当前位置: 仪器信息网 > 行业主题 > >

邻甲氧羰基苯基

仪器信息网邻甲氧羰基苯基专题为您提供2024年最新邻甲氧羰基苯基价格报价、厂家品牌的相关信息, 包括邻甲氧羰基苯基参数、型号等,不管是国产,还是进口品牌的邻甲氧羰基苯基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合邻甲氧羰基苯基相关的耗材配件、试剂标物,还有邻甲氧羰基苯基相关的最新资讯、资料,以及邻甲氧羰基苯基相关的解决方案。

邻甲氧羰基苯基相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 沃特世推出新品CORTECS C8和CORTECS苯基分析柱
    美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8 和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8 和CORTECS苯基填料有两种粒径可选(1.6和2.7μ m),可提供总共50种不同的色谱柱配置。  “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。”  CORTECS C8 色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。  基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。  CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7μ m两种粒径之间实现无缝的方法转换。  CORTECS UPLC 1.6 μ m色谱柱经过专门设计,与超低扩散性Waters ACQUITYUPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。  CORTECS 2.7 μ m颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。  这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。  关于沃特世实心颗粒技术  CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μ m颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。  更多信息:www.waters.com/cortecs  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。  Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 沃特世隆重推出CORTECS C8以及苯基1.6和2.7 μm色谱柱
    这两款实心颗粒色谱柱产品系列的新成员将为突破分离效率和分析通量极限带来新的可能 美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8和CORTECS苯基填料有两种粒径可选(1.6和2.7 μm),可提供总共50种不同的色谱柱配置。 “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。” CORTECS C8色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。 基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。 CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7 μm两种粒径之间实现无缝的方法转换。 CORTECS UPLC 1.6 μm颗粒色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。 CORTECS 2.7 μm颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。 这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。 关于沃特世实心颗粒技术CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μm颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。 更多信息:www.waters.com/cortecs 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 沃特世最新PFP(全氟苯基)色谱柱适用于USP方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治卵巢癌和乳腺癌及NSCLC的一线和二线治疗。头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 USP对紫杉醇[1]以及紫杉醇注射液[2]的含量测定系统方法(系统方法参见色谱621通则*):流动相:水-乙腈 11:9(即 55:45),如需要时可适当调整比例。洗脱:等度,1.5mL/min[1]色谱柱:5um, 4.6[1] 或 4.0[2] mmID x 250mmL,L43(即:PFP,全氟苯基)检测:UV227nm要求:拖尾因子0.7-1.3范围内[1];紫杉醇峰的保留时间在6.0-10.0min范围内[2] *USP Chromatography 621允许调整范围如下而仍具有法规依从性:- 色谱柱粒径可减小(但减小程度最多为50%)- 柱长度可调整± 70%- 流速可调整± 50% 使用沃特世最新产品XSelect&trade HSS PFP色谱柱(3.5um, 4.6x150mm, PN186005862),流速1mL/min,可对混标得到如下分离效果,满足对紫杉醇定量分析的要求。沃特世公司也提供更多规格XSelect HSS PFP色谱柱以满足不同应用与需要。 适当调整流动相,如降低乙腈浓度至42%v/v,即可获得更完全可靠的紫杉醇分离度如下: 关于沃特世XSelect&trade HSS PFP柱产品:是目前市场上稳定性最好的、最具重现性的PFP(全氟苯基)柱基于沃特世HSS(高强度硅胶)颗粒,有完全对等的ACQUITY UPLC亚二微米柱,可供未来无忧升级至UPLC技术平台独特的PFP(全氟苯基)键合相对碱性化合物和平面状芳香族化合物具有独特选择性(产品手册请见:http://www.waters.com/waters/library.htm?cid=511436&lid=134643659,欢迎垂询索取中文资料) [1] USP34, 3798, Assay of Paclitaxel Monograph.[2] USP34, 3799, Assay of Paclitaxel Injection Monograph.
  • Supelco推出Ascentis Express F5五氟苯基柱
    Sigma-Aldrich旗下著名分析品牌Supelco 近日宣布推出基于熔融核色谱填料技术的Ascentis Express F5 五氟苯基柱。Supelco 早先推出的Discovery HS F5 五氟苯基柱,一直就深受广大分析工作者的喜爱。现在推出基于更高技术的Ascentis Express F5 五氟苯基柱,使得广大分析工作者不但可以享受五氟苯基所带来的独特选择性,又可享受到更加快速、高效的分离。  基于熔融核色谱填料技术的Ascentis Express系列色谱柱是一款高速,高性能液相色谱。熔融核颗粒2.7um粒径,中心实心核1.7um,外层0.5um键合不同固定相的多孔硅胶。更短的扩散通道,2.7um 总粒径,使得Ascentis Express 系列色谱柱更加高效。加上非常窄的填料粒径分布,高填充密度,Ascentis Express系列色谱柱每米塔板数可达240,000N/m,是传统3um色谱柱柱效的2倍,完全可以和亚2um色谱柱相媲美。Ascentis Express 色谱柱目前有:  Ascentis Express C18,  Ascentis Express C8,  Ascentis Express 反相酰胺(RP-Amide) ,  Ascentis Express HILIC,  Ascentis Express ES-C18 多肽柱,  Ascentis Express F5五氟苯基柱  固定相产品线。  Ascentis Express F5五氟苯基柱,除具有熔融核技术带来的快速、高效、低背压的特点外,还具有:  *替代C18的理想选择   *可保留碱性化合物,比C18的疏水性低   *可在反相、HILIC、100%纯水模式下操作   *稳定、低流失适用于LC-MS,LC-UV等。
  • 安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和
    安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和更好峰形 2012 年 2 月 6 日,安捷伦科技公司(纽约证交所:A)宣布了其用于反相液相色谱仪的孔径 300 Å 、亚 2 µ m 填料色谱柱系列迎来了新成员:超高压快速高分离度 ZORBAX 300SB-C3 和 300-二苯基 1.8 µ m 色谱柱。 这两种色谱柱的加入实现了超高效液相色谱(UHPLC)的反相生物分子分离。C3固定相能够为大分子蛋白质分离(包括抗体在内)提供更多选择性和更好的峰形,回收率也更高而 二苯基固定相通过一级结构中的芳香族氨基酸的pi-pi 相互作用带来更多选择性。 安捷伦产品经理 Linda Lloyd 说道:“安捷伦现有的亚 2 µ m 宽孔径生物色谱柱能够全面满足反相液相色谱系统的需求新型 1.8 µ m 色谱柱进一步扩展了 ZORBAX C18、C8 和 C3 固定相系列,这三种固定相已有 3.5 和 5 µ m 两种规格的填料。我们非常高兴能够为 UHPLC 用户带来更准确的鉴定和更快的分析速度。” 该款粒径 1.8 µ m,孔径 300Å 的色谱柱将 UHPLC 特有的效率、分离度和强大的定量功能在反相液相色谱蛋白质分离上发挥到极致。此外,该色谱柱在高达 1200 bar 的压力下同样稳定安捷伦的 C18、C8 和 C3 色谱柱采用成熟的 StableBond 技术,加上封端的联苯和 Pursuit 色谱柱的化学性质,当采用三氟乙酸或甲酸流动相改性剂时能够得到对称峰形,即使在低 pH 条件下亦是如此。丝毫无损色谱柱寿命。 目前,全套 ZORBAX 超高压快速高分离度色谱柱系列包括用于小分子应用的 13 种固定相(包括 HILIC)以及用于大分子分离的四种固定相。如此广的选择范围使得色谱分析人员能够选择最适合的色谱柱来优化 UHPLC 分离。此外,RRHD 高达 1200 bar 的稳定性也提供了更灵活的流速和流动相选择。 要了解更多信息,请访问:www.agilent.com/chem/biohplcproteins。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A) 是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者公司的 18,700 名员工为 100 多个国家的客户提供服务在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • 日本纪本电子意欲进军中国PM2.5监测市场
    只需轻触按钮,PM2.5每小时浓度值实时显现,硫酸根离子、硝酸根离子、可溶性有机物等化学成分浓度一一显示,一年以内的历史数据随时可查 全中文触摸屏操作界面,数台仪器,只需1人就可实现全天侯24小时、全年365天长达十几年的正常运转……原以为高深莫测的仪器操作,却如此轻松、智能,甚至有点“傻瓜式”,无不让参观者啧啧称奇。这是科技日报记者在5月9日举行的PM2.5测定技术专题研讨会演示现场看到的一幕。  这场由廊坊城城环保有限公司主办的研讨会在距离北京40公里的河北廊坊召开,吸引了来自中日两国环保组织、科研院所和环保企业的30余名环境专家。  研讨会上,日本分析化学会副会长、大气环境协会理事、环境监测著名专家纪本岳志作了题为《PM2.5测定历史与课题》的主题演讲。他在总结英国、日本等国治理大气污染的历史经验时表示,中国当前治理PM2.5,首要的基础是要获得精准的监测数据,而这需要更为精确的测定技术方法和设备仪器。他还详细展示和讲解了技术团队研制的大气气溶胶化学成分连续自动测定装置和技术。  记者获悉,该项技术以大气中气溶胶的化学成分和质量浓度作为测定目标,可对微小粒子(PM2.5)和粗大粒子(PM10—2.5)进行分项同时测定,实现每小时1次连续自动分析。纪本岳志表示,这种测定方法与传统的24小时滤膜采样——手动分析法(FRM测定法等)相比,成功解决了“大气气溶胶酸碱度”受气体吸附及粒子挥发影响而不能正确测定的难题,在世界上首次实现了对气溶胶酸碱度和硝酸根离子浓度的精准测定。他们的PM2.5连续自动监测设备在日本国内市场占有率达到70%,并出口韩国、美国和欧洲等世界多个国家和地区。  在廊坊城城环保有限公司的PM2.5测定仪器的演示现场,记者和与会专家一起动手操作了PM2.5浓度及其化学成分在线监测仪ACSA-08及PM712、PM717等PM2.5在线监测仪器。仪器的中文操作系统、及时数据分析界面、自动校准和后期维护的简易性等特点,得到专家的一致认同。  清华大学环境学院副研究员马永亮认为,这套技术及装置在测定PM2.5浓度的基础上,实现了对PM2.5化学成分及来源构成的精准分析,这是很大的一个技术进步。“更为重要的是,这种测定方法不仅可以实现PM2.5数据区域性差异化分析,而且还可为政府环保部门制定PM2.5综合治理决策提供可靠科学依据。”在他看来,这种测定技术及方法非常适合中国PM2.5治理的具体国情及市场需求,值得大力引进和推广。  廊坊城城环保有限公司董事长刘世达透露,该公司已于2011年8月31日同日本纪本电子工业株式会社达成合作协议,引进大气气溶胶化学成分连续自动测定技术,双方将在廊坊经济开发区合资建厂,并于近期完成首批产品的组装和生产。刘世达认为,此次合作标志着我国PM2.5监测和治理将进入精准测定阶段,同时有望进一步降低我国PM2.5检测设备仪器的采购成本,并可培养一批相关本地化专业人才,这不仅可以促进我国PM2.5监测技术的升级,还可进一步推动目前潜力巨大的国内PM2.5治理环保市场的健康良性发展。
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 核磁技术揭示丝光沸石分子筛孔道酸性位催化二甲醚羰基化机制
    近日,中科院大连化物所催化基础国家重点实验室催化反应化学研究组(501组)展恩胜副研究员、申文杰研究员等与中科院精密测量科学与技术创新研究院徐君研究员、邓风研究员等合作,在丝光沸石(MOR)催化二甲醚羰基化反应的活性位点鉴别和调控方面取得新进展。  MOR是二甲醚羰基化反应的重要催化剂,其活性与8-MR孔道的总酸量相关。尽管理论计算表明,T3-O9是唯一活性位点,但实验上鉴别和定量描述不同T位点酸性特征和催化机制仍面临挑战。  本工作中,科研人员首先通过分步晶化法合成了片状结构MOR,该MOR表现出优异的催化活性,醋酸甲酯收率达到0.72gMAgcat.-1h-1(473K、2MPa)。随后,科研人员利用二维固体核磁技术和DFT计算确定了骨架铝原子在T1至T4分布,发现该片状结构丝光沸石8-MR孔道的铝原子富集在T3位,动力学研究发现该酸性位的反应速率高达7.2molMAmolT3-Al-1h-1(473K、1MPa)。随后,科研人员调变不同MOR样品的T1至T4位分布,发现位于8-MR窗口的T4酸性位也具有催化作用,但其活性只有T3位的1/4,从实验上证明T3位在催化二甲醚羰基化反应中的主导作用。该工作从原子尺度定量描述了丝光沸石分子筛8-MR孔道T位的催化反应化学,也深化了对沸石分子筛催化剂活性位结构的认知。  相关研究成果以“Experimental Identification of the Active Sites over a Plate-Like Mordenite for the Carbonylation of Dimethyl Ether”为题,于近日发表在Chem上。该工作的共同第一作者是中科院大连化物所501组博士研究生熊志平和中科院精密测量科学与技术创新研究院齐国栋副研究员。上述工作得到了国家自然科学基金等项目的支持。
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP)Dimethyl phthalate (DMP)131-11-3邻苯二甲酸二乙酯(DEP)Diethyl phthalate(DEP)84-66-2邻苯二甲酸二异丁酯(DIBP)Phthalic acid, bis-iso-butyl ester84-69-5邻苯二甲酸二丁酯(DBP)Di-n-butyl phthalate 84-74-2邻苯二甲酸双(2-甲氧基乙)酯(DMEP)Phthalic acid, bis-methylglycol ester117-82-8邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester146-50-9邻苯二甲酸双-2-乙氧基乙酯Phthalic acid, bis-2-ethoxyethyl ester605-54-9邻苯二甲酸二戊酯(DPP) Diamyl phthalate131-18-0邻苯二甲酸二正己酯(DNHP)Dihexyl phthalate84-75-3邻苯二甲酸丁苄酯(BBP)Benzyl butyl phthalate85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP)Phthalic acid,bis-butoxyethyl ester117-83-9邻苯二甲酸二环己酯(DCHP)Dicyclohexyl phthalate84-61-7邻苯二甲酸二(2-乙基)己酯(DEHP)Di(2-ethyl hexyl) phthalate (DEHP)117-81-7邻苯二甲酸二苯酯Diphenyl phthalate84-62-8邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯Phthalic acid, bis-nonyl ester84-76-4相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 【新案例】利用康宁微反应器实现苄位连续纯氧氧化工艺研究
    研究简介科学期刊OPRD在2021年7月16日这一期(第7期,第25卷)刊登了来自大连理工大学的孟庆伟教授课题组利用康宁反应器进行苄基催化氧化的最新连续流工艺研究成果,并将其作为封面文章进行了特别报道。本文将详细介绍本研究成果。[1]苄基的直接氧化已广泛应用于药物和精细化学品的合成,很多市售药物分子结构中含有一个或多个被氧化的苄基位置(图1)。传统工艺上,苄基氧化反应需要引入金属催化剂,如 Co、Ru、Ni、Mn 和 Cu。难以避免的金属杂质残留限制了这些体系在药物中的应用。近几年研究者希望能够通过应用非金属催化剂实现苄基的氧化,分子氧被认为是一种理想的氧化剂。有研究者采用O2作为氧化剂建立了从苄基化合物中获得酮的绿色方法[2-7]。但反应时间长,从几十小时到几天不等,效率相对较低。微通道反应器持液量低、高效传热特性可以降低纯氧气与易燃溶剂相互作用时发生局部过热而失控的风险。特别是康宁微反应器独特的内部结构,允许反应物连续分散并充分混合,从而消除了气液反应中的传质限制。传质和温度会影响反应动力学,温度升高反应时间缩短。图2. 反应体系示意图孟教授课题组的苄基催化氧化连续流工艺,选用非金属催化,停留时间54s,获得了高达90.3%的收率,且催化剂和溶剂均可实现循环利用(分别获得了92.6%和94.5%的回收率),且该方法具有很好的底物普适性,为奥卡西平等药物的合成,提供了易于放大的工艺。 研究过程实验以1,2,3,4-四氢萘(1a)的氧化反应为模型反应。对苯基sp3 C - H键进行选择性氧化生成相应的酮类化合物。N-羟基邻苯二甲酰亚胺 (NHPI) 作为催化剂,亚硝酸叔丁酯 (TBN) 作为自由基引发剂。一、反应条件优化研究者选择O2作为氧化剂对溶剂、反应温度、停留时间和物料比等进行了优化实验。1、研究者对溶剂体系进行了考察(图3)通过实验得出最佳溶剂为MeCN和DMK的混合溶剂,该体系仅在54s内便获得最高的收率75.1%(条目7)。图3. 溶剂系统筛选2、接下来分别对反应温度、物料比和停留时间做了优化实验,实验结果见下图:图4. 在微通道反应器中进行的温度和物料比条件优化实验 底物1a的转化率与温度的升高呈正相关。然而在高温条件下,副产物2,3-二氢萘-1,4-二酮(3a)的产率增加。 最佳反应温度为100℃(2a收率80.4%;图4(1))。 TBN的数量和1a的转换之间存在近似线性关系见图4(2).选择最佳1.5摩尔当量的TBN来优化反应选择性。 如图4(3)NHPI增加到0.75摩尔当量后继续增加对反应产率基本没有影响,故选择0.75摩尔当量NHPI。 此外,在间歇反应中NHPI的用量减少到0.2个当量时,反应收率仍可达到75.3%。同时,NHPI几乎可以完全回收而不被消耗。这些结果证明NHPI在反应中起到了催化剂的作用。 最佳的液体−气体流速比为1:20(图4条目1−3)。当液体流速(Vl)为1.0ml/min,氧气流速(Vg)为20ml/min,停留时间54s时收率最高。二、放大实验研究者应用康宁高通量微通道G1反应器进行了放大实验研究。实验显示连续运行28小时,产物2a的总收率为79.5%(1H-NMR),1小时可生产0.87g(图5)。图5:规模化连续流动苄基羰基化三、底物扩展实验结果最后,在优化条件下进行了底物扩展研究实验(图6)。由不同苄基化合物制备相应的各种酮,均获得了较高的收率。 图6. 苄基sp3 C的快速氧化−氢键得到相应的酮基 关于反应机理及催化剂的讨论为了进一步了解可能的反应机理,研究者进行了一系列平行反应(图7)。图8. 反应机理反应条件筛选和提出的自由基反应机理均表明NHPI不会在反应中被消耗。研究者在实验后收集NHPI,来验证其是否可用于回收(图10)。经过4个循环后,收率仍高于78%。本实验证实了NHPI作为自由基转运剂的作用,并进一步表明该工艺具有规模化商业回收的潜力,可有效降低成本。结果讨论 该研究描述了在 MeCN 和 DMK 的混合溶剂中,通过 NHPI 和 TBN 催化苄型 sp3 C-H 键的选择性氧化生成相应的酮。反应时间仅为54s,远低于间歇工艺。 作为催化剂的NHPI可以回收利用。多次循环的收率变化在1%以内。 NHPI的回收率也在90%以上。 作者对连续流工艺进行了放大研究,结果显现,在相同的工艺条件下,该工艺可实现安全连续化生产。 通过拓展实验,作者从苄基亚甲基中获得了一系列有价值的酮,收率为 41.2%~90.3%。 利用康宁微反应器进行快速的开发,不但可以对反应机理进行研究,也便于拓展底物,建立化合物库。 康宁反应器无缝放大的技术优势使该工艺具有很大的商业化潜力,特别是对于氧气氧化这一类在釜式工艺中存在较多困难的反应。Reference:[1] Lei Yun, Jingnan Zhao, Xiaofei Tang, Cunfei Ma, Zongyi Yu, and QingWei Meng*. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor Org. Process Res. Dev. 2021, 7, 1612–1618.[2] Dobras, G. Kasperczyk, K. Jurczyk, S. Orlinska, B. NHydroxyphthalimide Supported on Silica Coated with Ionic Liquids Containing CoCl2 (SCILLs) as New Catalytic System for SolventFree Ethylbenzene Oxidation. Catalysts 2020, 10, 252−264.[3] Mukherjee, M. Dey, A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C−H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Cent. Sci. 2019, 5,671−682.[4] Li, J. Bao, W. H. Tang, Z. C. Guo, B. D. Zhang, S. W. Liu, H. L. Huang, S. P. Zhang, Y. Rao, Y. J. Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chem. 2019, 21, 6073−6081.[5] Hwang, K. C. Sagadevan, A. Kundu, P. The sustainable room temperature conversion of p-xylene to terephthalic acid using ozone and UV irradiation. Green Chem. 2019, 21, 6082−6088.[6] Liu, K. J. Duan, Z. H. Zeng, X. L. Sun, M. Tang, Z. L. Jiang,S. Cao, Z. He, W. M. Clean Oxidation of (Hetero)benzylic Csp3−H Bonds with Molecular Oxygen. ACS Sustainable Chem. Eng. 2019, 7,10293−10298.[7] Li, S. L. Zhu, B. Lee, R. Qiao, B. K. Jiang, Z. Y. Visible lightinduced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(iii) complex catalyst. Org. Chem. Front. 2018, 5, 380−385.
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 质谱检测新策略助力深度解析阿尔兹海默症相关糖蛋白APP的糖基化
    阿尔兹海默症(Alzheimer’s diseases,AD)是最常见的一种神经退行性疾病,临床表现为渐进性记忆损伤,认知功能障碍,语言障碍等精神症状。我国现有1000多万AD患者,是世界上患者数量最多的国家。且随着人口老龄化,这个数字还在急剧增加,据预测到2050年中国AD患病人数将超过4000万,给我国社会经济以及患者家庭带来极大负担。阿尔兹海默症主要特点为病人脑组织中β淀粉样蛋白(Aβ)的异常产生和累积。Aβ形成的前体蛋白APP(amyloid protein precursor)是一种高度糖基化修饰的糖蛋白。蛋白质糖基化是一类重要的蛋白质翻译后修饰,参与蛋白稳定表达,蛋白加工剪切,细胞间的靶向识别及相互作用等生理过程。越来越多的研究表明糖基化对APP的加工及Aβ的产生具有关键的调控作用,精准判定APP糖基化修饰信息,对深入理解app蛋白在AD疾病发生中的作用和疾病早期诊断方法开发上具有重要意义。 近日,上海交通大学系统生物医学研究院张延课题组与严威课题组联合开发了一种基于质谱多碎裂方式组合靶向完整O-糖肽的质谱解析方法(Targeted MS combined Multi-fragment strategy,TMMF)。 该方法精准描绘出APP蛋白的O-糖基化修饰位点和糖链结构。为从蛋白质糖基化修饰水平理解app的分子功能与AD的发病机制,发现AD治疗靶点以及开发AD早期诊断策略提供了新的思路。该成果以“Comprehensive analysis of O-glycosylation of amyloid precursor protein (app) using targeted and multi-fragmentation MS strategy”为标题发表在国际著名生物化学与生物物理学期刊(BBA-General Subjects)上。(生物谷Bioon.com)
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》征求意见稿
    国家标准计划《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 。征求意见稿.pdf编制说明.pdf
  • 新品发布|匠心独运出佳品,披荆斩棘助发现
    新品发布|匠心独运出佳品,披荆斩棘助发现关注我们,更多干货和惊喜好礼2021新品疫情与灾难交织的2020年并没有挡住我们前进的步伐,在此辞旧迎新之际,我们的毛细管柱家族再添新成员。我们先看看国外的科学家是怎么评价这两款新品的。 看了视频一定很心动吧!那就随着飞飞的脚步一起认识来一下它们吧!MAbPac Capillary色谱柱当您遇到以下难题时,MAbPac Capillary色谱柱可以迎难而上,轻松 化解难题。完整水平分析低含量大分子 不想做费时费力的标记样本实验 样品量有限的候选药物 低丰度的基因治疗药物 01Cap柱与常规柱在相同(不同)进样量下的对比数据本实验中,Cap色谱柱的峰形更尖锐,总离子流图信噪比626是常规分析柱的36倍。02Cap柱定量纳克与飞克级的Insulin飞克级别的高灵敏度检测,可以实现痕量样品的定量。03Cap柱完整水平TOP-down标准蛋白分析超大孔径,苯基官能团的低流速色谱柱可以在ng水平上分析和表征完整蛋白。04Cap柱分析曲妥珠单抗糖基化位点通过同位素标记法,在Cap柱上实现亚基水平上单抗的糖基化位点确认。 滑动查看更多 MAbPac Capillary 色谱柱是不是很强大,完整水平,亚基以及多肽都可以在质谱上得到完美的分离和高灵敏度的结果,这主要得益于它聚合物基质更低的背景噪音 苯基官能团的优异选择性 耐受更高的温度,更完美的峰形 1500Å的孔径,大分子分析更得心应手Easy-Spray™ Nano &Capillary喷针纳升和微升喷针两种。• 实现Easy-Spray离子源下连接任意色谱柱。• 跟Thermo Scientific™ FAIMS Pro™ Interface搭配使用更完美。 Easy -Spray™ Nano 喷针在Easy-Spray离子源上连接纳升/微升色谱柱看看新品这么优xiu,是不是很心动啊!更多优xiu产品服务您! (点击查看大图)新品讲座在线看:"新型微升液相色谱柱高灵敏度检测蛋白,抗体和多肽"。扫码注册 即可观看(建议复制链接至电脑端更流畅哦)如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 谱尼测试2023年再次中标国家市场监管总局本级食品安全承检机构
    2023年4月22日,谱尼测试集团股份有限公司在国家市场监督管理总局(以下简称总局)2023年本级食品安全承检机构食品公开招标项目中再次成功中标,继续作为总局本级食品安全承检机构开展本级普通食品抽检。   食品安全是重大的基本民生问题,食品安全抽检是实施食品安全监管的重要手段,是从整体上统筹提高食品安全管理水平的极其重要的一环,是监管工作由事后查处为主向关口前移、预防为主转变的重要举措,是全面掌握食品安全形势和质量安全状况的重要措施,也是查办食品违法案件的技术支持。   继2022年中标成为本级食品安全承检机构,谱尼测试严格依据总局制定的《食品安全抽样检验管理办法》等有关规定,开展总局本级食品抽检任务,本次能再次在众多检测机构中脱颖而出,中标成为总局本级承检机构,充分证明了谱尼测试在食品检测领域的技术实力和深厚的项目承担能力,也是总局对谱尼测试综合实力的肯定和信任。   谱尼测试将按照总局部署和工作要求,秉承着“守护食品安全”的信念砥砺前行,充分发挥谱尼专业、高效、严谨、务实的工作作风,科学统筹确保高标准、高质量完成总局本级食品抽检任务,为食品安全监管提供有力的技术支撑。
  • 新年新气象!连续流技术名家又一突破性研究进展!
    一、背景介绍光化学具有操作简单、反应迅速等优点,符合绿色化学要求,越来越多的应用于有机合成反应研究。芳基衍生物尤其是芳基卤化物和羰基化合物的还原转化是许多光氧化还原转化的关键步骤。目前,针对芳基衍生物的光氧化还原主要有两种方式:第一种方式是通过芳基重氮盐与光催化剂反应来实现。缺点主要是芳基重氮盐不稳定以及该反应的自由基链机制会对反应选择性产生影响(图1a)。第二种方式是通过芳基卤代物与光催化剂反应来实现。缺点主要是反应速率低,反应时间长,且通常需要用到贵金属催化剂(图1b)。这两种方式的局限性决定了很难实现放大反应及生产。为了达到一个可用的生产力水平,需要相对较短的反应停留时间,快速反应动力学非常重要性。康宁连续流微通道技术已经被多次证明证明可以实现光化学反应的规模化生产。该项技术改进了光的穿透路径,使光的分布更加均匀,光利用效率更高,使反应具有非常强的可扩展性,能够大幅度提高反应速率。图1. 芳基重氮盐和芳基卤代物的还原反应与连续流工艺的对比近期,欧洲著名连续流专家,奥地利Graz大学C. Oliver Kappe教授等人开发了有机光氧化还原催化剂体系在流动化学中的应用,使芳基卤代物和羰基化合物的还原具有前所未有的选择性和反应速度(图1c)。二、 实验部分首先作者以4-溴苯腈的脱卤反应为例,在釜式反应中对比了加入HAT催化剂环己硫醇和不加催化剂的反应时间(图2),由图中可以看出,加入催化剂后反应时间能够由原来的4 h缩短到30 min。考虑到后续光化学的放大以及反应速率对产能的影响,作者在此基础上使用康宁Lab Reactor进行连续流工艺的优化,加入催化剂的4-溴苯腈(1a)在反应器中的脱卤反应时间能够降低至1 min,与不加催化剂相比,产能提升超过20倍,从0.1 g/h提高到2.2 g/h。图2. 时间进程证明向反应液中加入CySH(5 mol-%)能够使反应速率提高然后作者同样对芳基氯代物2a的脱卤反应进行了优化,在反应器中该反应的速率同样能够大幅度提升,反应时间由釜式的72 h提升到3 min。为了进行对比,作者对反应过程中催化剂的用量、光源波长、光源强度等进行了筛选,同时采用实验设计(DOE)进行研究,确定了具体的反应条件和试剂用量(表1)。表1. 4-溴苯腈(1a)和4-氯苯腈(2a)还原脱卤工艺优化三、扩展实验-工艺的适用范围研究 使用确定好的最优实验条件,作者首先对该工艺的适用范围进行了研究(图3),由图中可以看出,使用基础实验条件,通过改变反应停留时间以及使用不同的催化剂,不同的芳基卤代物均能在较短的时间内完成反应,且有较高的反应选择性。图3.脱卤反应的适用范围研究实验当作者试图使用间氯苯甲醛(7a)进行脱氯反应时,结果却有显著的区别,得到的是频哪醇重排产物。所以作者接着根据这一现象对不同的芳基醛、酮、亚胺进行反应,均能在较短的时间内获得相应的重排产物(图4),与之前报道的依赖于胺氧化还原介质的反应在反应速率和选择性方面都有显著提高。图4.醛、酮和亚胺的频哪醇重排研究实验最后,作者试图将这一方法应用于其他合成领域,对4-氯苯腈 (2a)与苯乙烯衍生物1,1-二苯基乙烯(9)的反应进行了考察,使得还原耦合产物(10)的收率达到61 %。使用芳基溴作为原料达到相似的收率需要长时间的反应 (24 h),而该反应的停留时间仅为10 min。图5. 芳基氯与苯乙烯衍生物的还原偶联四、实验总结作者证明了HAT催化剂与强还原有机光氧化还原催化剂结合连续流微通道反应器技术能够显著提高芳基卤代物和羰基还原的反应速率和选择性。在一个案例中,产能提高了20倍。通过对反应停留时间和光强的调节,在某些情况下可以控制反应的选择性,实现二卤代芳基卤代物的单一脱卤。该催化体系的连续流工艺同样适用于频哪醇重排、芳基氯与苯乙烯衍生物反应进行还原偶联,都在短时间内获得了较高的收率。总之该项工艺适用范围广,应用性能高,可扩展性强 。康宁微通道反应器在本系列研究中起到了至关重要的作用,因为康宁反应器比表面积大能够最大程度保证反应体系受到光的均匀照射,康宁独有的心型结构混合单元的卓越的传质性能保证了实验的高效进行。另外,康宁反应器无放大效应,实验室小试参数可以直接应用到工业化生产工艺中,这为该系列研究后续的工业化探索提供了很好实验基础和方向性建议! 五、关于康宁光化学反应器 康宁高通量微通道光化学反应器(Advanced-Flow Photo Reactor ),拥有透光率高、耐高温、耐高压、光强度大、光源纯净,控温精准、无放大效应等特点,在光化学反应中有独特的技术优势和广泛的应用前景。康宁拥有从实验室研发到千吨级工业化生产的系列光化学反应器,六种波长可供选择,稳定的光源确保生产的稳定性,高效的液体冷却延长LED光源的使用寿命。此外,康宁光化学反应器可以与在线NMR结合,对反应工艺参数进行快速筛选,有效地提升新分子的探索和工艺优化的过程。
  • 出口玩具配件邻苯二甲酸酯超标亟需关注
    近日,宁海检验检疫局对一批出口丹麦的文具套装进行抽样检测,结果显示该产品外包装PVC泡壳和外薄膜邻苯二甲酸二己酯(DEHP)重量百分比分别为0.64%和5.9%,远远超过欧盟邻苯二甲酸酯增塑剂指令(2005/84/EC):在所有玩具和育儿物品的塑料中,邻苯二甲酸酯DEHP 、DBP和BBP的浓度不得超过0.1% 在可以入嘴的玩具和育儿物品的塑料中,邻苯二甲酸酯DINP、DIDP和DNOP的浓度不得超过0.1%,不符合输入国的技术法规要求,被判定为不合格,并要求对整批货物进行返工整理,避免了因产品质量安全导致通报退货的损失。  经调查发现,该公司系首次出口玩具,不了解相应的输入国技术法规和标准,与外贸公司签署合同时又未约定包装须进行有毒有害化学物质测试,误以为玩具本身符合要求即可,忽略了产品包装的品质。企业为了节省成本,使用废料、回料生产包装,并添加邻苯二甲酸酯增塑剂增加柔软度和光泽度。  据了解,邻苯二甲酸酯是一类能起到软化作用的化学品,无色、油状液体,用于保持产品香味、增强颜色和柔韧度,由于价格低廉、性能较好,普遍应用于玩具、食品包装材料等数百种产品中。鉴于研究表明邻苯二甲酸酯可能影响儿童发育,甚至有可能危害儿童肝脏和肾脏,世界各地区和国家已先后颁布法规指令限制其含量,如欧盟2005/84/EEC指令、欧盟REACH法规、美国HR4040法规、《美国消费品安全改进法案》CPSIA、日本ST2002和《食品安全法》等法规指令。  随着欧盟REACH法规附件XVII限制清单和美国CPSIA的正式发布实施,邻苯二甲酸酯含量限制范围不仅仅局限在玩具产品本身,而且涉及到成品的每一部分,包括塑料包装和配套产品都在法规涵盖范围之内。据统计,欧盟REACH法规SVHC自2009年6月实施以来,截止2009年底,关于邻苯二甲酸酯超标的案例频频出现,欧盟非食品快速预警系统共通报了70余例不符合REACH法规的邻苯二甲酸酯超标案例。因此出口玩具企业必须高度重视,在此检验检疫部门提醒广大出口玩具企业,第一,应认真学习国外玩具技术法规中邻苯二甲酸酯的限量规定,密切关注其最新动态,采取措施增强实力提高应对能力 第二,应完善质量管理体系,突出新产品验证审核、源头控制、过程监管、成品检验,全程严防邻苯二甲酸酯超标的发生 第三,应树立诚信意识,严格按照输入国技术法规和标准进行生产,诚信经营,不要贪图利润,枉丢信誉,损害“中国制造”的声誉
  • GB 5009.271邻苯混标全新上市
    GB 5009.271-2016 邻苯混标 《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》,于2017年6月23号开始实施。迪马科技根据此标准,推出了多种邻苯二甲酸酯混标:1、依据此标准第一法:邻苯二甲酸酯混标(16种化合物);2、依据此标准第二法:邻苯二甲酸酯混标(17+1:17种邻苯二甲酸酯混标 + DINP单标);邻苯二甲酸酯混标(18种化合物)。邻苯二甲酸酯混标(16种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第一法,1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 46883序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-8邻苯二甲酸酯混标(1种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。10,000μg/mL在正已烷中, 1 mL/安瓿,Cat. No.: 4688510,000μg/mL在乙腈中, 1 mL/安瓿,Cat. No.: 46901序号中文名称英文名称CAS1邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-0邻苯二甲酸酯混标(17种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468841000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46900序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-817邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9邻苯二甲酸酯混标(18种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468821000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46902序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-017邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-818邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9
  • 聚焦塑化剂——新型SPE法检测邻苯二甲酸酯
    台湾因塑化剂引起的食品、保健品安全风波持续蔓延。最新调查数字显示,台湾受塑化剂污染的产品已增加到945种,涉及运动饮料、果汁饮料、茶饮料、果酱、果浆或果冻、方便面胶囊锭状粉状食品、保健食品、添加剂等类型。  面对日益严重的塑化剂事件,迪马科技技术中心快速做出反应开发出适合油脂性样品分析的SPE前处理方法以及HPLC分析检测方法。该方法采用ProElut PSA玻璃固相萃取小柱进行样品前处理净化,反相高效液相色谱法分离油脂性样品(食用油、方便面、方便面酱包等)中邻苯二甲酸酯。  惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染,高质量的ProElut吸附剂和PTFE材质筛板更加保证了结果的稳定型和重复性。SPE方法克服了国标方法使用凝胶色谱柱需要仪器(GPC)配套,消耗溶剂多,操作繁琐等缺点。此方法操作简单,快速,为您检测食品中邻苯二甲酸酯工作带来便利。  欲了解详细检测方法,欢迎来电咨询。迪马科技北京:400-608-7719 上海:021-6126 3966 广州:020-8559 3520 沈阳:024-2294 3513 成都:028-8661 2625 青岛:0532-8372 5230更多办事机构联系方式请见:http://www.dikma.com.cn/Catalog/index/cid/35 以下是检测油脂性样品中邻苯二甲酸酯配的色谱耗材,包括邻苯二甲酸酯标准品、HPLC级溶剂、玻璃SPE小柱、色谱柱等。大部分有现货,欢迎您来电咨询。 相关产品订货信息 货号 名称品牌规格63206GProElut PSA玻璃SPE柱Dikma ProElut1000mg / 6ml,30/pkg99603 Diamonsil C18(2) HPLC柱Dikma 250×4.6mm,5μm5323样品瓶(棕色/螺纹)Dikma2 mL, 100/pk5325 样品瓶盖/含垫(已组装)Dikma 100/pk37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk50115 正己烷HPLC级DikmaPure 4L50106丙酮HPLC级DikmaPure4L50102甲醇HPLC级DikmaPure 4L50101乙腈HPLC级DikmaPure4L 邻苯二甲酸酯标准品 邻苯二甲酸酯混标货号名称品牌 规格12-SP-DC04Z邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice1ml,1,000ug/mL在正己烷中12-PT8061-1JM邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 1ml,1,000ug/mL在异辛烷中12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 5ml,1,000ug/mL在异辛烷中12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 5x1mL,1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号名称品牌规格 12-F71 1.邻苯二甲酸二甲酯(DMP) Chemservice 1g 12-F70 2.邻苯二甲酸二乙酯(DEP) Chemservice 1g 12-F2264 3.邻苯二甲酸二异丁酯(DIBP) Chemservice 5g 12-F68 4.邻苯二甲酸二丁酯(DBP) Chemservice 1g 12-F2268 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP) Chemservice 500mg 12-F2309 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP) Chemservice 5g 12-F2312 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP) Chemservice 500mg 12-F2263 8.邻苯二甲酸二戊酯(DPP) Chemservice 500mg 12-F2314 9.邻苯二甲酸二己酯(DHXP) Chemservice 5g 12-F67 10.邻苯二甲酸丁基苄基酯(BBP) Chemservice 1g 12-F2315 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP) Chemservice 1g 12-F2262 (DCHP) 12.邻苯二甲酸二环己酯 Chemservice 5g 12-F66 13.邻苯二甲酸二(2-乙基己)酯(DEHP) Chemservice 1g 12-F1091 14.邻苯二甲酸二苯酯 Chemservice 5g 12-F69 15.邻苯二甲酸正二辛酯(DNOP) Chemservice 1g 12-F2317 16.邻苯二甲酸二壬酯(DNP) Chemservice 5g 更多邻苯二甲酸酯单标,请来电咨询。 GB/T 21911-2008方法中相关的耗材:货号 名称品牌规格65584 无水硫酸钠Dikma ProElut 500g8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L50103 环己烷HPLC级 Dikma Pure 4L 50106丙酮HPLC级 Dikma Pure 4L关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
  • 科晓推荐检测增塑剂邻苯类有害物质仪器配置
    背景资料: 邻苯二甲酸二异壬酯(D I N P)、邻苯二甲酸二(2一乙基)己酯(D E H P)、邻苯二甲酸正辛酯(D N 0 P)、邻苯二甲酸异癸酯(D I D P)、邻苯二甲酸丁卞酯(B B P)、邻苯二甲酸二丁酯(D B P)统称邻苯二甲酸酯类(或盐),是PV c制品常用的增塑剂,在P v c中加入增塑剂是为了改进P V c的柔软性、耐寒性、增进光稳定眭。不同用途的P V c制品,增塑剂的潍加量不同。例如,食品包装用P V c中邻苯二甲酸酯类的重量比在2 8%左右,玩具用的柔性塑料达到3 5%~4 0%。研究表明,含有邻苯二甲酸酯类的PVc遇上油脂或在l 0 0℃以上高温环境下,很容易释放。由于对含有邻苯二甲酸盐酯类P V c危害认识不同,其认可的影响范围和程度不同, 因而各国对含有邻苯二甲酸酯类的PVc的使用限制也不同。 有关限制玩具及儿童护理用品的邻苯二甲酸盐含量的欧盟第2005/84/EC号指令将于2007年1月16日生效。所有欧盟成员国应在2006年7月16日前将该指令转化为本国条例,并确保由2007年1月16日开始实行各自的有关条例。将于2007年1月1日加入欧盟的罗马尼亚及保加利亚也必须执行有关条例。该指令将对进口商有重大影响。据中国技术性贸易措施信息网报道,有关限制玩具及及儿童护理用品的邻苯二甲酸盐含量的欧盟第2005/84/EC号指令将于2007年1月16日生效。所有欧盟成员国应在2006年7月16日前将该指令转化为本国条例,并确保由2007年1月16日开始实行各自的有关条例。将于2007年1月1日加入欧盟的罗马尼亚及保加利亚也必须执行有关条例。该指令将对进口商有重大影响。据欧盟委员会表示,至今仍有数个成员国未通告欧盟委员会已将该指令转化为本国条例。这些国家包括英国、葡萄牙、卢森堡及意大利。据悉,欧盟委员会已向这4个成员国发出警告,以确保该指令的执行。根据该指令,儿童护理用品是指任何有助儿童睡眠、放松、保持卫生,以及喂哺儿童或让儿童吸吮的产品,其中包括各种形状及类型奶嘴。 对生产商影响最大的第2005/84/EC号指令的附件列明以下限制: 1.玩具或儿童护理用品所用的塑料中所含的3类邻苯二甲酸盐(DEHP、DBP及BBP),浓度不得超过0.1%。2.DEHP、DBP及BBP浓度超过0.1%的玩具及儿童护理用品,不得在欧盟市场出售。 3.儿童可放进口中的玩具及儿童护理用品,其塑料所含的3类邻苯二甲酸盐(DINP、DIDP及DNOP)的浓度不得超过0.1%。 4.DINP、DIDP及DNOP浓度超过0.1%的玩具及儿童护理用品,不得在欧盟市场出售。 显然有关DEHP、DBP及BBP的含量限制将影响所有玩具及儿童护理用品,而不只是儿童可放进口中的玩具及儿童护理用品,原因是官方风险评估已将此3类物质评定为第二类生殖毒。此外,指令表示,有关DINP、DIDP及DNOP的科学证据不足或具争议性,欧盟因此采用预防性原则,即根据可能出现的风险而非实际风险采取措施,限制DINP、DIDP及DNOP的使用,但限制较为宽松。根据新指令,欧盟委员会必须在2010年1月16日之前,依据该6类邻苯二甲酸盐及其替代品的最新科学资料,重新评估上述措施。如有需要,将对相关措施进行修订。玩具及儿童护理用品出口商有义务遵守该项重要指令。如果进口商因违反新指令而与欧盟当局发生冲突,可能遭受处罚,后果严重。 解决方案: 利用液相色谱原理可检测增塑剂中的邻苯类有害物质。目前使用较多的检测技术是采用GC-MS,但是GC-MS检测存在保留时间长,分离度较差,峰形也不尽人意,并且GC-MS价格昂贵,这使得生产企业承担较大经费负担。与GC-MS法比较采用LC液相色谱法可以增强分离度,得到令人满意的峰形,并且降低了大量的实验成本。 图谱试样: 图1 增塑剂标准溶液:6种增塑剂 图2 由检测样品,利用我公司解决方案得到的谱图 仪器设备配置详单 高压恒流泵 LC-100P 紫外检测器 LC-UV100 色谱工作站 LC-WS100 手动进样阀 7725i 柱温箱 AT330高压混合器 1500ml超声波清洗机 KQ220DE 溶剂过滤器(带泵) 1000ml 邻苯二甲酸酯类增塑剂分析检测解决方案套装 有机系微孔滤膜(增强尼龙型) &Phi 50mm*0.45um 水系微孔滤膜 &Phi 50mm*0.45um 有机系针式样品过滤器(增强尼龙膜) &Phi 13mm*0.45um 可代买仪器: 离心机 6000r/min 可配15ml离心管 玻璃离心管 15ml电子天平 分度值0.0001g 粉碎破碎机 根据用户样品选配 备注: 邻苯二甲酸酯类增塑剂分析检测解决方案套装包括: 增塑剂检测专用色谱柱 4.6*250 5um 专用色谱保护柱 3柱心 1柱套 邻苯二甲酸之类增塑剂标样 暂定欧盟规定6种 增塑剂检测manager解决方案 进样针 25ul 进样针 100ul 玻璃注射器 1ml详细配置信息请参照公司网站www.kexiao.com的公司动态科晓仪器致力于提供给客户最好的仪器设备与最新的科技产品 如有疑问可拨打公司客服热线0571-56803999我们将竭诚为您服务
  • 宁波材料所在新型高性能液态邻苯二甲腈单体研究方面取得进展
    邻苯二甲腈树脂(又称为酞腈树脂)是一种集耐高温、阻燃、低烟、优异的力学性能于一身的先进耐高温树脂。该材料在极端环境领域具有非常好的应用潜力,但是苛刻的加工条件阻碍了它的大规模应用。于体系中刚性结构的存在,单体的熔点高(200℃),加工窗口窄,加工工艺繁琐,无法与成熟的树脂加工技术相结合。所以降低邻苯二甲腈单体熔点,对于扩大邻苯二甲腈树脂的应用具有很好的推动作用。   为解决以上问题,哈尔滨工业大学化工学院和中国科学院宁波材料技术与工程研究所先进能源材料工程实验室通过向邻苯二甲腈单体引入柔性链段,有效降低了邻苯二甲腈单体的熔点(如图1所示)。与刚性的苯环结构相比,单键的Si-O键和C-C键构象容易改变,并且Si-O-Si链段具有键长长、键角大的特点,使得链段的内旋转势垒小、柔顺性好。同时,高的结合能可以保证固化后的树脂具有良好的耐热性。   柔性链段的引入,将单体的熔点降低到室温以下(单体的玻璃化转变温度低至-35.6℃,图1a),得到室温下为液态的邻苯二甲腈单体,极大提高了邻苯二甲腈树脂的加工性能。这种液态的单体在室温下具有良好的流动性(30℃,粘度在~2Pas,图1b)和溶解性,可以溶于常见的有机溶剂,如乙酸乙酯、乙醇、丙酮等。这种液态的邻苯二甲腈单体还可以与其他高熔点的单体共混,用于提高粉末单体的加工性能。例如,将这种液态单体与粉末状的邻苯二甲腈单体(熔点~180℃)共混,得到室温下具有一定加工性的混合物(图2a)。固化后的邻苯二甲腈树脂,在氩气和空气中的初始分解温度(Td5%)分别为534.4℃和532.3℃(图2b)。这种共混的方式,可以在提高单体加工性的同时,保证树脂的耐热性。   这种低粘度、易加工的液态邻苯二甲腈单体可以用于复合材料RTM成型,芯片封装等领域。液态的单体能够将邻苯二甲腈单体与成熟的液态加工技术相结合,扩大邻苯二甲腈树脂的应用领域。   以上研究工作近期以“Novel Liquid Phthalonitrile Monomers Towards High Performance Resin”为题,发表在European Polymer Journal上(https://doi.org/10.1016/j.eurpolymj.2023.112027)该研究工作第一作者为哈工大博士生高慕尧,通讯作者为哈工大化工学院刘明教授和宁波材料所宋育杰副研究员。该工作得到了中央高校基本科研业务费(No. LH2021E055)资助。
  • 北京基因组所等揭示O-GlcNAc糖基化修饰维持基因组稳定性的分子机制
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  DNA总是受到内源或外源环境中多种损伤因子的攻击,例如DNA复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起DNA损伤的产生。如果不能够及时有效修复DNA损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控DNA损伤并及时修复,这一机制即为DNA损伤应答。/pp  中国科学院北京基因组研究所郭彩霞研究组与中科院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成DNA聚合酶Polη第457位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成DNA聚合酶Polη被招募到复制叉处替换高保真性DNA复制酶,在相应的损伤DNA模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的DNA复制酶相比,Polη复制未损伤DNA模板的错误率显著升高(10sup-2/sup~10sup-3/sup),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于Polη在TLS完成后如何从复制叉解离尚不清楚。研究发现,干扰Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤DNA模板对侧整合核苷酸的能力,但显著削弱Polη与CRL4supCDT2/sup E3泛素连接酶之间的相互作用,降低第462位赖氨酸的多泛素化修饰水平,进而抑制p97-UFD1-NPL4复合体所介导的Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA复制叉移动速率变缓等。该项研究工作揭示了Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及DNA复制过程中多种DNA聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。/pp  该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从DNA损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。/pp  研究工作以emPolη O-GlcNAcylation governs genome integrity during translesion DNA synthesis/em为题,在线发表在emNature Communications/em上。研究工作获得了国家自然科学基金委、科技部等的资助。/pp style="text-align:center "img alt="" oldsrc="W020171212545298381499.jpg" src="http://img1.17img.cn/17img/images/201712/uepic/afc0a60a-899a-40ca-87bc-2c12afb7ef13.jpg" uploadpic="W020171212545298381499.jpg"//pp style="text-align: center "O-GlcNAc糖基化修饰调控Polη与复制叉解离的分子机制示意图/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制