当前位置: 仪器信息网 > 行业主题 > >

来源于酿酒酵母

仪器信息网来源于酿酒酵母专题为您提供2024年最新来源于酿酒酵母价格报价、厂家品牌的相关信息, 包括来源于酿酒酵母参数、型号等,不管是国产,还是进口品牌的来源于酿酒酵母您都可以在这里找到。 除此之外,仪器信息网还免费为您整合来源于酿酒酵母相关的耗材配件、试剂标物,还有来源于酿酒酵母相关的最新资讯、资料,以及来源于酿酒酵母相关的解决方案。

来源于酿酒酵母相关的资讯

  • 天木生物ARTP成功助力耐受高浓度甘蔗糖蜜酿酒酵母的选育
    本期为您推荐广西科技大学生物与化学工程学院牛福星副教授课题组发表在Microbial Cell Factories上面的文章:Key role of K+ and Ca2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses。本研究利用常压室温等离子体进行诱变,筛选出对不同胁迫因素(高渗透压、高醇、高温、高盐离子以及高浓度甘蔗糖蜜)分别具有鲁棒性能的酿酒酵母菌株。其中由此所选育的对高浓度甘蔗糖蜜具有鲁棒性能的酿酒酵母乙醇合成产量达到目前物理诱变高水平(111.65 g/L,糖醇转化率达到95.53%)。最后结合酵母的细胞形态、发酵产能以及组学分析,揭示了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制性因素是K+和Ca2+同时存在的影响。 生物基乙醇的合成原料有很多,从环保、经济、富民的角度研发是重点。我国是人口大国,每年由于食品添加、工业应用等所消耗的糖量位居世界前列。甘蔗是糖分提炼的主要原材料之一,在提料糖分的同时会产生糖蜜,而且早期研究数据表明产3吨糖的同时可产约1吨糖蜜。糖蜜是一种混合物,成分复杂,直接排放或者用于田间施肥是为浪费且会造成环境污染,而且是为资源利用的不充分。但是利用糖蜜(非粮食)生物资源进行酿酒酵母的乙醇合成,却可以在不断满足人们对乙醇用量需求的同时,助推国家绿色低碳能源发展。酿酒酵母利用糖蜜进行乙醇发酵的工艺已经比较成熟,但是在利用高浓度的糖蜜来生产高浓度的乙醇效率方面却是一个挑战,究其原因便是各种胁迫性因素的影响。但是从科学研究的角度确切的阐述哪种才是限制性的关键影响因素早期还未有研究报道。 研究人员借助ARTP(室温等离子体)诱变、适应性进化以及高通量的基于三苯基-2H-四唑氯化铵(TTC)及前体物丙酮酸(或丙酮酸自由基离子)与Fe3+发生络合反应呈现黄色的双重高通量筛选方法(Py-Fe3+)获取了分别对高浓度甘蔗糖蜜(总糖浓度达到300 g/L)以及蔗糖添加模型下的高温(37℃)、高醇(10%)、高渗透压(400 g/L可发酵总糖)以及高浓度K+(15 g/L)、Ca2+(8 g/L)、K+&Ca2+(15 g/L &8 g/L)发酵环境下的七株鲁棒型酿酒酵母菌株(图1、表1)。通过各自鲁棒型菌株在高浓度甘蔗糖蜜环境下细胞形态比较(图2),乙醇合成的产率以及细胞数量(图3、图4)、鲁棒型菌株比较基因组学、比较转录组学GO、KEGG分析研究,得出K+、Ca2+同时存在才是限制酿酒酵母高浓度甘蔗糖蜜乙醇发酵的主要因素。图1 实验流程 表1 在相同发酵条件下与野生型J108相比产量差距图2 在250 g/L糖蜜发酵不同菌株的细胞形态A:NGCa2+-F1 B:NGK+-F1 C:NGK+&Ca2+-F1 D:NGTM-F1图3 不同菌株的乙醇合成率及细胞数图4.在5L发酵罐体系中利用250 g/L甘蔗糖蜜发酵, 菌株NGTM-F1的乙醇产量达到111.65 g/L 总结:甘蔗糖蜜对细胞的影响不仅仅局限于高浓度发酵,在低浓度情况下同样会对细胞的生长造成一定影响。该项目的研究是为初次从科学研究的角度准确阐述了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制因素,其结果对于以甘蔗糖蜜作为底物的生物合成具有重要指导作用。文章链接:https://doi.org/10.1186/s12934-024-02401-5
  • 小型台式无掩膜光刻机制备微流控通道助力不同形貌酿酒酵母菌的有效分类和收集
    【引言】酿酒酵母菌是一种具有高工业附加值的菌种,其在真核和人类细胞研究等领域也有着非常重要的作用。酿酒酵母菌由于自身所在的细胞周期不同,遗传特性不同或是所处的环境不同可展现出球形单体,有芽双体或形成团簇等多种形貌。因此获得具有高纯度单一形貌的酿酒酵母菌无论是对生物学基础性研究还是对应用领域均有着非常重要的意义。 【成果简介】麦考瑞大学Ming Li课题组利用MicroWriter ML3小型台式无掩膜光刻机制备了一系列矩形微流控通道。在制备的微流控通道中,通过粘弹性流体和牛顿流体的共同作用对不同形貌的酿酒酵母菌进行了有效的分类和收集。借助MicroWirter ML3中所采用的无掩模技术,课题组轻松实现了对微流控传输通道长度的调节,优化出对不同形貌酵母菌进行分类的佳参数。 【图文导读】图1.在MicroWriter制备的微流控通道中利用粘弹性流体对不同形貌的酿酒酵母菌进行分类。(a)对不同形貌酿酒酵母菌,而非根据尺寸进行分类的原理图。微流控结构有两个入口,一个是用于注入酿酒酵母菌溶液,另一个用于注入聚氧乙烯(PEO)鞘液。除此之外,该结构还有一个微流控传输通道,一个扩展区和七个出口。所有的酵母菌初期排列在鞘液的边缘,在界面弹性升力和内在升力的共同作用下,酿酒酵母菌根据形貌在鞘液内被分类。(b)对酿酒酵母菌进行形貌分类的微流控通道设计图(左)和用MicroWirter ML3制备出的实际微流控通道(右)的对比。图中比例尺为10 μm。图2. 微流控传输通道的长度对不同形貌酿酒酵母菌分类的影响。(a)不同形貌的酿酒酵母菌在不同长度传输通道参数下的实际结果。黑色虚线代表传输通道的中心线。图中比例尺是50 μm。(b)不同形貌的酿酒酵母菌在侧向的分布结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。误差棒代表测量100次实验的分布结果。图3. PEO浓度1000 ppm,微流控传输通道长度15 mm,酵母菌流量为1μL/min, 鞘液流量为5μL/min的条件下不同形貌的酿酒酵母菌的分类和收集效果。(a)收集不同形貌酿酒酵母菌的七个出口。(b)不同形貌酵母菌在入口和出口的比较图。(c)实验表明不同形貌的酵母菌可在不同出口处进行收集。单体主要在O1出口,形成团簇的菌主要O4出口。(d)不同出口处对不同形貌的酿酒酵母菌的分类结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。(e)和(f)不同出口对不同形貌的酿酒酵母菌的分离和收集结果的柱状图。误差棒代表着三次实验的误差结果。 【结论】随着微流控在生物领域的应用逐渐增多,影响力逐渐扩大,如何快速开发出符合实验设计的原型微流控结构变得十分重要。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,灵活多变的光刻手段显得尤为重要。从上文中可以看出,MicroWirter ML3小型台式无掩膜光刻机可以帮助用户快速实现原型微流控结构的开发,助力生物相关微流控领域的研究。 【参考文献】[1]. Liu P , Liu H , Yuan D , et al. Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics[J]. Analytical Chemistry, 2021, 93(3):1586-1595.
  • 中关村量子生物农业产业技术创新战略联盟发布《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》 (征求意见稿)
    各有关单位、相关专家:由北京农学院、北京中农弘科生物技术有限公司、河北弘科荣达生物技术有限公司、安琪酵母股份有限公司、安徽东方新新生物技术有限公司、北京大北农科技集团股份有限公司、中国农业大学、铁骑力士食品有限责任公司共同起草的团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》已完成征求意见稿。根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的有关要求,现公开广泛征求意见。请各有关单位和专家认真审阅团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见稿及编制说明,并于2023年9月25日前将《征求意见表》反馈给联系人。同时欢迎与该项团体标准有关的高等院校、科研机构、相关企业、行业从业者等加入本标准的研制工作,若有意参与该项团体标准研制工作请与中关村量子生物农业联盟联系。联系人:刘运平联系方式:15011406045电子邮箱:uabi2007@163.com 中关村量子生物农业产业技术创新战略联盟2023年8月25日关于征求《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)意见的通知.pdf1.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿).pdf2.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)编制说明.pdf3.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见表.docx
  • 中关村量子生物农业联盟批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准
    各会员及相关单位:根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的规定,现批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》为中关村量子生物农业产业技术创新战略联盟团体标准,编号为T/QBAA 001—2023,本标准于2024年1月1日起实施,现予以公告。中关村量子生物农业产业技术创新战略联盟2023年12月31日关于批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准的公告.pdf
  • 中关村量子生物农业产业技术创新战略联盟立项《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准
    各有关单位:根据国家标准化管理委员会、民政部关于印发《团体标准管理规定》(国标委联[2019]1号)的规定和《中关村量子生物农业产业技术创新战略联盟团体标准管理办法(试行)》的有关要求,由北京农学院牵头申报的《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准经联盟标准化工作委员会及相关专家评审,符合立项条件,现批准立项。请各起草单位按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定和要求,严把质量关,加强组织协调,增强本标准的适用性和有效性,确保标准高质量,按期完成标准编制工作。同时欢迎与本标准有关的高校、科研机构、相关企业、使用单位等加入本批标准的起草制定工作。有意参与标准起草制定工作的请与联盟秘书处联系。联系人:刘运平,电话:15011406045电子邮箱 :uabi2007@163.com通讯地址:北京市海淀区苏家坨镇翠湖南路澄湾街19号院。中关村量子生物农业产业技术创新战略联盟2023年04月26日
  • 贵州茅台被指酿酒原料以劣充好滥用化学农药
    京华时报讯 集“中国有机产品”和“OFDC有机认证”于一身的贵州茅台一直以酿造高品质白酒著称,然而昨天有媒体质疑贵州茅台酿酒原料以劣充好、“有机”涉嫌造假、滥用化学农药。对此,茅台昨天在其官网上发声明回应,但内容含糊其辞,未正面回应媒体的质疑。  昨天有媒体报道称,茅台集团弥漫着化学农药味道的种植基地却顺利通过了南京国环的有机认证,摇身变为“茅台原料有机生态种植基地”,该基地产出的糯高粱和小麦也成了“有机产品”,以此为原料酿造的茅台酒及系列酒也就顺理成章成为了“绿色有机食品”。  对于上述质疑,贵州茅台昨天发布公告回应,称贵州茅台酒以高粱、小麦为主要原料,严格按照有机加工体系规范生产。公司制酒使用的“红缨子”高粱为赤水河流域原生品种,适合茅台酒多轮次蒸煮和发酵的工艺要求。目前茅台酒酿造用高粱全部来自在仁怀市及毗邻地区建设的有机高粱基地,小麦主要来源于黑龙江、河南等地,所有原料均通过了有机认证。对于媒体质疑的酿酒原料有机认证造假问题以及原料种植是否使用农药等问题,茅台未在公告中正面回应。  昨天下午,有媒体发布的从南京国环官网上的截图显示,贵州茅台酒股份有限公司有机认证的有效期为2012年10月2日。也就是说,茅台的有机加工厂认证已经过了有效期。记者昨晚9点多不断在南京国环官网的“证书查询”栏目输入“贵州茅台”字样查询,但一无所获,但在9点20分左右再次查询时,突然显示出茅台相关白酒获得的认证书信息,且有效期成了2013年10月2日。
  • 广东省级荔枝酿酒实验室在惠州挂牌
    广东省是全国荔枝生产大省,但由于加工技术跟不上,导致产业效益低迷。近日,一个由省级农业龙头企业———祯州集团建设的荔枝产业公共技术服务平台,法国杜比耐特(中国)荔枝酿酒实验室在惠东挂牌。  从2000年起,祯州集团就聘请法国顶级葡萄酒研究所开发荔枝酿酒,攻克荔枝酿酒专用酵母、荔枝酒留香技术和荔枝白兰地生物熟化等三项国际技术难题,并申请专利。这次成立了荔枝酿酒实验室,将为省发改委立项项目“10万吨荔枝饮品加工项目”提供技术支持。
  • 果酒酿造,菌种你选对了吗?
    p style="text-align: center "  img src="https://img1.17img.cn/17img/images/201905/uepic/fdf9030f-a194-485a-8d14-d05e30caef1b.jpg" title="酒.jpg" alt="酒.jpg"//ppbr//pp  酵母是果酒酿造的灵魂。在无氧条件下,由水果转化成果酒的过程中,酿酒酵母的作用至关重要。菌种不同,对酒的风味影响不同。/ppbr//pp  本实验检测5种酵母发酵后果酒的挥发性有机物,以此研究菌种不同对果酒风味的影响,希望对您有所帮助。/ppbr//pp style="text-align: center "  当当当当~海能实验室/pp style="text-align: center "  span style="border: 1px solid rgb(0, 0, 0) "基于GC-IMS技术分析不同菌种对果酒风味影响的研究/span/pp  span style="border: 1px solid rgb(0, 0, 0) "仪器与试剂/span/ppstrong/strong/ppstrong  1、仪器/strongbr//ppstrongbr//strong/pp  FlavourSpec® 风味分析仪/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/f19e03f0-2cf1-4701-a8b1-d33143800999.jpg" title="风味分析仪_副本.jpg" alt="风味分析仪_副本.jpg" width="600" height="419" border="0" vspace="0" style="width: 600px height: 419px "//pp style="text-align: center "  strongFlavourSpec® 风味分析仪/strong/ppstrongbr//strong/pp strong 2、样品信息/strong/ppstrongbr//strong/pp  5种不同菌种发酵的果酒/ppbr//pp  span style="border: 1px solid rgb(0, 0, 0) "实验方法/span/ppbr//pp  strong1、实验目的/strongbr//ppstrongbr//strong/pp  通过分析不同菌种发酵的果酒样品,研究不同菌种对果酒风味的影响,用于选择最佳的发酵菌种 /ppbr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/eb1d4eb5-88a4-4d66-b765-f894157449e6.jpg" title="表格_副本.jpg" alt="表格_副本.jpg"//ppbr//pp  注:每个样品做两个平行样,编号分别为A、B/ppbr//pp  strong2、实验过程/strong/ppbr//pp  移取1mL酒样置于20mL顶空进样瓶中,用4mL蒸馏水进行稀释,60℃孵化20min后进样分析。/ppbr//pp  span style="border: 1px solid rgb(0, 0, 0) "数据与讨论/span/pp  /ppstrong  1. 直接对比5种酵母发酵对果酒挥发性有机物差异变化(Reporter插件)/strongbr//ppstrongbr//strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/251d37d5-7bc7-499c-a6bf-c25c257aeadb.jpg" title="图1. 不同酵母发酵果酒的气相离子迁移谱图.jpg" alt="图1. 不同酵母发酵果酒的气相离子迁移谱图.jpg" width="600" height="278" border="0" vspace="0" style="width: 600px height: 278px "//strong/pp style="text-align: center "  图1. 不同酵母发酵果酒的气相离子迁移谱图/ppbr//pp  说明:/pp  1) 纵坐标代表气相色谱的保留时间(s),横坐标代表离子迁移时间(ms) /pp  2) 整个图背景为蓝色,横坐标1.0处红色竖线为RIP峰(反应离子峰,经归一化处理)/pp  3) RIP峰两侧的每一个点代表一种挥发性有机物。颜色代表物质的浓度,白色表示浓度较低,红色表示浓度较高,颜色越深表示浓度越大/ppbr//pp  为了更好地比较挥发性有机物的变化情况,框选出这些挥发性有机物的峰,形成样品指纹图谱进行对比。/ppbr//pp  strong2、5种酵母发酵果酒挥发性有机物指纹图谱对比(Gallery Plot插件)/strong/ppstrongbr//strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/76d87b1d-f411-439e-aac8-20b35338f464.jpg" title="图2. 不同酵母发酵果酒的挥发性有机物指纹谱图.jpg" alt="图2. 不同酵母发酵果酒的挥发性有机物指纹谱图.jpg" width="600" height="120" border="0" vspace="0" style="width: 600px height: 120px "//strong/pp style="text-align: center "  图2. 不同酵母发酵果酒的挥发性有机物指纹谱图/ppbr//pp  说明:/pp  1) 图中每一行代表一个样品中选取的全部挥发性有机物信号峰/pp  2) 图中每一列代表同一挥发性有机物在不同样品中的信号峰/pp  3) 从图中可以看出每种样品的完整挥发物信息以及样品之间挥发性有机物的差异/pp  由于图谱太小,现将部分数据截取放大进行分析:/ppbr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/09c09c6a-6f74-4f37-b2cd-1689c080ba0e.jpg" title="图3. 不同酵母发酵果酒的部分挥发性有机物指纹谱图_副本.jpg" alt="图3. 不同酵母发酵果酒的部分挥发性有机物指纹谱图_副本.jpg" width="600" height="259" border="0" vspace="0" style="width: 600px height: 259px "//pp style="text-align: center "  图3. 不同酵母发酵果酒的部分挥发性有机物指纹谱图/ppbr//pp  由图3分析知:/pp  1) 区域A标出的挥发性有机物如acrolein(丙烯醛)、propanal(丙醛)、1-pentanol(丙醇)、1,8-cineole(1,8-桉树脑)、pentanal(戊醛)等物质随着5种酵母的不同,发酵后果酒中这类挥发性有机物的含量逐渐增加,其中红框圈出的物质在1号、2号和3号酵母中的含量较低,而在4号和5号酵母发酵的果酒中含量最高。/pp  2) 上图中物质如2,3-pentandione(2,3-戊二酮)、heptanal(庚醛)等物质基本上不随酵母种类变化而改变,此类物资可能来源于基质 /pp  3) 由上图分析可知,4号和5号酵母发酵的果酒风味最为相似,与前三种酵母发酵的果酒风味差异较大。/ppbr//pp  综上分析,4号和5号酵母发酵的果酒风味最为相似。/ppbr//pp  strong3、5种酵母发酵果酒的聚类分析(动态主成分分析PCA)/strong/ppstrongbr//strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/5d12362e-89bb-4a3d-9468-d6e99582278d.jpg" title="图4. 不同酵母发酵果酒的PCA分析.jpg" alt="图4. 不同酵母发酵果酒的PCA分析.jpg" width="600" height="325" border="0" vspace="0" style="width: 600px height: 325px "//strong/pp style="text-align: center "  图4. 不同酵母发酵果酒的PCA分析/ppbr//pp  选取所有峰进行PCA分析,用不同的颜色代表不同的样品,从上图可知:/pp  1) 4号和5号酵母发酵的果酒相似度最高,聚类在一起 /pp  2) 4号和5号酵母发酵的果酒与1号酵母发酵的果酒在PCA上距离最远,即风味差异最大 /pp  3) 1号、2号、3号酵母发酵的果酒风味各异 /ppbr//pp  strong讨论/strong/ppstrongbr//strong/pp  使用G.A.S.公司生产的FlavourSpec® 风味分析仪,仪器无需真空且无需样品前处理,经顶空进样后可快速检测不同酵母发酵样品中的挥发性有机物,经过软件分析,可得到以下信息:/pp  1、果酒发酵过程中,部分挥发性有机物不随酵母种类的不同而变化,此类物质可能来源于果酒基质本身,即此类物质保留了果酒原有的风味。/pp  2、基质相同的果酒,经过不同酵母发酵后,酒的风味明显不同,其中1号、2号和3号酵母发酵的果酒风味各异,与感官评价相结合,可以用于选择风味最好的酵母类型用于果酒的发酵 /pp  3、4号和5号酵母发酵后,果酒的风味非常相似,即选择4号和5号酵母对果酒的发酵影响差异最小,若酵母的价格存在差异,可以用于指导生产选择价格低廉的酵母,节省成本。/ppbr//p
  • 酿酒行业的N/蛋白质解决方案——意大利velp凯氏定氮仪和杜马斯燃烧定氮仪
    酿酒行业的N/蛋白质解决方案——意大利velp凯氏定氮仪和杜马斯燃烧定氮仪酿造业在全球食品和饮料市场上扮演着重要角色。事实上,啤酒与水和茶一样,是最广泛消费的三大饮料,其使用的证据可以追溯到埃及时代。啤酒的生产是基于用酵母菌发酵来自淀粉的糖类,主要是大麦(虽然也可以使用其他谷物)。酿造的基本原料是水、麦芽和啤酒花,以增加啤酒的风味。 酿造过程一般包括从大麦发芽开始到瓶装啤酒的包装和销售等几个步骤。氮含量和蛋白质含量的测定是对各个酿造步骤有很大影响的基础性检测。对进厂原料(大麦和麦芽)正确特性的评价与氮和蛋白质含量有关。此外,酒精的生产与酵母对氮的吸收有严格的联系,而酵母需要制氮蛋白和含氮细胞成分。因此,在酿造过程中对蛋白质含量的监测对保证用于将糖类转化为乙醇和二氧化碳的酵母菌的存活、生长和生产效率非常重要。此外,蛋白质含量也是评价啤酒质量的重要标准:水溶性大麦蛋白对其顶端泡沫的形成、稳定性和质地起着重要作用。VELP Scientifica是全球高品质分析仪器的解决方案供应商,为所有从事酿造行业的公司提供氮/蛋白质测定。我们生产N/蛋白测定的两种官方方法的仪器和耗材。凯氏定氮法和杜马斯燃烧法,任何啤酒厂和服务实验室都可以从VELP的解决方案中受益,在准确性、可靠性和自动化水平方面满足多种要求。
  • 葡萄酒酿造过程中,何时采摘?如何控制发酵?何时罐装?
    葡萄酒起源于公元前6世纪的欧洲大陆,是西方酒中普及程度很高的一种传统酒类,主要产区在欧洲的西班牙、法国、意大利等。传统的葡萄酒生产,尽管感知始终是生产决策的核心,但随着科技的发展,快速的质量分析为葡萄酒的生产过程控制提供了质量、风味参数可量化的新视角,提高生产标准化和精准度,帮助酿酒商掌控和控制酿造过程,保持产品质量稳定和独一无二的风味特性。葡萄酒生产过程中,何时采摘?如何控制发酵?何时罐装?20年欧洲葡萄酒酿造行业经验与分析数据相结合,福斯OenoFoss&trade 2 葡萄酒质量分析方案,10ml样品回答所有问题!采用傅里叶变换红外(FTIR)技术。多年与欧洲葡萄酒酿造企业合作,超过20年来自世界各地的葡萄生长季节和品种代表性数据库适用于葡萄酒成品和未发酵的葡萄汁,无需对发酵中的葡萄汁或起泡葡萄酒进行脱气处理2分钟同时获得多项关键参数:葡萄糖、苹果酸、pH、挥发酸、总酸、总糖、果糖、密度、乙醇、酒石酸、乳酸等自动分析工作,自动备份和报告,确保数据安全、可追溯和可使用何时采摘?OenoFoss&trade 2帮您做出最佳采摘决策对葡萄的快速分析让您能够从观察期开始一直到采摘期,跟踪葡萄成熟度。通过跟踪葡萄糖浆中的果糖、葡萄糖、总糖等参数,获得糖和酸之间的平衡,指导在葡萄最佳成熟期进行采摘。通过不同阶段的数据分析,全面掌握葡萄的生理成熟度以及影响葡萄酒最终质量的参数特性。关键参数:果糖、葡萄糖、酒石酸、苹果酸、总酸筛查劣果,优化种植快速分析有助于跟踪微生物与葡萄之间的相互作用。通过日常的分析数据,可及时筛查出劣质葡萄,避免劣质葡萄进入后续生产环节。例如:乙醇等代谢物的分析追踪。关键参数:甘油、葡萄糖酸、乙酸、乙醇如何控制发酵过程?可量化的感官参数,OenoFoss&trade 2对发酵有独到的见解在酿造发酵过程中,跟踪酒精与苹果酸乳酸发酵。酿造商可以检查酵母是否具有生长所需且适当的营养的物质。在发酵初期,通过检测酵母可同化氮,及时指导向缺氮葡萄汁中调整补充氮源,保障发酵充分进行。对苹果酸乳酸发酵,通过快速分析,跟踪苹果酸向乳酸的转化,掌握和控制发酵进程。关键参数:酒精、同化氮、苹果酸、乳酸、乙醇、总糖何时罐装?可靠的分析数据实现理想的混合和装瓶确保装瓶时葡萄酒质量稳定性和一致性。2分钟完成所需参数的快速检测,以最少的管理工作对成品葡萄酒进行适宜的混合、装瓶和质量合格记录。关键参数:葡萄糖、果糖、pH、乙酸、乙醇、苹果酸、总酸点击左下角阅读原文进入福斯官网观看西班牙葡萄酒酿造商采访视频,来了解一下Tofterup兄弟在西班牙葡萄酒家族产业是如何使用福斯OenoFoss&trade 2葡萄酒分析方案进行葡萄酒生产质量控制。
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • 中国酿酒工业低碳体系首个定点试点企业为青啤
    全国两会热议“低碳”话音未落,企业已经在用实际行动探索“低碳管理”方式。记者昨日获悉,青岛啤酒已经与中国标准化研究院、中国质量认证中心签定了啤酒行业第一份“低碳研究协议”,这项研究将提供出啤酒生产过程中产生的温室气体数量,最终为企业寻找到更加环保的生产模式提供帮助。  青岛啤酒与研究机构签订的分别是“温室气体盘查项目”咨询协议与“温室气体审定与核查”认证协议。中国酿酒工业协会秘书长王琦,中国标准化研究院院长王忠敏,中国质量认证中心主任王克娇 青岛啤酒股份有限公司总裁孙明波,制造中心总裁樊伟,副总裁姜宏出席了签字仪式。  仪式上,由青啤公司总裁孙明波与中国质量认证中心主任王克娇共同为青岛啤酒二厂“中国酿酒工业 低碳体系(国际标准ISO14064)定点试点单位”揭牌,这不仅是国内啤酒行业是第一家,更是国内酿酒行业的第一家。据王克娇主任介绍,之所以选择青岛啤酒作为试点单位,正是看中了青岛啤酒作为是中国酿酒行业的绿色标杆企业,近年来在大力推进高效低耗啤酒酿造技术的开发与应用做出的努力,以及在低碳领域的巨大成就和发展潜力,希望青啤公司利用自身的社会影响力不断宣传节能环保知识,带动整个社会的低碳进程。  据了解,“温室气体盘查”是针对企业所有可能产生温室气体的来源,进行排放源清查与数据搜集,以了解企业温室气体排放源及量化所搜集的数据信息,是迈向实现碳管理的第一步。“温室气体审定与核查”则是由“温室气体盘查”的第三方对盘查所得出的数据信息的担保陈述提供正式的书面声明。目的是增强社会对温室气体的减排造成气候改变主张的信心,提供声明的本身,也证明声明者在履行环境保护的责任,并且在规范管理、公正、和谐的基础上提供必要的担保水平。而此次青啤公司选择国内“组织温室气体盘查”权威机构中国标准化研究院进行盘查,中国质量认证中心进行审定与核查表明了公司全面进行低碳管理的决心。  中国标准化研究院院长王忠敏表示,作为国内最权威的“温室气体减排技术服务中心”,中标院下的资源与环境标准化研究所与青啤公司签定双方合作协议,目的是通过4个月的时间完成青岛啤酒二厂的温室气体盘查工作,形成完整的企业温室气体清单报告,并由中国质量认证中心完成核查,为青啤公司下一步“碳足迹”奠定数据基础。青啤公司作为国内啤酒行业的领头人,强调低碳的方式运营对引导全行业低碳生产、加速国家节能减排进程具有重大的指导意义。  青啤公司制造中心总裁樊伟在接受采访时详细介绍了青啤公司未来三年的低碳规划:未来三年计划投资1.24亿元用于节能减排项目,可实现减排二氧化碳2.96万吨,减少沼气排放1.8万M3 节电140万千瓦时 节标煤1.9万吨,啤酒生产综合能耗每年降低4.5%,未来三年单位啤酒综合能耗累计下降13%。他强调,青啤公司希望以“低碳管理”为契机,依托于国家啤酒行业重点实验室的技术力量,进一步促进行业的技术革新,提升公司节能降耗的能力,从而最终催生企业运营模式的升级,更希望能够通过推广青啤公司在低碳方面的生产管理经验,引导中国更多的啤酒企业加入到低碳发展的潮流当中,为中国企业承担企业的社会责任提供更多的参考和模板。
  • 施一公团队Science再发文 报道酵母剪接体三维结构
    p  2016年12月16日,清华大学生命学院、结构生物学高精尖创新中心施一公教授研究组于《科学》(Science)杂志就剪接体的结构与机理研究再发长文(Research Article),题为《酵母剪接体处于第二步催化激活状态下的结构》(Structure of a Yeast Step II Catalytically Activated Spliceosome),报道了酿酒酵母(Saccharomyces cerevisiae)剪接体在即将开始第二步剪接反应前的工作状态下的三维结构,阐明了剪接体在第一步剪接反应完成后通过构象变化起始第二步反应的激活机制,从而进一步揭示了前体信使RNA剪接反应(pre-mRNA splicing,以下简称RNA剪接)的分子机理。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(图1)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/0e590db1-7664-40b3-9508-9269cc1b944d.jpg" title="201612161410211731.jpg"//pp style="text-align: center "图1 基因剪接反应示意图(图片来源:《Cell》)/pp  这两步化学反应在细胞内是由一个庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为B、Bact、B*、C、P、ILS等若干状态。获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  2015年8月,施一公研究组率先突破,在世界上首次报道了裂殖酵母剪接体处于ILS状态的3.6埃高分辨率结构。2016年7月22日,施一公教授研究组在《科学》在线发表背靠背长文,首次报道了酿酒酵母剪接体分别处于激活状态(activated spliceosome,又称为Bact complex)和第一步催化反应后(catalytic step I spliceosome,又称为C complex)的近原子分辨率的剪接体结构,首次完整地展示了第一步转酯反应前后pre-mRNA和其中起催化作用的snRNA的反应状态,以及剪接体内部蛋白组分的组装情况。但是对于剪接体催化第二步转酯反应的细节,至今没有高分辨率的结构加以佐证。/pp  在最新发表的《科学》长文中,施一公教授研究组捕获了性质良好的酿酒酵母剪接体样品,并利用先进的单颗粒冷冻电镜技术和高效的数据分类方法,重构出了总体分辨率分别为4.0埃的冷冻电镜结构,首次报道了酵母第二步催化激活状态下的剪接体结构。该结构的解析,进一步补充了mRNA剪接过程的关键信息,描述了从第一步转酯反应到第二步转酯反应过程中,剪接体催化反应活性中心内部组分的变化,以及关键蛋白的参与情况,为理解第二步反应所需的3’剪接位点是如何进入活性位点提供了重要的结构基础。值得关注的是,该结构的催化核心区域的分辨率达到3.5埃,第一次展示了转酯反应进行中的关键结构信息,填写了第二步转酯反应细节信息的空白。/pp  2015年8月至今,施一公教授研究组共报道了剪接反应中5个关键状态剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。/pp  施一公教授为本文的通讯作者 清华大学生命学院博士后结构生物学高精尖创新中心卓越学者闫创业、医学院四年级博士生万蕊雪以及生命学院二年级博士生白蕊为该文的共同第一作者 生命学院二年级博士黄高兴宇参与了这项研究 电镜数据采集于清华大学冷冻电镜平台,计算工作得到清华大学高性能计算平台、国家蛋白质设施实验技术中心(北京)以及荣之联董事长王东辉先生的支持。本工作获得了北京市结构生物学高精尖创新中心及国家自然科学基金委的经费支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/265b7d28-fd8c-4b5c-b254-723cb115e514.jpg" title="201612161410211270.jpg"//pp style="text-align: center "图2 C* complex三维结构示意图/ppbr//p
  • FDA食品添加剂法规允许直接添加维生素D2酵母
    美国食品药物管理局(FDA)近日修订了美国食品添加剂法规,允许安全使用维生素D2面包酵母(vitamin D2 bakers yeast),并将其作为维生素D2的来源和膨松剂,但必须满足以下条件:(1)维生素D2面包酵母是由面包酵母(酿酒酵母Saccharomyces cerevisiae)暴露于紫外线下产生的物质,是面包酵母中内源性麦角脂醇(ergosterol)经过光化学反应转化成维生素D2(也被称为麦角钙化甾醇(ergocalciferol)或(9,10-seco(5Z,7E,22E)-5,7,10(19),22-ergostatetraen-3-ol)) (2)维生素D2面包酵母可单独作为一种活性干酵母浓缩物,或与传统的面包酵母进行组合 (3)这种添加剂可用于酵母发酵的烘焙食品和烘焙混合以及酵母发酵的烘焙小吃食品,但在每100克成品食品中维生素D2的含量不得超过400国际单位(International Units) (4)为了确保添加剂的安全使用,除了《联邦食品药品和化妆品法规》所要求的其他信息外,食品添加剂容器标签必须要有适当的使用说明,以确保所生产的最终产品符合上述第(3)点描述的限制要求 (5)含有该添加剂的加工食品标签必须按照成品食品中含量递减的合适顺序,在成分声明中标注添加剂名称:“维生素D2面包酵母”。  为了合理确立在预期使用条件下某种食品添加剂的无危害性,FDA考虑了该添加剂的人类饮食预期的摄入量、添加剂的毒理学数据和其他提供给该局的相关信息。FDA还将个人来自所有食品源的添加剂的预计每日摄入量(estimated daily intake,EDI)与根据毒性数据建立的可接受摄入量水平进行了对比。EDI由基于拟议用于特定食品中的添加剂数量预测和来自所有食品源的添加剂数量决定。该机构通常将百分之九十消费者使用的食品添加剂的EDI来衡量高慢性饮食的摄入量。
  • 酿酒工业的好伙伴,安东帕酒类分析仪,为您提供全面解决方案
    安东帕集团参与在德国柏林开设的实验与酿酒学院项目(VLB),在今年10月竣工完成并举行了开幕仪式。经过了八年的规划和建设周期,追溯至1883年的教育与历史的融入,VLB现成为世界领先的酿造,啤酒和饮料行业的培训研究中心。现代化的实验设施,办公室,饮料技术试验工厂等,可供啤酒和饮料工业的进一步发展和研究。安东帕集团为VLB提供最新的实验室分析仪器,并有500多位国际酿酒工业的嘉宾参与开幕式。德国是啤酒酿造艺术的中心,而安东帕公司结合几十年的生产、制造经验,致力于向啤酒饮料行业的客户提供量身定制的高品质解决方案和先进的测量技术已有30多年了,并已与众多顶级企业成为相互信任的合作伙伴。升级到新的配置 – 增压啤酒分析系统 PBA-B M根据需要恰如其分地为您配置系统,不会缺少也不会冗赘。您可通过添加二氧化碳分析仪以及穿刺进样装置来扩展系统,这样就不需要样品前处理而能直接从成品包装中取样进行分析,高效节能。不需要进行样品制备传统分析方法要求在测量前对样品进行脱气处理,因为溶解的CO2很容易导致测量结果错误。PBA-B M 系统可直接将成品包装中的样品进样至测量池。借助压力驱动的进样方式及自动CO2修正功能,让宝贵的时间不会浪费在样品制备上。总氧仪安东帕最新产品总氧分析系统,可安全、快速、准确分析实验室中各种包装类型的总氧含量,模块化的组合理念,使得设备的价格及耗材成本得到有效控制。便携式二氧化碳和溶解氧一体机安东帕便携式二氧化碳和溶解氧一体机适用于测试生产现场大罐中的发酵液、清酒等样品。仪器采用安东帕最新专利技术多倍体积膨胀法,可有效消除杂质气体影响,使测试数据十分稳定且准确度高。更有实用的防水防摔性能可完美应对恶劣的测试环境。
  • 省时省力省心!看DMA 35如何完成发酵液监控的日常三 “省”
    啤酒发酵为什么要监控发酵过程在啤酒行业中,发酵是真正将麦汁变为啤酒的重要步骤,其本质是酵母消耗麦芽糖化后的糖并产生酒精和二氧化碳的过程,也称为降糖过程。降糖数据跟踪对于啤酒生产极为重要,其不仅可以监控麦汁的糖度是否即将达到合适的浓度,而且能够确认发酵曲线是否按照预期工艺进行的,进而达到控制温控能耗和提升发酵罐的周转利用率的目的。而降糖数据的持续变化直观地体现在密度变化上,密度是量化啤酒发酵程度的重要指标。发酵过程的测量方法随着啤酒工业的发展,发酵过程的各种控制工艺趋于自动化,给降糖数据的快速且持续的监控带来了一定的挑战。液体比重计传统的发酵过程监控方法是通过液体比重计来实现的,辅以一系列换算即可从密度获得糖浓度,然后经过人工数据记录与处理后,实现对特定发酵罐中的麦汁降糖监测,并及时进入后酵流程。但是,即便是经验丰富的酿酒师,也无法通过娴熟的操作加快降糖数据的测量与处理的效率,原因主要来源于:液体比重计的个体使用差别大,读数习惯也不尽相同液体比重计的使用与保管需要格外小心,避免破损样品温度的变化增加了密度测量值的不可控因素繁琐的密度-浓度数据计算与高度依赖责任心的持续准确记录 那么,如何加快发酵过程中糖浓度的监测效率呢?Go Digital! 这就是安东帕提供的答案DMA 35作为一款手持式的数字密度计轻巧易携带,能够在酿造现场实现发酵液残糖的快速测量。Go Digital! DMA 35相较于传统的液体比重计,DMA 35将给酿酒师们带来了以下的便利:❤ 无需繁琐培训,仅需一步操作,即可完成包括密度、糖度和温度的数字式测量❤ 坚固耐用,IP54级的防护等级,适用于各种环境的挑战❤ 具备温度补偿功能,弥补温度变化引起的测量误差❤ 一键数据存储,轻松应对多发酵罐多次样品测量带来的降糖数据流 不仅如此,安东帕DMA 35还内置了降糖曲线绘制功能,使得发酵过程能够以图形化方式进行呈现,让降糖预测一目了然,为酿酒师们对发酵过程的预测提供了强有力的支持! 如果您想体验将超过50年研发经验握在手中的感觉,请点击下方试用按钮进行试用申请!免费试用!就是现在,开启您的啤酒分析之旅奥地利安东帕长期致力于为全球啤酒酿造伙伴提供多达15种关键质控参数的精确分析解决方案,通过结合25种实验室仪器与在线仪表,旨在提高啤酒酿造过程中质量控制的效率,简化测试步骤以实现生产率的提升!全方位啤酒分析欲了解更多啤酒行业解决方案,请点击“阅读原文”。
  • Reflectoquant:葡萄酒酿酒业测试专用产品
    葡萄的丰收真的意味着从此高枕无忧? Reflectoquant 葡萄酒酿酒业测试专用产品 葡萄酒的酿造过程需要您全心全意的关注 优质的葡萄酒是由最佳的环境打造的,比如需要不同种类的葡萄的最佳配比、适宜的地理位置、土壤结构以及生长阶段的气候条件。而葡萄种植者的技术也是一个重要的影响因素,例如修枝、土壤的管理、簇叶的修剪以及葡萄的采摘,从而确保收获时质与量的双收。然而,酿造葡萄酒的最高工艺要求却是在酿酒专用的酒窖里展现的。 当葡萄充分吸收了阳光雨露成熟之后,就会立刻被采摘下来,进入到酿造的流程中。从葡萄被压榨开始,就需要酿酒师运用其知识与技巧将质量上乘的葡萄转变成为最优质的葡萄酒。 观察、闻味、品尝并且检验 迄今为止,酿酒师在葡萄酒酿造过程中最常用的检查方法仍是使用其感官,即使采用最先进的工业技术也无法取代酿酒师丰富的知识与经验。但是,科学技术还是可以协助酿酒流程的进行以确保每个过程的完善。 默克公司出品的Reflectoquant 反射仪的快速检测系统能在这一技术领域中得到充分的应用。此系统能够提供酸度、总糖、pH值、二氧化硫、酒精含量等多项数据的精确数值,以支持用传统的视觉、嗅觉和味觉测试的方法。这样的话,葡萄酒酿造过程的监控就变得更加让人安心与可信。 在您运用您知识的同时,新型葡萄酒监测系统为您提供详实的数据与资料 用于葡萄酒酿造过程中的Reflectoquant 反射仪系统能够助您在酿酒过程中及时进行各种重要的处理以使您生产出最完美的葡萄酒。 了解、决定与付诸行动—— 弹指之间即可完成 在以往的酿酒工艺中,要想及时获得可信的第一手数据资料是很难做到的。现在,当您使用了默克公司出品的 Reflectoquant反射仪系统之后,您就能够随时随地快速掌控酿酒过程中的每一个细节。 压榨葡萄过程的检测——您是否加入了适量的二氧化硫? 使用默克的Reflectoquant 测试条是检测二氧化硫含量的最简便的方法。从葡萄被压榨开始直到第二次澄清的整个过程,它都能为您提供及时的指示。虽然加入适量二氧化硫的目的是为了抑制细菌的增长并防止氧化,但我们相信,它亦能为获得葡萄酒更佳的口感提供不少帮助。 未发酵的葡萄汁的检测——酸度、pH值、糖份与酒精的含量您监控了吗? 在对于葡萄酒质量的分级时,必须对其酸度与pH值的数值进行精确的记录,必要的时候还可能需要降低酸度或者添加糖份。默克的Reflectoquant 仪器能让您在使用时无需采用复杂与昂贵的检测手法就能得到整个酿酒过程中的酸度、pH值、糖含量与酒精浓度的精确数据。 发酵过程——需要降低酸度吗? 默克的Reflectoquant 测试条能迅速地为您提供总酸度、苹果酸含量、酒石酸含量和乳酸的含量的数值。比如在葡萄酒的酿造过程中被检测出酸度超标,这时您就需要具体的处理未发酵的葡萄汁或是正在酿造的葡萄酒以降低酸度。 第一次澄清与存储——二氧化硫含量是否适量? 为确保二氧化硫含量的达标,必须重复测试葡萄酒中的硫含量以得到可信的数据。默克的Reflectoquant 反射仪能及时的为您提供您所需要的结果。 第二次澄清——二氧化硫的含量是否达到最佳?还需要添加糖份吗? 在第二次澄清时,您可使用默克的Reflectoquant 测试条来检测硫含量以及残留的糖含量。 简便而又完美的质量控制测试助您大获全胜 您为制造不易变质的葡萄酒提供了良好的环境,并且已经创造出了一件真正的杰作。 默克与您携手共同努力,悉心呵护,严格监控酿造葡萄酒的每一道工序,以期将最优秀的呈现给质量监控委员会与葡萄酒鉴赏家们。 我们相信,您酿造出的集色香味的完美融合于一体的葡萄酒一定能够经得起您最严格的评审。 产品一览 RQflex 系列反射测试仪及相关产品 订货号 仪器名称与相关信息 1.16970.0001 RQflex10 普通型多参数反射仪 性能与配置 含试纸条适配器和仪器校正包;双光束测试,保证结果的准确性;可同时设置5种测试方法;最多可存储50组测量结果(时间、日期、测试参数和结果),带PC接口。批次试纸特性的校正功能(条形码技术),使用电池供电,仪器及相关试纸条都有详细的说明书 1.16998.0001 RQdata数据传输软件和数据线 1.16957.0001 RQcheck仪器检测包 1.17990.0001 Reflectoquant 样品稀释套装 1.17992.0001 Reflectoquant 活性炭脱色剂,包装:4 x 9 g,使用次数 100 1.17964.0001 RQeasy Malic 果酸 单参数测试仪 250组数据储存能力(时间、日期、测试结果),批次试纸特性的校正功能,使用3V锂电池操作,仪器及相关试纸条都有详细的说明书 1.17965.0001 RQeasy Malic 果酸 单参数测试仪专用测试条,5-60mg/l, 50次测试 Reflectoquant反射仪专用测试条——产品监控 订货号 名称 测试项目 测试量程mg/l 测试次数 1.16130.0001 Reflectoquant Alcohol Test 乙醇,酒精 20-200 50 1.16892.0001 ReflectoquantAmmonium Test 氨,氮 0.2-7.0 50 1.16899.0001 ReflectoquantAmmonium Test 氨,氮 5.0-20.0 50 1.16981.0001 ReflectoquantAsorbic Acid Test 维生素C 25-450 50 1.16125.0001 ReflectoquantCalcuim Test 钙 5-125 50 1.16137.0001 ReflectoquantFree Sulfurous Acid 二氧化硫(亚硫酸盐) 1.0-40.0 50 1.16720.0001 ReflectoquantGlucose Test 葡萄糖 1-100 50 1.16982.0001 ReflectoquantIron-Test 二价铁 0.5-20.0 50 1.16127.0001 ReflectoquantLactic Acid Test 乳酸 1.0-60.0 50 1.16124.0001 ReflectoquantMagnesium Test 镁 5-100 50 1.16128.0001 ReflectoquantMalic Acid Test 果酸 1.0-60.0 50 1.16995.0001 ReflectoquantNitrste Test 硝酸盐 3-90 50 1.16894.0001 ReflectoquantpH Test pH值 1.0-5.0 50 1.16722.0001 ReflectoquantSulfite Test in white wine 总亚硫酸(葡萄酒) 10-200 50 1.16721.0001 ReflectoquantTartaric Acid Test 酒石酸 0.5-5.0g/l 50 1.16135.0001 ReflectoquantTotal Acidity Test,pH7.0 总酸pH7.0 2.0-14.0g/l 100 1.16138.0001 ReflectoquantTotal Acidity Test,pH8.2 总酸pH8.2 2.0-14.0g/l 100 1.16136.0001 ReflectoquantTotal Sugar Test 总糖 (葡萄糖和果糖) 65-650 50 Reflectoquant反射仪专用测试条——清洗消毒监控 订货号 名称 测试项目 测试量程 mg/l 测试次数 1.16896.0001 Reflectoquant Chlorine Test 余氯 0.5-10.0 50 1.16975.0001 ReflectoquantPeracetic Acid Test 过氧乙酸 1.0-22.5 50 1.16976.0001 ReflectoquantPeracetic Acid Test 过氧乙酸 75-400 50 1.16974.0001 ReflectoquantPeroxide Test 双氧水 0.2-20.0 50 1.16731.0001 ReflectoquantPeroxide Test 双氧水 100-1000 50 为葡萄酒酿酒业度身定做的其他相关产品 Turbidity 系列浊度仪 订货号 仪器名称与相关信息 1.18324.0001 Turbiquant1100 IR 便携式浊度仪 带电池的便携式仪器,3项校正标准0.02-10.0-1000NTU, 2个空测试管,附操作手册,简易参考卡 1.18325.0001 Turbiquant1100T 便携式浊度仪 带电池的便携式仪器,3项校正标准0.02-10.0-1000NTU, 2个空测试管,附操作手册,简易参考卡 1.18335.0001 Turbiquant1100IR/T 标准溶液套装,0.02-10.0-1000NTU 卫生监测系统 订货号 仪器型号 1.30100.0301 HY-LiTE2 卫生(ATP)监控系统 1.30101.0021 HY-LiTE 补充包(表面监控笔和涂抹棒) 1.30102.0021 HY-LiTE 取样笔 1.31200.0001 HY-RiSE 表面洁净度测试条 当您在处理葡萄酒酿酒过程中产生的废水时,我们推荐您使用默克的Spectroquant水质分析系统。该系统与Spectroquant系列试剂配套使用,可用于测定COD与BOD。同时,Spectroquant光度测量系统可测量其他更多不同的参数。 上海恒奇仪器仪表有限公司电 话:021-51693889-22 传 真:021-61304216 网址:www.hq17.com
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • 海洋光学 酿酒过程优化及调控研究室联合创新实验室正式成立
    2023年3月23日,海洋光学和四川轻化工大学酿酒过程优化及调控研究室举行联合创新实验室揭幕仪式。双方在现场正式签署合作协议,宣布建立联合创新实验室,共同开展在酿酒过程中的光谱分析和检测等方面的研究。海洋光学是应用光谱解决方案提供商,为全球范围内的科研及工业应用提供光学测量解决方案,致力于帮助研究人员和行业解决健康、安全和环境方面的重要问题,利用光的力量提供让世界更安全、更清洁、更健康的方案。四川轻化工大学酿酒过程优化及调控研究室是中国酿酒行业中的研究团队,在Sci等多个期刊发表过多篇文章,致力于研究酿酒过程中的优化和调控技术。本次合作旨在充分利用海洋光学在光谱分析和光学检测方面的优势和经验,与酿酒过程优化及调控研究室在酿酒工艺研究方面的专业知识,共同探索在酿酒过程中光谱分析和检测等领域的创新应用。此外,双方还将建立稳定的信息交流和研发平台,探索符合市场需求和学科发展的研究课题,在研发、市场推广和设备示范等方面展开合作。在签约仪式上,双方代表都对这次合作表示了高度的期待和信心。 海洋光学销售副总裁孙玲博士(左)酿酒过程优化及调控研究所所长宗绪岩教授(右)海洋光学销售副总裁孙玲博士表示:海洋光学是微型光纤光谱仪的发明者,并且不断的创新和开拓新的应用和解决方案,为多个行业和领域做出了巨大的贡献。同时,助力中国的科研力量开创新的技术,研究新的成果,开发新的产品,培养创新型人才。沿着旧地图找不到新大陆,海洋光学创新品质无处不在。这也是促成建立该联合创新实验室的重要因素之一。随着中国酿酒市场的日益发展将拥有更大的潜力,也迫切需要创新的技术支持助力产业的发展和升级。海洋光学将与酿酒过程优化及调控研究室密切合作,共同研究开发酿酒工艺优化和智能化的光谱应用和系统,为中国酿酒产业的升级和发展提供更具竞争力的解决方案以及更全面、更高效、更优质的技术支持和服务。酿酒过程优化及调控研究所所长宗绪岩教授表示:随着技术的进步,分析仪器不断发展,方法不断创新,酒类的分析也将迎来新的开端,我们也希望能够跟海洋光学共同进步,为酿酒行业,甚至为整个食品行业做出一些贡献。海洋光学始终是值得信赖的合作伙伴,以先进高质量的产品和服务助力我们进行分析和研究。我们很高兴进一步扩大与海洋光学的合作建立联合创新实验室,也感谢海洋光学对我们的认同。该联合创新实验室的成立标志着双方的合作进入了一个新的阶段,也将是中国酿酒产业技术创新的重要里程碑。我们期待通过双方的合作,为中国酿酒行业带来更多的科技创新和发展机遇。
  • 四川省酿酒研究所采购南京大展的低温差示扫描量热仪
    酿酒研究院是四川省食品发酵工业研究设计院有限公司下属分院,是一家专业酿酒研究单位。主要是提供各类型基础酒、调味酒、个性化定制酒、各种酒类专用曲、酶制剂、微生物制剂等酒类生产相关产品。为了研发出更加高品质的酒产品,选择采购南京大展仪器生产的低温差示扫描量热仪。  食品行业的竞争力强,为了迎合消费者的需求,需要对产品不断的进行提升和创新。因此,作为一家专业酿酒研究单位,需要通过不断的研究和实验,产品才能得到创新。这款低温差示扫描量热仪,采用液氮制冷的模式,可以降温到-170℃,而且降温速率快,对于食品实验的环境和温度要求,这款低温差示扫描量热仪完全可以满足。  经过前期对仪器性能、使用和技术参数等方面的沟通和了解,酿酒研究院选择了这款低温差示扫描量热仪,不仅看重其仪器的品质,同时还有完善的售后服务。在调试现场,技术工程师现在通过样品测试、图谱分析等方面,让其使用人员迅速掌握了仪器的操作技能。该仪器的高精度和高稳定性为该所的研究工作提供了可靠的数据支持,有助于该所开展更加精准的研究工作。  酿酒研究院通过与南京大展仪器这次合作,让其更加相信自己的选择。南京大展仪器作为一家专业的分析仪器供应商,为该所提供了可靠的产品和优质的售后服务,得到了该所的高度认可和信任。
  • 岛津Nexis 视角 | 为什么有些啤酒不那么好喝?
    “想必大家都曾有过这样的经历,兴致勃勃地打开酒,却闻到一阵臭蛋的味道,瞬间喝酒的心情都没有了。而这种味道可浓可淡,有些倒出来就散去,有些则一直呆在酒里。对于这种臭蛋味,稍微有点经验的酒鬼,知道这必定是硫化氢的味道,也从这种味道的浓淡就可以判断出这酒的好坏了,毕竟我想没人想吃臭鸡蛋,那么臭鸡蛋味的啤酒应该也没人想试。” ——摘自《是谁在酒里放了臭鸡蛋?》微信号:吹啤,发表于2017年5月14日 啤酒中的很多异味都与硫化物相关,硫化物是一类对啤酒感官质量具有重要影响的风味物质,虽然其在啤酒中的浓度非常低,但是对啤酒风味的影响不容小视,尤其是一些低分子量的挥发性硫化物。当其适量存在时,能使酒体丰满圆润,香气协调,此时硫化物是构成啤酒香味成分不可缺少的物质;但当其过量存在时,不仅使啤酒的口味变差,而且使啤酒发生雾浊,给啤酒风味带来不利影响[1]。啤酒中挥发性硫化物大多来源于原料及酵母代谢产生,主要包括硫化物、多硫化物、硫醇、硫酯、杂环化合物等。啤酒中常见的挥发性硫化物如下表1所示: 表1. 啤酒中重要挥发性硫化物阈值及风味描述[2]啤酒酿造过程中,始终伴随着硫化物的变化,通过上表可以看出硫化物阈值非常低,但即使ppb级痕量的浓度也会对品质产生影响。因此最佳的方案是一方面保持硫化物痕量存在,构成啤酒的优良风味,另一方面通过管理及工艺措施来精准控制其含量。在这个过程中,硫化物高灵敏度检测技术是非常重要的一个环节。 硫化学发光化检测器(SCD)是目前公认的检测硫元素最灵敏、选择性最宽的检测器,且不受大多数样品基质的干扰,广泛应用于各种样品中的硫化物分析。岛津公司于2019年4月份正式推出硫化学发光检测系统Nexis SCD-2030,为用户提供更高灵敏度、高稳定性、高分析效率的分析仪器。 图1. Nexis SCD-2030 + HS-20 本文中,我们使用岛津HS-20顶空进样器,搭配Nexis SCD-2030硫化学发光检测器进行啤酒中硫化物的高灵敏度分析(图1)。按酿造工艺,啤酒可以分为:Ale艾尔(上发酵)和Lager拉格(下发酵)两大类,两者的区别主要体现在发酵的温度和酵母工作的位置。本例中我们分析了市售的这两类啤酒中的硫化物,采用标准加入法,分别向各种啤酒中加入了不同浓度的二甲基硫(DMS), 硫代乙酸甲酯(SMTA)和二甲基二硫(DMDS)这三种硫化物[4]。分析谱图如图2所示:图2. 三种啤酒样品的硫化物分析色谱图 可以看出,从三种啤酒中我们检测出了7种硫化物,分别是甲硫醇、二甲基硫(DMS)、二硫化碳、硫代乙酸甲酯(SMTA)、二甲基二硫(DMDS)、二乙基二硫、二甲基三硫醚[4]。其中,二甲基硫(DMS)是对啤酒风味影响最大的挥发性硫化物,有一些来源于麦芽,而另外一些可能是源于酵母或者两者都有。DMS过量后会产生“腐烂蔬菜味”、“烤玉米味”等风味缺陷,严重影响啤酒品质。 表2. 啤酒样品中硫化物的定量结果我们通过标准加入法检测的3种硫化物的浓度如表2所示,分别对应图2中的色谱峰2, 5和6。可以看出,即使低至ppb级的浓度,依然可检测得到。色谱峰8二甲基三硫(DMTS)是典型的日本清酒的风味成分,本例分析中,Nexis SCD-2030具有非常出色的灵敏度,在啤酒中也检测到其存在。啤酒基质中二甲基硫(DMS)不同加标浓度的色谱图如图3所示,显示出非常高的灵敏度。图3.不同浓度加标的二甲基硫(DMS)的色谱图 以上示例可以看出,采用Nexis SCD-2030结合顶空进样器HS-20,完全不用浓缩操作的情况下,即可实现ppb级痕量硫化物的高灵敏度分析。岛津Nexis GC-2030硫化学发光检测器采用了多项行业首创的设计,如水平燃烧器、超短流路、独有的检测器设计等实现了世界卓越的高灵敏度和高稳定性(图4和图5)。图4. 行业首创的水平燃烧器图5. 行业首创的超短流路 采用类似方法,我们还分析了10种市售德国啤酒和8种市售荷兰啤酒中的硫化物含量,并通过PCA主成分分析方法探讨了不同类型啤酒中硫化物含量的差异化分布[3],部分结果如图6所示: 图6. 德国啤酒分析结果 可以看出,不同类型啤酒中硫化物含量和类型差异很大,本次实验中,Pilsner皮尔森啤酒、Wheat 小麦啤酒和Cellar 地窖啤酒呈现相近的硫化物分布,Alt 德国老啤酒的硫化物类型和上述几种啤酒明显不同,两种啤酒中分别含有SMTA和DMDS,Lager淡味啤酒也与其他几种啤酒不同。 在进行大量啤酒样品分析时,硫化学发光检测器的操作和日常维护复杂是以往分析工作的痛点,被很多分析人员所诟病,岛津Nexis SCD-2030硫化学发光检测系统采用了行业首创的水平式燃烧器设计,内部陶瓷管的拆装变得易于操作,大幅度缩短了以往棘手的内部陶瓷管的更换时间,仅需5分钟即可完成(图7)。图7. 内部陶瓷管更换 同时,Nexis SCD-2030通过行业首创的高效全自动化软件、自动老化功能和自动耗材更换提示(图8),实现了极佳的操作和维护体验。图8. 从开机到分析到关机全过程的自动化软件界面 本文以上所列应用均是采用岛津HS-20顶空进样器结合Nexis SCD-2030硫化学发光检测器进行分析,除此以外,Nexis SCD-2030还可以结合吹扫捕集进样和SPME固相微萃取进样等多种进样方法来实现不同的分析效果。 挥发性硫化物对啤酒的风味影响是利弊兼存,当然也有少部分人十分迷恋这种带有硫化物异味或臭味的啤酒,我们称之为带有“缺陷”的啤酒,但是大部分情况下,硫化物的异味和臭味都告诉我们这瓶啤酒有问题,其可能已经滋生细菌,或酿造和发酵工艺不良,或储存不当。对啤酒企业来说,通过检测和控制不良硫化物的影响是提升啤酒品质和市场竞争力的重要途径之一。 参考资料:[1] 王家林,田红荀. 啤酒中硫化物分析方法研究进展. 《酿酒科技》,2010 (01),13-16.[2] 韩龙. 啤酒挥发性硫化物之分析与改进. 《中外酒业》,2015(5), 58-61.[3] No.SCA_180_034. Highly selective analysis of sulfur components in beer using sulfur chemiluminescence detection with SCD-2030.[4] No. G304. Analysis of Volatile Sulfur Compounds in Beer Using Nexis™ SCD-2030.
  • 中国首届微生物与白酒酿造技术研讨会
    12月14至15日,由中国微生物学会工业微生物学专业委员会主办,山西省微生物学会、山西杏花村汾酒集团共同承办的“中国首届微生物与白酒酿造技术研讨会”在山西汾阳召开。大会邀请中国工程院院士、北京工商大学副校长孙宝国教授,教育部工业生物技术重点实验室主任、江南大学副校长徐岩教授等19名酿酒微生物专家、学者出席研讨会。来自全国各地酿酒企业、科研院所的160多名代表参加了本次会议。 中国白酒历史悠久,驰名中外,是我国经济发展的支柱产业。从现代科学技术角度来看,香醇美酒实际上是酿酒微生物新陈代谢和酿造工艺技术完美融合的结果,微生物作为传统白酒酿造的关键性因素发挥了重要作用。随着白酒酿造技术的科技创新发展,结合现代分子生物学、生物信息学、生态学、代谢组学和基因组学技术深入研究微生物与白酒酿造技术的关系,探讨我国传统白酒产业技术创新问题受到业内高度关注。研讨会从微生物与白酒酿造技术等六大方面开展专业交流和研讨: 1、白酒酿造微生物资源多样性研究 2、白酒酿造功能微生物的研究与应用 3、白酒酿造微生物代谢产物与分析技术 4、微生物研究前沿技术与传统白酒酿造技术 5、微生物与白酒香型、特征、风味和品质 6、酿酒企业微生物菌种管理的意义与措施 在大会上迅数科技向与会者展示了新一代“全自动菌落计数分析系统”以及“抑菌圈抗生素效价测定系统”和“显微图像分析系统”系统的高度自动化以及强大的功能赢得了广大与会者的好评。 在酿造过程中微生物起着重要的作用,迅数新一代菌落仪在微生物菌落的统计筛选分析上去的重大突破,成功解决了“培养基中杂质剔除、粘连菌落分割、多菌混杂、霉菌与酵母区分、晕圈干扰、菌落培养基相似等疑难菌落计数问题;科研领域,特征菌筛选、荧光菌落识别、显色致病菌识别、多区域统计、菌落特征化描述、抑菌圈透明圈等筛选问题。”
  • LUMEX参加世界葡萄酒酿酒博览会VINITECH
    Lumex分析仪器公司应邀出席参加VINITECH展会。VINITECH是世界上最大和最重要的酿酒展览会之一,本次在法国在波尔多于11月29日至12月1日成功举办。本次展会吸引了数百家企业及上千名参观人员。世界各位业内人士越来越重视葡萄酒和烈酒生产酿造工艺及过程控制。LUMEX分析仪器携带最新CE毛细管电泳仪CAPEL-205和PCR分析仪参加了此次盛会。 LUMEX提供的CE毛细管电泳法针对葡萄酒行业提供完整的检测方案和试剂盒,如有机酸、糖类、合成染料、防腐剂等指标的鉴定和检测等相关应用。OVI国际葡萄与葡萄酒组织将CE方法列为标准方法检测葡萄酒中的相关组份,属于国际认可方法,在生产过程和质量控制方面也有广泛应用,属于成熟的分析鉴定方法。 LUMEX公司提供PCR实时定量微芯片法测定葡萄酒种植行业的葡萄种苗及种植过程中病害监测方案,从源头把控生产原料。PCR葡萄种苗病毒检测方法使用AriaDNA 微芯片PCR分析技术和专用方法试剂包鉴别病原体。该方法包采用先进的实时微芯片PCR技术,配合专用方法试剂包使病害分析检测操作简单快捷,分析时间短、试剂用量低。加热冷却速度快, 少量反应容量设计,实现快速温度均衡,减少分析时间,提高反应性能,同时专利微芯片技术避免交叉感染,保证检测结果准确可靠。实现快速分析多种样本(叶、茎、皮、土壤)病原体及休眠期和潜伏期病菌。 LUMEX公司自1991年成立以来一直致力于新产品和先进的技术方法的开发,现已拥有100多种分析方法,为全球用户提供相应行业解决方案,现产品和方法用户遍布全球80多个国家。作为拥有较强技术实力的企业,LUMEX专家针对葡萄酒生产酿造行业提供全过程关键指标鉴别检测方案。
  • 神奇的微观世界丨电子显微镜下揭秘的葡萄酒酿造工艺!
    我们大多数人可能都喜欢在闲暇的时候约上三五好友“来两杯”,或在特殊的日子为自己的爱人精心准备一场浪漫的红酒晚餐,亦或只是“我自饮来我自醉”的消遣,但是我们却很少关注并意识到葡萄酒酿造及酿酒工艺的科学。一瓶葡萄酒,从开始种植到酿造装瓶,大约需要生长5年、发酵3个月、橡木桶存放6~18个月,有时甚至还需要在海上运输2~3个月,毫无疑问,这是一门需要时间和耐心的技艺。在葡萄培育和酿酒工艺中,科学培育出优良的葡萄品种、改进酿造工艺、提升质量都是至关重要的环节,而这需要借助先进的科学手段和工具,扫描电子显微镜(SEM)作为一种超高分辨率的微观观测和分析的工具,在葡萄酒酿造产业中也“大有用武之地”!扫描电镜可从细胞、亚细胞水平乃至生物大分子水平对各种样品进行深入细致的分析观察。通过观察研究葡萄树的叶片、花朵、果实等的形态结构,可对葡萄品种选育、种植管理、采摘储藏等生产环节提供重要参考;通过观察分析发酵过程中原料、菌种、发酵产物等的状态和性质,可以帮助研究人员改善发酵工艺,分析生产中遇到的实际问题。图:由TESCAN合作发布的利用电镜研究葡萄培育和葡萄酒酿造工艺的相关文章入选《Lab+Life Scientist》期刊封面为了培育出优良的葡萄品种,研究人员需要借助高分辨率的扫描电子显微镜观察不同组织、器官的形貌结构(如植物表皮细胞组织、维管组织、气孔等),寻找优良植株的内在原因,最终培育成需要的品种。图:葡萄藤死表皮组织细胞的表面形貌(注:使用TESCAN MIRA3 FE-SEM在高真空下观察)图:在显微镜下观察到淀粉颗粒(绿色)沉积在葡萄藤的维管组织中(注:研究使用了TESCAN FE-SEM与冷冻传输系统对样品进行冷冻固定、冷冻断裂并保持在冷冻下观察,以获取样品的真实形貌。冷冻电镜方案特别适用于脆嫩的植物组织及一些冷冻下才能稳定保存的样品,如冰激凌等。)在具有超高分辨率的电子显微镜下,还可以清晰地观察到葡萄叶的形态细节以及位于葡萄叶表面的气孔。气孔在植物碳同化、呼吸、蒸腾作用等气体代谢中,成为空气和水蒸气的通路,在生理上具有重要的意义。图:葡萄叶及其表面气孔的微观形貌细节(注:样品使用化学固定、脱水及临界点干燥处理)酵母菌在葡萄酒酿制中是不可缺少的。简单来说,酿酒酵母就是一种单细胞微生物,可以将葡萄中的糖分转变为酒精,也就是俗称的酒精发酵。为了培养、识别出优质的酵母,研究人员需要通过观察菌种的大小、形貌等细节来辨识不同菌种。酒香酵母(Brettanomyces),是一种在酿酒过程中随时可能出现的物质,它因为能够为葡萄酒增加“香味”,而被人铭记。适量的酒香酵母可以为葡萄酒增添风味,但过量存在时则会使葡萄酒散发出一种类似“臭袜子”或“马骚味”的气味,破坏酒的气味和口感。图:电子显微镜下观察到的酒香酵母细胞(注:样品使用化学固定、脱水及临界点干燥处理) 另外,在葡萄酒酿造中,还会产生一种副产品—酒石酸氢钾。这是一种无色至白色的斜方晶系结晶性粉末,无臭,有令人愉快的清凉酸味,通常被食品工业称作塔塔粉。但在酿酒过程中,产生的酒石酸氢钾会与酵母细胞结晶产生浑浊的细白色或淡黄色沉淀物,这些沉淀物虽然不会影响葡萄酒的味道或气味,但它会影响葡萄酒的美感。图:肉眼观察到的的酒石酸氢钾图:电子显微镜下的酒石酸氢钾与附着在其表面的酵母细胞(注:酒石酸氢钾易溶于水,样品不能用常规制样方法,例如化学固定,因此使用TESCAN MIRA3 FE-SEM低真空功能直接进行观察。TESCAN的低真空功能特别适用于不导电样品的直接观测及电子束下不稳定的生物样品。)在葡萄酒发酵成熟时,酒液中也会有残留的死酵母、杂质、葡萄残渣以及部分酒石酸结晶,这些物质会沉淀形成酒泥。因此,在装瓶前,酿造者通常会使用“倒桶”、过滤或下胶澄清、冷却结晶等方式去除这些沉淀物,来保证葡萄酒的“美感”。图:在电子显微镜下观察葡萄酒的澄清过滤(过滤孔筛的孔隙范围为0.45~1.2μm)(注:使用TESCAN水汽注入系统可直接观察样品,保持样品最原始的状态。水汽注入系统特别适用于易失水的生物样品及水汽参与反应的原位实验,如食盐溶解与重结晶、水泥固化等)以上图像及数据来自于由全球扫描电子显微镜的领先制造商TESCAN与捷克国家葡萄酒中心合作开展的一项研究,该项研究利用超高分辨扫描电子显微镜探究葡萄培育和葡萄酒的酿造工艺。这项研究工作在TESCAN MIRA3超高分辨场发射扫描电镜(FE-SEM)上完成,在本研究中使用的样品由位于布尔诺的孟德尔大学的葡萄培育和葡萄栽培部提供。目前,相关研究成果已在捷克国家葡萄酒中心公开展览,展览地设在著名的Valtice城堡的总部,该城堡也被联合国教科文组织列为世界遗产地。图:在捷克葡萄酒酒都Valtice城堡展出的“特殊展览” 该项研究的合作和技术支持—TESCAN公司的总部位于捷克布尔诺市,该地区被称为欧洲电子显微镜的摇篮。布尔诺也是捷克共和国南部与奥地利和斯洛伐克接壤的摩拉维亚地区的首府,这里是捷克主要的葡萄酒产区,占其国家总产能的96%。捷克国家葡萄酒中心主任Pavel Kr?ka谈到:“据我们所知,这个展览是同类型展览中的第一次,展览非常受欢迎。参观者们被这些图像所震撼,因为这个展览在吸引葡萄酒爱好者,传播葡萄酒文化的同时,还为参观者展示了葡萄酒种植及酿造相关的科学内容!“
  • 如何有效评价酵母等微生物发酵能力及发酵特性?
    发酵指人们借助微生物在有氧或无氧条件下的生命活动来制备微生物菌体本身、或者直接代谢产物或次级代谢产物的过程。经发酵过程制造食品时所利用的。最常用的有酵母菌、曲霉以及细菌中的乳酸菌、醋酸菌、黄短杆菌、棒状杆菌等。通过这些微生物作用制成的食品通常有以下5类:1、酒精饮料:如蒸馏酒、黄酒、果酒、啤酒等;2、乳制品:如酸奶、酸性奶油、马奶酒、干酪等;3、豆制品:如豆腐乳、豆豉、纳豆等;4、发酵蔬菜:如泡菜、酸菜等;5、调味品:如醋、黄酱、酱油、甜味剂(如天冬甜味精)、增味剂(如5′-核苷酸)和味精等。 如何有效地评估酵母等微生物的发酵能力、培养基(面团、啤酒等)发酵特性及样品的发酵条件等?如何长时间监测面包面团、酒类酿造、生物乙醇相关的发酵过程以及BP(发酵粉=化学膨胀剂)等工艺过程? 产品推荐 日本WSF-2000MH系列发酵特性分析仪是一种通过自动持续测量并记录各种样品在微生物发酵过程中产生的气体总量和产气速度的变化曲线,分析样品的发酵条件、发酵特性等,可同时分析10到20个样品,每个样品独立控制、监测和分析。 产品应用微生物方面——菌株的育种、烘焙制品、酒类酿造、酱油、食品腐败、工业酒精以及甲烷氢气等领域,如小麦粉品质评价、酿造品质控制、微生物菌株筛选等。化学方面——食品膨胀剂、发泡剂、洗涤剂、入浴剂以及医药品等领域,如膨化剂、发泡剂等的新品开发和质量管控等。
  • 单染色体酵母第一作者选择申请海外博士,科学家再次疾呼:莫让“海归”标签“逼”走优秀博士生
    p  span style="color: rgb(255, 0, 0) "日前刚在英国 《自然》杂志发表领先世界的合成生物学成果,中国科学院分子植物科学卓越创新中心、植物生理生态研究所合成生物学重点实验室覃重军研究员就在媒体面前流露出内心焦虑:论文的第一作者、掌握了自己学术思想和实验关键技术的博士生邵洋洋正在申请海外博士后,其中就包括此次与他们同时发表类似论文的美国同行实验室。/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/ef2459e4-3725-47d6-a971-944dcbf97e7b.jpg" title="640-3.jpeg"//pp style="text-align: center "▲覃重军研究员(右)与论文第一作者也是团队成员之一的邵洋洋在实验室进行试验研究。/pp  “为了学生的前途考虑,我希望她出国,但为国家考虑,我真希望能留住她。”覃重军无奈地说,span style="color: rgb(0, 112, 192) "按照国内学术圈现行的 “游戏规则”,年轻人若在国外实验室做出好的工作再回国,获得的待遇会好很多。能否根据真实学术水平和实际科研贡献,给予海内外青年人才同等待遇?这个近来被诸多讨论的话题,再次摆在我们面前。/span/pp  strongspan style="color: rgb(255, 0, 0) "国内不乏孕育重大产出的优秀“学术土壤”/span/strong/pp  将酿酒酵母中16条天然染色体,通过基因编辑的方法合成一条,覃重军研究团队在 “合并染色体”的国际竞争中拔得头筹。连他最强劲的竞争对手——美国科学院院士、纽约朗格尼医学中心的杰夫· 博伊克,都忍不住来问他,究竟是怎么会想到要这么做,又是怎样完成染色体 “十六合一”的?因为博伊克的实验室用了相同的技术路线,但只融合到两条染色体。/pp  “这是只有外行才敢想的念头,一开始没多少人觉得我能做出来。”覃重军非常感谢植生所给了他宽松的氛围,支撑他度过了最艰难的时光,“整整五年,我没有发表一篇与酵母相关的论文,换在别的单位,或许早就让卷铺盖走人了。”/pp  span style="color: rgb(0, 112, 192) "覃重军说,这次成功的关键是他在初期作了大量思考,清晰界定了实验的原则,同时实验室也在进行系统的技术积累。/span中国科学院上海植物生理生态研究所所长、中国科学院院士韩斌告诉记者,尽管覃重军没有出论文,但研究所更看重人才的长期发展,在国际评估中,他的研究方向一直得到认可,span style="color: rgb(0, 112, 192) "“需要五到十年才能出的重大成果,我们就该耐心等待。”/span为了让科学家安心做科研,植生所为各研究组长提供稳定的年薪,而非根据各研究组的科研经费多少来核算。/pp  维持研究团队运转的人头费一直是件头疼事。多年来,覃重军研究组的“赤字”超过300万元。 “有些单位的研究组账面少于50万元,就可能被要求关闭,更不可能赤字运行。”为此,他感到十分幸运, “现在无论哪里要我去,我都不会离开植生所这片宽容的学术土壤。”更何况,这里每年都会冒出两三项引发学术界关注的重大成果,已初具国外著名实验室的创新氛围。/ppspan style="color: rgb(255, 0, 0) "strong  优质“小环境”还需“大环境”扶持滋养/strong/span/pp  宽松而有活力的 “学术土壤”在国内尽管还不多,但越来越多的 “星星之火”已经出现。不必远寻,就在生命科学领域,上海就有多个研究所具备了专注学术、宽容失败、奋力创新科研氛围,而且具备了国际一流的研究实力。/pp  照理说,span style="color: rgb(0, 112, 192) "这样的研究所对优秀博士毕业生应该具有相当吸引力。但邵洋洋斟酌再三,还是决定申请海外博士后。/span的确,以此次单染色体人工酵母的工作,她可以申请到全球合成生物学领域任何一个顶尖实验室,去那些实验室接受训练和熏陶,这是每个年轻博士所向往的。然而,更吸引人的,是去一个优秀海外实验室学习上两三年,做出杰出工作再回国,就能比不出国的青年科学家获得更多科研经费支持和房贴,申请人才计划、科研项目都更有优势。/pp  “可我又有什么理由阻止她出国做博士后呢?尽管我的研究组人手十分紧张,她走之后,很多后续工作可能难以开展。”span style="color: rgb(0, 112, 192) "尽管植生所的 “小环境”不错,但从整个科研大环境来看, “海归”标签依然在科研经费获取、人才评价等方面起着重要作用。这让覃重军如鲠在喉。/span/pp  不久之前,中国科学院神经科学研究所博士后刘真受聘为研究组长,他也曾为是否出国做博士后而纠结过。尽管他留在国内并做出了世界首批克隆猴这样的杰出工作,但在科研启动期所获得的资助仍比不上 “海归”们。/pp  span style="color: rgb(0, 112, 192) "“一个优秀博士生的流失,不仅意味着一段黄金创造力的流失,也可能将国内实验室的创新科研思路带给竞争对手。”痛心之余,覃重军疾呼,能否更公平地对待不同路径成长起来的人才,适时转变人才评价方式,让优秀博士生不必为了 “海归”标签而出国。/span/p
  • 杜立林实验室在裂殖酵母中发现违反孟德尔定律的自私基因
    p  2017 年 6 月 20 日,北京生命科学研究所杜立林实验室在《eLife》发表题为“A large gene family in fission yeast encodes spore killers that subvert Mendel' s law”的研究论文。该论文通过研究裂殖酵母的种内生殖隔离现象,发现一个之前功能未知的基因家族的成员是违反孟德尔定律的自私基因。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0846f491-22f5-4c1a-93d8-ebacf97d9eb4.jpg" title="20170621185717311.png"//pp  孟德尔的分离定律指出二倍体中位于基因组同一位置的一对等位基因会以 1:1 的比例进入单倍体的配子中。有些自私基因违反这一定律,通过杀死不含该基因的配子来扭曲分离比例,从而在杂合二倍体形成的配子中以超过 50% 的频率出现。这样的自私基因被称为配子杀手(gamete killer)。真菌包括酵母的配子通常叫做孢子(spore),因而真菌中的配子杀手也叫做孢子杀手(spore killer)。目前已经发现的配子杀手数目有限,在分子水平上被鉴定的更寥寥无几。/pp  杜立林实验室的研究人员发现裂殖酵母天然菌株 CBS5557 和实验室菌株交配产生的孢子大多不能存活。类似的种内生殖隔离现象在其他不同来源的裂殖酵母菌株杂交时也经常发生。通过高通量测序辅助的分离子分组混合分析法(bulk segregant analysis),作者发现 CBS5557 和实验室菌株杂交时存活的后代中来源于实验室菌株基因组的两个区域的等位基因频率显着低于 50%,暗示在 CBS5557 基因组的这些区域存在孢子杀手。通过进一步的基因组学和遗传学分析,作者证明分别位于这两个区域的属于 wtf 基因家族的 cw9 和 cw27 基因是孢子杀手。实验还发现这两个孢子杀手可以在不同的菌株背景下和不同的基因组位置上起作用,它们之间会发生互相杀伤。通过人为突变可以得到会杀伤自己的突变体和不能杀伤但可以保护自己的突变体,提示一个孢子杀手具备可以拆分的杀伤活力和保护活力。通过第三代测序技术对 CBS5557 基因组进行分析,发现该基因组中存在 32 个 wtf 基因家族的成员,且与实验室菌株基因组中的 wtf 基因数目和序列都有显着的差异,说明这个孢子杀手基因家族的快速变异可能是这个物种的种内生殖隔离现象背后的主要原因。这一工作为理解基因组进化和物种形成提供了新认识。/pp  杜立林实验室博士后胡雯为论文的第一作者。论文的其他作者还包括杜立林实验室的生物信息分析员索芳和研究生郑金鑫,以及何万中实验室的姜招弟博士和何万中博士。杜立林博士为本文的通讯作者。此项研究由科技部和北京市政府资助,在北京生命科学研究所完成。  /p
  • 展现精酿魅力,尽显无限商机,中国(济南)精酿啤酒文化节暨精酿啤酒展即将召开!
    随着我国经济快速发展和人民生活水平的提高,消费理念和消费习惯正在发生着巨大的变化,年轻的消费者不断寻求新的体验。市场上口味单一的工业啤酒已经不能满足消费者对啤酒品质的要求。越来越多的人喜欢饮用个性化充足、营养丰富、口感独特的精酿啤酒。作为中国啤酒产量规模位居首位的山东省,中国生物发酵产业协会联合多家行业机构于2022年3月30-4月1日在山东国际会展中心召开“2022中国(济南)精酿啤酒文化节暨精酿啤酒展”隆重召开。本届展会顺应精酿发展趋势,精准掌握行业风向标,带领大家一同见证精酿新浪潮。啤酒行业日新月异,发展迅猛,在精酿浪潮的不断发酵下,精酿风已经从啤酒蔓延到了烈酒领域,国内酒商也开始对这种高浓度酒精饮品产生了兴趣;后疫情时代下,消费者表现出的对健康生活越来越高的追求使得品牌商将注意力转移到了低酒精、无酒精饮品上,中国精酿啤酒正朝着3.0时代进发!山东济南精酿啤酒节联合第九届生物发酵展(济南)同期召开,转为精酿啤酒产业领域打造的大型国际性专业盛会,由产业链上下游强强联合,展现产业新时代的创新研发与商机潜力。第九届BIO CHINA 生物发酵展(济南),将集中呈现产业风貌、串联政、产、学、研、各界,从研究、研发、产品、技术服务、原物料、终端应用、投融资,打造技术全产业链的大型服务平台。将联合行业组织和专业机构共同举办多场会议活动,从精酿啤酒涉及的各个产业进行分析及展望,覆盖整个产业链专业观众,为听会代表及行业人士打造集“展示、商贸、学习、交流”为一体的全产业链平台!一、2022精酿啤酒发展高峰论坛1、啤酒酒花在精酿啤酒的应用2、精酿啤酒国家政策及标准3、国内外精酿市场分析与运营4、精酿啤酒与美食的搭配二、2022行业品牌加盟大会1、精酿啤酒最新产品与趋势2、提升国内外精酿啤酒市场与知名度3、客商与买家(餐饮、酒吧)签约仪式三、2022中国精酿啤酒文化节(济南)由中国生物发酵产业协会等多家行业机构共同组织。本次活动为精酿啤酒文化畅饮与促销、精酿啤酒节分享交流会、精酿啤酒文化盛典(啤酒竞饮大赛,巡游表演、门票抽奖等)等多项活动,以形成场内外、海内外互动狂欢的盛大热烈场面。入围参展商可对自身产品进行宣传及展示,科普与交流探讨,品尝与售卖、提升产品核心竞争力及品牌宣传,旨在向社会公众科普专业的精酿啤酒文化,提高消费者对精酿啤酒的了解,为行业发展提供宝贵建议,精准掌握行业风向标,带领大家一同见证精酿新浪潮。来自全国30家精酿啤酒屋、精酿啤酒企业、经销商、代理商、报刊书籍等产品展示,旨在品牌推广、合作交流。四、产品精品推介会 1、 展会期间要求各厂商提供商品特价支持。2、推介商品以各厂商品牌为标准单位,做到每品牌一系列,扩大品牌影响力。各厂商须确保货。3、源充裕及价格优势明显,每个品牌系列安排一个促销员重点促销,免费试饮。推介地点:为入选的精酿啤酒节集中展示区。五、分享交流会1、精酿啤酒新零售创新发展之路2、开店/创业案例分享会3、精酿啤酒工艺沙龙4、抽奖/问答活动5、文娱表演 (由厂方提供节目)百家媒体资源,强势展会宣传展会将通过专业行业杂志、报刊、户外广告、社交媒体营销等多种有针对性的市场营销活动,广泛吸引高品质买家参观展会。并发挥独有新闻传媒机构美通社的优势,整合近百家啤酒及糖酒类杂志报刊媒体,130余家行业新闻类媒体网络,共同强势展会宣传。专业优质采购渠道资源 将来自经销代理商、贸易进出口商、生产制造商、酒馆/酒店/商业超市、生产设备提供商、中/小型酒厂(含精酿酒商)、大型酒厂、连锁商超/大卖场、批发零售企业、微商/电商、专卖店、招商加盟企业、餐厅及酒店餐饮、政府机关、行业协会、地产开发商、金融投资机构、科学院校、培训机构、个人买家、公关及第三方服务企业、机械及包装设备企业等。展品范围:一、原料:酒花及啤酒花制品、酵母、果浆、酶制剂、风味剂稳定剂、麦芽等;二、酒精饮品品牌商:精酿啤酒品牌厂商、进口商/代理商、低酒精饮品、高浓度酒精饮品品牌商等;三、生产技术及设备:原料储藏设备、原料制备设备、水处理设备、麦汁制备设备、糖化发酵设备、过滤分离设备、灌装设备、酒储配设备、包装材料和容器制品辅助生产设备、控制系统、分析、清洗、处理设备、蒸馏设备、阀门、泵配件、家酿自酿设备等;四、技术与服务:售酒及配套设备、啤酒分发设备、酒吧饭店供应、酒厂评估、技术咨询供应商、供应链管理、冷藏链物流及仓储系统、酒店內供酒系统及外观设计、啤酒交钥匙供应商、酒吧设计、酒吧订单系统等;五、市场营销与其他服务:标签/包装设计、市场营销与公关服务、媒体/出版物、物联网+营销模式策划、啤酒图像设计等;六、其他:协会/媒体、培训机构、线上平台、精酿文化相关产品。参会路线:1、自驾车:请从济南西(G3 京台高速南向)出口下高速,导航至济南西部会展中心即可,约8公里。2、市内乘车:济南站步行至天桥南公交站乘 k7 路→张庄路二环西路公交站步行即可济南站步行至火车站公交站乘 k9 / k90 / k98 路→腊山立交桥公交站同站换乘→BRT7 路至二环西路日照路下车步行即可济南站 步行至火车站公交站乘 k156 路→经十路营市西街公交站同站换乘→BRT7 路至二环西路日照路下车步行即可济南站 步行至火车站公交站乘k83路→匡山小区公交站同站换乘→T17路至二环西路日照路下车步行即可3、高铁路线:济南西展距离山东国际会展中心3公里,打车 7 分钟。 参观预登记,好礼送不停精酿啤酒展参观/参展联系2022济南精酿啤酒展 赵瑞 地 址:上海市九新公路2888号申新商务5楼E座手机:18217653398(同微信)QQ:1034855784邮箱:mailzhaorui@163.com
  • SmartGrape:红外光谱+人工智能,监测酿酒用葡萄质量
    酿酒行业对于葡萄的质量有很高的的要求。根据小编调研,非侵入式的红外光谱技术应用于葡萄质量监测已行之有年,能够定量分析一些指标成分例如花青素、酚类、天冬氨酸、谷氨酸等。一项由德国政府资助的项目创新结合了中红外光谱分析技术和人工智能,将为葡萄栽培或其他农业领域的生产者提供实用的数字化工具。德国弗劳恩霍夫过程工程和包装研究所(Fraunhofer Institute for Process Engineering and Packaging IVV)近期启动了一个智能葡萄(SmartGrape)项目,结合使用红外光谱分析和人工智能(AI)来确认葡萄质量和成熟度。项目由德国联邦农业和食品办公室(BLE)和德国联邦食品和农业部(BMEL)资助,并与IRPC Infrared-Process Control GmbH、LiquoSystems GmbH、QuoData GmbH和 Weincampus Neustadt等公司合作进行。与所有农产品一样,葡萄的质量差异很大。许多外部因素,包括气候、土壤条件和收获时间,对葡萄的成分和葡萄酒的质量都有重大影响。正因为这些葡萄栽培中的多样性,最终产生了具有不同特色的各种葡萄酒。为了确保葡萄酒的原材料质量,需要根据选定的质量参数对葡萄进行监测。这个监测方法应该在不损害葡萄的前提下易于实施,并尽可能对葡萄成分提供大量信息。红外光谱正好满足了这些要求。红外光谱分析技术是一种非侵入式的光学技术,该方法利用目标分子对红外的吸收光谱来分析样品中的成分。该研究所表示,这使得红外光谱成为一种理想的媒介,可以用于认定是否当季葡萄符合酿造优质葡萄酒的要求。SmartGrape联合项目的目的是开发一种紧凑型测量系统,利用中红外范围的光谱分析达到快速、无损的葡萄质量检测。相较于过去其他利用红外光谱对葡萄质量的检测工作,SmartGrape使用了中红外波段(介于波长 2500 和 50,000 纳米之间)来检验葡萄的质量,而不是近红外波长(介于 780 和 2500 纳米之间)。该研究所指出,“中红外范围内的信息含量明显高于近红外,可以提供更完整、精确的信息。”中红外光谱分析技术生成的所有数据和伴随的化学分析需要复杂的计算与评估。在SmartGrape项目中,AI被用来记录和评估这些高维数据集。AI的好处是能够考虑非线性相关性和交互效应,比使用传统的数学和统计方法能够节省大量的时间。同时,这样的一个数据库系统可以允许多个用户的访问,透过一个友善的界面系统便可以助力葡萄栽培产业更大程度的数字化。将数据数字化还可以将数据用于更广泛的用途,SmartGrape所开发的系统提供的数字化平台将使得一些新方法和措施成为可能。例如,数据可以在德国联邦经济事务和能源部(BMWi)开发的数字生态系统中使用,这有助于整个产业链和价值链上的信息共享,包含农学家、农业机械行业到研究机构。这反过来又为流程优化创造了机会,以保护环境资源并确保农业部门的效率,尤其是考虑到气候变化带来的新挑战。举例来说,研究人员可以根据多个收获年份的葡萄质量变化记录,探讨外部影响因素(例如气候、土壤质量)的相关性及对葡萄成分的影响、并最终导致葡萄酒的质量变化。
  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制