安庞塞说,细菌芽孢可以在极其恶劣的环境下生存,可抵御高温、低温、强辐射和化学物质,并最多可以在太空存活6年之久。庞塞说,发现了细菌芽孢,就可以发现细菌本身。  目前这项被称为“航天器洁净方法”的技术已引起了美国国土安全部的兴趣。美国国土安全部化学生物研究项目负责人詹姆士安东尼认为,该技术将有助于加快生物污染事件发生后的现场检测工作,并节省时间和成本。
  • 修饰新法问世 让MOFs拥有更大孔径
    p style="text-align: justify text-indent: 2em "MOFs是一种将桥接的有机配体和无机金属中心连接成网状结构的混合多孔材料,在催化和化学传感领域应用广泛,而且可以作为药物传递的载体。MOFs的孔径大小与其应用息息相关,如果化学家有方法能使其孔径变大,MOFs在上述领域就会发挥更大的作用。而一项最新研究表明,可以通过选择性地去除MOFs中的有机配体,来将其微孔转化为更大尺寸的介孔。/pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/201811/uepic/785da53f-dfbf-413a-ac38-19b059f57a40.jpg" title="ss.jpg" alt="ss.jpg"//pp style="text-align: justify text-indent: 2em "当孔径为大于2nm的介孔时,MOFs不仅可以容纳更大的药物分子,还能够防止催化应用中的气体扩散。现有增加MOFs孔径尺寸的方法主要有三种,一种是依赖于复杂的、定制的配体,这种方法成本高昂。另一种是通过简单地增加配体长度来调整孔径,这种方法虽然已有多种应用,但是使用这种方法,想在创造MOFs特定孔径尺寸的同时控制好某些反应附带衍生的缺陷,却是十分困难的。此外,还有一些使用化学或热处理手段增加MOFs孔径的方法,但这些方法往往又需要苛刻的条件。/pp style="text-align: justify text-indent: 2em "为了解决这些问题,加泰罗尼亚纳米科学与技术研究所的博士后研究员Vincent Guillerm提供了一种新方法,选择那些可通过与臭氧反应被选择性剪切掉的配体合成MOFs,通过这种方法来将MOFs的微孔变成孔径较大的介孔。他和他的同事用锆团簇和两种配体(偶氮苯-4,4-二羧酸和4,4' -二苯乙烯二羧酸)构建了MOFs,这两种配体的长度都在1.33nm左右。/pp style="text-align: justify text-indent: 2em "然后他们将臭氧引入系统,与4,4' -二苯乙烯二羧酸发生反应,让这部分配体转化为对苯二甲酸和苯甲酸,有效地切断了它们与金属中心的连接。而偶氮苯-4,4-二羧酸配体由于没有碳碳双键,不易与臭氧反应,因此不受影响。这种方法还需要一个额外的清洗步骤,来消除臭氧反应中产生的副产品。因此研究人员又还利用4,4’-联苯二甲酸和1,4-苯二丙烯酸为配体构建了另一个介孔尺寸的MOF。在这个MOF中,臭氧反应裂解的配体产物能够从材料中直接升华,无需再清洗。/pp style="text-align: justify text-indent: 2em "据参与该项研究的另一位负责人Daniel Maspoch介绍,在切割配体之前,本实验所用的MOFs孔径尺寸都在1.5nm左右。经过臭氧切割,这些MOFs的孔径覆盖了2到5nm的直径范围。而不同的孔径尺寸,是由于两种配体在整个材料中的随机分布引起的。因为随机分布会造成不同区域的配体浓度差,进而影响孔径变化范围。因此,研究组希望能更好地控制这种分布,以帮助他们缩小孔径增大的范围。/pp style="text-align: justify text-indent: 2em "除了扩大孔径尺寸外,这项研究成果还会带来另一个潜在的好处:配体在被剪切的过程中,可能会释放出一些可与其他化学物质发生反应的结合位点。“这很可能对MOFs以外的工程材料来带益处。”Maspoch说,“如果你能够有选择性地打破物体内部的一些化学键,你就能让这一物体生发出一些新的功能。”/pp style="text-align: justify text-indent: 2em "加州大学伯克利分校的Omar M.Yaghi是MOFs的专家。他高度肯定了这项研究成果,表示它为改善MOFs性能增添了新的创造性。“这项研究优雅、聪睿、精确,而且证明了在原子、分子层面,网状化学控制物质的应用已经越来越广泛。”Yaghi说。/p
  • 你需要知道的液质使用禁忌,千万别踩雷!
    p style="text-align: center "strong正负离子的分析/strong/pp /pp酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。/pp /pp推荐使用的流动相和添加剂:/pp /pp有机溶剂:反相:乙腈/甲醇/乙醇/异丙醇/二氯甲烷/pp正相:吐仑/己烷/苯/环己烷/四氯化碳/pp /pp缓冲液:乙酸铵/甲酸铵/pp /pp酸:甲酸/乙酸/三氟乙酸(正离子)/pp /pp碱:氨水/pp /pp不推荐使用/尽量不用的:/pp /pp有机溶剂:四氢呋喃/pp /pp缓冲液:磷酸盐/柠檬酸盐/碳酸盐/pp /pp酸:硫酸/磷酸/盐酸/高氯酸/磺酸/pp /pp碱:季胺/强碱/三乙胺/pp /pp其他:清洁剂/表面活性剂/离子对试剂/不挥发的盐/pp style="text-align: center " /pp style="text-align: center "strong糖苷类/盐类分析/strong/pp /pp糖苷类的物质在做FAB和esi(+)时,峰往往比其他峰要强,此为经验,原因只是推测可能和天然产物的提取过程有关;盐类化合物如盐酸盐、硫酸盐在质谱中酸的部分一般不会出现;二羧酸盐(esi负离子模式)除了分子离子峰外,会出现连续掉44的两个峰,为失去羧酸根的离子,这三个峰非常特征,但是会受锥孔电压的影响,调低电压谱图会更漂亮。/pp /pp style="text-align: center "strong胺类分析/strong/pp /pp胺类物质做esi质谱时要注意进样量要少,因为很容易离子化,不易冲洗干净,会影响后面样品的测定。像三乙胺在液质联用时不能用于调节流动相pH值。若不慎引入三乙胺,在正离子检测时总会出现很强的102峰(三乙胺的)。/pp /pp style="text-align: center "strong水和氮气的选择/strong/pp /pp质谱用水一般用娃哈哈纯净水之类的就很好;质谱用甲醇和乙腈,换用了很多品牌,发现Merck的还是稍微好一些;Finnigan用的氮气不一定要用到液氮瓶,用普通的钢瓶气就可以了,可能还省钱些;建议大家买一个好一点的手电筒和一个放大镜,手电筒用来看源里面,放大镜看你割的毛细管平整。/pp /pp style="text-align: center "strong基线问题/strong/pp /pp质谱的基线其实跟液相的紫外检测器和荧光检测器一样,基线高的原因不外乎内部和外部的原因。/pp /pp1)你选择的流动相在质谱的响应比较高,比如水相比较多的时候,噪音比较大些;还有如果盐含量比较大的时候,噪音更大些。/pp /pp2)检测器的灵敏度越高的时候,噪音应该越高。如果质谱的污染比较严重时,基线肯定比较高。比如离子阱检测器,用得久了,阱中的离子就会增多,一方面降低了质谱的灵敏度,另一方面增加了基线噪音。/pp /pp3)质谱的基线很多时候还跟你选择的离子宽度有关。比如你作选择离子扫描的时候,基线就低些。你作选择反应扫描的时候,离子宽度不要选得太宽,太宽噪音就高些。/pp /pp4)多级质谱一般做二级或三级质谱,基线噪音就低很多。/pp /pp style="text-align: center "strong质谱维护经验/strong/pp /pp做样前-检查氮气,流动相,质谱仪的真空度,毛细管温度… /pp /pp1) 最好不用直接进样(容易污染离子源)。/pp /pp2) 做联用时最好分流(a可以使用常规柱,b缩短分析时间,c 延长质量分析器寿命)。/pp /pp3) 最好使用在线切换阀,降前每个样品的前后1-2分钟的流动相切入废液(避免样品中的盐进入质谱,做Sequence时可以把平衡柱子的流动相切入废液)。/pp /pp4 )开始联用前,直接运行质谱数分钟,可以先将温度(毛细管温度和离子源温度(APCI))加热到预设定值(如果是APCI源还可以避免将烧掉heater,太贵了,最好别烧)。/pp /pp5) 待机时将切换阀置于waste,避免刚开液相时将流动相打入离子源。/pp /pp6) 关机前毛细管的温度先降下来,稳定一段时间后再关闭电源,避免风扇停止转动后毛细管外围的热量向里扩散,容易引起内部线路及电子元器件老化加速。/pp /pp7) 每天清理毛细管口外部,擦洗干净,每次停机时注意清洗Skimmer,用无尘擦拭纸,kimberly那种。/pp /pp8 )如果用的是钢瓶而且天天做样的话,将两个钢瓶并联,当然,一月不做一次的话就算了。/pp /pp9) 做定量时注意离子源喷针的具体位置,否则标准曲线就不能用了。/pp /pp10)不要不经过柱子分离进行定量分析,结果不可靠(竞争性抑制目标分子离子化)。/pp /pp11 )如果是负离子检测的话,可以相流动相中加入少量异丙醇。/pp /pp12) 不要使用不挥发性盐,如果使用挥发性盐,但浓度不要超过20mmol/l。/pp /pp13) 需要使用酸的情况下可以用甲酸,乙酸,三氟乙酸可以用,但能用甲酸或乙酸时就别用TFA。/pp /pp style="text-align: center "strong缓冲液浓度选择/strong/pp /pp理论上液质联用禁止使用任何不挥发性的缓冲盐,如果需要尽量使用诸如乙酸氨等挥发性盐,浓度不要超过20mmol/l。/pp /pp对于不挥发性的缓冲盐,如果你的仪器有吹扫捕集的话也可使用,但一定要小心。万不得已也不要用,首先有不挥发盐是得不到好的离子流的,其次盐留在质谱中很难除掉,除非停机清洗,不然一直会影响其他样品的分析。/pp /pp可以找质谱友好的条件来做液质联机,例如色谱条件为20mM磷酸盐的水/乙腈流动相,做液质联机的时候就可以用醋酸铵代替,然后用醋酸调节pH值与磷酸盐的一致即可。/pp /pp除了难挥发的盐,三乙胺、表面活性剂、还有高浓度( 0.5%)的TFA,都对质谱不好,液质联用的流动相中应该避免。/ppbr//p
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 陕西省食品科学技术学会关于《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见函
    各有关单位及专家:陕西省食品科学技术学会团体标准《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》已形成征求意见稿。为保证标准的科学性、严谨性和适用性,现向社会各界公开征求意见。请各有关单位及专家审阅标准全文并提出宝贵建议和意见,于2023年4月5日前以电子邮件或信函的形式将《征求意见反馈表》反馈给食品标准化管理专业委员会,逾期未反馈意见视为无异议。联系人:吴晓霞联系电话:18091384746电子邮箱:xiaoxiaw@snnu.edu.cn陕西省食品科学技术学会食品标准化管理专业委员会2023年3月6日附件下载通知原件:陕西省食品科学技术学会关于 《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见函。pdf附件1:《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见稿.pdf附件2:《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准编制说明.pdf附件3:征求意见反馈表.docx
  • 离心机的世界也可以很有趣——你所不知道的“温度控制”
    相信看过美剧《CSI》(犯罪现场调查)的朋友们一定对剧中诸如指纹数据库、从带血棉签中五分钟内验出DNA等等炫酷的证据检测桥段并不陌生,虽然是源于想象的虚构,但却自然而逼真。其实,纵观司法科学鉴定技术的发展长河,《CSI》里面的许多高科技手法在现实中已被广泛应用,特别是DNA技术的应用无疑是个历史性的突破。从犯罪现场到实验室的王牌证据长期以来,作为给犯罪嫌疑人定罪的“毋庸置疑的铁证”,DNA鉴定一直被认为是目前法庭科学领域中最有效的统一认定技术,虽然说对于少数特殊情况存在一定的例外和局限性,但总的来说,DNA证据仍是当今人类世界可靠性最高的证据。尤其是在血腥的犯罪现场留有血迹、精斑、毛发等人体生物检材的命案中,DNA证据一直是对付罪犯的利器,被社会各界寄予厚望。众所周知,得到足量且纯净的DNA样本是进行准确鉴定的前提,因此DNA提取纯化技术是法医DNA检验的第一个步骤,也是最关键的步骤。通常,从犯罪现场提取到的各种生物检材难免会腐败、变质和被污染,这就对DNA提取纯化技术有了更高的要求。目前在法医实验室中,常用的提取方法无外乎五种,即Chelex100法、有机法(苯酚-氯仿提取)、磁珠法、盐析法、碱性法(NaOH提取)。不管哪种方法,提取过程大体上分为材料准备、破碎细胞或包膜以释放内容物、核酸分离纯化、沉淀或吸附核酸并去除杂质、将核酸溶解在适量缓冲液或水中。而作为整个过程当中至关重要的环节,离心分离的好坏直接决定着实验的成败。不容忽视的离心内部环境——温度控制说到DNA提取等生物样品分离实验,除了在司法鉴定中扮演着举足轻重的角色以外,在基因工程和蛋白质工程等分子生物学领域也应用极广,而样品分离实验自然离不开离心机的性能技术指标与正确使用,比如转速设定、离心时间、摆放位置等,而其中最关键也是容易被忽视的一点就是样品的温度控制。下面我们拿DNA提取实验举例,采用传统且应用最广泛的有机法在不同温度条件下提取血液DNA。在细胞的细胞核中,DNA与蛋白质结合形成染色体,因此提取DNA时既要将蛋白质等物质除尽,又要尽可能保持DNA分子的完整性,即保持DNA带不发生断裂,无外源核酸污染。实验在4℃和常温条件下分别进行。4℃条件下采用高速冷冻离心机,而常温条件采用小型台式高速离心机,实验结果显示,4℃条件提取的DNA条带整齐无拖带,而常温提取的DNA有明显的拖带现象,表明前者的DNA片段完整无断裂,未被污染,且分子大小相同,而后者的DNA有部分已断裂。在本实验采用的有机法中,由于酚类容易被氧化,产生醌、二羧酸等氧化物,可破坏核酸中的磷酸二酯键,并引起DNA链的交联,常温条件下由于离心机转子高速旋转产生大量热,加速了酚的氧化,并增加了血液中细胞释放的内源核酸酶的活性,导致部分基因组DNA降解。而在4℃条件下提取的DNA由于温度低,酚不易被氧化,内源核酸酶活性较低,因此能够保证DNA的完整性。【1】看过了上面的实验,您是不是对温度控制的重要性有了直观的认识呢?其实,对于诸如生物制药或营养物质萃取等对生物活性保留要求很苛刻的技术项目,离心萃取的温度都需要严格符合要求,与标准相差几摄氏度可能就会严重影响品质,常见的情况就是超过温度区间范围会对活性酶的指标有影响或者温度过低导致凝结,因此选用带精确温控的离心机则是重中之重。需要严格温控的实验基本上都要求样品保持在较低的温度,因此在使用带冷冻功能的离心机之前需要进行预冷,并进行温度校准和监测温度波动。现在问题来了,市面上离心机的温度传感器通常都在机腔内,而中间会隔着不同大小规格的离心管,不同型号的转子以及腔内空气等介质,所以即使准备工作做得很周全,在离心机高速运转的时候,传感器所探测到的腔体温度与样品的实际温度难免会有差值,这个差值又因为转子选择,温度、转速设置的不同而发生进一步的变化。如前所述,这个差值在那些要求极为苛刻的实验项目中是绝不允许的。奥豪斯离心机陪你玩转温度控制看了这么多,有人一定要问,有没有什么好的办法能自动解决这个温度差值呢?重点马上登场。配有强劲的冷冻系统和样品温度补偿功能的奥豪斯FC5515R高速冷冻离心机应运而生,全面瓦解让您头疼的温度控制难题!早在产品研发阶段,奥豪斯就对在不同条件下腔体温度与样品实际温度间的温差数据进行了完善的测定,建立了补偿模型,并将这个补偿模型内置在离心机的控制软件系统,传感器测得的腔体温度经过补偿,出现在显示屏上的温度数值即为离心样品的实际温度,保证离心过程在设定的样品温度进行。这样一来,通过系统内设的样品温度补偿,完美地解决了离心机设置显示的温度与离心过程中样品的实际温度不一致的问题。此外,FC5515R强劲的冷冻系统保证了即便在全速运转的情况下,也能将温度保持在所需温度。怎么样,看完了上面的精彩片段您还会为离心过程中的温度控制难题发愁吗?事实上,奥豪斯所有带冷冻功能的离心机型号都具有以上所述的特点。如果您想了解更多相关案例以及奥豪斯离心机家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!【1】参考文献:李强子,张丽. 温度对提取DNA质量的影响[J]. 中国生物制品学杂志,2016年4月,29(4)
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 公开征求氧化铁铬等4种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,氧化铁铬等4种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2024年1月21日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn 一、氧化铁铬1.背景资料:该物质在常温下为黑色粉末,不溶于水。 美国食品药品管理局和日本化学研究检验所均允许该物质 作为着色剂用于食品接触用塑料材料及制品。2.工艺必要性。该物质为黑色无机着色剂,具有较好的 耐候性、耐温性、化学稳定性等性能,并可用于黑色塑料制 品的红外线识别。二、(1R,2R,3S,4S)-rel-二环[2.2.1]庚烷-2,3-二羧酸钙盐 (1:1) 1.背景资料:该物质在常温下为白色粉末,极微溶于水。 美国食品药品管理局和欧盟委员会均允许该物质用于聚丙 烯(PP)、聚乙烯(PE)塑料材料及制品。2.工艺必要性:加入该物质的 PP、PE 具有较低的水蒸 气渗透率和氧气透过率。三、聚丁二酸-己二酸丁二酯1.背景资料:该物质在常温下为白色颗粒,不溶于水, 可溶于氢氧化钠和氯仿。美国食品药品管理局和欧盟委员会 均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该树脂较易熔融,加工性能良好。以该 物质为原料生产的塑料薄膜,具有较好的透明度和光泽度。四、1,3-苯二甲酸与 1,4-苯二甲酸和 1,4-二(羟甲基)环己烷的聚合物 1.背景资料:该物质在常温下为固体,不溶于水和乙醇。 美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方 共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该物质为基础树脂,相较于其他聚酯材 料密度低,可以制造较轻便的产品;有较低的吸水性,能更 好的保持尺寸稳定性,可应用于透明板材、薄膜等产品生产。
  • 3月回顾|质谱领域重要成果汇总
    2023年3月,质谱研究领域的新鲜成果迭出,包括一种基于电喷雾电离质谱法的新型个人健康监测仪、基于MALDITOF技术指尖涂片检测乳腺癌、基于单细胞蛋白质组学技术揭示男性更容易感染COVID-19、利用超高场离子云扫描质谱技术实现高分辨生物分子异构体分析等。仪器信息网特别将相关成果进行编译,以飨读者。  青铜时代的贸易证据(点击了解)  对于考古学家而言,陶瓷瓶中的有机残留物的GC-MS分析似乎揭示了长达公元前三千年的芳香油贸易。从土耳其的一处考古遗址出土的陶瓷瓶被怀疑曾经装有液体,直至最近研究人员对其中的残留物进行了分析!其中GC-MS鉴定了大部分样品中存在的二羧酸、油酸和棕榈酸,这表明它们可能主要含有基于植物的油。二萜类化合物也显示了松香树脂和其他植物衍生产品成分的添加。这是该地区这类商品贸易的最古老证据,突显了GC-MS在考古研究中的重要性。  硅胶手环电喷雾电离质谱法(SWESI-MS)  佩戴手腕监测器能否更好地了解我们的个人健康状况?最近的一项研究成果显示,简单的硅胶手环可能正好可以做到这一点!研究人员使用一种新的环境采样方法,被称为硅胶手环电喷雾电离质谱法(SWESI-MS),对人类暴露于环境化学物质(暴露组)和出汗代谢物进行了表征。类似于纸喷雾质谱法,分析物直接从手环表面检测出来。检测到了典型的汗液代谢物,以及一些其他的代谢物,该成果证实基于质谱检测法的手环有望作为临床监测器。不过作者指出需要进一步研究,但相信这种手环作为非侵入性可穿戴采样器,能够提供个体特征并确定外部和内部健康风险。  单细胞蛋白质组学与COVID-19感染差异  日本大阪大学的研究表明,性别特异性的Treg细胞差异可能解释了为什么男性似乎更容易感染COVID-19。他们使用单细胞蛋白质组学,展示了COVID-19患者循环Tfr细胞的比例发生变化,这是Treg细胞群体的一个子集,负责控制抗体产生,以及与抗体产生相关的其他细胞。女性拥有更多的循环Tfr细胞,而男性有更高的抗体水平,这可能导致在男性COVID-19患者中观察到的抗体产生失调。  MALDITOF助力指尖检测乳腺癌  乳腺X线检查(和活检)是筛查和诊断的黄金标准 但是它会暴露个体于辐射,其灵敏度和特异性有限,可能会使病患感觉不舒服,也可能在文化上不可接受。为了寻找替代方法,英国中塞克斯大学的研究人员结合自下而上的蛋白质组学和MALDI MS来从指尖涂片中检测乳腺癌。再将质谱数据集应用于统计分析和机器学习方法后,最高的预测方法准确率为97.8%。  超高场离子云扫描技术实现高分辨生物分子异构体分析  清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在离子阱质谱仪器上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。ICPM-8500的特长实现高灵敏度、多元素的同时分析具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例EDX-720的特长 简便操作,全自动测定实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。分析条件 装置:TOC-LCPH催化剂:高灵敏度催化剂进样量:500&mu L测定项目:TOC(经过酸化通气处理的TOC)工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果样品名TOC值(mgC/L)n=3的CV值2mgC/L草酸水溶液2.0130.95%1mgC/L草酸水溶液1.0171.11%0.2mgC/L草酸水溶液0.2232.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。省空间省能源设计与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。丰富的型号与选配件・ 备有方便处理测定数据的PC型号和简单操作的单机型号・ 安装选配件可以测定从固体样品到气体样品・ 安装TN单元可以测定总氮关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • Picarro | 人为减排增强了大气新粒子生成:2022年北京冬奥会期间的观测证据
    随着工业化和城市化的快速发展,人类活动对环境的影响日益严重。其中,大气污染是人们最为关注的问题之一。为了改善大气质量,人们采取了各种措施,其中之一就是人为减排。人为减排对大气环境的影响以及机理也成为重要的研究方向,中国科学院大气物理研究所在2022年冬奥会举办之际,开展了相关研究。研究背景气溶胶颗粒对地球-大气系统具有深远的影响。作为对流层气溶胶的重要来源,新粒子生成(NPF)在云凝结核(CCN)形成中起着重要作用,并导致中国特大城市严重的雾霾事件。在受污染的大气中,NPF和参与成核的气态物质的行为尚不清楚。硫酸(SA)是清洁大气中参与成核的主要物质,其他气态前体物,例如氨、二甲胺(DMA)和二羧酸,会在污染环境中增强成核。由于气态前体和可凝蒸气丰富,成核机制在不同位置会有所不同。COVID 19封锁期间的研究表明,NPF事件的生成率(J3)和增长率(GR)的结果各不相同。在未来空气质量改善的情况下,大气NPF在污染大气中的行为仍不确定,需要进一步评估。2022年北京冬奥会为研究人为减排对中国特大城市成核和生长过程的影响提供了难得的机会。这项研究的重点是冬季奥运会前后NPF事件和气态前体的演变,以了解它们在雾霾形成中的作用并为未来制定污染减排政策提供信息。研究方法中国科学院大气物理研究所的研究团队于2022年1月1日-3月31日在北京2022年冬季奥运会主会场附近的北京IAP场地进行观测活动。该地点代表了典型的城市区域,与北京城市的平均颗粒物水平有很好的相关性。研究人员观测了气溶胶颗粒物的粒径分布、细颗粒物化学组成(有机物(OA)、硫酸盐(SO42-)、硝酸盐(NO3-)、铵(NH4+)和氯化物(chl))、气体物质浓度(O3、NO2、CO、SO2)、PM2.5质量浓度及气象参数(温度、相对湿度、辐射、海平面气压、风速和风向)以调查NPF事件及其气态前体的演变,了解不同时期气态前体在NPF和雾霾形成中的作用。NH3排放测量利用Picarro G1103氨气分析仪测量NH3浓度结论WOG和冬季残奥会(WPG)期间成核事件有所增强,NPF事件的频率( 52.4% 38.5% )高于Pre-WOG (25.0%)和Post-WOG(27.8%),这主要是由CS较低造成的。此外,WOG(6.4±4.1 cm-3s-1 )和WPG(6.1±2.9 cm-3s-1)期间的平均J3也高于Pre-WOG(5.6±2.9 cm-3s-1)和Post-WOG(5.7±3.1 cm-3s-1),而GR ( 2.3±1.8 nmh-1,2.7±1.4 nmh-1)略高于Pre-WOG (2.1±1.5 nm&sdot h-1)和Post-WOG (2.2±1.6 nm&sdot h-1)。研究发现,硫酸和氨浓度较低,WOG和WPG期间较高的J3可能是由较高的胺贡献的。log J3和SA之间的相关性,与CLOUD实验结果高度一致,表明胺增强了硫酸成核。进一步证明了上述结果。硫酸对GR3-7nm的贡献超过20%,在WOG和WPG期间,大气氧化能力大大增强,颗粒生长到10 nm以上时,有机化合物的贡献迅速增加。此外,还发现硝酸铵在NPF引发的雾霾事件中发挥着重要作用,其特点是WOG之后,NPF事件生长后期的硝酸盐产量高于WPG,建议采取措施控制NH3和NO2排放,以减少新粒子生成和生长造成的PM2.5污染。
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑英文名:Omeprazole主成分化学名:5-甲氧基-2-[[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基]-1H-苯并咪唑主成分分子式:C17H19N3O3S主成分cas登记号:73590-58-6主成分分子量:345品种简介:奥美拉唑,主要用于十二指肠溃疡和卓-艾综合征,也可用于胃溃疡和反流性食管炎;静脉注射可用于消化性溃疡急性出血的治疗。与阿莫西林和克林霉素或与甲硝唑与克拉霉素合用,以杀灭幽门螺杆菌。 第九种:通用名:雷尼替丁英文名:Ranitidine主成分化学名:1,1-Ethenediamine, N-[2-[[[5-[(Dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N' -methyl-2-nitro-主成分分子式:C13H22N4O3S主成分cas登记号:66357-35-5主成分分子量:314.40品种简介:雷尼替丁与西咪替丁一样是目前应用最广泛的治疗溃疡病的药品。由英国葛兰素(glaxo)公司开发。1976年由英国普赖斯(price)等合成,1979年布拉德肖(bradshaw)阐明其药理,1980年贝斯塔(berstad)报告用于十二指肠溃疡有效,1981年上市,在世界近百个国家应用。我国于1985年由上海第六制药厂生产。 第十种:通用名:辛伐他汀英文名:Simvastatin主成分化学名:舒降脂 辛伐他丁(1S,2S,6S,8S,8aR)-1,2,6,7,8,8a-六氢-3,7-二甲基-8-[2-[(2R,4R)-四氢-4-羟基-6-氧代-2H-吡喃-2-基]乙基]-1-萘酚 2,2-二甲基丁酸酯 辛伐他汀 塞瓦停 斯伐他汀 西伐斯汀 辛伐司他汀主成分分子式:C25H38O5主成分cas登记号:79902-63-9主成分分子量:418.57品种简介:辛伐他汀是他汀类的降血脂药物,用于控制血液中胆固醇的含量以及预防心血管疾病。辛伐他汀是土曲霉发酵产物的合成衍生物。CATO全力支持药物一致性的政策,并提供以上优质的10个品种杂质!Amlodipine氨氯地平Amoxicillin阿莫西林Cefradine头孢拉定Cephalexin头孢氨苄Clarithromycin克拉霉素Ibuprofen布洛芬Metformin二甲双胍Omeprazole奥美拉唑Ranitidine雷尼替丁Simvastatin辛伐他汀
  • 国务院:第二批对美加征关税商品第二次排除清单公布
    5月12日,国务院关税税则委员会发布关于第二批对美加征关税商品第二次排除清单的公告。根据《国务院关税税则委员会关于试行开展对美加征关税商品排除工作的公告》(税委会公告〔2019〕2号),经国务院批准,国务院关税税则委员会公布第二批对美加征关税商品第二次排除清单,对第二批对美加征关税商品,第二次排除其中部分商品,自2020年5月19日至2021年5月18日,不再加征我为反制美301措施所加征的关税。对已加征的关税税款予以退还,相关进口企业应自排除清单公布之日起6个月内按规定向海关申请办理。第二批对美加征关税的其余商品,暂不予排除。未列入第一批、第二批对美加征关税商品排除清单的商品,企业可根据《国务院关税税则委员会关于开展对美加征关税商品市场化采购排除工作的公告》(税委会公告〔2020〕2号),申请市场化采购排除。第二批对美加征关税商品第二次排除清单序号EX①税则号列②商品名称125070010高岭土225120010硅藻土325199091化学纯氧化镁425262020已破碎或已研粉的天然滑石525309020稀土金属矿626161000银矿砂及其精矿7ex26169000黄金矿砂8ex28046190其他含硅量>99.9999999%的多晶硅(太阳能级多晶硅、多晶硅废碎料除外)928100020硼酸1028181090其他人造刚玉1128401100无水四硼酸钠1228401900其他四硼酸钠13ex28439000贵金属汞齐14ex28439000其他贵金属化合物(不论是否已有化学定义),氯化钯、铂化合物除外15ex28444090其他放射性元素、同位素及其化合物(子目2844.10、2844.20、2844.30以外的放射性元素,同位素),含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:铀-233及其化合物(包括呈金属、合金、化合物或浓缩物形态的各种材料);氚、氚化物和氚的混合物,以及含有上述任何一种物质的产品[氚-氢原子比 1‰的,不包括含氚(任何形态)量 1.48× 103GBq的产品];氦-3(3He)、含有氦-3的混合物(不包括氦-3的含量 1克的产品);发射α粒子,其α半衰期为10天或更长但小于200年的放射性核素(1.单质;2.含有α总活度为37GBq/kg或更大的任何这类放射性核素的化合物;3.含有α总活度为37GBq/kg或更大的任何这类放射性核素的混合物;4.含有任何上述物质的产品,不包括所含α活度小于3.7GBq的产品)1628459000税目2844以外的其他同位素及其化合物1728500012氮化硼1829032990其他无环烃的不饱和氯化衍生物1929033990其他无环烃的氟化、溴化或碘化衍生物2029051990其他饱和一元醇21ex290539901,3-丙二醇2229054400山梨醇序号EX①税则号列②商品名称23ex29159000其他饱和无环一元羧酸及其酸酐[(酰卤、过氧)化物,过氧酸及其卤化、硝化、磺化、亚硝化衍生物],茅草枯、抑草蓬、四氟丙酸和氟乙酸钠除外2429182900其他含酚基但不含其他含氧基羧酸及其酸酐等衍生物25ex29269090己二腈26ex29319000硫酸三乙基锡,二丁基氧化锡等(包括氧化二丁基锡,乙酸三乙基锡,三乙基乙酸锡)2729333100吡啶及其盐28ex29336990西玛津、莠去津、扑灭津、草达津等(包括特丁津、氰草津、环丙津、甘扑津、甘草津)2929371210重组人胰岛素及其盐3038030000妥尔油31ex38089400医用消毒剂3238112100含有石油或从沥青矿物提取的油类的润滑油添加剂3338180019经掺杂用于电子工业的,已切成圆片等形状,直径>15.24cm的单晶硅片3438180090其他经掺杂用于电子工业的化学元素,已切成圆片等形状;经掺杂用于电子工业的化合物355603129025g<每平米≤70g其他化纤长丝无纺织物365603131070g<每平米≤150g浸渍化纤长丝无纺织物375603139070g<每平米≤150g其他化纤长丝无纺织物38ex59119000半导体晶圆制造用自粘式圆形抛光垫3968042110粘聚合成或天然金刚石制的砂轮4068042190粘聚合成或天然金刚石制的其他石磨、石碾及类似品4168151000非电器用石墨或其他碳精制品4269091100实验室、化学或其他技术用陶瓷器4369091200莫氏硬度为9或以上的实验室、化学或其他技术用品4470071110航空航天器及船舶用钢化安全玻璃4573181510抗拉强度在800兆帕及以上的螺钉及螺栓,不论是否带有螺母或垫圈4674101100无衬背的精炼铜箔4774101210无衬背的白铜或德银铜箔4874102110印刷电路用覆铜板4975052200镍合金丝5075062000镍合金板、片、带、箔5175071200镍合金管序号EX①税则号列②商品名称5276082010外径不超过10厘米的铝合金管5381089040钛管5485013100输出功率不超过750瓦的直流电动机、发电机5585015200输出功率超过750瓦,但不超过75千瓦的多相交流电动机5685044014功率小于1千瓦,精度低于万分之一的直流稳压电源5785044091具有变流功能的半导体模块(静止式变流器)5885052000电磁联轴节、离合器及制动器5985073000镍镉蓄电池6085112010机车、航空器及船舶用点火磁电机、永磁直流发电机、磁飞轮6185113010机车、航空器及船舶用分电器及点火线圈62ex85143000电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)6385168000加热电阻器6485177060光通信设备的激光收发模块6585258011特种用途的电视摄像机6685258021特种用途的数字照相机6785261010导航用雷达设备68ex85261090飞机机载雷达(包括气象雷达,地形雷达和空中交通管制应答系统)6985291010雷达及无线电导航设备用天线或天线反射器及其零件7085299050雷达设备及无线电导航设备用的其他零件7185371011用于电压不超过1000伏线路的可编程序控制器72ex85371090数字控制器(专用于编号84798999.59电动式振动试验系统)7385392120火车、航空器及船舶用卤钨灯7485392190其他卤钨灯7585394900紫外线灯管或红外线灯泡7685407910调速管77ex85437099飞行数据记录器、报告器7885439021输出信号频率小于1500兆赫兹的通用信号发生器用零件79ex85489000非电磁干扰滤波器注:①ex表示排除商品在该税则号列范围内,以具体商品描述为准。②为《中华人民共和国进出口税则(2020)》的税则号列。延伸阅读:中国公布第一批对美加征关税商品第二次排除清单
  • HHitech和泰用户巡访记 | 第一季第二站:北京
    巡访第二站:区域:北京时间:2017年2月20-24日巡访第二站,我们来到了祖国首都—北京,在首都的每个区域,我们都能找到和泰HHitech纯水系统的身影,大量的用户基数代表着我们需要回访更多的用户,虽然辛苦,但是值得,能贴近用户,感受到用户的需求,帮助用户解决疑问,这是我们一贯的服务理念;在此也要感谢北京当地售后服务中心的各位工程师,正是他们与我们共同的努力,才成就了用户对和泰的信任与赞扬。清华大学、北京大学、中国农业大学、航天科工以及众多高等院校、生物研究基地都是我们忠实的用户。“以后如果换设备,我们还是会选择和泰”—用户如是说!正是基于和泰“专业、专注”的理念,才能得到用户如此的信任和支持!正所谓:既要承得住美誉,也要经得起批评! 在巡访过程中,很多用户以他们专业的技术和见解对和泰HHitech实验室纯水系统进行了分析以及总结,我们深刻地体会到了在实验室纯水系统这条道路上,我们需要走的路还很长,这也是对我们的一种关心和督促,我们坚信,只要努力坚持专业,和泰将会在接下来的每一天,都更上一层楼! 下一站:沈阳!
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
  • 增长32.74%,海尔生物一季度实现营业收入2.67亿元
    海尔生物披露2020年第一季度财报,报告期内,公司实现营业收入2.67亿元,同比增长32.74%;实现归母净利润6927.85万元,同比增长141.42%。国内市场:受疫情影响各业务板块增势不同,总体增长平稳,收入同比增长20.2%。①抗击疫情直接相关的生物安全柜、超低温等产品一季度来自医院、疾控中心等用户的需求增长较快,其中生物安全柜产品增长尤其显著,收入同比增长127%。②非抗击疫情直接相关类产品增速有所下降,但随着医院、药企、高校等机构的工作逐步恢复常态,业务正在恢复正常发展态势。其中,物联网方案业务收入同比增长252%,但由于报告期内用户主要聚焦防疫工作,项目的推进及实施均有所延期,导致环比增速放缓。在此影响下,公司一方面积极通过线上直播、云端体验等方式持续进行用户交互,应对短期波动;另一方面持续优化方案、不断提升竞争力,2月26日公司“面向智慧医疗的疫苗与血液大数据管理平台建设与应用示范项目”进入工信部“2020年大数据产业发展试点示范项目名单”,有利于后续业务的推广复制。海外市场:全球布局深化,业务增长提速,收入同比增长92.6%。通过公司供应链管理能力的持续提升,一季度在保证国内产品供应的同时,全力保障海外订单转化。其中,海外大项目持续发展,一季度收入同比增长232%;经销业务受益于全球网络体系拓展,同比增长29%,保持良好增长态势。2019年10月,《生物安全法(草案)》首次提请全国人大常委会审议,同时叠加此次新冠疫情,生物安全重要性有望得到进一步重视。生物安全领域的发展离不开相应仪器设备的支撑,其中,生物医疗低温存储设备、生物安全防护设备等作为基础仪器设备,是生物安全领域发展必不可少的重要组成,受益于下游应用场景的扩容、政策法规的持续利好以及技术的持续迭代进步,市场空间将进一步扩大。作为明星企业海尔旗下公司,海尔生物自上市起就备受资本关注,从2005年成立到2019年10月成功登陆科创板,一跃成为跨界转型医疗行业的优秀企业案例,俨然是国内医疗器械企业中的佼佼者。
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 黑龙江省农业农村厅印发《黑龙江省一级、二级动物病原微生物实验室备案管理办法》
    各市(地)农业农村局:按照《中华人民共和国生物安全法》《病原微生物实验室生物安全管理条例》等有关法律法规规定,为完善一级、二级动物病原微生物实验室备案工作制度,规范实验室备案内容与程序,根据《农业农村部办公厅关于加强一级、二级动物病原微生物实验室备案工作的指导意见》(农办牧〔2024〕2号)要求,省农业农村厅制定了《黑龙江省一级、二级动物病原微生物实验室备案管理办法》,现印发给你们,请做好一级、二级动物病原微生物实验室备案工作,做到应备尽备、底数明晰,确保实验室生物安全。黑龙江省农业农村厅2024年6月14日黑龙江省一级、二级动物病原微生物实验室备案管理办法第一条 为加强动物病原微生物实验室生物安全管理,有效防范化解实验室生物安全风险,规范动物病原微生物实验活动,保护实验室工作人员和公众健康,根据《中华人民共和国生物安全法》《病原微生物实验室生物安全管理条例》《农业农村部办公厅关于加强一级、二级动物病原微生物实验室备案工作的指导意见》等有关法律法规和政策措施的规定,结合本省实际,制定本办法。第二条 本办法适用于本省行政区域内的动物病原微生物实验室(以下简称“实验室”)的备案管理;水生动物病原微生物实验室及军队系统实验室除外。本办法所称动物病原微生物是指《动物病原微生物分类名录》确定的动物病原微生物范围。本办法所称实验室是指从事与动物病原微生物菌(毒)种、样本有关的研究、教学、检测、诊断等活动的一级、二级实验室(含移动式实验室)。第三条 市(地)农业农村主管部门具体负责本辖区内实验室的备案登记工作。第四条 备案实验室应当符合《中华人民共和国生物安全法》《病原微生物实验室生物安全管理条例》《实验室生物安全通用要求》(GB19489–2008)、《生物安全实验室建筑技术规范》(GB50346–2011)、《兽医实验室生物安全要求通则》(NY/T1948–2010)、《移动式实验室生物安全要求》(GB27421–2015)等规定,生物安全防护水平应当与其拟开展的实验活动相匹配。第五条 同一套生物安全管理体系下的不同实验间,作为一个实验室备案;采用不同生物安全管理体系的实验室,分别单独备案。实验室备案前,实验室设立单位应就实验室生物安全防护水平、实验室布局合理性、安全管理体系文件内容的完整性与规范性、实验室拟从事的动物病原微生物有关实验活动的生物安全风险等进行自我评估。第六条 新建、改建或扩建的一、二级实验室,应当在实验室建成后30日内向所在市(地)农业农村主管部门申请备案,并提交以下有关材料:(一)黑龙江省一级、二级动物病原微生物实验室备案信息表;(二)实验室或实验室设立单位的法人资格证明(复印件);(三)实验室设立单位的生物安全组织管理框架图(能明确实验室生物安全管理职责和管理关系);(四)实验室布局平面图;(五)实验室主要设施设备信息和检测报告;(六)实验室自我评估意见;(七)法律法规规定的其他有关材料。实验室应对其申报备案材料的真实性负责,不得弄虚作假。第七条 各市(地)农业农村部门收到申报备案材料后应当及时审查备案;材料不齐全或者不符合要求的,应当场退回或在5个工作日内一次性告知申报单位补正。对申报备案材料齐全的实验室,应当在收到材料后20个工作日内完成备案登记手续,并发放黑龙江省一级、二级动物病原微生物实验室备案凭证。备案凭证不得转让或买卖。第八条 实验室设立单位法定代表人、实验室负责人、实验室平面布局、重要设施设备(包括生物安全柜、压力蒸汽灭菌器、生物安全型离心机等)、实验活动范围等与生物安全相关的重大事项发生变更时,应当自变更之日起30日内向原备案部门提交更新备案信息申请。其中,实验室平面布局、重要设施设备、实验活动范围等发生变更的,需再次完成实验室自我评估并提交评估意见及相关材料。第九条 因不再从事实验活动或变更达不到相应等级要求等原因需要取消备案的实验室,设立单位应在30日内向原备案部门提交注销申请,由原备案部门注销备案。第十条 对不按规定进行实验室备案、申请材料不符合要求或申请备案的实验室达不到相应标准要求的单位,负责备案的部门应及时通知申请单位停止该实验室的实验活动。第十一条 本办法公布前已经建成未备案的一级、二级实验室应当在本办法公布之日起30日内,由实验室设立单位向备案部门申请备案。第十二条 移动式一级、二级实验室需异地使用的,应当提前将实验室原备案材料、工作地点、时间安排、实验活动内容、实验室负责人、工作人员等信息向原备案部门和使用地的市(地)农业农村部门报告,接受使用地农业农村部门的监督管理。第十三条 县级以上农业农村部门应当指导督促本辖区内实验室做好备案工作,加强对实验室生物安全监督检查,切实履行监督管理职责。市(地)农业农村部门应当每年12月中旬前将本年度实验室备案情况报省农业农村厅。第十四条 实验室应当依法开展实验活动。对不符合相应生物安全要求的实验室从事病原微生物相关实验活动的,依照《病原微生物实验室生物安全管理条例》第五十九条规定予以处理。第十五条 本办法自印发之日起施行。附件:1.黑龙江省一级、二级动物病原微生物实验室备案信息表2.黑龙江省一级、二级动物病原微生物实验室备案凭证相关附件: 关于印发《黑龙江省一级、二级动物病原微生物实验室备案管理办法》的通知.docx
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew. Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD325 ℃ 稳定20. J. Am. Chem. Soc. 2009, 131: 15834–15842MIL-101(Cr)(F)无液体水50 ℃XRD,吸附 N2,24 h 稳定18.Microporous Mesoporous Mater. 2009, 120:325–330MIL-101(Cr)(F)无液体水100 ℃XRD,吸附 N2,吸附 H2O7天 稳定17,Adv. Funct. Mater. 2009, 19:1537–1552.MIL-101(Fe)-NH2无液体水中PBS 或 EDTA37 ℃XRD不稳定34,J. Am. Chem. Soc. 2009, 131, 14261–14263MIL-101(Cr)-SO3H无液体水100℃ 24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水50 ℃XRD稳定 12 h28,J Mater Chem A, 2014, 2:193–203.MIL-101(Al)-NH2无液体水RTXRD,NMR, AAS稳定,5 min30,Chem Eur J, 2015, 21:314–323MIL-101(Al)-URPh异氰酸苯酯 液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 四川省农业农村厅关于加强一级、二级动物病原微生物实验室备案管理工作的通知
    各市(州)农业(农牧)农村局,有关高校、科研单位:为加强我省动物病原微生物实验室(以下简称“实验室”)生物安全管理,完善备案工作制度,规范备案内容与程序,按照《农业农村部办公厅关于加强一级、二级动物病原微生物实验室备案工作的指导意见》(农办牧〔2024〕2号)的要求,现就做好我省一级、二级实验室备案工作有关事项通知如下。一、总体要求贯彻落实习近平总书记关于生物安全的重要指示精神,严格遵守《中华人民共和国生物安全法》《病原微生物实验室生物安全管理条例》等有关规定,督促实验室设立单位主动备案;落实农业农村部门属地管理责任,切实加强我省实验室生物安全管理,做到应备尽备、底数明晰,确保实验室生物安全。二、备案范围从事与动物病原微生物菌(毒)种、样本有关的研究、教学、检测、诊断等活动的一级、二级实验室(含移动式实验室),均应向实验室所在地市(州)农业农村部门备案。三、备案内容实验室备案内容主要包括实验室及其设立单位基本情况、实验室负责人情况、工作人员情况、平面布局、主要设施设备、生物安全管理体系、拟从事的实验活动范围等。四、备案标准备案实验室应当符合《中华人民共和国生物安全法》、《病原微生物实验室生物安全管理条例》、《实验室生物安全通用要求》(GB19489-2008)、《生物安全实验室建筑技术规范》(GB50346-2011)、《兽医实验室生物安全要求通则》(NY/T1948-2010)、《移动式实验室生物安全要求》(GB27421-2015)等规定,生物安全防护水平应当与其拟开展的实验活动相匹配。同一法人管理下的多个实验室应分别向其所在地农业农村部门单独备案;同一套生物安全管理体系下的不同实验间,作为一个实验室备案;采用不同生物安全管理体系的实验室,分别单独备案。五、备案程序(一)开展自我评估。实验室备案前,实验室设立单位应就实验室生物安全防护水平、实验室布局合理性、安全管理体系文件内容的完整性与规范性、实验室拟从事的动物病原微生物有关实验活动的生物安全风险等进行自我评估。(二)提交备案材料。前期已完成备案的实验室须在本年度内按最新要求重新申请备案。新建、改建或扩建的实验室,设立单位应当在实验室建成后30日内(移动式实验室应在验收合格后30日内),向实验室所在地市(州)农业农村部门提交备案材料。备案材料主要包括:一级、二级动物病原微生物实验室备案信息表(参考附件1),实验室或实验室设立单位的法人资格证明(复印件),实验室设立单位的生物安全组织管理框架图,实验室平面布局图,实验室主要设施设备信息和检测报告,实验室自我评估意见,法律法规规定的其他有关材料。(三)发放备案凭证。市(州)农业农村部门在收到实验室备案材料后10个工作日内完成审核,对材料齐全且备案信息完整的予以备案,发放一、二级实验室备案凭证(参考附件2)。材料不齐全或者备案信息不完整的,应当场或在5个工作日内一次性告知申报单位需要补正的材料,申报单位应及时提交补正资料,经审核合格后,再予备案;审核不通过的,不予备案。(四)备案信息更改。实验室设立单位法定代表人、实验室负责人、实验室平面布局、重要设施设备、实验活动范围、实验室生物安全管理体系重大修订等与生物安全相关的重大事项发生变更时,应当自变更之日起30日内向原备案部门更新相关备案材料。其中涉及实验室平面布局、重要设施设备(包括生物安全柜、压力蒸汽灭菌器、生物安全型离心机、生物安全隔离器、活毒废水处理系统、新风系统等)、实验活动范围发生变更的,实验室设立单位应再次自我评估(必要时可邀请专家)并提交评估意见及相关材料。(五)备案信息注销。对拟关闭的实验室,应在停止一切实验活动之日起,10日内向原备案部门申请注销备案。同时,实验室设立单位须对实验室内外空间结构、附属设施及实验专用设施设备等进行规范处置,严防生物安全事件发生。六、监督保障(一)加强组织领导农业农村厅负责指导全省实验室备案工作,各市(州)农业农村部门要落实属地责任,做好辖区内实验室备案工作。市(州)、县(市、区)农业农村部门做好实验室备案工作的宣传、引导、督促和日常监管,加强与教育、卫生、科技、海关、林草、市场监管、执法、环保等部门沟通协调,共同做好实验室备案工作。(二)强化备案监管市(州)农业农村部门要建立监督检查制度,每年要组织开展对备案实验室的监督检查,发现问题及时提出整改意见,对整改后仍存在生物安全隐患的实验室,责令立即停止有关活动,直至整改验收合格。水生动物病原微生物实验室备案另行规定,军队实验室由中国人民解放军卫生主管部门负责监督管理。备案凭证应在实验室入口显著位置进行公示,接受社会监督。移动式实验室需异地使用的,应当提前将实验室原备案材料、工作地点、时间安排、实验活动内容、实验室负责人、工作人员等信息向原备案部门和使用地市(州)农业农村部门报备,接受使用地市(州)农业农村部门监督管理。(三)强化信息报送省动物疫病预防控制中心负责组织备案实验室信息的收集、汇总、审核、填报,完善全国动物病原微生物实验室信息系统数据。每年11月10日前,市(州)农业农村部门将本年度辖区内的实验室备案情况报省动物疫病预防控制中心,省动物疫病预防控制中心汇总后于每年11月20日前报农业农村厅畜牧兽医局。备案实验室应于每年11月底前,向备案部门提交年度工作总结,工作总结包括但不限于:生物安全管理组织机构变化情况、生物安全管理体系及制度落实情况、人员培训与变动情况、生物安全设施设备维保及安全性检测情况、实验活动开展情况、实验样品保存与管理情况、废弃物处理情况等。七、联系方式(一)农业农村厅畜牧兽医局联系人:庞潘飞联系电话:028-85587912(二)省动物疫病预防控制中心联系人:裴超信联系电话:028-85088043附件: 1.一级、二级动物病原微生物实验室备案信息表.docx 2.一级、二级动物病原微生物实验室备案凭证.docx 3.一级、二级动物病原微生物实验室备案信息汇总表.docx四川省农业农村厅2024年5月17日
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐)顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 丹纳赫一季度收入增长3.0% 预计二季度展示Cytiva收入
    p style="text-align: justify text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="text-indent: 2em "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/ba9672ca-da80-44eb-ad51-484a7e503ca0.jpg" title="丹纳赫logo.jpg" alt="丹纳赫logo.jpg"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="text-indent: 2em "Q1净收益为5.951亿美元/span/strong/span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "2020年第一季度的净收益为5.951亿美元/span/strongstrongspan style="text-indent: 2em ",收入同比增长3.0%至43亿美元,非GAAP核心收入增长4.5%。/span/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="text-indent: 2em "Q2非GAAP收入预计持平或下降10%,并将展示Cytiva收入/span/strong/span/pp style="text-align: justify text-indent: 2em "从2020年第二季度开始,公司strong计划展示包括Cytiva在内的核心收入增长/strong。预计2020年第二季度,strong包括Cytiva在内的非GAAP核心收入将大致持平或下降10%/strong。/pp style="text-align: justify text-indent: 2em "总裁兼首席执行官Thomas P. Joyce表示:“在如此空前的时间内,我们对第一季度的表现感到满意。在我们三个报告部门中的每个部门都取得了积极成果的推动下,我们实现了4.5%的核心收入增长,尤其是Cepheid、Radiometer、PALL和ChemTreat业务方面都表现强劲。我们也很高兴在3月31日结束对GE Biopharma业务(现称Cytiva)的收购。”/pp style="text-indent: 2em "span style="color: rgb(192, 0, 0) "strong对于新冠COVID-19疫情期间的表现很满意/strong/span/pp style="text-align: justify text-indent: 2em "乔伊斯继续说道:“我们为我们的团队对COVID-19大流行所带来的挑战做出的反应感到非常自豪。我们现在提供急需的诊断测试功能,并支持我们的客户在未来寻求新的治疗方法和疫苗。展望未来,我们感到有能力在这种不确定的环境中导航。我们相信,丹纳赫业务系统所带动的强大产品组合,出色的团队和严谨的执行力的结合,将在2020年及以后继续使丹纳赫脱颖而出。”/p
  • 钢研纳克上半年营收2.05亿,二季度经营数据较一季度明显提升
    p style="text-align: justify text-indent: 2em "日前,钢研纳克检测技术股份有限公司(以下简称:钢研纳克)发布2020半年度报告。上半年,公司实现营收2.05亿元,较去年同期下降13.02%;归属上市公司股东净利润0.22亿元,较去年同期下降25.78%。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "主要会计数据和财务指标/span/strong/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/ecac8209-89df-48b8-bf84-d8f261553bda.jpg" title="钢研纳克.PNG" alt="钢研纳克.PNG"//pp style="text-align: justify text-indent: 2em "报告期末,公司总资产10.33亿元,较去年同期增长3.99%;归属于上市公司股东的净资产为7.38亿元,较去年同期增长3.06%;归属上市公司股东的每股净资产为2.98元。/pp style="text-align: justify text-indent: 2em "报告期内,钢研纳克申请专利15项,其中国际发明1项,国内发明5项;获得授权专利7项,其中发明专利4项。公司获得各类省部级科技奖项共五项,其中包括冶金科学技术奖一等奖一项、北京市科学技术奖二等奖一项。/pp style="text-align: justify text-indent: 2em "钢研纳克表示,受新冠肺炎疫情影响,公司报告期内各项经营数据同比下降。2月份以来,钢研纳克以落实疫情防控 要求和保障员工健康安全为首要条件,逐步有序恢复经营生产。随着复工复产步伐加快,各业务板块生产经营全面恢复正常,市场需求情况明显回暖。公司二季度扭亏为盈,经营数据较一季度明显提升,收入、利润同比降幅逐月收窄,经营生产继续呈现向好态势。/ppbr//p
  • 珀金埃尔默公布2015年第一季度财报
    日前,PerkinElmer(珀金埃尔默)公布2015年第一季度财报。财报显示,PerkinElmer第一季度收入同比下降1%,按恒定汇率计算收入增长5%。  截至2015年3月29日,PerkinElmer 2015年第一季度的收入从前一年同期的5.306亿美元下降到5.269亿美元。调整后本季度收入为5.272亿美元,去年同期为5.321亿美元。  人类健康业务的本季度收入从去年的3.3亿美元降至3.261亿美元,下跌约1%;环境卫生业务收入只略微增长,从去年的2.006亿美元增至2.008亿美元。  PerkinElmer董事长、总裁兼首席执行官Robert Friel说,&ldquo 尽管收入下降,但是在所有主要地区每一个业务都经历了增长,来自欧洲的需求日益增长、整个亚太地区的需求也稳定增长。&rdquo   PerkinElmer本季度的有机增长为3%,其中,人类健康业务的有机增长为4%、环境卫生业务的有机增长为2%。首席财务官Frank Wilson补充说,PerkinElmer第一季度有机收入在美洲以中个位数增长、在欧洲以低个位数增长、在中国以高位数增长。  Frank Wilson补充说,PerkinElmer当季营收中,人类健康业务占62%、诊断业务占29%。  PerkinElmer本季度的净收益为4030万美元,每股0.36美元;前一年同期的净利润为3420万美元,每股0.30美元。  PerkinElmer的研发费用上涨9%,从2940万美元涨至3210万美元,而其销售、管理和一般费用下降了4%,从1.524亿美元降至1.459亿美元左右。  对于2015年第二季度,PerkinElmer预计收入在5.5-5.6亿美元之间,有机收入增长比率为3-4%。(编译:刘丰秋)
  • 大连化物所揭示二氧化碳高选择性电还原的“双通道”机理
    近日,大连化物所理论催化创新特区研究组(05T8组)肖建平研究员团队与电子科技大学夏川教授团队、中国科学技术大学曾杰教授团队合作在二氧化碳(CO2)转化研究中取得新进展,研发出铅单原子合金化的铜基催化剂(Pb1Cu),实现了CO2高活性、高选择性还原制备甲酸盐,并探究了该过程的理论机理。利用可再生能源进行CO2电还原是实现“双碳”目标的重要手段之一。甲酸是一种能量载体,也可作为燃料电池的液体燃料,通过CO2电还原制备甲酸是其资源化利用的重要研究方向。研究中,夏川团队和曾杰团队通过制备铅单原子合金化的铜基催化剂Pb1Cu,在实现CO2高效电还原制备甲酸盐的同时,保证了该铜基催化剂的高选择性和稳定性。肖建平团队进一步确定了Pb1Cu的催化机理及活性位点,揭示了Pb1Cu的高催化活性和高选择性的根本原因。肖建平团队建立了“双通道”二维反应相图,用于模拟CO2还原在不同催化剂表面的活性趋势变化。研究发现,不同于传统单一催化反应通道所建立的活性趋势,CO2电还原制备甲酸盐过程中存在羧酸根(COOH*)机理和甲酸根(HCOO*)机理,形成催化反应的“双通道”。因此,CO2电还原制备甲酸盐过程的活性趋势体现了双活性顶点的性质。通过反应相图活性趋势的研究,肖建平团队证明,CO2电还原制备甲酸盐反应中,Pb1Cu催化剂主要符合HCOO*机理,这说明更优的HCOO*吸附能是Pb1Cu催化剂表现出高CO2电还原活性的原因。此外,铜位点也被验证是Pb1Cu催化CO2电还原制备甲酸盐的活性位点。该研究为设计高活性和特定选择性电催化材料提供了新思路。相关研究以“Copper-catalysed Exclusive CO2 to Pure Formic Acid Conversion via Single-atom Alloying”为题,于近日发表在《自然-纳米技术》(Nature Nanotechnology)上。该工作的第一作者是中科大博士后郑婷婷,中科大博士研究生刘春晓,我所05T8组助理研究员郭辰曦。上述工作得到中科院洁净能源创新研究院合作基金、国家自然基金委、中科院B类先导专项“功能纳米系统的精准构筑原理与测量”等项目的支持。文章链接:https://doi.org/10.1038/s41565-021-00974-5
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制