当前位置: 仪器信息网 > 行业主题 > >

三异丙基苯乙酮

仪器信息网三异丙基苯乙酮专题为您提供2024年最新三异丙基苯乙酮价格报价、厂家品牌的相关信息, 包括三异丙基苯乙酮参数、型号等,不管是国产,还是进口品牌的三异丙基苯乙酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三异丙基苯乙酮相关的耗材配件、试剂标物,还有三异丙基苯乙酮相关的最新资讯、资料,以及三异丙基苯乙酮相关的解决方案。

三异丙基苯乙酮相关的资讯

  • 国门提示:出口欧盟儿童用品应谨防苯乙酮超标
    出口欧盟儿童用品应谨防苯乙酮超标  日前,意大利在一周内连续通报6起玩具苯乙酮(英文名:acetophenon)超标。其中5起为EVA拼图地垫,1起为自组装玩具桌。欧盟非食品类产品快速预警系统(RAPEX)已多次因苯乙酮超标通报EVA拼图地垫及EVA童鞋。而此次意大利一周内通报了6起苯乙酮超标玩具,检验检疫部门提醒企业需引起高度重视。  苯乙酮是一种最简单的芳香酮,可用于配制香料、制作香皂和香烟,也可用做纤维素醚、纤维素酯和树脂等的溶剂以及塑料的增塑剂。根据欧盟危险物质的分类、包装、标示指令67/548/EEC的2008年12月修订版相关规定,苯乙酮的急性毒性等级为4级,属于弱毒性物质,吸入、摄入或经皮肤吸收后对身体有害,可引起喉、支气管炎症、痉挛、肺水肿等,因此被禁止使用在玩具等儿童用品上。  检验检疫部门提醒广大企业,EVA和用作填充料的再生橡胶可能含有苯乙酮。因此在出口玩具、大型游乐设施、童鞋等儿童用品中使用EVA和再生橡胶的企业,产品如果出口欧盟尤其是德国、荷兰、意大利的,必须和原材料供应商确认所使用的材料中不含苯乙酮。如果企业无法确认出口欧盟产品是否含苯乙酮,则可以到检测机构进行检测,以消除因苯乙酮超标而被通报的风险。
  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p  近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。/pp  在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。/pp  上述研究工作得到国家自然科学基金委的资助。/pp style="text-align: center "img style="width: 500px height: 216px " title="W020160419304595129181.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width="500" height="216"//pp style="text-align: center "  span style="font-size: 14px "大连化物所铜催化不对称炔丙基转化研究取得新进展/span/pp style="text-align: center " /p
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱  亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。  丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.     图1. Venusil HILIC 比传统正相色谱柱更稳定  样 品:VB1, VB6, VC, VB2  老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm     色谱柱: Atlantis C18 4.6×250mm,5μm  流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇  流 速: 1ml/min  柱 温: 25℃  检 测: UV 210nm     色谱柱:Venusil HILIC 4.6×250mm,5μm  流动相: A: 0.1%TFA水溶液,  B: 乙腈,  A:B=75:25  流 速: 1 mL/min  温 度: 25℃  检 测: UV 210 nm  图2. Venusil HILIC与C18分离井冈霉素对比色谱图  图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。  丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。     图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比  样品:葡萄糖标准品(购至Sigma)  检测:ELSD  色谱柱:4.6×250mm,5μm  色谱条件:乙腈/水(80:20),1mL/min,30℃  图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。  腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。     图4. 地西他滨有关物质分析色谱图  Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,  UV@244nm,室温Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 苯乙烯、甲醛等8种化学物质上美国“致癌清单”
    美国卫生部11日晨发布最新报告显示,政府正式将苯乙烯和其他七种化学物质列入可能导致人体患癌的物质名单。而苯乙烯广泛运用于塑料包装、一次性纸杯、食物容器和建筑材料中。  由于遭到制造商的强烈游说,美国政府数年来迟迟未将这些有害物质列入“致癌清单”,直到11日晨才最终发布报告正式提出警告。  在此次列入的名单中还有甲醛。报告进一步强调了甲醛的危害性,报告称甲醛是被公认的能够导致某种类型白血病的致癌物质。在胶合板、纸板,甚至一些头发护理产品中存在。  报告指出,此次对所列致癌物质发出的警告来自于工业环境中工作人员的研究报告。大部分工作人员在工作中均接触到这些物质。  纽约西奈山医学院全球卫生院院长菲利普 • 兰德里根建议人们,特别是怀孕的妇女和儿童,应该避免使用聚苯乙烯容器,以及使用苯乙烯的其他产品。  此次发出的警告是基于美国国家毒理学和部分国家卫生院关于致癌物的报告得出。此次已经是12次发布报告,而上次发布报告的时间为2005年。  此消息一出,制造商表示,企业将联合起来向公布致癌物名单的美国卫生部提起上诉。美国复合材料制造商协会发言人汤姆• 多宾斯指出,此报告可以说是在"吓唬"工人,对工厂附近的居民和企业开发新产品将产生不利的影响。而很多涉及的企业均是中小企业,将影响人们的就业和当地的经济。
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005
  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol,化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇,分子式:C19H24N2O4分子量:344.17结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》货号:CDBO-1100726中文名:苯乙醇胺A(克伦巴胺)参考品规格:10mg/L于甲醇,纯度99%,1mL价格请询。欲了解更多信息,请与我司业务员联系。电话:021-54890099。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • ECHA关于苯乙烯的意见声明
    原标题:欧洲化学品管理局修订风险评估委员会关于苯乙烯的意见声明  2012年12月20日消息,欧洲化学品管理局(ECHA)发布了一份关于12月7日公布的近期风险评估委员会(RAC)会议结果的勘误。RAC同意将苯乙烯(styrene)归类为通过吸入而长期或反复暴露将损坏听力器官的物质,以及涉嫌对胎儿造成伤害的物质(生殖毒性类别2)。  更新的声明表明RAC的意见有别于原来丹麦提出的建议。原建议将苯乙烯划为通过吸入而长期或反复暴露使神经系统致损的物质,以及可能对胎儿产生伤害的物质(生殖毒性类别1B)。在先前公布的声明中,RAC表示同意丹麦的建议。  此次,ECHA还修订了有关RAC对苯甲酸(benzoic acid)意见的信息。
  • 全自动粘度测量仪测聚苯乙烯的特性粘度及分子量
    聚苯乙烯(Polystyrene,缩写PS)是指由苯乙烯单体经自由基加聚反应合成的聚合物。苯乙烯侧基的苯环加强了分子的刚性,也使聚苯乙烯相较于其他聚合物拥有更优良的性能和更广泛的用途,是四大通用塑料之一。聚苯乙烯(PS)在外观上呈无色透明状,可以自由着色,并具有优良的绝热和绝缘性能。它的玻璃态转变温度高于100℃,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。鉴于聚苯乙烯(PS)材料优良的性能和使用的广泛性,选用合理精准的产品质量检测手段就显得十分重要。乌氏粘度法是一种操作简便、精准度高且应用广泛的高分子材料检测方法,在聚苯乙烯(PS)材料研发和质量控制中用黏均分子量来表征相关数据准确性。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、 ZPQ智能配液器一整套黏度测试设备为例。 实验流程:1. 称取所需克数的样品,并使用ZPQ智能配液器进行智能配液,点击配液按键,直接输入需求浓度和样品称取质量即可完成配液。也可以连接天平直接获取样品质量,智能计算出所需移取溶剂的目标体积,减少样品精确称量的繁琐步骤,移液精度可达0.1%。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 将移取好的溶液放入MSB系列多位溶样块之中。MSB多位溶样块采用金属浴的方式进行加热并具有自动搅拌功能,最多同时可溶解15个样品,转速、温度、溶样时间可在屏幕上自行设置,溶样温度最高可达180℃3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 呼吸居然有苹果味?其实是疾病征兆
    中医中有望闻问切,闻诊这种说法,就是通过声音和气味诊断疾病。听着非常邪乎,闻一下怎么就能看病了呢? 中医“闻诊”就是通过声音和气味诊断疾病。随着西医发展至今,才揭示了其背后真正的奥妙——呼出气中含有多种挥发性有机物VOCs(如脂族化合物、醇、醛、酮、胺及卤代化合物),通过对不同疾病相关的生物标志物的检测,辅助疾病的早期诊断,早发现早干预早治疗。案例一:“葡萄状”气味的2-氨基苯乙酮 如感染铜绿假单胞菌的患者呼出气会释放一种“葡萄状”气味分子2-氨基苯乙酮[1]。案例二:“烂苹果味”的丙酮 糖尿病酮症酸中毒的病人呼出气体中常常伴有“烂苹果味”,这其实是呼出气中含有丙酮含量远远高出正常人。丙酮是糖尿病患者呼出气的生物标志物,也是一种VOCs。到底什么是呼出气VOCs?呼出气VOCs是指人体呼出,沸点介于50-260℃之间的挥发性有机化合物,分为外源性VOC和内源性VOC。外源性VOC可以产生于环境大气中,通过呼吸道或皮肤吸入或者吸烟后,同样会产生VOCs。而内源性VOC则产生于身体各个部位细胞的生化反应,反应了身体的新陈代谢,这部分的VOCs主要来源于肺泡,所以肺泡的呼出气中的生物标志物更能反应身体的疾病情况。那怎么才能采集到肺泡部分的挥发性有机物VOCs呢?可以根据不同的呼吸阶段CO2分压值的不同来区分。人呼出的气可以分为不同阶段人正常呼吸的全部气体是呼出混合气,大致可分为三个阶段,第I阶段为呼吸道内的死腔气,基本不含二氧化碳,第II阶段为肺泡和腔的混合气,第III阶段是肺泡气,二氧化碳值较高。所以可根据二氧化碳的分压值,识别呼吸阶段以及控制肺泡取样。(图1中表示:I+II+III 期=呼气期(“混合呼气期”,III 期=肺泡气期。PetCO2=呼气末二氧化碳分压) 图1:不同呼吸阶段的二氧化碳分压值 图来源:Elsevier Science & Technology Journals(2004)由于对呼吸采样标准没有严格要求,目前很多研究使用的仍然是整个呼气的采样(混合呼气)。由于混合呼吸会有污染物的影响,而肺泡气中的VOCs浓度比混合呼出气的高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可靠性,还可以帮助确定呼气生物标志物的来源。呼吸气采样的便捷性和非侵入性(Non-Invasive),可以频繁重复检测,对患者和采集样本的工作人员没有任何风险,呼吸VOCs分析有望成为一种新型的无创诊断工具。呼吸采样分析挑战在于如何收集肺泡气 Sampling case-B气体采样器可在护理点进行直接肺泡取样,无需任何额外的采样、储存或预浓缩步骤。采样前,设置CO2阈值,以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,阀门将会打开,呼出的肺泡气体将被自动收集到一种带填料的捕集针被吸附——Needle trap 动态捕集针。采样原理图如图2,这样可以准确地识别呼吸周期的肺泡期和吸气期。 图2:二氧化碳自动控制动态针捕集呼吸采样装置应用案例:Needle trap动态捕集针技术在护理点呼吸采样实验步骤:● 采样方式:猪肺泡呼吸样本通过手动和自动肺泡采样的两种采样方式。● 动物接受了血管外科手术以研究脊髓缺血的影响。分别从麻醉诱导后、手术准备后、脊髓动脉夹闭后5min取标本。异丙酚诱导维持麻醉。● 样品体积为20毫升,每次取样时用每种取样方法重复两次。在这些实验中只使用了定制的NT,填料为2 cm的甲基丙烯酸和乙二醇二甲基丙烯酸酯共聚物。 图3:手动采样 图4:自动肺泡采样 *结果 图5:手动和自动采样的比较当自动取样时,峰面积要高得多。这些结果表明,自动采样,特别是在高呼吸频率下,比人工采样更有效。(如图5所示)所以,Needle trap动态捕集针技术为气态基质中的痕量分析提供了一种全新的、强有力的样品制备方式。 图6:Needle trap动态捕集针技术 Needle trap动态捕集针技术具有以下优点:● 灵敏度高,适用于痕量级别的气体分析,减少采样时间和体积;● 结合采样器可实现直接肺泡采样,容易储存和运输;● 解析速率快,直接进样口分析,无需冷阱聚焦;● 可复合多种吸附剂,适用不同化合物。参考文献[1] 呼出气分析在肺炎病原体诊断中的研究进展.[2] Microextraction techniques in breath biomarker analysis. Bioanalysis (2014) 6(9), 1275–1291[3] Analytical Chemistry, Vol. 81, No. 14, July 15, 2009[4] Anal Bioanal Chem (2013) 405:3105–3115 DOI 10.1007/s00216-013-6781-9
  • 赛默飞世尔收购BD聚苯乙烯滚瓶生产线
    2011年3月1日,赛默飞世尔今天宣布,公司已经签署了一项协议,收购BD(碧迪)公司聚苯乙烯滚瓶生产线。BD(碧迪)公司是开发、制造和销售医疗设备、仪器及试剂的全球性公司。该交易预计将在2011年第二季度完成。  滚瓶是赛默飞世尔细胞培养平台产品之一,其他产品还包括Hyclone一次性使用的生物反应器和孔培养板细胞工厂系统,而这些系统是疫苗、单克隆抗体、重组蛋白和细胞疗法生产的关键。  赛默飞世尔最近宣布在上海建立一个新的制造工厂。上海新工厂以及此次收购表明了赛默飞世尔承诺于投资创新产品平台,并成为同行业中最全面生化产品供应商的决心。  “我们很高兴地宣布这项补充我们实验室产品线的收购,”赛默飞世而副总裁兼总经理Verner Andersen说, “我们将确保我们为客户提供的滚瓶是在已验证的工艺下生产出来的。此项收购使得赛默飞世而可以提供细胞培养的全系列产品。”
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考:链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 丹麦拟禁止在三岁以下儿童化妆产品中使用防腐剂
    2010年12月20日消息,丹麦环境部宣布,丹麦将拟议一项国家立法草案,禁止在三岁及以下儿童使用的化妆产品和个人护理产品中使用含有丙基、丁基及其化合物的防腐剂。据悉,欧盟法规规定,欧盟地区产品中防腐剂的最大限量为0.4%。这也意味着丹麦成为首个提议儿童产品不含防腐剂的欧盟成员国。  丹麦环境部部长Karen Elle Mann指出,经过5年的研究,丹麦政府仍未有确实的证据表明这类防腐剂不会对内分泌造成干扰。而环境部的研究发现,儿童对防腐剂中的内分泌干扰物更为敏感,会对儿童的发育和成长造成影响。  根据丹麦环境部的发言,该提案所包含的产品类型有婴幼儿洗发露、沐浴液、防晒霜和婴儿爽肤水、柔肤露、爽身粉以及儿童玩具化妆品,如粉底、彩妆等。丹麦将首先对提案进行社会公众征询,然后提交至欧洲委员会及其他成员国评议机构,最早于明年1月完成所有议定程序,并预计通过终审后在明年3月正式生效。  虽然这项禁令是暂时的,同时与欧盟化妆品指令的12条保持一致,但丹麦仍希望欧委会和其他成员国能表示支持,使其成为欧盟未来的一项永久性法令。  委员会称,会仍然授权甲基和乙基防腐剂在最大浓度范围内的安全使用。然而,因缺乏足够的数据,异丙基、异丁基、苯基、苄基和戊基防腐剂可能对人类带来的风险及其全性评估尚无法确定。  据悉,丹麦将采取进一步的立法行动,以更好控制可疑内分泌干扰物质。去年,丹麦环保署发表了一份可能对2岁儿童产生暴露影响的内分泌干扰可疑产品情况调查。明年,丹麦将计划开展针对怀孕妇女暴露影响的类似调查。
  • 【热点文章】“标准物质与标准品”专题文章推介
    【编者按】本专题由编委天津阿尔塔科技有限公司张磊博士进行组稿,共收录了3篇文章,分别涉及稳定同位素氘标记盐酸曲托喹酚的制备、氘标记克伦丙罗新的合成方法研究与结构表征,以及盐酸莱克多巴胺-D6新的合成方法研究与结构表征。借助内标试剂的同位素稀释质谱法,只需对样品进行简单的前处理即可利用高分辨质谱进行检测,既便捷高效、降本降耗,又大大提高检测的准确性和灵敏度。因此,对天然丰度的检测用标准品进行稳定同位素标记,高效地合成出相应的内标物,对于食品检测领域具有重要意义。一、稳定同位素氘标记盐酸曲托喹酚的制备1、背景介绍盐酸曲托喹酚又名喘速宁,是β2受体激动剂。目前世界范围内均采用传统的外标法进行测定,但存在着物质浓度低、样品基质复杂、干扰物质多、代谢物多样等问题。而同位素稀释质谱法(IDMS)很好的解决了这一问题。因此,合成稳定同位素标记的盐酸曲托喹酚对于准确检测食品和人体代谢物中曲托喹酚的含量具有重要意义。当前,天然丰度的盐酸曲托喹酚的合成已经有了成熟报道,但关于稳定同位素标记的盐酸曲托喹酚的合成文献还未见报道。本文以廉价的2-(3,4,5-三甲氧基苯基)乙酸为起始原料,将其具有天然丰度的三个甲基通过化学手段置换为具有氘标记的甲基,进而在曲托喹酚分子中引入9个氘原子,使其具有 “内标试剂”的特性。具有较高化学纯度与同位素丰度的盐酸曲托喹酚-D9可以作为药品质检领域、运动员药检以及盐酸曲托喹酚代谢机理研究的内标物,具有重要的实际应用价值。2、文章亮点1)本文参考天然丰度曲托喹酚的合成方法,并在此基础上做进一步地改进,最终合成了稳定性同位素标记的盐酸曲托喹酚(盐酸曲托喹酚-D9)。2)将文中碘甲烷-D3替换为其他标记试剂,如13C标记或者13C和D双标记的碘甲烷,可方便地合成相对应的多种标记化合物,如曲托喹酚-13C3等,均可以作为内标试剂满足曲托喹酚的定性与定量分析。引用本文:秦爽,韩世磊,邵文哲,等. 稳定同位素氘标记盐酸曲托喹酚的制备[J]. 化学试剂, 2022, 44(4): 599-603.二、氘标记克伦丙罗新的合成方法研究与结构表征1、背景介绍克伦丙罗属于一种β2-受体激动剂,我们国家严格禁止将该类药物给动物使用,并要求动物性食品中不得检出。目前国内关于食品中克伦丙罗残留检测方法主要有高效液相色谱法、气质联用法、液质联用法、放射免疫法、酶联免疫吸附测定法等,但是这些方法存在各种各样的问题,对测定结果影响较大。采用同位素稀释质谱法(IDMS),可有效地解决上述问题,能够有效校正方法中出现的误差,显著提高检测方法的稳定性。目前,对于稳定同位素氘标记的克伦丙罗的合成已有文献报道但是存在路线反应步骤较长,且合成过程中的中间体分离纯化难度高,胺化过程中副产物较多等问题,无法从根本上解决制约我国食品安全检测领域严重依赖进口产品的问题。为解决当前合成方法中的不足,本文设计了一条全新的合成路线,以4-氨基-3,5-二氯-α-溴代苯乙酮原料,通过改良的Gabriel方法合成了氨基醇中间体,然后直接与廉价的丙酮-D6缩合得到克伦丙罗-D7。2、文章亮点1)本文以4-氨基-3,5-二氯-α-溴代苯乙酮为起始原料,经4步常规化学反应合成了克伦丙罗-D7,产物经1HNMR和ESI-MS表征确证结构正确,同位素丰度达到了98.3 atom%D,工艺稳定、操作简便,总产率可达40.9%,可实现规模化生产。2)本文设计的新合成路线,以廉价的丙酮-D6作为标记源在最后一步反应中引入,极大地提高了工艺的可操作性和原子经济性,降低了克伦丙罗标记产品的合成成本。此外,若将文中丙酮-D6替换为其他标记原子,如13C或者13C和D双标记试剂,或将第4步还原胺化反应中硼氘化钠替换为硼氢化钠,可方便地合成相对应的多种类标记化合物。引用本文:曹炜东,韩世磊,马秀婷,等. 氘标记克伦丙罗新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4):604-607.三、盐酸莱克多巴胺-D6新的合成方法研究与结构表征1、背景介绍日前,关于盐酸莱克多巴胺的检测方法主要有高效液相色谱-质谱联用法(LC-MS)、酶联免疫法检测、荧光免疫分析法等,但这些方法具有一定的局限性。而同位素稀释质谱法(IDMS)很好的解决了这一问题,是唯一一种可用于微量、痕量和超痕量元素权威的测量方法。当前,关于稳定同位素标记的莱克多巴胺的合成方法已有报道。但存在路线较长、操作复杂,且烷基化这步反应收率较低,副产物较多等缺点。本文针对现有合成方法存在的不足,设计了一条全新的合成路线,以廉价易得的4-(4-甲氧苯基)-2-丁酮(1)作为原料,进行氢-氘交换反应,高效的合成了关键的氘标记中间体,进而经过还原胺化、脱保护基等反应得到氘代莱克多巴胺-D6。与文献方法相比,此方法路线简短、条件温和、操作简便,收率较高,可以制备较高同位素丰度的产物,具有大批量制备生产的前景。2、文章亮点1)首次以4-(4-甲氧苯基)-2-丁酮为起始原料,以廉价易得的重水为稳定同位素标记源,经氢-氘交换反应得到关键中间体4-(4-甲氧苯基)-2-丁酮-D5,再经还原胺化、脱保护基反应合成目标产物。2)所设计的合成路线短、原料廉价、反应条件温和、操作简单、工艺易控,总产率以4-(4-甲氧苯基)-2-丁酮来计达到了44%,以关键标记中间体4-(4-甲氧苯基)-2-丁酮-D5计产率为47%,该合成路线较为方便地引入6个标记原子,为食品安全检测领域的内标研发提供新的合成思路。引用本文:刘晓佳,韩世磊,孔香玲,等. 盐酸莱克多巴胺-D6新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4) :608-612.以上文章转载自“ 全国化学试剂信息总站”。
  • 上海市塑料工程技术学会发布《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》征求意见稿
    各会员单位、业界单位及专家:由上海市塑料工程技术学会立项,福建新安科技有限责任公司、云南云天化股份有限公司、金发科技股份有限公司等企业起草的团体标准《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》已完成征求意见稿的编制(附件1)。现向社会公开征求意见,有关单位和个人可通过以下途径和方式提出意见和建议,填写团体标准征求意见回函表(附件2),征集意见截止日期为2023年4月30日。上海市塑料工程技术学会联系方式联系人:陈佳 13795212029邮箱:504812632@qq.com附件1:塑料无卤阻燃抗冲击聚苯乙烯(PS-I)专用料-征求意见稿.pdf附件2:意见反馈表.pdf上海市塑料工程技术学会关于《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》团体标准征求意见的通知.pdf
  • 福州大学-康宁反应器应用认证实验室氧化新案例
    背景介绍环氧苯乙烷又称氧化苯乙烯,可用作环氧树脂稀释剂、UV-吸收剂、增香剂,也是有机合成,制药工业、香料工业的重要中间体。如环氧苯乙烷催化加氢制得的β-苯乙醇是玫瑰油、丁香油、橙花油的主要成分,广泛应用于食品、烟草、肥皂及化妆品香精。 二、传统工艺分析环氧苯乙烷工业上主要通过卤醇法和过氧化氢催化环氧化合成。卤醇法由于其能耗高,污染重,是一个急需改进的工艺;而借助有机金属催化进行的过氧化氢环氧化因其环保,无污染等优点,使得该工艺具备广阔前景。但其缺点也很明显,反应时间过长,过氧化氢用量过大,制约了其工业化应用。 三、连续流工艺探讨福州大学的连续流专家郑辉东团队就苯乙烯环氧化进行了一系列连续流研究,希望借助微反应器技术解决苯乙烯催化环氧化存在的问题。首先作者对2,2,2 -三氟苯乙酮的催化机理作了探讨。氟原子是一个良好的吸电子基团,2,2,2-三氟苯乙酮能与MeCN和H2O2反应后,生成一个更具活性的五元环氧化剂中间体,稳定这种过渡态是提高反应转化率和选择性的关键。?接着郑教授团队用该催化剂进行了釜式工艺的对照实验,确定了反应的催化剂,溶剂及缓冲液体系(如上图所示),并完成了20mmol的放大实验。这里,作者进行了釜式条件下,反应时间和转化率相关性的研究,如下:结果表明,只有通过延长反应时间至5小时,且增加反应浓度(减小反应体系的溶剂和缓冲液用量),才能得到90.3%转化率,95.7%选择性(Fig 1b);此外,过氧化氢的用量需4个当量。作者分析原因,认为是非均相反应放大过程中,两相无法快速有效地混合以及换热效率低下导致局部反应差异化过大所致。因此,作者希望借助Corning 反应器高效优异的传质传热特性来解决这一问题。作者根据釜式工艺,在筛选优化了反应温度,催化剂比例,溶剂配比和流速等参数后,最终确定以模式3进行连续流环氧化,如下图所示,在模式3下,反应在80℃,背压8bar,总流速30ml/min,缓冲液流速8.5ml/min,通过过氧化氢的二次进料以及首次反应液的二次反应,可实现96.7%转化率,95%选择性,最终收率可达91.8%。整个反应耗时仅需3.17min,与釜式工艺的5小时相比,反应时间大大缩短,且反应效果更好(釜式工艺下,转化率仅90.3%),此外过氧化氢用量减小至3个当量。究其原因在于Corning反应器独特的心形结构设计,从而大大强化了反应过程中的传质和传热,使得反应速度大大提升。实验结论:●通过Corning连续流反应器发展并优化出一种新的苯乙烯环氧化工艺;●使用该连续流工艺,可获得较之釜式更为优异的反应结果,转化率96.7%,选择性95%;●该连续流工艺反应耗时更短(3.17min),安全性更高;●该工艺可以无缝放大,非常适合苯乙烯环氧化的工业化应用。参考资料:Journal of Flow Chemistry (2020). DOI:10.1007 /s41981 -019-00065-62018年9月5日,福州大学和美国康宁公司就微反应器应用创新达成战略合作伙伴协议,成立了福州大学-康宁反应器应用认证实验室。这是美国康宁公司在中国高校系统搭建的第一家反应器应用认证实验室,也是全球第6家反应器应用认证实验室。福州大学是国家“双一流”、国家“211工程”重点建设大学。石油化工学院在坚持发展创新的同时,一直把环保和安全作为专业教育的重要内涵,同时积极推进“产学研”深度融合,实现了多方的互利共赢、共同发展。福州大学-康宁反应器应用认证实验室成立一年多,在郑辉东教授的带领下,完成了多项研究,实验室成果的技术转化正在稳步推进中。康宁反应器技术有限公司版权所有未经许可,不得做任何形式的转载和出版
  • 岛津推出用于分析疏水多肽蛋白的MALDI新基质
    岛津制作所(SSI)近日发布了ATHAP-MALDI基质方法工具包,用于改进对包含跨膜疏水蛋白和多肽的分析能力。传统的LC-MS/MS和MALDI-TOF 很难分析包含疏水基团的膜蛋白。烷基化三羟基苯乙酮(ATHAP)新基质在此方法中发挥了特殊的作用。  许多疾病的生物标志物是包含疏水基团的膜蛋白。之前用液质和MALDI-TOF的检测效果都不理想,这类蛋白和多肽一般不被目标分析物列表所包含。由于疏水多肽的低溶解性,其难于在液相质谱中得到检测。采用如α -氰基-4-羟基肉桂酸 (CHCA)、芥子酸(SA)、二羟基苯甲酸(DHB)等传统基质的MALDI法离子化效率较低,从而导致用MALDI-TOF检测这些物质灵敏度很差。  “疏水性是将横跨膜片段整合到脂质双分子层的主要动力。这些新的基质工具包为科学家分析这些重要物质的生物和物理化学性质提供了前所未有的可能性。”岛津公司Scott Kuzdzal博士说。“这些工具包可以提高分析灵敏度,开拓对从抗菌肽到癌症蛋白标志物等关键疏水性分子结构和功能的研究。”  ATHAP基质由广岛大学和田中耕一尖端科技实验室联合开发,并授权给岛津制作所。本研究得到日本学术振兴会(JSPS) “世界领先创新科技研发资助项目 (FIRST Program) ”的赞助支持。编译:郭浩楠
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺(一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。(二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。(三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。二、1,8-二-4-甲苯氨基-9,10-蒽二酮(一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。(二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。(三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。三、甲醛和2-甲酚的聚合物(一)背景资料。甲醛和2-甲酚的聚合物常温下为液态,沸点118℃,不溶于水,可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。四、甲醛和苯酚,对叔丁基苯酚的聚合物(一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态,沸点118℃,不溶于水,易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。来源:仪器信息网
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺   (一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。   (二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。   (三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。   二、1,8-二-4-甲苯氨基-9,10-蒽二酮   (一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。   (二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。   (三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。   三、甲醛和2-甲酚的聚合物   (一)背景资料。甲醛和2-甲酚的聚合物常温下为液态, 沸点118℃,不溶于水, 可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。   四、甲醛和苯酚,对叔丁基苯酚的聚合物   (一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态, 沸点118℃,不溶于水, 易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。
  • 市场监管总局发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法
    根据《中华人民共和国食品安全法》及其实施条例有关规定,市场监管总局批准发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法。名称和编号如下:动物源性食品中瓜尔胶的测定(BJS 202301)冰乙酸假冒食醋的鉴别方法 气相色谱-稳定同位素比值质谱法(BJS 202302)食品中淫羊藿苷、金丝桃苷和补骨脂素的测定(BJS 202303)果汁中植物源性成分的测定(BJS 202304)麦卢卡蜂蜜中2-甲氧基苯甲酸、2'-甲氧基苯乙酮、4-羟基苯基乳酸和3-苯基乳酸的测定(BJS 202305)粮食加工品中噻二唑、苯并噻二唑、噻菌灵及福美双的测定(BJS 202306)蜂蜜中二羟基丙酮、甘露糖和蜜二糖的测定(BJS 202307)食品中溴酸盐的测定(BJS 202308)鸭血中鸭鸡鹅源性成分的测定(BJS 202309)豆芽、豆制品、火锅及麻辣烫底料中喹诺酮类、磺胺类、硝基咪唑类、四环素类化合物的测定(BJS 202310)动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法(KJ 202301)动物肌肉组织中链霉素和庆大霉素的快速检测 胶体金免疫层析法(KJ 202302)动物源性食品中四环素类药物的快速检测 胶体金免疫层析法(KJ 202303)动物源性食品中红霉素、螺旋霉素、泰乐菌素、替米考星的快速检测 胶体金免疫层析法(KJ 202304)豆芽中喹诺酮类药物的快速检测 胶体金免疫层析法(KJ 202305)生鲜乳和畜肉中氨基糖苷类药物的快速检测 胶体金免疫层析法(KJ 202306)蔬菜水果中丙环唑的快速检测 胶体金免疫层析法(KJ 202307)乳及乳制品中玉米赤霉醇类物质的快速检测 胶体金免疫层析法(KJ 202308)蔬菜水果中甲基异柳磷的快速检测 胶体金免疫层析法(KJ 202309)以上方法文本可在市场监管总局食品补充检验方法数据库(https://www.samr.gov.cn/spcjs/bcjyff/)和食品快速检测方法数据库(http://www.samr.gov.cn/spcjs/ksjcff/)中查询和下载。特此公告。市场监管总局2023年6月13日
  • 我国将制定23项石油化工产品检验新国标
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国石油和化学工业联合会和国家标准化管理委员会将主管制定23项石油化工产品检验新国标,涉及原油、肥料、染料、颜料、涂料、橡胶、胶黏剂、化学试剂、化学化工原料等产品的检测。另外还将修订4项石油化工产品检测标准。2014年第一批国家标准制修订计划之石油化工产品检验标准  《化学试剂 离子色谱测定通则》  化学试剂是科研条件的重要组成部分,是开展科研开发和现代工业所必须的重要支撑条件,是工业的&ldquo 味精&rdquo 、科学的&ldquo 眼睛&rdquo 和质量的&ldquo 标尺&rdquo 。因此本次离子色谱通则制定将做到最大限度地与国外相关标准相一致,以达到离子色谙分析方法与国外要求的一致性。  主要用于化学试剂中氯化物、硫酸盐、磷酸盐、硝酸盐、亚硝酸盐、溴酸盐、铬酸盐等阴离子,钾、钠、钙、镁、锂、铵等阳离子,糖类以及有机酸的质量评估,本标准规定了离子色谱定义、方法原理、试剂和材料、仪器、样品处理和测试方法。  《原油残炭的测定 第2部分:微量法》  本标准修改采用JIS K 2270-2-2009《原油及石油产品残炭含量测定 第二部分 康氏法》,微量法操作简易、样品量少、精密度好等特点,体现了技术进步,而且与康氏法的测定区间和结果等效,因此将&ldquo 原油残炭的测定 微量法&rdquo 纳入到国家标准中,是对原油残炭标准的一个有益的补充和完善,有较为积极的意义。  《中间馏分油中总污染物含量测定法》  总污染物含量是反映中间馏分油清洁度程度的重要指标。柴油中污染物一般包括尘土、水、微生物、碎屑、蜡等。柴油的清洁程度对发动机过滤系统非常重要,污染物的存在会影响燃料的快速过滤,严重时造成滤网堵塞,供油不畅,使发动机不能正常工作。柴油中污染物含量在国外产品标准中有严格限制,受到国际相关部门的重点关注,但目前我国柴油污染物检测方法很少,相关研究也很少。 本标准规定了中间馏分油中总污染物的检测方法。  《肥料中邻苯二甲酸酯含量的测定 气相色谱-质谱法》  邻苯二甲酸酯(PAEs)是环境中的一类常见有机污染物,具有内分泌干扰毒性和生物累积性。本标准针对含有PAEs的肥料施入土壤后存在着被农作物吸收而污染农产品的极大风险,通过对国内外PAEs相关分析方法的查询和研究,以美国EPA确定的6种PAEs优控污染物为对象,研究一种适合定性、定量检测肥料中PAEs的气相色谱-质谱法(GC-MS),为保障食用农产品质量安全提供技术支撑。  《光学功能薄膜 三醋酸纤维素酯(TAC)薄膜 相延迟测试方法》  工业化生产的光学薄膜在不同光学轴方向可能存在各相异性,光线通过时会产生相延迟。普通光学环境中薄膜的存在相延迟通常没有什么影响。光学性能可只测量透过率、雾度。随着液晶显示器(LCD)的应用,偏光系统的中存在相延迟就不可忽视了。在彩色显示领域可能引起较明显的颜色变化。为此,LCD中使用的TAC薄膜需要控制相延迟。尤其是沿显示器光轴方向(Z轴),为此需建立此标准。  《光学功能薄膜 涂层密着性的测定方法》  光学功能偏光片是目前业界投资最为热门的行业之一,偏光片的制造技术一直被日本、韩国、中国台湾等国家和地区所垄断,大陆企业生产TFT 型偏光片在技术上非常困难,因而发展偏光片项目对完善我国液晶上游产业链,降低产品成本,提高市场竞争力有着重要意义。在提高偏光片产品质量,改善和提高偏光片光学性能方面,膜材的涂层起到重要作用。涂层的密着性是对涂层评估的一个重要方面,它影响到偏光片的光学性能与质量。  此标准的制定将统一规范液晶显示器用偏光片及其相关的光学薄膜之涂层密着性的测试方法要求,提高偏光片的质量及光学性能。  《胶乳制品中重金属含量的测定 电感耦合等离子体原子发射光谱法》  胶乳制品广泛应用于人们的日常生活中,目前在胶乳制品中重金属检测国内没有试验方法标准。 本标准将规定用电感耦合等离子体原子发射光谱仪测定胶乳制品中重金属铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、锰(Mn)、锌(Zn)、铁(Fe)、砷(As)、汞(Hg)、铝(Al)10种元素的总量方法。本标准适用于胶乳材料及其制品。  《胶鞋 苯乙酮含量试验方法》  苯乙酮对眼和皮肤有刺激作用,可引起皮肤局部灼伤和角膜损伤。德国等欧盟发达国家已注意到这类溶剂对人体健康的影响,它们国内的采购商也已开始要求全球各地的供应商检测材料中苯乙酮的含量,超过限量的产品将被拒绝进入他们国内的高端市场。因此,建立胶鞋中苯乙酮标准检测方法,对保障人体健康安全、提升产品质量破除贸易技术壁垒具有重要意义及紧迫性。本标准的制定填补了胶鞋中苯乙酮检测方法的空白,为控制、分析胶鞋所含的对人体有害的溶剂及限量提供了依据。  《胶鞋 烷基酚含量试验方法》  烷基酚为一种仿雌激素,也是已知的内分泌干扰素。具有持久性以及生物蓄积,在胶鞋生产中广泛应用, 极易残留在材料中。也就是说,它一旦被排入的环境中,它会在环境中存在很长时间,而且它可以进入食物链,并且通过食物链逐级放大。同时,它还具有模拟雌激素的作用,因此它一旦进入生物体内之后,就会影响生物体正常的生殖和发育。本标准的制定填补了胶鞋中烷基酚检测方法的空白,为控制、分析胶鞋所含的对人体有害的酚类及限量提供了依据。  《胶印版材用高聚物中乙二醇单乙醚不溶物含量的测定 过滤法》  胶印版材用高聚物中的不溶物,主要来源于聚合物在制备过程中产生的&ldquo 超高分子量聚合物&ldquo 、或者是反应过程中发生了交联、氧化等,甚至是在处理过程中(析出、干燥等)不慎引入的其它不溶性物质。这些不溶物的量的多少,会影响高聚物的使用。由于目前几乎所有胶印版材涂布液使用的主要溶剂成分都是乙二醇单乙醚,因此以乙二醇单乙醚不溶物来确定高聚物不溶物的指标是非常合适的。 本标准规定了用过滤法来测定胶印版材用高聚物中乙二醇单乙醚不溶物的含量。  《胶粘带动态剪切强度的试验方法》  胶粘带动态剪切强度用于表征在动态拉伸过程中胶粘带所能承受的最大剪切力。该性能对于胶粘带在剪切作用下的粘接效果的测试与判定具有重要意义。目前一般用持粘性来表征胶粘带的静态剪切力。 本方法表征在动态拉伸过程中胶粘带所能承受的最大剪切力,是对胶粘带剪切性能的完善和补充。  《硫化染料产品中硫化钠含量的测定》  硫化染料是我国染料行业很重要的一染料类别,在出口染料中也占有很大的比例。由芳胺类、酚类或硝基物与硫磺或多硫化钠硫化反应而生成。硫化钠是腐蚀性物质,与皮肤和粘膜接触有强烈的刺激性和腐蚀性,与酸类反应,产生剧毒和易燃的硫化氢。国内外用户对硫化染料中硫化钠的含量都有提出限制的要求,尤其是产品出口到发达的国家和地区要求格外严格。而国内目前还没有硫化染料中硫化钠含量测定的统一标准。因此,为填补标准上的空白,丰富我国染料行业方法标准体系,制定本方法标准是十分必要。  《车用汽油中总硅含量的测定 电感耦合等离子体发射光谱法》  车用汽油中硅含量过高会导致汽油火花塞堵塞、三元催化转化器中催化剂中毒等现象发生,对汽车本身性能造成较大的损害。例如2010年5月岳阳中石化&ldquo 问题汽油&ldquo 致上千辆汽油火花塞堵塞事件,事故原因分析即可能与硅含量异常有关。对车用汽油中总硅含量的检验鉴定技术研究,开发快速准确的检验方法,制定相关的检验标准,将一方面有利于对我国成品油市场进行有效的质量监管,减少和避免因成品油质量问题引发的群体性质量事故而造成消费者的人身安全事故和经济损失,具有较为显著的经济效益和社会效益。  《硫化橡胶 恒定形变压缩永久变形的测定方法》  本标准规定了将硫化橡胶试样压缩到规定高度下,经一定温度和时间,或经介质浸润后,测定试样压缩永久变形率的方法。本试验方法是橡胶物理性能试验中最常用的方法,试验设计简单易行,可直观的反应橡胶的硫化程度,因此得到国内外众多试验室普遍采用。本标准的前身是GB/T 1683《硫化橡胶恒定形变压缩永久变形的测定方法》,于1981年修订至今得到广泛使用。但是在国标清理整顿时,该标准在国家标准目录库中丢失,因此现急需补充制定。  《硫化橡胶或热塑性橡胶 耐臭氧龟裂 测定试验箱中臭氧浓度的试验方法》  臭氧是橡胶老化失效的重要因素之一,考察橡胶耐臭氧老化的性能时,臭氧浓度是影响臭氧老化试验结果的重要影响因素。目前国内尚无专门测量臭氧浓度的方法标准,导致国内橡胶耐臭氧相关试验方法标准测试结果没有可比性,因此亟需制订相应的国家标准。 本次国家标准制定建议等同采用ISO 1431-3:2000。  《氯化聚氯乙烯树脂 残留氯含量的测定 电位滴定法》  氯化聚氯乙烯树脂(CPVC)是由聚氯乙烯经氯化而制得的改性高分子化合物,是一种新型工程塑料原料,其耐热性及耐酸碱、盐、氧化剂腐蚀的性能十分优异,综合性能远高于聚氯乙烯树脂。残余氯含量是评判CPVC质量优劣的一项重要技术指标。本标准作为试验方法标准,拟在氯化聚氯乙烯树脂产品标准中被引用。  《毛用反应染料 色光和强度的测定》  毛用反应染料是近年来快速发展的一类产品,相比传统的羊毛用酸性等染料,因反应染料与纤维产生共价键结合而具有无法比拟的优异色牢度和应用性能,在行业内备受推崇。随着毛用反应染料的不断开发成功和面市,其生产企业越来越多,应用也越来越据活跃,商品化产品在国内外贸易也越来越频繁,而考核这类染料染色性能和质量要求的最重要指标(色光和强度)的测定还没有有一个统一的测试方法标准。为完善我国染料领域的标准体系建设,提高反应染料产品质量、规范生产,保证产品国内外贸易的顺利进行,制定本标准是十分必要的。  《木材胶粘剂拉伸剪切强度的试验方法》  木材粘接的使用条件各不相同。粘接后性能的表征可按受力方向的不同,分为拉伸剪切和压缩剪切。本标准提供了在给定环境条件下,利用标准试件进行拉伸载荷,测定木材与木材粘接剪切强度的方法。本标准完善了木材用胶粘剂剪切强度的试验方法,完整地反映了胶粘剂在木材上的粘接性能。  《色漆和清漆 电导率和电阻的测定》  虽然目前有许多涂料品种需求了解其电导率或电阻参数,但国内仅有产品标准HG/T 3952-2007 《阴极电泳涂料》涉及了涂料产品的电导率的测定方法,但该产品标准中对测试仪器和装置无规定,试验步骤比较简单,因此试验误差较大。对于涂料的电阻测定则无相关方法,国内一些企业各自建立了试验方法,但由于对试验仪器、操作步骤规定不科学和过于简单,造成较大的结果偏差,且不同企业之间产品难以相互比较。因此,制定准确测定涂料的电导率和电阻的标准对于涂料配方设计、指导施工、性能检测都具有十分重要意义。  《涂料中石棉的测定》  涂料是一类与人们生活息息相关的产品,为改善其性能有时需加入一些天然矿物(常会掺杂有石棉纤维的伴生物)或石棉物质。 石棉纤维对人体健康有不良影响,进入人体内的石棉纤维具有致病可能。国际癌症研究组织(IARC)已经宣布石棉是A类致癌物。随着各类石棉控制或禁用法规的实施,涂料就成为无法规避的被检材料。目前国内外关于涂料中石棉的检测还没有统一的标准 ,制定涂料中石棉的检测方法标准势在必行。  《颜料和体质颜料 灼烧损失和灼烧残余物的测定》  颜料和体质颜料是涂料、油墨等生产的重要原材料之一,灼烧损失和灼烧残余物的测定是许多颜料生产厂及用户很重视的项目之一,其测定方法应用频率较高。灼烧损失和灼烧残余物的测定结果对于颜料和体质颜料样品分析有着重要的意义,可用于了解和判定样品成分组成等信息。目前国内、国际尚没有颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准,仅在相关产品标准中作具体描述。因此尽快制定统一的颜料和体质颜料灼烧损失和灼烧残余物测定的试验方法标准十分必要。  《液体酸性染料 色光和强度的测定》  液体酸性染料作为色素最基本的应用性能指标就是其色光和强度,由于其下游应用的特殊性,其色光和强度的测定不同于传统的粉剂染料的测定,目前还没有形成统一的测定方法标准,不利于国内外产品贸易和产品技术进步。为促进产业结构调整,推动清洁生产工艺技术深入,为保证产品下游应用的顺利开展,制定该方法标准是非常必要的。  《异丁烯-异戊二烯橡胶(IIR)不饱和度的测定 第1部分:碘量法》  自1999年国内第一套丁基橡胶生产装置开车以来,丁基橡胶的生产工艺和质量水平都有了较大的提高,2012年完成丁基橡胶产品国家标准的制定。不饱和度是产品标准中一项重要检测项目,直接影响橡胶的加工和应用性能,有必要单独针对其制定方法标准。目前国际标准中也没有不饱和度方法标准,本项目将填补此项空白。本次制定丁基橡胶不饱和度的测定方法,分为两个部分:第1部分 碘量法 第2部分 核磁共振氢谱法,保证了方法的配套性,同时满足不同用户的需要。
  • 《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》
    各相关单位: 根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了食品安全国家标准《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》。现公开征求意见,如有修改意见,请于2022年5月1日前反馈至全国兽药残留专家委员会办公室。 联系人:张玉洁 联系电话:010-62103930 E-mail:syclyny@163.com地址:北京中关村南大街8号科技楼206邮编:100081      附件: 1. 动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法(征求意见稿) 2. 食品安全国家标准征求意见表 全国兽药残留专家委员会办公室2022年4月1日
  • PTR-TOF靠谱系列之“品茶”
    茶在我国历史悠久,是茶文化的发源地,有人认为可追溯到上古时期,有“茶之为饮,发乎神农氏”之说。因茶具有特殊的风味和健康效果,茶在全世界范围内也非常流行。日常生活中,人们品茶,更是“品”其香味,可谓“未尝甘露味,先闻圣妙香”。茶水散发的香气对品茶人有着强烈的冲击,从而直接影响人们的感官。我国的茶叶类型非常多,这些不同类型的茶叶的香型也非常多,据不完全统计,有毫香型、嫩香型、花香型、果香型、清香型、火香型、甜香型、陈醇香型、松烟香型等。这些香味据报道有多达700包含了多种挥发性化合物[1],包括醛类、酮类、酸类、酯类、酚类、含硫化合物等等,如绿茶中具有清香味道的二甲硫(C2H6S)、成品茶中具强烈而稳定的令人愉快香气的苯乙酮(C8H8O)、成品茶叶挥发的具果实、干果类香气茶螺烯酮(C13H20O2)等。对这些香味物质的检测手段,主要是利用一维或多维气象分离与质谱相结合的方式来进行(CG-MS或GC×GC-MS)分析离线采集样品,测试中通常需要根据目标风味物质物化性质考虑分离柱的极性和搭配,同时样品分离时间一般在数十分钟以上。PTR-TOF试剂与方法直接进样、快速检测、高质量分辨率的快速质谱检测方式目前报道的相对较少。在此,我们利用Vocus CI-TOF质谱仪对不同类型的茶叶进行了测试(见图1),分别测量了不同茶叶刚泡发时所挥发出来的香味,本次Vocus CI-TOF使用的是质子转移反应电离模式(PTR H3O+模式),茶叶开水泡发之后移至仪器进样口进行直接分析,最大程度减少样品采集中损失以及最大程度模拟人体感官。仪器测量数据采样频率设置为1s/全谱,每组样品的测量时间约为1~2分钟,待样品信号稳定后结束测量并利用除烃空气冲洗进样口,排除样品间残留干扰。本次测试共检测到了百多个变化较明显的信号,我们在此挑选了一些比较有趣的检测结果做进一步解读。图1. Vocus PTR-ToF质谱仪直接进样检测泡发茶水顶空气体PTR-TOF分析结果图2对比了笔者家乡所产的绿茶(a)和某红茶(b)所测到的相对信号。总的来看,绿茶的释放的香气相对简单,Vocus CI-TOF检测到数十个变化比较明显的信号,除了m/Q 63 (C2H6SH+,二甲硫)的信号较强,其他信号的强度较小,说明绿茶的清香味道主要还是来自于二甲硫,受到其它因子的影响较小;某红茶释放的香味则复杂的多,Vocus PTR-TOF检测到了数百个变化比较明显的信号,且大部分的信号强度都较高。图2. 某绿茶和某红茶泡出香气的谱图相对信号比较在本次检测中,我们在某红茶的检测到了一些茶叶中比较明显存在的香味因子。图3是样品中检测到的分子质量比较大的两个物质,这两个因子出现在m/Q 153的位置,两个物质的精确质量分别为m/Q 153.0546和m/Q 153.1274,值得注意的是,区分开这两个因子需要分辨率不低于3000 Th/TH的质谱仪来进行检测,两个因子分别对应的分子式为C8H9O3+和C10H17O+。C8H9O3+对应的可能物质为香草醛;C10H17O+对应的可能物质为薄荷酮或茴香酮。图3. Vocus PTR-TOF在m/Q 153处检测到的物质谱图此外,还检测到了乙酸(C2H6O2)、苯乙酮(C8H8O)、丁香酚(C10H12O2)、 茶螺烯酮(C13H20O2)等茶叶中常见物质。PTR-TOF结论Vocus PTR-TOF直接进样,广谱物质检测的能力,秒级响应的高时间分辨率、以及pptv-级别超低检测限、为茶样风味物质的快速全面检测分析和样品筛查提供了新的检测思路。参考文献[1] Zhai, X., Zhang, L., Granvogl, M., Ho, C.-T. and Wan, X.: Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques, Comprehensive Reviews in Food Science and Food Safety, 21, 5, 3867-3909, https://doi.org/10.1111/1541-4337.12999, 2022.
  • 10项补充检验方法和9项快速检测方法批准发布
    根据《中华人民共和国食品安全法》及其实施条例有关规定,市场监管总局批准发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法。名称和编号如下:动物源性食品中瓜尔胶的测定(BJS 202301)冰乙酸假冒食醋的鉴别方法 气相色谱-稳定同位素比值质谱法(BJS 202302)食品中淫羊藿苷、金丝桃苷和补骨脂素的测定(BJS 202303)果汁中植物源性成分的测定(BJS 202304)麦卢卡蜂蜜中2-甲氧基苯甲酸、2'-甲氧基苯乙酮、4-羟基苯基乳酸和3-苯基乳酸的测定(BJS 202305)粮食加工品中噻二唑、苯并噻二唑、噻菌灵及福美双的测定(BJS 202306)蜂蜜中二羟基丙酮、甘露糖和蜜二糖的测定(BJS 202307)食品中溴酸盐的测定(BJS 202308)鸭血中鸭鸡鹅源性成分的测定(BJS 202309)豆芽、豆制品、火锅及麻辣烫底料中喹诺酮类、磺胺类、硝基咪唑类、四环素类化合物的测定(BJS 202310)动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法(KJ 202301)动物肌肉组织中链霉素和庆大霉素的快速检测 胶体金免疫层析法(KJ 202302)动物源性食品中四环素类药物的快速检测 胶体金免疫层析法(KJ 202303)动物源性食品中红霉素、螺旋霉素、泰乐菌素、替米考星的快速检测 胶体金免疫层析法(KJ 202304)豆芽中喹诺酮类药物的快速检测 胶体金免疫层析法(KJ 202305)生鲜乳和畜肉中氨基糖苷类药物的快速检测 胶体金免疫层析法(KJ 202306)蔬菜水果中丙环唑的快速检测 胶体金免疫层析法(KJ 202307)乳及乳制品中玉米赤霉醇类物质的快速检测 胶体金免疫层析法(KJ 202308)蔬菜水果中甲基异柳磷的快速检测 胶体金免疫层析法(KJ 202309)以上方法文本可在市场监管总局食品补充检验方法数据库(https://www.samr.gov.cn/spcjs/bcjyff/)和食品快速检测方法数据库(http://www.samr.gov.cn/spcjs/ksjcff/)中查询和下载。特此公告。市场监管总局 2023年6月13日
  • 智能型卡尔费休库仑微量水分测定仪KF106隆重上市
    高精度智能化库仑法微量测定仪由于技术上问题,一直由国外产品掌控国内微量水分测定仪的市场,由于其价格相对于其它常用的水分测定仪,价格一直居高不下,从而限制其产品广泛使用。针对国内产品对微量水分测定仪的测试精度和智能化程度越来越高,经过多年水分测定仪的销售和生产的经验,通过我公司技术人员共同努力,研发出最新智能型卡尔费休库仑微量水分测定仪KF106,其精度和相对误差均与国外同类产品相媲美,其销售价格则为同类进口产品的一半。同时根据国内的用户的操作习惯,研发最新的操模式,其操作的便利性和智能性完全满足日常的微量水分测定的要求,受到广大用户的欢迎。KF106型微量水分测定仪采用经典理论&mdash &mdash 卡尔&bull 菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度极高,测试成本极低,具有其他测试方法不可替代的优势;能可靠的对液体、气体、固体样品进行微量水分的测定。该仪器以棒图形式显示测量电极信号,直观指示电解液的含水量,实时描绘电解速度对时间的变化曲线。具有高灵敏度、高精度、高再现性,低功耗节能设计等特点,可内置蓄电池用于便携测量,广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。 可检测物质种类包括:1.汽油,水压油、绝缘油、变压器油、透平油、抗燃油。2. 戊烷、己烷、二甲基丁烷、辛烷、十二烷、二十碳烷、二十八烷、环十二烷、癸基环己烷、甲基丁二烯、苯、甲苯、二甲苯、乙基甲苯、二甲基苯乙烯、十四烯、石油醚、环己胺、甲基环己胺、环庚 烷、乙烯环己胺、二环戊二烯、二甲基萘、三甲基苯乙烯、苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等。3.酚类 苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基酚等。4.醚类 二乙醚、二甘醇单甲醚、二甘醇二乙醚、聚乙二醚、苯甲醚、氟苯甲醚、碘苯甲醚、二癸醚、二庚醚。5.全部醇类、全部卤代烃类、全部脂类等。仪器特点320× 240点阵图形液晶显示屏,触摸屏操作;实时描绘电解速度对时间的变化曲线;以棒图形式显示测量电极信号,直观指示电解液的含水量;使用空白电流补偿、平衡点漂移补偿来修正测量结果;独创开关恒流电解技术,降低整机功耗;带时间标记的历史记录,最多存储255个;具有电极开路、短路自检报警功能;内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能;内置蓄电池(选配),充满电后,可连续使用6小时以上;配有标准RC232接口,可与计算机连接,便于处理试验数据;具有屏幕保护功能,延长液晶使用寿命;技术参数测量范围:1ug~100mg精 度:测试水量在3ug~1000ug之间误差小于± 2ug 测试水量大于1000ug误差小于± 0.2%分 辨 率:0.1ug电解电流:0~400mA待机功耗:6W 最大功耗:35W电源电压:AC220V± 20% 50HZ± 10% 适用环境温度: 5℃~40℃ 适用环境湿度: &le 85% RH外形尺寸:350× 260× 180(mm)
  • 一种灵巧的微量固相萃取技术(MEPS)
    往期讲座内容见:傅若农老师讲气相色谱技术发展第十九讲一种灵巧的微量固相萃取技术(MEPS)  大家知道在分析和生物分析方法的开发中,样品处理是十分重要的一步。现代分析对一个样品的分析测定所用的时间越来越短,但是,样品制备过程所用的时间却仍然很长。据统计,在大部分的仪器分析实验室中,将一个原始样品处理成可直接用于仪器分析测定的样品状态,所消耗的时间约占整个分析时间的60-70%。在各种样品前处理方法中,目前各种无(少)溶剂的绿色样品处理技术成为仪器分析主要的前处理方法。当然近年最具吸引力的技术是固相微萃取(SPME),它是从固相萃取(SPE)衍生出来的一种无溶剂的样品处理技术,从SPE衍生出来的另一种微量固相萃取方法是填充吸着剂微萃取(Microextractionbypackedsorbent,MEPS),它是2004年出现的一种精巧、环保、便利的固相萃取方法,(JChromatogrB,2004,801:317–321 JMassSpectrom,2004,39(12):1488)由瑞典阿斯特拉公司研发部(AstraZenecaR&DSodertalje)的MohamedAbdel-Rehim首先提出的。Abdel-Rehim(现时在瑞典斯德哥尔摩大学分析化学系)在2015年发表一篇有关MEPS的综述文章(TrAC,2015,67:34–44),讲述这一技术的发生和发展及其应用,这里以此文为主综合介绍MEPS的概况及应用。  MEPS是一种小型化的固相萃取(SPE)技术,用于样品的纯化,但与一般SPE有显著差异,它是把吸着剂直接集成到注射器中(BIN),而不是一个单独的小柱子。因此,不需要使用一个单独的萃取装置。MEPS甚至可以用于血浆或尿液样进行100次以上的萃取纯化,而常规固相萃取小柱只能使用一次。MEPS可以处理容量小的样品或容量大的样品(10μ L-1000μ L血浆,尿或水样),可与气相色谱/质谱,液相色谱/质谱,毛细管电色谱/质谱联用。可在反相、正相,混合离子交换模式下使用。用注射器作为进样装置,可以自动化,包括样品处理,萃取和注射等步骤。SPE的洗脱处理只能是从上到下,而MEPS可以从两个方向洗脱处理。1MEPS的装置  MEPS的装置是把大约2mg固体吸着剂像塞子一样装到注射器(100,250μ L)的筒和针之间,如图1所示,这种技术结合样品萃取、预浓缩和洗脱于一体,设备有两部分:MEPS注射器和MEPS床,也叫做BIN,BIN包括MEPS床(固体吸着剂),和填充MEPS床的注射器针。BIN使用100-μ L或250-μ L气密MEPS注射器,它可以经受正常SPE的压力。图1MEPS的装置  当BIN失效或需要更换其他吸着剂时,把螺母拧开更换旧的BIN,换上新的BIN。整个装置可以手动或在线使用,MEPS适合于使用反相、正相、和离子交换模式下进行萃取富集。一般上讲,MEPS可以适应SPE的特点要求,只是把有效体积缩小到10μ L,这样可以适应于LC或GC的自动进样注射器进样。MEPS的特点是使用很少量吸着剂,并且用很少量溶剂就可以把样品洗脱下来。2MEPS的各种形式  MEPS经过多年的研究进化,从手动(装在注射器中,或叫BIN)到半自动和全自动装置,见图2。图2MEPS的各种形式  MEPS的最重要的部分是吸着剂,重要的吸着剂见图3,最常用的是以硅胶为基质的键合于硅胶表面的烷烃固定相C2、C8和C18,很多研究者也喜欢使用聚酯类吸着剂。  通用型吸着剂的缺点是没有选择性,为了克服这个问题,人们选择分子印迹聚合物(MIPs),用以识别特异性的目标化合物。另一方面MEPS也使用聚吡咯或聚酰胺类吸着剂,它们成功地用于杀虫剂和水性样品的分离。此外有人合成了聚苯胺(PANI)纳米丝,做成网络用于从水样中选择性分离三嗪、有机氯、有机磷农药。  近来Abdel-Rehim研究组合成了一些适合于MEPS的新型吸着剂,具有高效、耐用、易于使用的特点,例如碳基吸着剂材料、针内溶胶凝胶MIP、溶胶凝胶MIP修饰的膜、和溶胶凝胶MIP点纺丝吸着剂。有关样品萃取吸着剂有多种多样品种可供选择(TrendsinAnalyticalChemistry,2016,77:23–43),下一讲讨论这一问题。3MEPS装置的自动化应用举例  MEPS自动化是把MEPS与自动进样器结合起来组成一个系统,来完成MEPS的所有步骤,包括样品的保温、萃取、清洗、温度控制、萃取和解析的时间控制,通过计算机上的操作系统来进行整个分析过程,这种设备有多家公司的商品仪器出售。  这种自动化的MEPS再与96微盘进样结合起来,可以大大缩短总分析时间,构成高通量分析模式。MEPS自动化可以使用多支萃取头组成萃取头集合,如图3的A,也可以和管尖填充固定相微萃取(MEPS),如图3的F,它的结构是萃取头放在微量吸液管的管尖处。也可以使用管内SPME或固相微萃取棒与HPLC组成自动化系统。图3MEPS的自动化设备图3的说明:  A--多个萃取头集合 B--96支微管机械手操作台:(1)96-TFME(薄膜微萃取)设备,(2,4,5)是轨道搅拌器,分别用于预处理、萃取、和解析,(3)是固定相洗涤台,(6)是96支微管的氮气排空设备,(7)是注射器臂,(8)是XYZ行程臂,用于TFME或氮气排空设备准确地定位,置于多管萃取瓶(2-5)上 C—是B图中TFME设备的详图 D—是TFME与DESI(脱附电喷雾电离)结合图,其中(1)电喷雾器,(2)进样毛细管,(3)是TFME设备固定于台子上,(4)是旋转台,(5)是按XYZ方向运行的样品台,(6)是气源,(7)是溶剂瓶 E—处于轨道搅拌器位置的活体SPME96微管解析设备 F--管尖填充固定相微萃取设备详图 G--管尖固相微萃取设备与商品TomtecQuadra96结合使用图。  (VuckovicD,TrAC,2013,45:136-153)4MEPS在各个方面的应用举例  MEPS近年有很多应用,下表1列出100例的应用实例。表1近年MEPS应用举例分析物吸着剂基体方法文献1利多卡因,甲哌卡因、布比卡因,罗哌卡因C18人血浆Gc-MSJChromatogrB,2004,801:317–3212肌氨酸MIP人血浆,尿液LC-MS/MSJSepSci,2014,doi:10.1002/jssc.2014011163局部麻醉药硅基苯磺酸阳离子交换剂人血浆LC-MS/MSJChromatogr,2004,B813:129–135.46-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)聚苯乙烯聚合物ISOLUTEENV+血浆,尿液LC-MS/MSJChromatogrB,2005,817:303–3075奥罗莫星(Olomoucine)聚苯乙烯聚合物人血浆LC-MS/MSAnalChimActa,2005,539:35–396罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)硅胶基(C8),聚合物(ENV+),和甲基丙烯酸甲酯的有机整体柱血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2006,29:829–840.7醋丁洛尔,美托洛尔聚苯乙烯聚合物血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2007,30:575–5868美沙酮Csilica-C8血浆,尿液GC/MSJSepSci,2007,30:2501–25059环磷酰胺C2-吸附剂病人血浆LC-MS/MSJLiqChromatogrRelatTechnol,2008,31:683–694.10AZD3409(N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸1-甲基乙酯)C2,C8,聚苯乙烯聚合物大鼠,狗和人血浆样品LC-MS/MSJChromatogrSci,2008,46:518–523.11布比卡因和[d3]-甲哌卡因C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)血浆样品LC-MS/MSAnalChimActa,2008,630:116–12312氟喹诺酮类C18尿样CE-MSAnalChem,2009,81:3188–319313可卡因及其代谢物C8,ENV+,OasisMCX,CleanScreenDAU人尿样MS-TOFJAmSocMassSpectrom,2009,20:891–89914麻醉药品C18人血浆CE-MSElectrophoresis,2009,30:1684–169115甲基安非他明和安非他明C18头发MiAMi–GC/MSJChromatogrA,2009,1216:4063–407016溶解性有机物和天然有机物C18河水海水样品FT-ICR-MSAnalBioanalChem,2009,395:797–80717单萜类代谢产物C18人尿样GC/MSMicrochimActa,2009,166:109–11418有机优先污染物和暴露的化合物C18硅胶废水和雪水GC/MSJChromatogrA,2010,1217:6002–601119抗抑郁药C8人血浆LC-UVJChromatogrB,2010,878:2123–212920利培酮及其代谢产物C8血浆和唾液LC库伦检测器Talanta,2010,81:1547–155321紫外滤光片和多环麝香化合物C8,C18水样GC-MSJChromatogrA,2010,1217:2925–293222奥卡西平及其代谢物C18血浆和唾液LC-DADAnalChimActa,2010,661:222–22823可替宁C2,C8,C18,硅胶,C8/SCX人尿样GC–MSAnalBioanalChem,2010,396:937–94124甾体代谢物C18动物尿样GC–MSJChromatogrA,2010,1217:6652–666025利培酮和9-羟利培酮C8人血浆、尿样,唾液LC-UVJChromatogrB,2011,879:167–17326氟喹诺酮类化合物MIP水样LC–MS/MSAnalChimActa,2011,685:146–15227非极性杂环胺C18尿样μ LC-荧光检测Talanta,2011,83:1562–156728瑞芬太尼C8人血浆LC–MS/MSJChromatogrB,2011,879:815–81829氯氮平及其代谢产物--干血斑LC库伦检测器JChromatogrA,2011,1218:2153–215930阿托伐他汀及其代谢产物C8病人血清UHPLC-MS/MSJPharmBiomedAnal,2011,55:301–30831氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬C18水样PTV–GC–MSJChromatogrA,2011,1218:9390–939632雌激素类化合物的17β -雌二醇MIP,C18-硅胶(改性)水样GC–MSAnalChimActa,2011,70341–5133阿片类药物C8海洛因成瘾患者血浆LC-CDAnalChimActa,2011,702:280–28734(E)-白藜芦醇C2,C8,C18,SIL(未改性硅胶),M1(80%C8和20%SCX)酒UPLC-PDAJSepSci,2011,34:2376–238435美沙酮C18干血斑(美沙酮维持治疗患者)LC库伦检测器AnalBioanalChem,2012,404:503–51136黑索金,TNTC18人血浆,火药LC-UVChromatographia,2012,75:739–74537多环芳烃C18水GC–MSTalanta,2012,94:152–15738免疫抑制药物C8全血LC–MS/MSJChromatogrB,2012,897:42–4939生物相关的酚类成分C2,C8,C18,SIL,andM1酒UPLC-PDAJChromatogrA,2012,1229:13–2340哌嗪类兴奋剂C18人尿样LC-DADJPharmBiomedAnal,2012,61:93–9941精神治疗药C18,C8,和C8-SCX人血清LC-DADAnalBioanalChem,2012,402:2249–225742普萘洛尔、美托洛尔、维拉帕米C2,C8,C18,1M(阳离子交换剂)和Sil尿样微量毛细管阵列电离质谱RapidCommunMassSpectrom,2012,26:297–30343普伐他汀普伐他汀内酯C8大鼠血清和尿样UHPLC–MS/MSTalanta,2012,90:22–2944酚酸C18血浆GC–MSJChromatogrA,20121226:71–7645抗癫痫剂C18人血浆和尿样LC-UVJSepSci,2012,35:359–36646离子液体硅胶河水CETalanta,2012,89:124–12847有机磷农药聚吡咯/尼龙水样GC–MSJSepSci,2012,35:114–12048挥发性和半挥发性成分C2,C8,C18,硅胶和M1(混合C8-SCX)酒GC–MSTalanta,2012,88:79–9449哌嗪类兴奋剂C8,C18人尿样UPLC-DADJChromatogrA,2012,1222:116–12050感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8C2,C8和ENV+血浆GC-MS,LC-MSBiomedChromatogr,27,2013:396–40351大环麝香香水C18废水GC-MSJChromatogrA,2012,1264:87–9452多环芳烃C8水GC-MSJChromatogrA,2012,1262:19–2653抗癫痫药物C18人血浆和尿液GC-MSJSepSci,2012,35:2970–297754卤代苯甲醚C18酒GC-ECDJChromatogrA,2012,1260:200–20555芳香胺C18环境水样GC-MSAnalBioanalChem,2012,404:2007–201556农药聚苯胺纳米线水样GC-MSAnalChimActa,2012,739:89–9857黄酮醇C2、C8、C18和C8/SCX,SIL葡萄酒UPLC-DADAnalChimActa,2012,739:89–9858褪黑素与其他抗氧化剂C8食品LC-荧光检测JPinealRes,2012,53:21–2859L-抗坏血酸的测定C2,C8,C18和含C8的硅胶类似M1饮料LC-UVFoodChem,2012,135:1613–161860卤代乙酸C18氯化水GC-MSJChromaogrA,2013,1318:35–4261局部麻醉剂:利多卡因,甲哌卡因和布比卡因MIP血浆和尿液LC-MS/MSBiomedChromatogr,2013,27:1481–148862心脏药物C8尿液UHPLC-MS/MSJChromatogrB,2013,938:86–95635-羟色胺再摄取抑制剂,抗抑郁药C8和强阳离子交换剂血浆非水-CEJBrazChemSoc,2013,24:1635–164164麝香酮C18河水表面增强拉曼光谱(SERS)AnalBioanalChem,2013,405:7251–725765利多卡因C8唾液LC-MS/MSBiomedChromatogr,2013,27:1188–119166非甾体类抗炎药C18人尿UHPLC-UVJChromatogrA,2013,1304:1–967苯基黄酮C2、C8、C18,SIL,M1啤酒UHPLC-DADJChromatogrA,2013,1304:42–5168大麻类C18口服液LC-MS/MSJChromatogrA,2013,1301:139–14669氯苯C18水样GC-MSAnalBioanalChem,2013,405:6739–6748.70迷迭香酸CMK-3纳米碳水样LC-UVChromatographia,2013,76:857–86071氧化应激生物标记物C2,C8,C18,SIL,M1病人尿样UHPLC-PDATalanta,2013,116:164–17272橄榄生物酚CMK-3纳米碳大鼠血浆LC-UV73AnalSci,2013,29:527–53273抗精神病药物80%C820%SCX血浆GC-MS/MSAnalBioanalChem,2013,405:3953–396374多环芳烃和硝基麝香C18环境水LVI-GC–MSAnalChimActa,2013,773:68–7575氧化损伤DNA尿中的生物标记物C8尿LC-PDAPLoSONE8(2013)e5836676抗精神病药物C18血浆GC-MSAnalChimActa,2013,773:68–7577羟基苯甲酸和羟基酸C2、C8、C18和C8,SIL/SCX葡萄酒LC-PDAMicrochemJ,2013,106:129–13878抗精神病药齐拉西酮C2血浆LC-UVJPharmBiomedAnal,2014,88:467–47179可的松,皮质酮,acortisolC8唾液、血浆、尿液和血液LC-DADJPharmBiomedAnal,2014,88:643–64880恩替卡韦多孔石墨化碳颗粒血浆,血浆超滤液LC-MS/MSJPharmBiomedAnal,2014,88:337–34481莱克多巴胺C18和C8/SCX,8μ L容器猪肌肉和尿液样本LC-UVFoodChem,2014,145:789–79582芳香胺DVB纺织品中偶氮染料GC-MSTalanta,2014,119:375–38483氨基甲酸乙酯SIL,C2,C8,C18,andM1强化葡萄酒GC-MSAnalChimActa,2014,818:29–3584贝塔受体阻滞剂美托洛尔和醋丁洛尔聚苯乙烯人血浆和尿样C-MS/MSM.M.Moein(Ph.D.thesis),StockholmUniversity,201485多环芳香族碳氢化合物C8水样GC-MSJChromatogrA,2006,1114:234–23886布比卡因,利多卡因,罗哌卡因C18人血样LC-MS/MSBioanalysis,2010,2:197–20587卤乙酸C18氯化水GC-MSJChromatogrA,2013,1318:35–4288三环类抗抑郁药C8/SCX口腔液体UHPLC–MSChromatogrA,2014,1337:9–1689氯酚C18土壤样品GC-MSJChromatogrA,2014,1359:52–5990溴联苯醚C18污泥GC-MSJChromatogrA,2014,1364:28–3591非甾体类抗炎药物C18血浆和尿样HPLC-PDAJChromatogrA1367(2014)1–892瘦肉精,MIP猪肉样品HPLCJPharm.BiomedAnal.91(2014)160–16893卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平C18血浆HPLC-DADJChromatogrB971(2014)20–2994千金藤素C8血浆UPLCJAnalMethodsChem,2014,2014:1–695磺胺类药物C8鸡粪废水样品HPLCJLiqChromatogrRelatTechnol,2014,37:2377–238896五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)氨丙基杂化硅胶整体柱血浆LC–MS/MSTalanta1,2015,40:166–17597肉碱和酰基肉碱C2,C8,C18,M1人尿LC–MS/MSJPharmaceuBiomedAnal,2015,109:171–17698儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)C18干燥血浆和尿渍HPLC-库伦检测器JPharmaceuBiomedAnal,2015,104:122–12999氯胺酮及其代谢物M1血浆GC-MS/MSJChromatogrB,2015,1004:67–78100贝塔受体阻滞剂美托洛尔,醋丁洛尔Carbon-XCOS血浆LC-MS/MSJChromatogrB,2015,992:86–905小结  样品制备是分析复杂样品的难题,例如对生物分析样品的处理,其成分复杂,有时样品量很少,所以MEPS很适合在这一场合的应用,从举出的100例应用中也可以看出它适合于生物样品分析的前处理。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制