当前位置: 仪器信息网 > 行业主题 > >

二甲基马来酸酐

仪器信息网二甲基马来酸酐专题为您提供2024年最新二甲基马来酸酐价格报价、厂家品牌的相关信息, 包括二甲基马来酸酐参数、型号等,不管是国产,还是进口品牌的二甲基马来酸酐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二甲基马来酸酐相关的耗材配件、试剂标物,还有二甲基马来酸酐相关的最新资讯、资料,以及二甲基马来酸酐相关的解决方案。

二甲基马来酸酐相关的资讯

  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 气相顶空级二甲基亚砜,DMSO促销
    顶空气相色谱法(HS-GC)已经被制药企业的实验室采用了很多年,但是人们尚未找到过一种挥发性有机物杂质背景值含量极低的溶剂。最近几年,随着检测器的灵敏度不断的增加,残留溶剂最小量的控制要求也越来越严格,所以寻找一种高质量并且适用于HS-GC-FID/HS-GC-MS分析的溶剂成为大势所趋。 气相色谱顶空溶剂中如甲醇、乙腈、乙醇、异丙醇、正丙醇、正丁醇、环己烷、正己烷、正庚烷、二恶烷、二氯甲烷、吡啶、四氢呋喃、叔丁基甲醚、乙酸乙酯、乙酸丁酯、乙酸异丙酯、苯系物(甲苯、乙苯、二甲苯)等数十种有机挥发性化合物杂质背景值极低,均低于1ppm。 产品货号:4.109003.1000 产品名称:气相顶空级二甲基亚砜,DMSO 报价:520.00元/瓶 促销价:416.00元/瓶 促销日期截止2012.6.30日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 欧盟禁止进口含二甲基甲酰胺的鞋和家具
    据波兰媒体报道,自今年5月1日起,欧盟将禁止进口含有二甲基甲酰胺(DMF)的鞋和家具产品。欧盟称该物质吸收潮湿空气后会引发过敏反应。外界认为此举主要针对中国。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 北京工商大学孙宝国院士团队:综合多种方法探究芝麻香型白酒中二甲基三硫与香气活性化合物间的相互作用
    2023年1月,北京工商大学孙宝国院士团队在国际食品Top期刊Food Chemistry(Q1,IF: 8.8)发表题为“Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient”的研究性论文。北京工商大学硕士研究生杨世琪为第一作者,通讯作者为北京工商大学中国轻工业酿酒分子工程重点实验室副研究员李贺贺。芝麻香型白酒作为十二大香型之一,以其独特风味受到消费者的喜爱。但迄今为止芝麻香型白酒特征风味物质尚不明确,越来越多的研究推测芝麻香型白酒特征风味的形成源自于香气活性化合物间的相互作用。本研究以芝麻香型白酒中关键风味物质为研究对象,综合利用S型曲线法、OAV法、分配系数法等探究了芝麻香型白酒中二甲基三硫与酯类、醇类、酸类、醛类间的相互作用类型及规律。结果表明,物质的结构和特征香气是影响相互作用结果的重要原因之一,并且在52%乙醇-水溶液中,二甲基三硫与己酸乙酯、癸酸乙酯、糠醇香气的释放呈促进作用。分配系数法证明了二甲基三硫的添加会导致酯类化合物的峰面积和分配系数的变化,而化合物挥发性的变化是相互作用影响香气感知的原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。此外,初步提出了相互作用预测模型为 y = 2.0112 ln(x) + 0.1461,预测模型表明当酯类化合物的嗅觉阈低于33.80 μg/L时更易于二甲基三硫发生正向作用。本研究为风味物质间相互作用规律和影响因素的探究提供了新思路,有助于相互作用机制的揭秘,同时也为芝麻香型白酒特征风味物质的揭示以及国标的建立奠定了基础。研究亮点首次探究了芝麻香型白酒中关键风味物质间的相互作用。证明了结构和相比会影响二甲基三硫添加后酯类化合物挥发性的变化。首次建立了相互作用预测模型,实现了二元混合物间相互作用的快速判定。研究结论通过S型曲线法和OAV法明确了二甲基三硫与18种关键香气活性化合物间的相互作用类型,证明了二甲基三硫可以促进某些呈水果香气和烤香物质的挥发,如己酸乙酯、糠醇等。分配系数法结合OAV法和S型曲线法进一步证明了物质挥发性的变化是相互作用影响人体嗅觉感知的重要原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。如分配系数法证明二甲基三硫添加后己酸乙酯的峰面积与分配系数增大,同时S型曲线法与OAV法表明两者为加成作用;且随着体系相比的增加,己酸乙酯峰面积的增大程度逐渐加强。根据相互作用结果建立了二甲基三硫与酯类化合物间相互作用预测模型,实现了二元混合物间相互作用类型的快速判断。预测模型表明33.80 μg/L的酯类化合物嗅觉阈值浓度是二甲基三硫与酯类化合物之间相互作用类型变化的临界值。原文链接https://doi.org/10.1016/j.foodchem.2023.135451
  • 中国化学试剂工业协会印发2023年第二批中国化学试剂工业协会团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等14项团体标准项目
    各有关单位: 按照《中国化学试剂工业协会团体标准管理办法(2021 年修订版)》(中试协字〔2021〕 63 号)的要求,现予批准印发中国化学试剂工业协会 2023 年第二批团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等 14 项团体标准。请起草单位抓紧落实和实施项目计划,在标准制定过程中加强与有关方面的协调,广泛听取意见,保证标准质量和水平,按时完成团体标准制定任务。标准项目计划执行过程中有关问题,请及时与中试协团标委办公室联系。联系方式:联系人:朱传俊电话:18526778029中试协团标办公室邮箱:hxsjtbw@163.com中国化学试剂工业协会2023年8月16日文件66 2023年印发第二批14项团体标准制定计划通知.pdf
  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。 样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。 色谱条件 色谱柱:Venusil® MP C18 5&mu m 100Å 4.6× 250mm 流动相:水(磷酸调pH至3.0):乙腈=90:10 波 长:215nm 流 速:1mL/min 柱 温:30℃ 进样量:20ul 色谱图 图1 0.1ug/ml标准溶液色谱图 图2 淀粉空白样品色谱图 图3 10mg/kg淀粉添加样色谱图 订货信息 名称 规格 订货号 Venusil MP C18 5µ m;100Å ;4.6*250 mm VA952505-0 1.5mL样品瓶 短螺纹透明带书写处,100/PK 1109-0519 1.5mL样品瓶盖 100/PK 0915-1819 微孔滤膜(Nylon) 13mm,0.45&mu m,200个/包 AS021345 一次性注射器 2ml无针头,100支/包 LZSQ-2ML 乙腈 4L/瓶,色谱纯 AH015-4
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • VOC、VOCS和TVOC傻傻分不清楚?
    相信从事环境监测的各位对于voc、vocs、tvoc都很熟悉,对于概念还是略知一二,但遇到更多理论概念的时候,就会傻傻分不清,只可意会不可言传了...... 下面坛墨质检就带大家一起来深入了解下voc、vocs、tvoc 。voc:voc通常指在常温下容易挥发的有机化物。较常见的有苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、tvoc(6-16个碳的烷烃)、 酮类等。这些化合物具有易挥发和亲油等特点,被广泛应用于鞋类、玩具、油漆和油墨、粘合剂、化妆品、室内和汽车装饰材料等工业领域。对于挥发性有机物(voc)这一概念,不同的国家不同标准有不同的定义:①世界卫生组织(who)对voc的定义为熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称;②美国astm d3960-98标准将voc定义为任何能参加大气光化学反应的有机化合物;③美国联邦环保署(epa)将voc定义除co、co2、h2co3、金属碳化物、金属碳酸盐和碳酸铵外任何参加大气光化学反应的碳化合物;④欧盟2002/231/ce指令定义挥发性有机化合物是一种在常温常压下,具有高蒸气压和易蒸发性能的有机化学物质;⑤欧盟2004/42/ce指令定义挥发性有机物(voc)是指在101.3kpa标准压力下,任何初沸点低于或等于250℃的有机化合物;⑥gb50325-2001民用建筑工程室内环境污染控制规范定义挥发性有机化合物指可参加气相光化学反应的有机化合物。⑦澳大利亚国家污染物清单中定义在 25℃条件下蒸气压大于 0.27 kpa 的所有有机物。vocs:vocs是挥发性有机化合物(volatile organic compounds)的英文缩写,是指在室温下饱和蒸气压大于70.91pa,常压下沸点小于260℃的有机化合物。voc和vocs其实是同一类物质,即挥发性有机化合物(volatile organic compounds)的英文缩写,由于挥发性有机化合物一般成分不止一种,因此vocs更精准。再者,在日常交流过程中,人们习惯性将s省去,就造成了部分朋友搞不清voc和vocs呢?从环境监测的角度来讲,指以氢火焰离子检测器检出的非甲烷总烃类检出物的总称,主要包括烷烃类、芳烃类、烯烃类、卤烃类、酯类、醛类、酮类和其他有机化合物。tvoc:tvoc是total volatile organic compounds的缩写,即总挥发性有机物。世界卫生组织(who,1989)对tvoc的定义是:熔点低于室温,沸点范围在50~260℃之间的挥发性有机化合物的总称。vocs的三大来源:煤、石油、天然气:vocs的污染源分为固定源和移动源。煤、石油和天然气或以煤、石油和天然气为燃料或原料的工业与它们有关的化学工业是挥发性有机物产生的三大重要来源。分类vocs成分烷烃类乙烷、丙烷、丁烷、戊烷、己烷、环己烷烯烃类乙烯、丙烯、丁烯、丁二烯、异戊二烯、环戊烯芳香烃及其衍生物苯、甲苯、二甲苯、乙苯、异丙苯、苯乙烯、苯酚醛和酮类甲醛、乙醛、丙醛、丁酮、甲基丙酮、乙基丙酮脂肪烃丙烯酸甲酯、邻苯二甲酸二丁酯、醋酸乙烯醇甲醇、乙醇、异戊二醇、丁醇、戊醇乙二醇衍生物甲基溶纤剂、乙基溶纤剂、丁基溶纤剂、甲氧基丙醇酸和酸酐乙酸、丙酸、丁酸、乙二酸、邻苯二甲酸酐胺和酰胺苯胺、二甲基甲酰胺工业生产中排放vocs的种类挥发性有机物的毒害作用:大多数vocs有毒,部分vocs有致癌性。如大气中的某些苯、多环芳烃、芳香胺、树脂化合物、醛和亚硝胺等有害物质对机体有致癌或产生真性瘤作用;某些芳香胺、醛、卤代烷烃及衍生物、氯乙烯等有诱变作用。有机污染物症状影响苯、甲苯、乙苯、环己酮失眠、烦躁、痴呆、没精神神经障碍丙酮运动障碍、四肢末端感觉异常末梢神经障碍甲醛、200#溶剂、甲苯、二甲苯腹泻、便秘、恶心消化器官障碍丁醇、丙酮、烃类出汗异常、手足发冷、易疲劳自律神经障碍氯苯、200#溶剂皮炎、哮喘、自身免疫病变免疫系统障碍200#溶剂、醋酸丁酯、醋酸乙酯、甲醛、丙酮结膜发炎视觉障碍醋酸丁酯、200#溶剂喉痛、口干、咳嗽呼吸道障碍挥发性有机物的毒害作用苯系物苯甲苯邻二甲苯对二甲苯间二甲苯乙基苯刺激度1.05.32.32.52.94.3几种苯系物对眼睛的刺激度了解到了voc对人类有这么多伤害,而它又在咱们生活中频频出现顿感不安。环境监测单位为了人民的健康生活致力于voc监测,坛墨质检助力各地环境监测单位提供voc混合标物。以上为坛墨质检部分voc混合标物,更多产品可详查坛墨质检官网,也可热线咨询:4008-099-669. 整理来源自网络
  • 食品接触材料及制品 菲罗门色谱柱解决方案
    小伙伴们,2017 年 4 月 19 日起,一大波食品接触材料及制品的食品安全国家标准来袭, 你准备好了吗?是不是还在纠结柱子选的对不对,还在犯愁哪里能订到如此特殊规格的色谱柱? 菲罗门想您所想,为您提供一站式的解决方案。 序号国标编号国标名称方法固定相菲罗门对应产品货号1GB 31604.11-20161,3-苯二甲胺迁移量的测定液相C18,5μm 150×4.6mmTitank C185μm 150×4.6mmFMF-5560-EONU2GB 31604.12-20161,3-丁二烯的测定和迁移量的测定气相聚苯乙烯-二乙烯基苯石英毛细管柱30m×0.32mm×10μmFB-PLOT Q30m×0.32mm×10μm30M-L086-1003GB 31604.13-201611-氨基十一酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U4GB 31604.14-20161-辛烯和四氢呋喃迁移量的测定气相(5%-苯基)-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-0255GB 31604.15-20162,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定液相氨基柱5μm 250×4.6mmACE Excel NH25μm 250×4.6mmEXL-1214-2546U6GB 31604.16-2016苯乙烯和乙苯的测定气相聚乙二醇30m×0.32mm×0.5μmFB-Inowax30m×0.32mm×0.5μm30M-L020-0507GB 31604.17-2016丙烯腈的测定和迁移量的测定气相交联键合聚乙二醇30m×0.32mm×0.25μmFB-Inowax30m×0.32mm×0.25μm30M-L020-025 8GB 31604.18-2016丙烯酰胺迁移量的测定液相Venusil CIS 离子排斥色谱柱5μm 250×4.6mmMARS CIS5μm 250×4.6mmFMG-1038-EONU9GB 31604.19-2016己内酰胺的测定和迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U10GB 31604.20-2016醋酸乙烯酯迁移量的测定气相DB-5 石英毛细管柱30m×0.32mm×0.25μmFB-530m×0.32mm×0.25μm30M-L005-025气质DB-5ms30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02511GB 31604.21-2016对苯二甲酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U液质C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U12GB 31604.22-2016发泡聚苯乙烯成型品中二氟二氯甲烷的测定气相6%腈丙苯基-94%二甲基聚硅氧烷毛细管色谱柱30m×0.32mm×0.18μmFB-62430m×0.32mm×0.18μm30M-L062-01813GB 31604.23-2016复合食品接触材料中二氨基甲苯的测定气相HP-5MS30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02514GB 31604.26-2016环氧氯丙烷的测定迁移量的测定液相C8,5μm 250×4.6mmACE Excel C85μm 250×4.6mmEXL-122-2546U气质聚乙二醇30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02516GB 31604.27-2016塑料中环氧乙烷和环氧丙烷的测定气相键合苯乙烯-二乙烯苯的 PLOT 柱30m×0.32mm×20μmFB-PLOT Q30m×0.32mm×20μm30M-L086-200 17GB 31604.28-2016己二酸二(2-乙基)己酯的测定和迁移量的测定气相(5%)二苯基(- 95%)二甲基亚芳基硅氧烷共聚物30m×0.32mm×0.25μmFB-5MS UI30m×0.32mm×0.25μm30M-L015-025UI18GB 31604.29-2016甲基丙烯酸甲酯迁移量的测定气相聚乙二醇(PEG)30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02519GB 31604.30-2016邻苯二甲酸酯的测定和迁移量的测定气相5%苯基-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02520GB 31604.31-2016氯乙烯的测定和迁移量的测定气相聚乙二醇30m×0.32mm×1μmFB-Inowax30m×0.32mm×1μm30M-L020-10021GB 31604.35-2016全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定SPE弱阴离子交换,WAX150mg/6mLPolyClean X-WAX150mg/6mL9B-P005-06150液质C18,3μm 150×2.1mmACE Excel C183μm 150×2.1mmEXL-111-1502U22GB 31604.36-2016软木中杂酚油的测定气质HP-INNOWax30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02523GB 31604.37-2016三乙胺和三正丁胺的测定气相ZB-530m×0.32mm×5μmFB-530m×0.32mm×5μm30M-L005-50024GB 31604.39-2016食品接触用纸中多氯联苯的测定气相5%苯基-甲基聚硅烷30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-02525GB 31604.40-2016顺丁烯二酸及其酸酐迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U26GB 31604.43-2016乙二胺和己二胺迁移量的测定气相100%二甲基硅氧烷柱30m×0.32mm×5μmFB-130m×0.32mm×5μm30M-L001-500 27GB 31604.44-2016乙二醇和二甘醇迁移量的测定气相硝基对苯二酸修饰的聚乙二醇毛细管柱30m×0.32mm×1μmFB-FFAP30m×0.32mm×1μm30M-L021-10028GB 31604.45-2016异氰酸酯的测定液相C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U29GB 23296.19-2009食品中模拟物中乙酸乙烯酯的测定气相色谱法气相100%二甲基硅氧烷柱25m×0.32mm×5μmFB-125m×0.32mm×5μm25M-L001-500聚乙二醇25m×0.32mm×1μmFB-Inowax25m×0.32mm×1μm25M-L020-100
  • 863项目有机化工溶剂在线监测技术与设备通过验收
    日前,由中科院大连化物所所承担的国家863项目“重要有机化工溶剂在线监测技术与设备”顺利通过科技部组织的专家验收。验收专家组由资源环境863领域专家组组长王子健教授任组长,成员包括聚光科技董事长王健及来自北京大学、清华大学、中科院等单位的七位国内资源环境领域知名专家。该项目共申请11项发明专利(2项授权,1项PCT),软件登记2项。专家组一致认为,项目圆满完成了各项技术和经济指标,研制的仪器具有广泛应用和推广价值,为产业化运作奠定了良好的基础。   针对我国大宗有害挥发性有机化工溶剂在生产、储存和使用过程中对在线监测技术的迫切需求,大连化物所李海洋研究团队基于离子迁移谱技术研发了用于重要有机化工溶剂的在线监测技术和成套设备,并应邀参加了“十一五”国家重大科技成就展。该项目实现了对二氯甲烷、丙酮、醋酸酐、二甲基亚砜、丙烯腈、丙烯酸酯、苯、苯酚和对二甲苯等化学品的在线监测,单次测量响应时间小于3秒,最低检测限低于0.05ppm 研制出新型高效的大气压辉光放电电离源和UVRI电离源,属于国内外首创,具有原始创新性,相关结果均发表在“AnalyticalChemistry”杂志上。另外,研制的化学毒剂报警仪在国防建设中发挥作用 研制的爆炸物和毒物检测仪器被用于北京奥运安保和上海世博会安保 为重庆电力科学院研制了用于检测绝缘开关中SF6纯度的在线监测仪,为哈尔滨医科大学研制了用于手术中麻醉剂在线测量的仪器。   在项目实施过程中,研究团队积极开展国际合作,与美国橡树岭国家实验室(ORNL)开展合作研究,发展基于离子迁移谱的地下水中含氯VOCs的原位在线测量技术,ORNL提供10万美元用于人员交流和新型离子迁移管及其部件研制。
  • 质检总局:食品添加剂剔除33种产品
    国家质检总局日前发布公告,从即日起,禁止对羟基苯甲酸丙酯等33种产品作为食品添加剂生产、销售和使用,其中包括对羟基苯甲酸丙酯等食品防腐剂、二氧化氯等食品用消毒剂。已批准的生产许可证书,由监管部门撤回并注销,并于今年12月20日前完成。与此同时,所有食品添加剂生产企业禁止生产上述33种产品,已生产的禁止作为食品添加剂出厂销售。食品生产企业也一律不得使用。 国家质量监督检验检疫总局《关于食品添加剂对羟基苯甲酸丙酯等33种产品监管工作的公告》(2011年第156号公告)   根据卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号,见附件),现就监管工作有关事项公告如下:   一、自本公告发布之日起,各省级质量技术监督局不再受理对羟基苯甲酸丙酯、对羟基苯甲酸丙酯钠盐、噻苯咪唑、次氯酸钠、二氧化氯、过氧化氢、过氧乙酸、氯化磷酸三钠、十二烷基苯磺酸钠、十二烷基磺酸钠、1-丙醇、4-氯苯氧乙酸钠、6-苄基腺嘌呤、单乙醇胺、二氯异腈氰尿酸钠、凡士林、硅酸钙铝、琥珀酸酐、己二酸、己二酸酐、甲醛、焦磷酸四钾、尿素、三乙醇胺、十二烷基二甲基溴化胺(新洁尔灭)、铁粉、五碳双缩醛、亚硫酸铵、氧化铁、银、油酸、脂肪醇酰胺、脂肪醚硫酸钠等33种产品的食品添加剂生产许可申请。   二、自本公告发布之日起,食品添加剂生产企业禁止生产上述33种产品,企业已生产的上述33种产品禁止作为食品添加剂出厂销售,食品生产企业禁止使用。   三、国家质检总局和省级质量技术监督局应当撤回并注销已批准的上述食品添加剂生产企业的生产许可证书。国家质检总局发证的企业由总局注销,省级质量技术监督局发证的企业由省局注销。2011年12月20日前应完成证书注销工作。   四、各级质量技术监督部门要加大监督执法力度,加强相关生产企业的监督检查,依法查处违法违规生产行为。相关情况及时报告当地政府和国家质检总局。   特此公告。   附件:卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号) 二〇一一年十一月四日
  • 默克有机合成级试剂给力大促销,最低5折起!
    德国默克Merck Group品牌旗下Schuchardt系列有机合成级试剂囊括了5000多种产品,除了可应用于有机合成领域,还可用于生产表面活性剂、清洁剂和添加剂等。 我们的优势: · 150年有机化合物生产经验,一如既往的行业质量标杆,至今仍然是合成级试剂的实际质量标准。 · 产品范围广,除了基础有机化工原料,还有应用于制药,光电等各种领域的高端有机化合物。 · 包装齐全,除了您在产品目录中看到的各种规格,我们还能根据客户的具体参数和包装要求定制生产。 促销时间:即日起至2011年12月31日 货号 中文品名 目录价 促销价 8017911000 合成级氯苯 436 305 8017912500 合成级氯苯 915 640 8083520100 合成级三乙胺 357 170 8083520500 合成级三乙胺 446 312 8222871000 合成级过氧化氢 241 217 8221840500 合成级吐温20 439 310 8221870500 合成级吐温80 750 581 8221871000 合成级吐温80 973 830 8016630100 合成级三氟化硼甲醇溶液 449 314 8016630500 合成级三氟化硼甲醇溶液 1268 530 8036460100 合成级二异丙胺 226 190 8036461000 合成级二异丙胺 462 400 8074851000 合成级PEG400 380 266 8003800100 合成级顺丁烯二酸(马来酸) 226 190 8003800500 合成级顺丁烯二酸(马来酸) 511 256 8003801000 合成级顺丁烯二酸(马来酸) 449 444 8030101000 合成级二乙基胺 272 190 8030102500 合成级二乙基胺 520 420 8032351000 合成级N,N-二甲基乙酰胺 786 670 8032352500 合成级N,N-二甲基乙酰胺 1603 1370 8082600025 合成级三氟醋酸 217 152 8082600100 合成级三氟醋酸 494 371 8082600500 合成级三氟醋酸 1921 1640 8082601000 合成级三氟醋酸 4261 3640 8209310100 合成级1-辛醇 226 190 8209311000 合成级1-辛醇 788 600 8220500100 合成级十二烷基硫酸钠盐 400 300 8220501000 合成级十二烷基硫酸钠盐 1400 970 8086971000 合成级邻二甲苯 909 490 8086972500 合成级邻二甲苯 1951 1180 8006580250 合成级正硅酸乙酯 389 272 8006581000 合成级正硅酸乙酯 632 540 8016410250 合成级过氧化苯甲酰 338 236 8016411000 合成级过氧化苯甲酰 1065 745 8063730100 合成级硼氢化钠 966 676 8063730500 合成级硼氢化钠 2708 1895 促销热线:021-38521857 13585814054 产品专员:Ruby Cai 关于默克 默克集团是一家全球化的医药和化学企业,2009年总销售额达77亿欧元。它的历史可以追溯到1668年。目前在全球64个国家拥有近40,000名员工(包括默克密理博),共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团(Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 南昌客户通过仪器信息网成功订购远慕甲基红酸钠
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 南昌客户通过仪器信息网成功订购远慕甲基红酸钠,下面是跟客户的聊天记录: 中文名称: 甲基红钠盐 中文别名: 2-[4-(二甲基氨基)苯基偶氮]苯甲酸钠盐; 甲基红钠 英文名称: Methyl Red sodium salt CAS号: 845-10-3 分子式: C15H14N3O2 分子量: 268.2911 熔点: -98℃ 沸点: 479.5°C at 760 mmHg 闪点: 243.8°C 蒸汽压: 5.27E-10mmHg at 25°C 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • Alpha助力DNA甲基化表型调控新发现
    DNA甲基化(DNA methylation)是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5' 碳位共价键结合一个甲基基团。为DNA化学修饰的一种形式,能够在不改变DNA序列的前提下,改变遗传表现。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。Nature上一项新的研究揭示了一种跨染色质调节途径,即NSD1(一种组蛋白甲基转移酶)介导的H3K36me2是在基因间区域招募DNMT3A和维持DNA甲基化所必需的,并将异常的基因间CpG甲基化与人类肿瘤生长和过度发育相关联在一起。作者发现了一个有趣的现象:塔顿布朗拉赫曼综合征(Tatton–Brown–Rahman syndrome, TBRS)是一种儿童过度生长障碍,是由生殖系统DNMT3A(DNA甲基转移酶3A)突变导致的。儿童期巨脑畸形综合征(Sotos syndrome)是由NSD1(组蛋白甲基转移酶)的单倍剂量不足引起的。这两种疾病具有相同的临床特征,这就非常有意思了:这预示着组蛋白修饰和DNA甲基化修饰可能存在机制上的关联性。首先,研究人员通过全基因组分析和ChIP-seq分析方法发现,组蛋白甲基化修饰H3K36me2和H3K36me3的富集区域非常类似,且明显区别于其他组蛋白甲基化修饰如H3K9me3和H3K27me3所划分的区域。而且H3K36me2和H3K36me3水平与CpG甲基化呈正相关,这与之前报道的H3K36me3介导靶向DNMT3B的活性一致。然而,由于这种相互作用仅限于基因小体,染色质水平上的调控机制并不清楚。在进一步的检测和比较全基因组分析,发现H3K36me3在基因体中表现出特征性的富集,而H3K36me2则表现出更为弥散的分布,包括基因区和基因间区。与H3K36me3相比,DNMT3A选择性富集在H3K36me2高水平区域。接下来,就是我们的独家法宝Alpha技术大显身手的时候了。研究人员采用体外高灵敏度、匀相免疫AlphaLISA技术来阐明H3K36me2介导的DNMT3A募集特异性背后的机制。首先GST标记DNMT3A,纯化后将GST-DNMT3A与生物素化的核小体(不同甲基化的H3K36)置于384孔板。依次加入谷胱甘肽受体微珠,链霉亲和素供体微珠。避光反应60min后置于Envision多模式读板仪中对信号进行检测。通过亲和曲线分析可得知,DNMT3A与H3K36me2修饰的核小体的亲和力最高,其次是H3K36me3,但不与其他价态结合。这些结果表明DNMT3A可以识别H3K36两种甲基化状态,但对H3K36me2的亲和力更强。同时,作者也在体外NSD1突变细胞和临床Sotos综合症病人的血样本中验证组蛋白H3K36甲基化与DNA甲基化修饰的相关性,揭示DNMT3A优先选择H3K36二甲基化区域,促进基因间区的DNA甲基化。这一机制在疾病发生过程中有潜在的生物学意义。珀金埃尔默公司一如既往的为用户提供客制化Alpha Assay检测试剂和高品质的检测设备:EnVision多标记微孔板读板仪EnSight多标记微孔板读板仪Victor Nivo多标记微孔板读板仪参考文献Weinberg D N, Papillon-Cavanagh S, Chen H, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape[J]. Nature, 2019, 573(7773): 281-286.Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine[J]. Lancet. 2018
  • 微反应器做微胶囊!医药可以,农药也行
    康宁用“心”做反应研究简介农药微胶囊化是减少环境污染、防止有效成分受到外界因素干扰,提高药效的一种有效方法。目前,常见的有关农药微胶囊的制备以界面聚合法、原位聚合法、凝聚法和溶剂挥发法为主,其中界面聚合法最为常见。界面聚合法通常使用机械搅拌釜式反应器,其具有一定的局限性。由于工艺放大效应和反应的不均匀性,颗粒尺寸大小分布难以精确调整,导致批次之间的重复性差,产品的稳定性低,缓释行为的可控性低。连续流技术可以利用流动液体的剪切力将另一种流动的不相容液体分散成微小液滴,随后这些液滴在微通道中凝固形成颗粒。微通道反应器具有以下优点,非常适合微胶囊的制备。高效传质和传热,有利于物料/颗粒的均匀分散和稳定性;通道尺寸小,精确控制反应参数从而实现对胶囊尺寸、孔隙率、表面形态等的控制,进一步实现其壳厚及药效缓释行为;操作简单扩展性大、清洗方便;康宁AFR无放大效应,可以满足工业化生产要求;有利于提高实验室到工业化生产过程的效率和产品质量稳定性。12月6日南京林业大学的顾晓利教授课题组发表在ACS期刊上的“基于微通道技术,采用4,4-亚甲基二苯二异氰酸酯(MDI)和乙二胺(EDA)界面聚合法制备了二甲戊乐灵微胶囊”,相信可以为读者带来一定的启发。作者研究结果表明,在康宁AFR“心型”微通道反应器中制备的二甲戊乐灵微胶囊表面光滑、单分散性好、包封率高(96.7%),并具有良好的热稳定性。图1. 二甲戊乐灵微胶囊的形成机理1. 微反应1中乳化液滴的形成当分散相流体(将100g二甲戊乐灵加热至60°C以完全熔化,并与5g二苯基甲烷-4,4' -二异氰酸酯(MDI)均匀混合)与微通道I中的连续相流体(90°C下,将5g聚乙烯醇(PVA)和5g表面活性剂SP-27001(苯乙烯马来酸酐共聚物的酯化合物))溶解在90g的去离子水中)接触时,分散相在剪切和挤压力的作用下迅速分散成微小的液滴。同时,在表面活性剂的乳化作用下,得到了由二甲戊乐灵和MDI连续相组成的稳定乳化液滴。2. 微反应II中聚脲壳的形成在进入微通道II后,液滴内的MDI和水溶液中的乙二胺(EDA)在液滴界面上进行界面聚合反应,在二甲戊乐灵核周围固化形成均匀的聚脲壳。图2. 聚脲壳形成的反应方程聚脲壳形成的反应方程如上图所示。聚脲的合成是基于MDI中异氰酸基和EDA中氨基。当水包油(O/W)乳液与EDA水溶液接触时,分散相的MDI单体向油−水界面扩散,与EDA单体在很短的时间内反应形成聚脲。生成的聚脲在表面沉淀,逐渐形成包裹液滴的球形薄膜。随着聚合过程的进行,分子链的长度增加,积累了更多的聚脲,增加了膜层的厚度,最终成为完整的聚脲壳。3. 交联反应形成微胶囊此外,聚脲分子之间可以同时发生交联反应,这使聚脲壳更加紧凑和完整。图3. 微胶囊形成过程机理简图研究过程微通道反应器中工艺条件优化作者研究了微通道结构、反应温度、表面活性剂类型和流体流速的影响。一、微通道结构的影响微通道的结构对液-液非均相的流动状态以及乳化液滴的形成有显著的影响。在不同微通道中制备的二甲戊乐灵微胶囊的粒径分布如下图所示图4. 不同微通道中制备的二甲戊乐灵微胶囊的粒径分布.(a)康宁心型微通道、(b)Y形、(c)T形的微通道制备的微胶囊的粒径分布从图中可以清楚地看出,康宁AFR“心型”微通道制备的微胶囊的分布呈正态分布,且分布范围较窄。由于康宁反应器独特的“心型”微通道结构设计,当分散相和连续相流体进入心形单元时,在“笑脸”结构扰流挡板障碍的作用下,分为两条不同流动方向的支流,两条支流沿微通道流动,在心尖附近再次收敛,流入下一个心形单元。在这一过程中,分散相和连续相通过分散和重组相互扩散和混合,在一个模块中重复了多次。在T形或Y形通道中,分散相和连续相流体向不同的方向流动,只发生了一次碰撞。因此,应用康宁AFR“心型”微通道反应器制备得到的微胶囊具有尺寸均匀、单分散性好等突出优点。图5.不同结构的微通道示意图。(a)康宁心形微通道、(b)Y形、(c)T形的微通道二、表面活性剂的作用表面活性剂能促进分散相和连续相的相互混合,形成完全分散的乳化液,并能防止壳形成后微胶囊的聚集。本文研究探讨了SP-27001、601(三苯基苯酚乙氧基酸)、木质多磺酸钠等不同类型的表面活性剂对二甲戊乐灵微胶囊制备的影响。最终确定表面活性剂SP-27001与聚脲具有良好的吸附性和相容性,有利于保持乳化液的稳定性,抑制液滴的快速聚集。三、温度的影响在不同反应温度(60、65和70°C)下制备的二甲戊乐灵微胶囊都呈球形。图6. 在不同温度下制备的二甲戊灵微胶囊的生物显微镜图像:(a) 60, (b) 65, and (c) 70°C.65℃的微胶囊形态最合适。当温度在60°C时,由于二甲戊乐灵的熔点(56−57°C) 较低,当乳液接触微通道中的冷EDA水溶液时,较低的反应温度会使核心材料更容易结晶和沉淀,部分二甲戊乐灵没有被包封,以晶体的形式分布在微胶囊外。当温度在70°C时,由于热力学扩散效应的加速,加快了聚合反应的速率,微胶囊之间粘附聚结,均匀性变差。四、 二甲戊乐灵微胶囊的大小及形态控制1、粒径作者重点研究了Qc(连续相的流速)对二甲戊乐灵微胶囊粒径的影响。图7.Qc(连续相的流速)对二甲戊乐灵微胶囊粒径的影响如图7所示,微胶囊的平均直径随Qc的增加而增大。当Qc小于3mL/min时,由于连续相对分散相的挤压和剪切作用减弱,难以获得稳定的O/W乳化液滴,没有得到微胶囊。2.包封率当Qc从3mL/min改为5mL/min时,微胶囊的包封率从63.4%提高到96.7%。但当Qc大于5mL/min时,微胶囊的包封率随着Qc的增加逐渐降低。图8.Qc(连续相的流速)对二甲戊乐灵微胶囊包封率的影响作者认为,这一趋势与分散相中二甲戊乐灵的损失有关。当连续相的流速较低时,其在连续相中难以分散并迅速沉降。而当连续相的流速较高时,较多的二甲戊乐灵溶解在水中,而分散相中活性成分的浓度相对较低。在这两种情况下都将导致微胶囊的载药量和包封率不佳 。3.形态由于Qs的流速决定了亲水单体EDA和亲脂性单体MDI的比例,影响了聚脲壳层的聚合反应,所以不同Qs值产生的微胶囊形态有显著差异。图9.不同Qs的流速下微胶囊的SEM图像:(a) 0.3, (b) 0.5, (c) 1.0, and (d) 2.0 mL/min.图9结果可以得出当Qs在0.5mL/min时,微胶囊具有规则的球形,表面光滑,均匀性高(图b),有助于构建有效的控释配方。二甲戊乐灵微胶囊的释药行为和生物性能作者进而研究了二甲戊乐灵微胶囊的释药行为和生物性能。结果表明:通过改变EDA水溶液的流速造成的表面形态的变化,可以调控微胶囊的释放行为;由相同浓度下不同Qs值制备的二甲戊乐灵微胶囊,对杂草的总茎控制效果和鲜草减重效果与二甲戊乐灵EC(市售品)相当;而当Qs分别为0.5或1.0mL/min时,其微胶囊对宽叶杂草的茎控制效果明显高于二甲戊乐灵EC(市售品)。表1. 不同Qs值制备的二甲戊灵微囊对禾本科杂草和阔叶杂草(A、B、C、D分别为:0.3 mL/min、0.5 mL/min、1.0 mL/min和2.0 mL/min)的茎部控制效果
  • 涉及上百台仪器,晶瑞光刻胶研发工艺曝光
    IC光刻胶开发一般来说会涉及研发设备和测试设备,其中研发设备主要就是以混配釜和过滤设备为主,此类设备需考虑纯度控制,设备内一般使用PFA内衬或PTFE涂层,避免金属离子析出。测试设备(必备的)ICP-MS、膜厚仪、旋涂机、显影器、LPC、质谱、GPC,另外关于光刻机也是核心部分。光刻胶是半导体产业重要的耗材,而有这样一家企业从事光刻胶研发多年,去年却因采购光刻机投入了人们的视野,登上了风口浪尖。苏州晶瑞化学股份有限公司(已更名为“晶瑞电子材料股份有限公司”)是一家微电子化学品及其它精细化工品生产商,公司的产品主要包括超净高纯试剂、光刻胶、功能性材料以及锂电池粘结剂等,可应用于半导体、光伏太阳能电池、LED等相关行业,具体应用到下游电子信息产品的清洗、光刻、制备等工艺环节。其采购光刻机主要用于晶瑞化学集成电路用高端光刻胶研发项目。近日,仪器信息网从公开文件了解到该项目的相关信息,涉及工艺流程和仪器配置等信息,详情如下:项目主体工程研发方案建设项目工程一览表本项目主要生产设备一览表营运期工艺流程及产污分析:工艺流程及简述:本项目通过小试实验为晶瑞化学股份有限公司生产提供技术支撑,不产生具体产品,实验室在进行实验后得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料作为危险废物委托有资质单位处理,不作为产品销售或外卖。1. 研发工艺流程图因研发中心项目每次开发过程中所使用的化学原料、可能发生的化学反应等均具有不确定性,因此研发中心项目的流程以实验研发中心为单元进行表示如下:本次研发中心项目工作流程图工艺流程描述研发中心项目具体操作流程如下:a、实验前风险评估:在此阶段科学家将对需进行的研究进行预研发风险分析,并通过相关的安全分析得出需研究项目的试验安全等级,确定试验过程中需采取的安全和环保措施。b、风险评估通过后将进入研发小试实验阶段:因研发中心项目每次实验需用到的物料和用量均无法事先设定,需根据具体的研发方向和实验要求来确定,因此研发中心项目的物料使用种类和使用量具有不确定性。但公司从环保角度考虑,研发中心项目各实验室均按标准化实验室进行建设,本次研究实验除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实验室通风橱内进行,通风橱收集率为 90%,光刻机为密闭系统,产生的废气由单独的管道收集,收集率为 98%。收集后的废气经一套“蜂窝活性炭+袋式活性炭”两级活性炭处理装置处理后由 30m 高排气筒 P4 排放。研发中心项目实验过程得到的合成树脂与光产酸剂用于合成光刻胶,光刻胶性能测试结束后剩余物料均收集后作为危废委外处理,有妥善的处理处置方式。具体研发实验工艺:1、树脂合成工艺:树脂合成工艺流程树脂合成工艺流程简述如下:除氧:常温、常压下,向搭载机械搅拌、冷凝管和温度计的四口烧瓶中持续通入氮气,除去反应瓶中的氧气,氮气作为保护气体,可以保护后续反应不受氧气干扰。聚合反应:除氧后向四口烧瓶中依次加入反应所需单体,引发剂及适量溶剂后,将四口烧瓶置于油浴锅(加热辅材为硅油)中使用机械搅拌器搅拌至四口烧 瓶中的物料搅拌成透明均一的溶液,于设定温度条件下油浴锅加热反应,红外监测反应进程。油浴加热为间接加热,使用硅油作为加热辅材,硅油的沸点高于100摄氏度,油浴加热所需的加热温度为 20~60 摄氏度,该温度下硅油几乎不产生油雾,反应在通风橱中进行。引发剂和溶剂的添加种类与添加量,单体的配比等根据设定的工艺路线及实验的测试结果进行优化。该过程使用的单体有:(A)丙烯酸酯类单体(甲基丙烯酸 5-氧代四氢呋喃 -3-基酯,2-甲基 2-金刚烷基甲基丙烯酸酯,丙烯酸叔丁酯);(B)马来酸酐;(C)降冰片烯;加入的溶剂为二氧六环;引发剂为:对甲基苯磺酸、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁腈、过氧化苯甲酰,以及氨水。反应过程中无废液产生,反应装置使用自来水间接冷却。该反应过程产生 G1-1 有机废气、G1-2 氨气。聚合反应方程式一次清洗、过滤、干燥:使用滴液漏斗将树脂溶液用丙酮稀释,通过滴液漏斗缓慢滴加到 5 倍用量纯水中,将上述混合物倒入布氏漏斗,并用真空泵抽滤,得到白色粉末产物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止)。树脂沉淀过滤过程中,产生 S1-2 废滤材及 S1-2 清洗废液,均作为危废委托有资质单位进行处理。干燥过程产生 G1-2 有机废气。金属离子去除:将离子交换树脂填充到离子交换柱中。将醋酸丁酯和聚合物 粉末于烧杯中溶解,并调节体系固含至 15-20 wt%。将树脂溶液直接倒入离子交 换柱中,流经离子交换树脂,循环多次,ICP-MS 金属离子浓度低于 10 ppb。该过程产生固体 G1-3 有机废气、S1-3 离子交换树脂。二次清洗、过滤、干燥:将树脂溶液缓慢滴加到去 5 倍用量的纯水中(1L 废水量),抽滤得到白色粉末状聚合物,将得到的产物放置于 65 ℃ 烘箱烘 20h(仪器可定时,烘干结束后自动停止),产生 S1-4 废液、S1-5 废滤材、G1-4 有机废气。水分测试:加入卡尔菲休试剂,使用水分仪检测水分含量至 2000ppm,该过程产生 G1-5 有机废气,S1-6 测试废液。理化性质测试:树脂经过真空干燥后,在测试实验室中使用四氢呋喃、DMF、四氢呋喃、重水、氘代丙酮、氘代氯仿、DMSO-d6、甘油、丙二醇甲醚醋酸酯、乙腈、丙酮、溴化钾、硝酸钾等溶剂对树脂的理化性质进行测试。通过核磁测试聚合物结构,通过凝胶渗透色谱测定聚合物分子量大小,该过程产生 G1-6 有机废气以及 S1-7 测试废液。2、光产酸剂制备工艺:光产酸剂制备工艺流程生产工艺流程简述如下:备料:光产酸剂制备研发实验常用的原料包括:对羟基苯磺酸钠、十二烷基苯磺酸、樟脑坤磺酸钠、和三苯基氯化硫鎓盐,二苯基氯化碘鎓盐、醋酸酐、间苯二酚等;溶剂包括:纯水、甲醇等;该工序产生 G2-1 有机废气。合成:将光产酸合成所需原料钠盐加入到搭载机械搅拌的四口烧瓶中,用水溶解。光产酸剂合成反应方程式萃取:通过滴液漏斗向烧瓶中缓慢滴加鎓盐溶液,于室温下反应 3-5 个小时。静止分层,除去上层水溶液,并继续用水洗涤 3 次,用甲醇萃取产物,该工序产生 S7 废液。该工序产生 S2-1 废液以及 G2-2 有机废气。干燥、过滤:用无水硫酸钠干燥甲醇萃取液 24h,然后过滤。该工序产生 S2-2 硫酸钠以及 S2-3 废滤材。旋蒸:使用旋转蒸发仪将滤液旋蒸后得到产物光产酸剂。该过程产生 G2-3 有机废气。3、光刻胶制备与测试:光刻胶制备与测试工艺流程该工艺全部在光刻机中进行,工艺流程简述如下:样品制备与测试:样品制备所用树脂为实验室自主研发合成,光致产酸剂为自主研发合成;所用溶剂包括:丙二醇甲醚醋酸酯、乳酸乙酯、二甲苯、γ -丁内酯、丁酮、丙二醇单甲醚、醋酸丁酯、石油醚、二甘醇单丁醚、甲基异丁基酮、DMAC、NMP等。调制时根据设定的工艺路线或前次的测试结果选择加入不同的树脂和溶剂。将所用的树脂与光致产酸剂、碱性添加物三辛胺等和溶剂按照一 定的比例混合、溶解。样品调制用树脂主要包括:酚醛树脂、重氮萘醌磺酸酯、叠氮类化合物、甲醚化三聚氰胺等。光产酸剂有:三苯基硫鎓盐、二苯基碘鎓盐、三嗪类化合物等。样品制备过程中无化学反应发生,不产生污染物。过滤:使用漏斗等过滤仪器将样品过滤,该工序产生 S3-1 废滤材。光刻胶成膜、烘干:使用匀胶显影涂布机将调制好的光刻胶涂布在硅片上, 涂布好的硅片用100℃热板烘干。涂布、烘干过程中光刻胶中的有机溶剂挥发产生 G3-1 有机废气;剩余的光刻胶报废处理,产生 S3-2 废光刻胶。冷却:将涂布、烘干后的硅片冷却至室温,该工序产生 G3-2 有机废气。光刻胶曝光显影:将冷却至室温的硅片放入曝光机内曝光。曝光结束后将硅片放入显影液中显影,显影后使用纯水清洗硅片即可得到微米或纳米级别图案。实验室常用的显影液包括:四甲基氢氧化铵、氢氧化钾、氢氧化钠溶液等,该工序产生 S3-3 碱性废液。成像测试:主要通过显微镜、椭偏仪等仪器观察光刻胶图形的成像效果。测试后产生 S3-4 废硅片。4、仪器清洁:仪器清洗工艺流程工艺流程简述如下:残余物溶解:加丙酮溶解仪器内残留的光刻胶或树脂,产生溶解废液 S4-1,丙酮挥发产生有机废气 G4-1;清洗溶剂:加少量纯水,清洗仪器内残留的废液,产生含有机溶剂的清洗废液 S4-2,丙酮挥发产生有机废气 G4-2;擦拭:使用无尘布蘸取少量丙酮擦拭干净仪器内壁,产生有机废气 G4-3。润洗:待仪器干燥后,使用纯水对仪器进行润洗,产生的 W1 润洗水排入污水管网;干燥:仪器清洗干净后放在置物架自然晾干或放入烘箱烘干。上述流程除光刻胶制备与测试在密闭的光刻机中进行,其他实验步骤均在实 验室通风橱内进行。5、设备清洗设备清洗工艺流程使用纯水对设备进行清洗,使用的工段有:(1)显影工艺中对硅片进行喷淋清 洗;(2)湿法曝光工段中作为镜头与硅片间的浸没液体;该工序产生清洗废液,作为危废委托有资质单位进行处理。 纯水使用情况详情见下表:设备清洗用水汇总
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 探索分析新境界 — 珀金埃尔默GC气相色谱柱系列
    在化学分析的广阔天地中,珀金埃尔默携其卓越的GC气相色谱柱系列,为您的实验探索之旅添上精准与效率的双翼! 一 Clarus® 590/690 GC 二 Clarus® SQ 8 GC/MS 三 TurboMatrix热脱附仪 四 TurboMatrix™顶空和顶空捕集阱顶空进样器和带捕集阱顶空进样器 1 通用型GC色谱柱:一柱在手,分析无忧 Elite-1:烃类化合物的分析专家 Elite-1 100%二甲基聚硅氧烷色谱柱是一种高度通用的非极性、交联通用相,其坚固耐用,使用寿命长,流失率低,最高工作温度高。 Elite-5:捕捉挥发性与半挥发性化合物的能手 Elite-5是5%二苯基/95%二甲基聚硅氧烷固定相。它被视为一种通用型低极性相,是最普遍的GC固定相,用于各种各样的应用中。 Elite-17 & Elite-35:极性化合物的分离艺术大师Elite-17是通用型色谱柱,中等极性,(50%-苯基)-甲基聚硅氧烷固定相,采用交联技术,具有柱流失非常低,寿命较长的特点。 Elite-624:多化合物分析的全能选手 Elite-624色谱柱是一种经过特殊设计的,低至中等极性(6%-氰丙基苯基)-二甲基聚硅氧烷相。该相的独特极性使其成为分析挥发性有机污染物的理想选择,美国EPA方法中推荐使用。 Elite-WAX:高沸点与强极性化合物的专属解析者 Elite-WAX为极性聚乙二醇(PEG)固定相色谱柱,是一种通用型极性PEG相,通常用于分析极性化合物,如烯醇、乙二醇和醛类工作温度范围高达250℃,有利于分析挥发性范围广泛的化合物。2 GC/MS专用色谱柱:质谱检测的黄金搭档 Elite-1ms:低流失,质谱分析的精准之选 Elite-1ms相为非极性相(交联二甲基聚硅氧烷),设计用于稳定的质谱应用。热稳定性改善以及超低流失,提高了灵敏度。 Elite-5ms:环境污染物追踪的隐形猎手 Elite-5ms相(1.4-二(二甲基硅氧基)亚苯基二甲基聚硅氧烷)聚合物主链中加入了一个苯基,提高热稳定性,减少流失,使相不易氧化。 Elite-17ms:复杂样品中的极性化合物分析专家 Elite-17ms为通用型色谱柱,中等极性,具有交联(50%-二苯基)-二甲基聚硅氧烷涂层,设计为极低流失,以满足灵敏的MS检测器要求。 Elite-35ms:高温下的稳定质谱分析伙伴 Elite-35ms为通用型、中等极性色谱柱,在较高温度下的流失极低。 Elite-624ms:高分辨率质谱分析的明星柱 Elite-624ms采用独有的氰丙基和甲基硅氧烷专有混合物,使该柱具有超高惰性、极低柱流失,和高度热稳定性。 感谢您关注珀金埃尔默气相色谱柱系列。我们期待与您携手,共创精准分析的未来。若您对产品有更多疑问或需求,欢迎随时联系我们。 扫码左侧二维码 开启您的高效分析之旅 关注我们
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制