当前位置: 仪器信息网 > 行业主题 > >

硝基三氟甲基苯

仪器信息网硝基三氟甲基苯专题为您提供2024年最新硝基三氟甲基苯价格报价、厂家品牌的相关信息, 包括硝基三氟甲基苯参数、型号等,不管是国产,还是进口品牌的硝基三氟甲基苯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硝基三氟甲基苯相关的耗材配件、试剂标物,还有硝基三氟甲基苯相关的最新资讯、资料,以及硝基三氟甲基苯相关的解决方案。

硝基三氟甲基苯相关的论坛

  • 【求助】4-氯-2-三氟甲基苯腈的理化性质

    我想了解4-氯-2-三氟甲基苯腈(4-Chloro-2-(trifluoromethyl)benzonitrile,CAS#320-41-2)的理化性质,但在网上只找到沸点109 º C (10 mmHg),是液体还是固体看不出来。因为这个沸点是真空条件下的。那位老师有相关的信息,请告诉我,谢谢!

  • 测定三硝基甲苯用什么色谱柱

    5750.8-2006中30.1 气相色谱法 测定2,4,6-三硝基甲苯本人色谱新手,不知道应选择哪个型号的色谱柱? 弱极性的RTX-5 还是中等极性的RTX-1701求大神解答原文内容如下:4.1.3 色谱柱A 色谱柱类型:硬质玻璃填充柱长2 m,内径 2mm。B 填充物:a 载体:Chromosorb Hp 60目~80目。B 固定液及含量:5%二甲基硅酮(SE-30)C 涂渍固定液方法:称取0.5 g SE-30 溶于三氯甲烷(3.3.2)中,然后加入10 g载体(4.1.3.B.a)摇匀,置于室温下自然挥干,装柱。D 色谱柱老化:将色谱柱进口端接到色谱系统,出口端与检测器断开,通氮气于220℃老化24 h。

  • 请教测过硝基苯类物质的前辈:二硝基苯和三硝基甲苯在wax柱和FFAP柱上响应低甚至不出峰是怎么回事?

    测水中的硝基苯类,用的HJ 648-2013,萃取富集都没问题用过DB-5、DB-35、DB-17等弱极性柱,分离效果各有差异,但是峰型和响应灵敏度都正常换成wax柱和FFAP柱后,三硝基甲苯基本上没峰了,对二硝基苯和邻二硝基苯的峰强度也变小了将近一半硝基苯类高温易分解我是知道的,所以进样口220度,检测器240度,柱温是80度到220度,5度/min我看过HJ 648-2013的编制说明,起草人也说过强极性的聚乙二醇柱上二硝基甲苯和二硝基氯苯的响应会比较低。但是我在的情况却是二硝基甲苯和二硝基氯苯正常,其他的响应比较低不知道有没有人遇到类似的情况?聚乙二醇柱对二硝基苯类、三硝基苯类物质响应低是为什么?是偶然现象还是普遍问题?

  • 【求助】三氟甲基对碳的裂峰

    苯环上3位和5位上各带一个三氟甲基,扫碳谱后非常的杂,如何才能比较准确地找出相对应的峰并计算耦合常数呢?三氟甲基上的碳是否裂分位一个4重峰了,临位的碳也被裂分为双峰了呢?

  • 间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    [align=center][b]间三氟甲基苯丙醇和杂质I的分离[/b][/align]客户提供了间三氟甲基苯丙醇和相关杂质I,并反馈曾尝试使用反相C[sub]18[/sub]柱对两化合物进行分离,但未能得到基线分离结果。现客户希望本实验室选择合适色谱柱并对色谱条件进行优化,来实现间氟甲基苯丙醇和其相关杂质I的基线分离。首先,我们尝试使用中等极性的CAPCELLPAK C[sub]18[/sub] MGII色谱柱,在磷酸盐-乙腈体系中分析50 μg/mL的混标溶液及各单标溶液,通过调整流动相中水相和有机相比例为60:40时,50 μg/mL的混标溶液中,间三氟甲基苯丙醇和杂质I能实现基线分离,分离度为1.52(见图1)。同客户沟通,客户希望供试品溶液(当间三氟甲基苯丙醇浓度为1mg/mL,杂质I为1 μg/mL)中两化合物分离度大于1.50。[align=center][img=,422,132]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009027392_4941_2222981_3.png!w422x132.jpg[/img][/align][align=center][img=,656,427]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009243004_918_2222981_3.png!w656x427.jpg[/img][/align][align=center]图1 MGII分析混标及单标溶液结果[/align][align=left][img=,575,197]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009245664_7431_2222981_3.png!w575x197.jpg[/img][/align][align=left]在此实验基础上,进一步分析供试品溶液,结果发现由于间三氟甲基苯丙醇浓度过高,致使色谱峰展宽,杂质I与间三氟甲基苯丙醇的分离度下降,未能达到1.50的基线分离要求;进一步尝试通过升高柱温来改善分离度,结果如图2,在50°C时能够得到良好分离结果,分离度为1.59。[/align][align=left][/align][align=center][img=,650,418]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031030364182_5088_2222981_3.png!w650x418.jpg[/img][/align][align=center]图2 MGII分析混标及单标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,575,195]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031031319132_5141_2222981_3.png!w575x195.jpg[/img][/align][align=left][/align][align=left]为有更多的选择,我们也尝试了两款非C[sub]18[/sub]色谱柱,包括键合特殊官能团——金刚烷基的高极性色谱柱ADME和键合五氟苯基的PFP色谱柱。在使用PFP色谱柱分析50 μg/mL混标溶液时,发现两化合物峰重合,未能实现分离。但使用ADME分析混标溶液时,能够得到1.36的分离度(见图3)。[/align][align=left][/align][align=center][img=,620,423]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034384978_3594_2222981_3.png!w620x423.jpg[/img][/align][align=center]图3 PFP、ADME分析50 μg/mL混标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,552,214]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034366042_2199_2222981_3.png!w552x214.jpg[/img][/align][align=left][/align][align=left]尝试改善分离度,继续使用ADME色谱柱进行分析,通过降低有机相比例来延长保留,最终得到了1.50的分离度(见图4),与此同时对供试品溶液进行分析,发现由于主成分峰展宽未能得到基线分离结果(见图5)。[/align][align=left][/align][align=center][img=,658,430]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035399180_5905_2222981_3.png!w658x430.jpg[/img][/align][align=center]图4 ADME分析混标溶液结果[/align][align=center][/align][align=center][img=,657,435]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035148034_8911_2222981_3.png!w657x435.jpg[/img][/align][align=center]图5 ADME分析供试品溶液结果[/align]注: 峰上标数字为分离度。[align=left][img=,586,223]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035150115_8050_2222981_3.png!w586x223.jpg[/img][/align]

  • 【资料】空气中三硝基甲苯的气相色谱测定方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=171573]空气中三硝基甲苯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定方法[/url]空气中三硝基甲苯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定方法三硝基甲苯,即TNT,相对分子质量22713,常温下呈淡黄色芳烃晶体,溶点81℃,是一种炸药成份,化学性质稳定,不与金属反应,不吸水,但与碱反应强烈,对热和撞击敏感,一般以气溶胶状态存在于工作场所空气中。其毒理作用主要是增加对肝脏功能的损害。文章是对工作场所空气中三硝基甲苯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析方法,其[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件可以为我们对TNT的检测作参考。

  • 2-溴-1氟-4-硝基苯

    谁用过2-溴-1-氟-4-硝基苯? 请问可以溶于甲醇吗? 只试过二甲亚砜,可溶。但二甲亚砜熔点太低,在冰箱里就冻住了, 不好用。另外,谁有相关的质谱信息? 网上查不到。心急如焚,郁闷ing。。。

  • 【求助】紧急求助 关于三硝基甲苯

    大家好 现在本人在做三硝基甲苯 气谱条件为柱温:200 气化室:250 检测器:250 检测器ECD 溶剂是甲醇苯 进样量是1ul 急 急 急 望有做过的同仁给予指教 谢谢

  • 【第三届原创参赛】毛细管柱-气相色谱法测定水样中硝基苯类化合物残留量

    【第三届原创参赛】毛细管柱-气相色谱法测定水样中硝基苯类化合物残留量

    维权声明:本文为alphahe原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任. 常见硝基苯类化合物有硝基苯、硝基氯苯、二硝基苯、二硝基甲苯、三硝基甲苯等。该类化合物难溶于水,属有毒污染物是染料合成、油漆涂料、塑料、医药及农药制造等的中间体,其中硝基苯属持久毒性有机污染物。而氯代硝基苯是一种能导致突变、引发癌症、导致畸形的化学物质,在印染、农药等行业作为中间体,在生产过程中往往因转化不彻底而残留,随废物排放水中,从而造成地表水和地下水污染。此外,硝基苯同系物对动植物的影响也很大。王春梅等探讨了十八种硝基苯类化合物对大型蚤的急性毒性实验,研究了毒性与取代基和取代基的位置不同而产生差异的机理,结果表明对二硝基苯毒性最大。因此地表水环境质量标准GB3838-2002中规定集中式生活饮用水源地硝基类化合物应作特定分析项目进行监测。但是现有的分析方法有很大一部分存在着老化落后的问题如GB13194-91,亟需开发新的检测分析方法以适应形势的需要。 毛细管气相色谱法在有机污染物分析方面具有分析速度快、分辨率高、分离度好等优点,最近几年得到了快速的发展,开始逐步应用到环境监测当中。毛细管气相色谱法用于废水中微量硝基苯测定的报道已有不少,但是能够满足地表水环境质量标准中规定集中式生活饮用水要求,快速同时测定水中十类硝基苯类化合物的方法并不多见,尤其是当今环境监测任务繁重,迫切需要快速同时测定水中十类硝基苯类化合物,本文将围绕快速同时测定水中十类硝基苯类化合物展开讨论。1实验部分1.1仪器与试剂 Agilent6890N气相色谱仪,ECD检测器;氮吹仪:BF-2000A型; 注射器:100、50、10μl若干;色谱柱: HP-5(30m ×0.32mm ×0.25μm) 5 %苯基-甲基聚硅氧烷柱;干燥柱:若干(干燥管中加入5g处理过的无水硫酸钠,使用前分别用10ml苯淋洗以净化干燥柱);精密天平:精密度为0.1mg。试剂:农残级苯、甲醇。 标准样品: 硝基苯、邻硝基氯苯、间硝基氯苯、对硝基氯苯、[size

  • 安捷伦GC-MS SIM(m/z141)定量测对氟硝基苯,前后响应相差3倍

    最近开发一个方法定量检测对氟硝基苯,先用scan模式,,对氟硝基苯出峰位置在7.94min,提取MS spectrum,响应较高的分子离子峰是95,141,该化合物相对分子量是141,因此最终定的方法是SIM模式下看141的峰,第一天测试0.01mg/mL对氟硝基苯峰面积大概4万多,第三天测试同一浓度新鲜配置的样品 峰面积变成1万多,响应降低至1/3,请问是什么原因?

  • 【第三届原创参赛】极谱测定苯胺中微量硝基苯的方法研究

    维权声明:本文为ncicjxb原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。摘要 通过正交实验和验证实验确定极谱测定苯胺中微量硝基苯的最佳条件,同时对悬汞电极、静态滴汞电极、滴汞电极三种电极模式以及微分脉冲极谱和经典直流极谱两种极谱类型进行了实验比较,得出相应结论。关键词 极谱 硝基苯 苯胺1. 通过正交实验和验证实验确定了极谱测定苯胺中硝基苯的最佳条件,即除氧时间180S、冰醋酸2 mL、10%乙醇10mL。在实验中发现随着冰醋酸加入量的增加,硝基苯的半波电位正移,2 mL时为-0.4V,4 mL时为-0.35V,6 mL时为-0.33V。2. HMDE、SMDE、DME三种电极模式下的硝基苯峰电流与含量线性关系显著,HMDE线性范围在0.2-600 mg/L,SMDE、DME线性范围在0.1-600 mg/L。灵敏度从大到小排序为DME、SMDE、HMDE,汞耗从大到小顺序也为DME、SMDE、HMDE。在最低检测量上HMDE约在0.2 mg/L,而SMDE、DME约在0.1 mg/L。所以在选择电极模式时要综合考虑测定灵敏度、汞耗和最低检测量几方面。3. 虽然微分脉冲极谱和经典直流极谱的硝基苯峰电流与含量线性关系都显著,线性范围都在0.2-600 mg/L,但同样条件下微分脉冲极谱的电流大约是经典直流极谱的4倍,即微分脉冲极谱的灵敏度约是经典直流极谱的4倍,所以微分脉冲极谱应当被优先选择。

  • 水质 硝基苯类的测定

    请教大家:有没有使用过HJ 716-2014方法测定水中硝基苯类化合物的(主要项目为:硝基苯,间、对、邻硝基氯苯,间、对、邻二硝基苯,2,4-二硝基氯苯,2,4-二硝基甲苯,2,4,6-三硝基甲苯)?有几个问题请教一下,第一:我使用的是HP-5MS的色谱柱,但是硝基苯和内标硝基苯D5分不开,硝基苯的线性做的很不好,硝基甲苯的同分异构体线性都不是很好;第二:低浓度0.1mg/L是不是太低了,有很多的成分都扫不出来,按照标准方法,我用的是SCAN模式,大家都采用什么浓度?第三:用什么方法和仪器测定水中硝基苯类比较好?请各位大神指导

  • 【原创大赛】【我爱创新】分散液液微萃取-气相色谱法快速测定水中15种硝基苯类物质

    【原创大赛】【我爱创新】分散液液微萃取-气相色谱法快速测定水中15种硝基苯类物质

    [b]0 引言[/b] 硝基苯类物质是含硝基的单环芳烃的通称,一般包括硝基苯、硝基甲苯、硝基氯苯等,都是重要的化工原料,用途广泛。硝基苯类物质具有显著的毒性,是环保部门重点监控的污染物之一。我国环保标准“GB3838-2002 地表水环境质量标准”中对集中式生活饮用水地表水源中多种硝基苯类物质进行了严格的限制,其中2, 4-二硝基甲苯的限值低至0.3μg/L。 水中硝基苯类物质的测定可以采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[sup][/sup]或液相色谱法[sup][/sup],其中[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法应用较广泛,是现行的标准方法[sup][/sup]。例如:[b]水质硝基苯类化合物的测定液液萃取/固相萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法. 中华人民共和国国家环境保护标准, HJ 648-2013.水质硝基苯类化合物的测定[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法. 中华人民共和国国家环境保护标准, HJ 716-2014.[/b] 由于水中硝基苯类物质含量很低,又存在基体干扰问题,所以需要通过液液萃取[sup][/sup]或固相萃取[sup][/sup]等方法进行分离富集之后再进行色谱测定。液液萃取法较为简便,但需要消耗大量的样品和有毒溶剂,而且富集效果并不理想,为了获得较高的富集倍率,往往还需要进一步蒸发浓缩。固相萃取法的富集效果较好,但仍然存在试样和溶剂用量大的问题,而且耗时很长。固相微萃取法(solid-phase microextraction, SPME)[sup][/sup]、单滴萃取法(single drop microextraction, SDME)[sup][/sup]、顶空溶剂微萃取法(headspace solventmicroextraction, HSME)[sup][/sup]也应用于水中硝基苯类物质的分离富集,具有富集效果好和溶剂用量少的优点,但达到萃取平衡十分缓慢,耗时很长[sup][/sup]。分散液液微萃取法(DLLME)是近年来出现的一种新型萃取方法[sup][/sup],具有操作简便、萃取速度快、溶剂和试样用量少等众多优点,应用日益广泛[sup][/sup]。 本实验室近期开发了分散液液微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法快速测定水中15种硝基苯类物质的方法,主要流程如下:[img=,690,793]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152059_01_2204387_3.png[/img]相关研究已经投稿《分析化学》,现就实验方法相关内容进行介绍。.[b]2 实验2.1 仪器[/b] 日本岛津GC2010[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],配不分流直接进样口(WBI-2010)和电子捕获检测器(ECD-2010)。 弹性石英毛细管色谱柱,型号分别为DB-1(甲基聚硅氧烷固定相)、DB-5(5%苯基-甲基聚硅氧烷固定相)、DB-35(35%苯基-甲基聚硅氧烷固定相)、DB-17ms(50%苯基-甲基聚硅氧烷固定相)、VF-1701ms(14%氰丙基苯基-甲基聚硅氧烷固定相)、VF-WAXms(聚乙二醇固定相)、DB-FFAP(硝基对苯二甲酸改性聚乙二醇固定相),规格均为30m×0.32mm×0.25μm。 萃取容器为10mL尖底玻璃离心管(带磨口塞)。微量注射器分别为5μL、500μL,美国SGE公司。[b]2.2 试剂[/b] 标样:15种硝基苯类物质见表1,用甲醇配制成浓度为1.00g/L的单标储备液。使用时稀释成所需浓度的混合工作标液。 [b]萃取剂:氯苯[/b],分析纯,重蒸三次后使用。 [b]分散剂:甲醇[/b],色谱纯。 实验用纯水为亚沸蒸馏水。[img=,690,422]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152108_01_2204387_3.png[/img][b]2.3 色谱条件[/b] 最优条件为:使用DB-35色谱柱。高纯氢气(99.999%)为载气,恒线速度控制(65cm/s)。程序升温,初始80℃保持2min,以5℃/min速率升温至180℃,保持5min。ECD检测器温度220℃,尾吹气为高纯氮气(99.999%),流速40mL/min。WBI不分流直接进样口,温度200℃,进样1.00μL。[b]2.4 萃取条件[/b] 最优条件为:水样经0.45μm尼龙滤膜过滤,移取5.00mL于尖底玻璃离心管中,用微量注射器将100μL[b]氯苯(萃取剂)[/b]与400μL[b]甲醇(分散剂)[/b]的混合液迅速注入到水样中,加塞轻摇约30s,得到均匀乳状液。以6000r/min速度离心2min破乳。弃去上层水相,吸取下层沉积相进行色谱分析。[b]2.5 定量[/b] (1)方法一:采用简单标液定量,即将工作标液用萃取剂(氯苯)进行稀释,直接进样1.00μL建立工作曲线,计算萃取液中目标物的浓度,结果除以富集因子(近似为50)得到原水样的浓度。 (2)方法二:采用基体匹配的标样定量,即工作标液用基体(纯水)进行稀释,按试样完全相同步骤进行萃取和测定,建立工作曲线,直接计算原试样中目标物浓度。.[b]3 讨论3.1 色谱条件3.1.1 色谱柱选择[/b] 首先需较好的惰性。硝基苯极性很强,若惰性不足,将会严重拖尾。 其次液膜要较薄。薄液膜可获得较高的相比,可以减少流出时间。硝基苯类沸点较高,而且在高温下不稳定。高相比可以使目标物流出更快、流出时的柱温更低,减少了样品分解的可能。 不同固定相对异构体的分离效果是可以预见的,一般极性越强对于异构体的分离度越大。但是非异构体之间的重叠问题难以预测,只能通过实验确定。 7种不同固定相在同样色谱条件(见2.3)下的分离效果如下,色谱峰编号见表1:[img=,690,1000]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152134_01_2204387_3.png[/img][img=,690,438]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152135_01_2204387_3.png[/img] 上述结果较为明确,DB-5和DB-35都可以实现分离,DB-35的效果更好。 有两点需要指出: 一是PEG类的固定相对于二硝基苯类物质不适用,表现为峰高显著减小。这一现象的原因尚不清楚,推测可能是由于部分目标物在高温下能够与聚乙二醇固定相发生反应而分解。这并非偶然现象,在环保标准[sup][/sup]的编制说明中也有报道[sup][/sup],参见:[color=windowtext]环境保护部办公厅函[/color][color=windowtext]:[/color][color=windowtext]环办函[/color][color=windowtext]93[/color][color=windowtext]号[/color][color=windowtext]. http://www.mep.gov.cn/gkml/hbb/bgth/200910/t20091022_174970.htm[/color][color=windowtext]环境保护部办公厅函[/color][color=windowtext]:[/color][color=windowtext]环办函[/color][color=windowtext]1052[/color][color=windowtext]号[/color][color=windowtext]. http://www.mep.gov.cn/gkml/hbb/bgth/201309/t20130917_260339.htm[/color][color=windowtext] 另一点是,MS柱与对应的非MS虽然标称具有相似的极性,但选择性上会有细微的差异。对于本文设计的目标物,使用DB-35柱分离效果很好,换成DB-35MS柱,则存在部分物质难分离的现象。经优化条件不能改善DB-35MS柱分离不完全的现象,说明其根本原因在于固定相选择性的差异。因此在方法验证时,对不同柱的微小差异要十分重视,不能简单的把不同型号但略有类似的产品进行简单替换。[/color][color=windowtext][b]3.1.2 柱温的优化[/b] 本方法采用不分流进样,为了避免进样产生的峰展宽,必须使用较低的初始柱温,使溶剂和目标物在柱头冷凝聚焦。初温80℃时可以获得尖锐的峰型,且溶剂峰完全不拖尾。[b]3.1.3 检测器温度的优化[/b] 由于ECD的响应信号具有温度敏感性,本文考察了检测器温度在220℃ ~ 280℃范围内变化时各目标物响应信号的变化,结果表明,各目标物的峰高随检测器温度变化不明显,但溶剂峰的强度随检测器温度的降低而减弱。因此选择220℃作为ECD检测器的温度对减弱溶剂峰的干扰比较有利。考虑到检测器温度太低可能导致目标物冷凝而污染ECD,因此没有在更低的检测器温度下进行实验。[/color][color=windowtext][b]3.2 萃取条件的优化[/b][/color][color=windowtext] 该萃取方法的关键在于:[/color][color=windowtext](1)萃取剂密度比水大;[/color][color=windowtext](2)分散剂与萃取剂和水都能完全互溶;[/color][color=windowtext](3)混合液在注射过程中实现分散;[/color][color=windowtext](4)分散液的接触面积大,很快就达到萃取平衡,一般只需振荡30s;[/color][color=windowtext](5)通过离心可简便的分离萃取液。[/color][color=windowtext] 相关讨论予以简化,只给出结论和最佳条件:[/color](1)比较了二硫化碳、氯苯、1, 4-二氯丁烷、二氯甲烷、1, 2-二氯乙烷等5种萃取剂。其中[color=#0d0e00]二氯甲烷、1, 2-二氯乙烷在水中溶解度太大,进行微萃取时基本上都溶解到水中,不能使用。[color=#0d0e00]二硫化碳、氯苯、1, 4-二氯丁烷都可以进行萃取,其中氯苯的萃取率最高。当氯苯用量为100μL时,所有目标物的[color=#0d0e00]萃取率都可以[/color]达到90%以上,富集因子接近50倍。[/color][/color][color=#0d0e00][color=#0d0e00](2)以400[color=#0d0e00]μL甲醇作为分散剂效果最好。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](3)萃取30s即可达到平衡,延长时间萃取率无变化。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](4)温度,水样中酸度,盐析剂等条件对萃取率影响不大。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00]3.3 方法学评价[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00] 相关数据从略,主要结论如下:[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](1)对于水溶液试样,在0.200 ~ 50.0 μg/L范围内均有很好的线性响应,相关系数不低于0.998。[/color][/color][/color][color=#0d0e00][color=#0d0e00](2)仪器对各目标物的检出限为0.5 ~ 2.3 pg。方法检出限[color=#0d0e00]0.01 ~ 0.05μg/L,方法[/color]定量限为0.03 ~ 0.15μg/L。[/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](3)在0.200 μg/L的加标水平下,方法的相对标准偏差在3.3% ~ 8.9%之间,加标回收率在86.0% ~ 103.5%;在中、高浓度水平下,方法的相对标准偏差均不超过5%,加标回收率在94.5% ~ 101.5%之间。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](4)以现行国标方法作为对照方法,对同一加标试样进行了测定,所得结果具有一致性。[/color][/color][/color][color=#0d0e00][color=#0d0e00] 某试样和试样加标[color=#0d0e00]0.200 μg/L的色谱图如下,A为原试样,B为加标样,色谱峰编号见表1:[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00][img=,690,411]http://ng1.17img.cn/bbsfiles/images/2017/09/201709152221_01_2204387_3.png[/img][/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00][b]3.4 方法的特点[/b][/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](1)富集50倍,灵敏度高。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](2)萃取全过程只需3~5min,速度快。相对的,国标固相萃取法需要约2小时处理试样。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00](3)萃取剂用量仅为100μL,试样用量仅为5mL,用量大为减少。相对的,国标法需要使用约500mL样品和10mL萃取剂。[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00].[/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00][b]4 展望[/b][/color][/color][/color][color=#0d0e00][color=#0d0e00][color=#0d0e00] 目前看来,这个新方法有较大优势,但在实际应用中是否能够适应各种复杂样品还有待验证。希望该方法能够在更广泛的范围内试用,也希望各位同仁能够提出相关的问题和改进意见。[/color][/color][/color]

  • 求助质谱-三苯甲基碳正离子

    [size=18px]目前在用AB的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测三苯基氯甲烷,Q1 MI模式扫243.1的离子[font=-apple-system, BlinkMacSystemFont, &](应该是三苯甲基碳正离子)[/font],发现基线非常高(30万-50万之间),且不稳定,时高时低,导致峰面积也 不稳定,打电话问客服,几个人几种说法,“液相部分污染了”“这个是正常现象,多走走就稳定了”,尝试用MRM模式去做,打出一个165.2的碎片,基线不到1000,做了线性和回收也都挺好,但是,这个碎片离子是怎么打出来的比较困惑,就怕以后再做的时候重现不出来……[/size][size=18px]流动相是90%甲醇,溶剂是正丁醇:乙腈(80:20)[/size][size=18px]请教一下各位大神,AB的仪器用SIM模式选择Q1 MI还是Q3 MI好呢?基线高且时高时低,除了污染还有什么原因呢?[font=-apple-system, BlinkMacSystemFont, &]三苯甲基碳正离子在质谱里能被打碎吗?会裂解成什么碎片离子?[/font][/size][size=18px][font=-apple-system, BlinkMacSystemFont, &][/font][/size]

  • N-二甲基亚硝基胺走不出信号

    有没有做过N-亚硝基胺的?我用N-二甲基亚硝基胺标准物质进样,但是根本观察不到信号,TIC和SIM都没有信号,这是什么原因呢?

  • 【实验】有机实验之硝基苯的制备

    硝基苯的制备目的原理主反应: Ar + HONO2 +H2SO4 Ar- NO2 + H2O副反应: Ar- NO2+ HONO2 +H2SO4 Ar-(NO2)2+ H2O仪器药品苯8.9ml (7.8g,0.1mol),硝酸(d = 1.40) 7.3ml (0.11mol),浓硫酸(d = 1.84) 10ml (0.18mol),10%碳酸钠溶液,饱和食盐水,无水氯化钙。过程步骤在50ml圆底烧瓶上装配一个二口连接管,正口配一温度计,其水银球离瓶底约5mm,侧口装配一回流冷凝管。也可以用一个二口烧瓶,正口装配回流冷凝管,侧口装一温度计,其水银球离瓶底约5mm。在烧瓶中加入8.9ml苯。通过冷凝管上口,将已冷却的混酸分多次加入苯中。每加一次后,必须充分振荡烧瓶,使苯与混酸充分接触,待反应物的温度不再上升而趋于下降时,才继续加混酸(为什么?)。反应物的温度应保持在40~50℃之间,若超过50℃,可用冷水浴冷却烧瓶。加料完毕后,把烧瓶放在水浴上加热,约于10min内把水浴加热到60℃(反应混合物的温度为60~65℃)并保持30min,间歇地振荡烧瓶。冷却后,将反应混合物倒入分液漏斗中。静置分层,分出酸层(哪一层?怎样判断和检验?),倒入指定回收瓶内。粗硝基苯先用等体积的冷水洗涤,再用10%碳酸钠溶液洗涤,直到洗涤液不显酸性。最后用水洗至中性(如何检验?)。分离出粗硝基苯,放在干燥的小锥形瓶中,加入无水氯化钙干燥,间歇振荡锥形瓶。把澄清透明的硝基苯倒入30ml蒸馏烧瓶中,连接空气冷凝管。在石棉网上加热蒸馏,收集204~210℃的馏分。为了避免残留在烧瓶中的二硝基苯在高温下分解而引起爆炸,注意切勿将产物蒸干。产量:约9.5g。纯硝基苯为无色液体,具有苦杏仁气味,沸点210.9℃,d20= 41.203。注意事项1.苯的硝化反应也可在三口烧瓶中进行。在100ml三口烧瓶中放入苯,在中间瓶口安装搅拌棒,一个侧口装上冷凝管,另一侧口插上温度计,其水银球要浸到液面下。开动搅拌器,从冷凝管上口分批加入已冷却的混酸。其余的步骤与用圆底烧瓶时一样。全部药品用量都加倍。2.混酸配制法:在50ml锥形瓶中放入10ml浓硫酸,把锥形瓶置于冷水浴中,一边不停地摇动锥形瓶,一边将7.3ml硝酸慢慢地注入浓硫酸中。3.苯的硝化反应为一放热反应。在开始加入混酸时,硝化反应速率较小,每次加入的混酸量宜为0.5~1ml。随着混酸的加入和硝基苯的生成,反应混合物中的苯的浓度逐渐降低,硝化反应的速率也随之减小,故在加入后一半混酸时,每次可加入1.5~2ml。4.用吸管吸取少许上层反应液,滴到饱和食盐水中,当观察到油珠下沉时,那就表示硝化反应已经完成。5.硝基苯有毒,处理时须加小心。如果溅在皮肤上,可先用少量酒精洗擦,再用肥皂水洗净。6.如果使用工业浓硫酸,其中含有的少量汞盐等杂质具有催化作用,使反应产物中含有微量的多硝基酚,如苦味酸和2,4-二硝基苯酚,它们的碱溶液呈深黄色。应洗到碱溶液几近无色。分析思考 1.硫酸在本实验中起什么作用?2 .一次把混酸加完,会产生什么结果?3.若用相对密度为1.52的硝酸来配制混酸进行苯的硝化,将得到何产物?

  • 【求助】三甲基苯醌含量的化学滴定方法

    我用滴定对苯醌的方法(溶液加碘化钾,盐酸,暗处静置后用硫代硫酸钠滴定)测三甲基苯醌含量,但是终点总是反色,找不到终点,请问高人们有解决的办法吗?谢谢!

  • N-亚硝基胺类会热分解么

    最近扩项皮革N亚硝基胺 GB/t24153-2009 5ppm 12种混标打下去, N-亚硝基吡咯烷,N-亚硝基N-甲基苯胺,N-亚硝基乙基苯胺 ,N-亚硝基二苯基胺都没有,查找离子发现有N-甲基苯胺,N-乙基苯胺,二苯胺,推测热分解。那么N-亚硝基吡咯烷应当分解为吡咯烷才对,然而附近并没有找到对应峰......手边没有N-亚硝基吡咯烷单标,不好验证。有没有经验丰富的老师讲解一下,这种情况是不是热分解导致的,N-亚硝基吡咯烷是不是也分解了呢?如果分解了,产物是什么,特征离子多少。还是其他原因造成的?进样口温度260 质谱280 DB-35柱子 分段升温38-300

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制