当前位置: 仪器信息网 > 行业主题 > >

培哚普利精氨酸

仪器信息网培哚普利精氨酸专题为您提供2024年最新培哚普利精氨酸价格报价、厂家品牌的相关信息, 包括培哚普利精氨酸参数、型号等,不管是国产,还是进口品牌的培哚普利精氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合培哚普利精氨酸相关的耗材配件、试剂标物,还有培哚普利精氨酸相关的最新资讯、资料,以及培哚普利精氨酸相关的解决方案。

培哚普利精氨酸相关的论坛

  • 【转帖】新型氨基酸精氨酸生素研制成功

    精氨酸是机体蛋白合成的底物,并且可以转化为许多生物活性物质以调节细胞生化功能,精氨酸在增强机体的免疫力、细胞分裂、伤口复原、激素分泌、血管紧张性、胰岛素敏感度和内皮功能等各种生理过程中,也都有着重要的角色。中国科学院亚热带农业生态研究所印遇龙研究员带领的团队就精氨酸的研究与美国Texas A&M大学进行了长期合作,发现精氨酸是幼龄仔猪限制性氨基酸。但是精氨酸的吸收与赖氨酸等拮抗,因此,对精氨酸及其内源性合成调控研究具有极大的应用价值和实践意义。通过进行断奶仔猪动物实验,研究了精氨酸和精氨酸生素在提高仔猪生长性能和维护健康的作用。研究表明,与基础日粮组相比,添加精氨酸和精氨酸生素可以有效缓解仔猪断奶应激,促进肠道生长;精氨酸生素试验组仔猪腹泻率降低了18%。同时,试验结果还表明,精氨酸或者精氨酸生素通过促进肠道粘膜HSP70表达,防止肠道细胞凋亡,维护肠道粘膜形态。因此,精氨酸或精氨酸生素可以作为断奶仔猪日粮中一种功能性添加物,以提高仔猪的生长性能和维护仔猪肠道健康。在此基础上,中国科学院亚热带农业生态过程重点实验室自主研发了一种新型功能性氨基酸-精氨酸生素(AAA, Arginine activator additive)。该研究成果已于2010年8月发表在SCI收录期刊《氨基酸》(amino acids)39卷3期上

  • L-精氨酸的使用合规性

    [font=SimSun, STSong, &]L-精氨酸,是合成香料,又是非普通食品原料,不能用于食品。 请问各位老师,所有的合成香料都是如此吗?[/font]

  • PITC法测L-精氨酸出现两个峰

    PITC法测L-精氨酸出现两个峰

    file:///C:\Users\FJJ\Documents\Tencent Files\1371240377\Image\C2C\J0X$WQ1MDSB5Z(AF(3X$8EH.png各位大侠:请教一下,我用PITC法测精氨酸含量,买的BBI (usp Grade)的L-精氨酸,测出来发现是两个峰。换其他的C18柱也测了,也是两个峰。请问是不是由于L-精氨酸的异构体导致出现两个峰的?http://ng1.17img.cn/bbsfiles/images/2016/06/201606031249_595902_1608119_3.png

  • 一种无需衍生直接测定瓜氨酸和精氨酸的液相色谱方法

    一种无需衍生直接测定瓜氨酸和精氨酸的液相色谱方法

    目前大多数瓜氨酸和精氨酸定量方法都需要耗时的化学衍生化。文献报道了一种使用紫外检测 (RP-HPLC-UV) 的简单快速的反相高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]方法,无需任何衍生化。该方法采用了一种特殊的柱子反相 o-phthalaldehyde(OPA)柱(Alltech Adsorbosphere OPA-HR 150*4.6 mm*5μm),流动相为0.01 M 磷酸,流速0.5 ml/min,进样量5微升,测定波长为195n[img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201447496216_1219_2641053_3.jpg!w690x276.jpg[/img]m。详见[font=-apple-system, BlinkMacSystemFont, &][size=16px][color=#333333]https://doi.org/10.1007/s12161-021-02110-4[/color][/size][/font]

  • 多聚组氨酸标签(His-tag)

    固定化金属离子亲合层析(Immobilized metal ion affinity chromatography, IMAC),简称金属螯合亲合层析,是一种新型的应用于原核蛋白纯化的技术。该方法通过蛋白质表面的一些特殊的氨基酸,使之与金属离子发生相互作用,从而对蛋白质进行亲和纯化。这些作用包括配价键结合、静电吸附、共价键结合等,其中以6 个组氨酸残基组合的融合标签(His-Tag)在原核蛋白表达中的应用最为显著。本文描述了多聚组氨酸标签(His-Tag)融合蛋白亲和层析的基本原理,优势,以及实验操作流程。

  • 【分享】如何制备常用培养基 公司版本

    培养基制备(按1000ml计)1、 营养肉汤(Nutrient broth)培养基:牛肉膏3g,蛋白胨10g,NaCl 5g,加水至1000ml,pH7.2~7.42、 营养琼脂培养基(Nutrient agar)培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15~20g,加水至1000ml,pH7.2~7.43、 肉汁葡萄糖培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,葡萄糖20g,琼脂15~20g,,pH7.2~7.44、 察氏培养基:NaNO32g,K2HPO4 1g,KCl 0.5g,MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g,蔗糖30g, 琼脂15~20g,加水至1000ml,pH自然5、 高氏一号培养基:可溶性淀粉20g,KNO31g,NaCl 0.5g, K2HPO4 0.5g, MgSO4·7H2O 0.5g,FeSO4·7H2O 0.01g, 琼脂20g,加水至1000ml,pH7.2~7.4。此培养基适用于多数放线菌,孢子生长良好,宜保藏菌种。制法:先用少量冷水将淀粉调成糊状,再取700ml水盛于烧杯中,在电炉上加热,沸腾时边搅拌边将淀粉糊倒入,待透明后再将其他成分加入,最后补足水分至1000ml.6、 无碳基础培养基(NH4)2SO4 5g,KH2PO4 1g,NaCl 0.1g, MgSO4·7H2O 0.5g,CaCl2 0.1g,酵母膏0.2g, 加蒸馏水至1000ml,pH6.5.加2%水洗琼脂即成固体培养基.于6.86×104Pa压力下灭菌20min.此培养基适用于测定酵母菌对碳源的利用(加待测碳源2%).7、 无氮基础培养基:葡萄糖20g, K2HPO4 1g, MgSO4·7H2O 0.5g,酵母膏 0.1g或20%豆芽汁20ml,水洗琼脂20g,加无氨蒸馏水至1000ml.pH6.5. 于6.86×104Pa压力下灭菌20min.此培养基适用于测定酵母菌对氮源的利用(加待测氮源0.5%).8、 营养缺陷型筛选用培养基⑴ 普通营养肉汤培养基⑵ 加倍营养肉汤培养基: 牛肉膏3g,蛋白胨10g,NaCl 5g,加水至500ml,pH7.2⑶ Vogel 50×(即浓缩50倍): MgSO4·7H2O 10g,柠檬酸100g,NaNH4HPO4·4H2O175g,KH2PO4·2H2O599.88g,K2HPO4·3H2O656.31g,加蒸馏水至1000ml.配置时先加水500ml,加热使药品溶解后,再定容1000ml.配好后放入冰箱备用.⑷ 固体基本培养基: Vogel 50×20ml,葡萄糖20g,水洗琼脂20g,加蒸馏水至1000ml,pH7.0,⑸ 2氮液体基本培养基:K2HPO4 7g,KH2PO4 3g,柠檬酸纳·3H2O 5g,MgSO4·7H2O 0.1g,(NH4)2SO4 2g,葡萄糖20g,加蒸馏水至1000ml,pH7.0, 于4.9×104Pa压力下灭菌20~30min.⑹ 无氮液体基本培养基:在⑸的配方中除去(NH4)2SO4即可.⑺ 混合氨基酸和混合维生素的配置:将氨基酸分为七组(如下表),其中六组各有6种氨基酸,每种氨基酸等量研细,充分混匀.若所选的氨基酸为DL型,则用量加倍.第七组只有一中氨基酸.第八组为混合维生素.Ⅰ 赖氨酸 精氨酸 甲硫氨酸 半胱氨酸 胱氨酸 嘌呤Ⅱ 组氨酸 精氨酸 苏氨酸 谷氨酸 天冬氨酸 嘧啶Ⅲ 丙氨酸 甲硫氨酸 苏氨酸 羟脯氨酸 甘氨酸 丝氨酸Ⅳ 亮氨酸 半胱氨酸 谷氨酸 羟脯氨酸 异亮氨酸 缬氨酸Ⅴ 苯丙氨酸 胱氨酸 天冬氨酸 甘氨酸 异亮氨酸 Ⅵ 色氨酸 嘌呤 嘧啶 丝氨酸 缬氨酸 酪氨酸Ⅶ 脯氨酸 Ⅷ 维生素B1 维生素B2 维生素B6 泛酸 对氨基苯甲酸 烟碱酸及生物素因脯氨酸容易潮解,所以单独列为第七组.把维生素B1、B2、B6、泛酸、对氨基苯甲酸(BAPA)、烟碱酸及生物素等量研细,充分混匀,配成混合维生素为第八组。

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 六类健康食物可改善情绪

    1.压力过大时应该吃:1杯低脂酸奶或2汤匙混合坚果。酸奶是赖氨酸最好的食物来源之一,坚果富含精氨酸。赖氨酸和精氨酸能减少你的担忧。  不该喝:碳酸饮料。《美国公共卫生杂志》刊登的研究发现,每天喝 2.5罐碳酸饮料会导致抑郁和焦虑增加3倍。  2.感觉悲伤时应该吃:菠菜沙拉。甜菜和菠菜等绿叶蔬菜富含B族维生素,有利于血清素等“好感觉激素”的生成。  不该吃:白巧克力。白巧克力不算真正意义上的巧克力,其中不含固体可可粉。白巧克力无法像黑巧克力一样刺激“好感觉激素”的生成。  3.肥胖时应该吃:烤鸡胸。瘦肉及家禽蛋白能提供能量,加速新陈代谢,既解馋,又有助于减肥。而高蛋白饮食也有助于增强肌肉减肚腩。  不该吃:浓汤和多盐零食。食物过咸,喝水就多,胃部就会变成一个“水皮球”。因此,盐焗坚果、薯片等多盐食物应尽量避免。  4.能量不足时应该吃:什锦果仁。葡萄干提供的钾有助于身体将糖转化成能量。坚果富含镁,镁对新陈代谢、神经功能及肌肉功能都极其重要。  不该喝:浓咖啡饮料。虽然咖啡因有提神作用,但是咖啡中的大量糖分则会使血糖升高,不利健康。  5.需提高脑力时应该吃:蓝莓。蓝莓中的多种抗氧化剂有助于保护大脑免受自由基损伤,进而降低老年痴呆症和帕金森症的危险。  不该吃:冰淇淋。甜食会使体内葡萄糖含量大起大落,导致注意力分散。  6.橙汁。橙汁中的果糖使酒精代谢加速25%。其中的维生素C也有助于防止醉酒后的细胞受损。深圳营养师培训baoanbaikang.soxsok.com/徐州厨师学校xzwelpx.soxsok.com/

  • 53.7 血清中脱甘氨酸米多君的液相色谱-荧光检测法测定

    53.7 血清中脱甘氨酸米多君的液相色谱-荧光检测法测定

    【作者】 徐伟民; 张慧; 袁伟芳; 王依婷; 余琛;【Author】 XU Wei Min 1, ZHANG Hui 1, YUAN Wei Fang 2, WANG Yi Ting 3, YU Chen 1 (1.Shanghai Xuhui District Central Hospital; 2. Shanghai Institute of Materia Medica, Academia Sinica, Shanghai 200031; 3.Shanghai Institute for Drug Control, Shanghai 20【机构】 上海市徐汇区中心医院; 中国科学院上海药物研究所; 上海市药品检验所; 上海市徐汇区中心医院 上海200031; 上海200233;【摘要】 建立了血清中脱甘氨酸米多君的反相高效液相色谱 -荧光检测法。血清样品经 C2 小柱固相萃取后 ,采用Diam onsil C1 8分析柱 ,甲醇 - 0 .1%三氟醋酸溶液 (2 8∶ 72 )为流动相 ,荧光激发波长为 2 88nm,发射波长为 32 8nm。以甲氧明为内标。脱甘氨酸米多君在 0 .5~ 32 ng/ ml范围内线性关系良好。方法的检测限为 5 pg,提取回收率大于86 % ,批内、批间精密度为 1.2 %~ 5 .4 %。 更多还原【Abstract】 A HPLC method with fluorescence detection for the determination of α 2,5 dimethoxyphenyl β aminoethanol hydrochloride in serum was established. The serum sample was treated with solid phase extract. A Diamonsil C 18 column was used, with the mobile phase of methanol 0.1% trifluoroacetic acid solution (28∶72). The excitation and emission wavelength were 288 and 328 nm, respectively. Methoxamini was used as internal standard. The calibration curve was linear in the range of 0.5~32 ng/ml ( r =0.999... 更多还原【关键词】 米多君; 脱甘氨酸米多君; 血清; HPLC-FLU; 测定; 【Key words】 midodrine; α 2,5 dimethoxyphenyl β aminoethanol hydrochloride; serum; HPLC FLU; determination; http://ng1.17img.cn/bbsfiles/images/2012/08/201208201142_384597_2352694_3.jpg

  • 分享个质谱临床应用方向的资料

    机构针对的疾病领域利用的MS技术其他信息Labcorp(US)CAH孕烯醇酮检测(CAH是指先天性肾上腺皮质增生症)LC/MS/MS 游离胆酸,甘氨胆酸,牛黄胆酸,鹅去氧胆酸,脱氧胆酸,熊去氧胆酸的定量。用于妊娠梗阻性胆汁淤积症的研究。LC/MS/MS 用于雄激素过量/缺乏检测的游离睾酮定量分析LC/MS/MS Esoterix游离和非蛋白结合的甲状腺素检测ED(平衡透析)-LC/MS/MS 甲状腺功能亢进和减退症诊断的三碘甲状腺原氨酸检测ED(平衡透析)-LC/MS/MS三碘甲状腺原氨酸下丘脑-垂体-肾上腺轴和垂体 ACTH 储备评价LC/MS/MS 盐皮质激素过多症(AME)LC/MS/MS 唾液皮质醇试验诊断库欣综合征LC/MS/MS皮质醇醛固酮检测 (Conn -原发性醛固酮增多症诊断)LC/MS/MS醛固酮胆汁酸代谢先天缺陷筛查LC/MS/MS胆汁酸-鹅脱氧胆酸;胆酸;脱氧胆酸和熊去氧胆酸Perkin Elmer(PKI) 遗传学新生儿筛查-一次测试筛查60多种化学关系(包括脂肪酸氧化和氨基酸代谢紊乱)串联质谱 PKU串联质谱 苯丙氨酸和酪氨酸水平分析辛酰肉碱和葵酰肉碱检测MCAD缺乏和MADD串联质谱辛酰肉碱升高水平与葵酰肉碱水平的比值CPT II 缺乏串联质谱长链酰基肉碱(即C16,C18,C18:1和C18:2)不明确高酪氨酸血症1型,表现为渐进性肝肾损伤症状串联质谱琥珀酰丙酮和酪氨酸肉碱/酰基肉碱转位酶缺乏症串联质谱几种长链酰基肉碱水平升高(即C16,C18,C18:1和C18:2)肉碱棕榈酰转移酶I缺乏症TypeI(CPTI)串联质谱游离肉碱升高和长链酰基肉碱降低(即C16:0和C18:0),游离肉碱和长链酰基肉碱(即C16:0和C18:0)的比值增高3-羟基长链酰基辅酶A脱氢酶缺乏症(LCHAD)串联质谱几种长链羟酰基肉碱水平升高(即C16-OH,C16:1-OH,C18-OH,C18:1-OH,C18:2-OH和C12到C14相关种类) 2,4-二烯酰辅酶 A 还原酶缺乏症串联质谱酰基肉碱C10:2中链酰基辅酶 A 脱氢酶缺乏症串联质谱辛酰肉碱(C8酰基肉碱)水平升高,通常伴随着C10、C6、和C10:1肉碱酯类的生成三功能蛋白缺乏症串联质谱几种长链酰基肉碱和羟酰基肉碱(即C16-OH,C16:1-OH,C16,C18-OH,C18:1-OH和C18)3-羟基-3-甲基戊二酰辅酶A(HMG)裂解酶缺陷症串联质谱六碳二羧酸酰基肉碱(C6-DC)和C5羟酰基肉碱(C5-OH)升高戊二酸血症I 型(GAI)串联质谱戊二酸共价结合酰基肉碱(C5二羧基酰基肉碱,C5-DC)异丁酰辅酶 A 脱氢酶缺乏症串联质谱C4升高异戊酸血症 (IVA)串联质谱C5升高甲基丙二酸血症串联质谱C3升高表示可能有代谢缺陷,MMA或丙酸血症丙酸血症 (PA)串联质谱C3丙二酸血症串联质谱丙二酰基肉碱升高   精氨酸血症串联质谱精氨酸升高5到10倍精氨酸尿症串联质谱瓜氨酸水平升高5-羟脯氨酸尿症串联质谱5-氧脯氨酸水平升高,表明需要进一步检验Mayo Clinic (Mayo Medical Laboratories)新生儿筛查服务串联质谱 儿童CAH诊断LC-MS/MS雄烯二酮,要求与雄激素前体(OHPG,17-α-羟基孕烯醇酮)一起测量氨基酸代谢串联质谱牛磺酸、苏氨酸、 丝氨酸、 天冬酰胺,谷氨酸、谷氨酰胺、脯氨酸,瓜氨酸、丙氨酸、α-氨基-n-丁酸、缬氨酸、胱氨酸、甲硫氨酸,丁酸、缬氨酸、胱氨酸、甲硫氨酸,苯丙氨酸、β-丙氨酸、鸟氨酸,赖氨酸、组氨酸、精氨酸、异亮氨酸、 磷酸丝氨酸,磷酸乙醇胺,羟脯氨酸,甘氨酸、天冬氨酸、乙醇胺、肌氨酸、 1-甲基组氨酸,3-甲基组氨酸,肌肽、 鹅肌肽,高瓜氨酸,α-氨基己二酸,γ-氨基-n-丁酸,β-氨基异丁酸,胱硫醚和色氨酸。脂肪酸代谢串联质谱SCAD 缺乏症, MCAD缺乏症, TFP缺乏症, LCHAD缺乏症, VLCAD 缺乏症, CPT-2, CACT有机酸代谢串联质谱 2M Associates,Inc.新生儿筛查服务Perkin Elmer API2000 LC/MS/MS系统 氨基酸代谢Perkin Elmer API2000 LC/MS/MS系统1.精氨酸尿症(ASA 裂解酶缺陷症)2.高胱氨酸尿症3.高甲硫氨酸血症4.枫糖尿病(MSUD)5.苯丙酮尿症和其他高苯丙氨酸血症6.酪氨酸血症脂肪酸代谢Perkin Elmer API2000 LC/MS/MS系统1.肉碱/酰基肉碱移位酶缺乏症2.中链酰基辅酶A脱氢酶缺乏症(MCAD)3.多种酰基辅酶A脱氢酶缺乏症(戊二酸血症TypeII)4. 新生儿肉碱棕榈酰转移酶II缺乏症CPT-II)5.短链酰基辅酶A脱氢酶缺乏症(SCAD)6.三功能蛋白质缺乏症(TFP 缺乏症)有机酸代谢Perkin Elmer API2000 LC/MS/MS系统1.3-羟基-3-甲基戊二酰辅酶A (HMG)裂解酶缺陷症2.异戊酸血症 (IVA)3.3-甲基巴豆酰辅酶A羧化酶缺乏症(3MCC缺乏症)4.3-甲基戊烯二酰辅酶A水解酶缺乏症5.甲基丙二酸血症(MMA)6.线粒体乙酰辅酶A硫解酶缺乏症(3-铜硫解酶缺乏) 酰基肉碱组合串联质谱 Emory遗传学实验室酰基肉碱组合-脂肪酸和有机酸血症诊断串联质谱(MCAD,VLCAD,SCAD,MAD,LCHAD,and CPTII)尿有机酸GC/MS [

  • 蛋白胨水培养基(色氨酸肉汤)

    蛋白胨水培养基( l )成分 蛋白胨 10g 水 l000ml 氯化钠 5g ( 2 )制法 取上述成分混合,微温使溶解,调pH 值使灭菌后为7.3 士0.1 ,分装于小试管,121 ℃ 灭菌15 分钟。( 3 )用途 用于鉴别细菌能否分解色氨酸而产生靛基质的生化反应。 ① 靛基质试验取可疑菌落或斜面培养物,接种于蛋白胨水培养基中,置35 ℃ 培养24~48 小时,必要时培养4~5 天,沿管壁加人靛基质试液数滴,液面呈玫瑰红色为阳性,呈试剂本色为阴性。 ② 靛基质试液 称取对二甲氨基苯甲醛5g ,加入戊醇(或异戊醇)75ml ,充分振摇,使完全溶解后,再取盐酸25ml 徐徐滴入,边加边振摇,以免骤热导致溶液色泽变深.或称取对二甲氨基苯甲醛1g ,加人95 %乙醇95ml ,充分振摇,使完全溶解后,再取盐酸20ml 徐徐滴入。

  • 【讨论】荧光扫描图谱的描述是否错了?

    C图405 nm明显有吸收峰,为何作者却说未经精氨酸修饰的脂质体与9, 10-菲醌反应不产生荧光。原文:利用精氨酸分子中的胍基能专属性地与一些有机化合物的基团反应产生荧光的性质,将精氨酸在碱性条件下与9, 10-菲醌反应产生具有荧光的精氨酸菲醌偶合物。精氨酸、精氨酸-PEG与9, 10-菲醌反应后,产物分别进行荧光扫描,结果见图A和图B。精氨酸、精氨酸-PEG与9, 10-菲醌反应后产物具有相同的激发波长和发射波长,二者均为260 nm和405 nm。然而, 精氨酸-PEG所产生的荧光强度比精氨酸产生的荧光强度稍强。未经精氨酸修饰的脂质体与9, 10-菲醌反应不产生荧光(图C) ,这一结果提示精氨酸脂质体中脂质成分并不影响精氨酸的测定。以精氨酸-PEG的浓度对荧光强度回归,得标准曲线: F = 3631570C (μg• mL-1 )-151493, r2 = 0.9998。线性范围0.2 ~20μg• mL-1。样品测定的激发波长为260 nm和发射波长为405 nm。 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812281415_126634_1898366_3.gif[/img]

  • 新食品原料之“茶氨酸”

    文/刘志军 华测检测[align=left]一泓清可沁诗脾,鲜爽茶感缘何来。优质的绿茶会有一种“鲜爽”的风味,喝茶的人对茶叶的鲜爽感应该不会陌生。那么,究竟是哪类成分物质让人有如此沁人心脾的感觉呢?[/align][align=left][color=black]不同品种茶叶泡出来的茶口感会有差异,例如绿茶的清香爽口、红茶的醇厚浓烈、黑茶的陈味香醇。导致不同品种的茶口味差异的主要原因是各类茶叶中的主要成分含量有所不同,[/color]茶叶的成分中主要包括有水、蛋白质、氨基酸、咖啡因、多元酚类、碳水化合物、脂质、矿物质、植物色素、维生素、挥发性成分、有机酸等。各成分含量多少与茶的口感息息相关,如:[color=black][/color]鲜味:主要成分为氨基酸,鲜中带甜,细嫩的茶叶中含量高。涩味:主要成分为多酚类物质。甜味:主要成分为可溶性糖及部分氨基酸。苦味:主要成分为咖啡碱、花青素、茶叶皂素。[/align][align=left] [/align][align=left][b]了解茶氨酸[/b][/align][align=left]上面我们讲到茶叶中各成分与茶口感的关系,原来茶的鲜爽感主要是因为茶叶中的氨基酸。氨基酸有很多种,绿茶中的鲜爽口感主要是一种叫“茶氨酸”的成分在发挥重要作用。茶氨酸是茶叶中特有的游离氨基酸,纯的茶氨酸为白色针状体,易溶于水,具有甜味和鲜爽味,是茶叶滋味的组分。茶氨酸在化学构造上与脑内活性物质谷酰胺、谷氨酸相似,是茶叶中生津润甜的主要成份。茶氨酸含量因茶的品种、部位而变动,干茶中茶氨酸含量约为新茶的1~2%左右,其含量随发酵过程减少,这就是为什么陈茶或者发酵茶的口感更偏醇厚浓烈,而绿茶的口感更清新鲜爽。[/align][align=left]1950 年,日本学者酒户弥二郎从绿茶中分离出了产生这种风味的主要物质——一种非蛋白质氨基酸,命名为茶氨酸。茶中的茶氨酸是左旋的,按照命名法记为“L-茶氨酸”。此后的研究发现,茶氨酸不仅为茶带来鲜爽风味,它本身还具有许多生理功能。比如它能突破血脑屏障直接影响大脑活动,从而对人的情绪产生影响。有研究表明茶氨酸对大脑各部位单胺类代谢影响时发现,茶氨酸可以促进脑中枢多巴胺释放,提高脑内多巴胺生理活性。多巴胺是一种活化脑神经细胞的中枢神经递质,其生理活性与人的情感状态密切相关。尽管人们对茶氨酸在大脑中枢神经系统的作用机制并不是十分清楚,但茶氨酸对精神和情感的影响无疑有部分是来自于对中枢神经递质多巴胺生理活性的作用,当然饮茶抗疲劳作用也被认为在一定程度上可能来自这一效果。[/align][align=left][/align][align=left][b]什么样的茶富含茶氨酸?[/b][/align][align=left]作为饮料,“好茶”的根本标准还得是“好喝”,而茶氨酸以及游离氨基酸的含量与茶的风味呈正相关,也就是说茶氨酸和游离氨基酸含量高的茶,往往会更好喝。[/align][align=left]茶氨酸的合成跟茶树的光合作用、生长环境温度密切相关。如果光照不足、或者温度较低,那么茶氨酸的分解就会受到抑制,茶的芽和叶中就会积累比较多茶氨酸。春天茶叶发育期间温度较低,所以茶氨酸的分解以及儿茶素的合成受到抑制。这样春茶中茶氨酸含量高而茶多酚含量相对低。而夏茶和秋茶生长采摘时温度较高,光合作用旺盛,相对而言茶氨酸含量低而茶多酚含量高,口感也就与春茶不同。[/align][align=left]茶叶中的茶氨酸含量一般为1%~4%左右,富含茶氨酸的茶叶主要有三类。[/align][align=left]第一类来自于品种优势,例如安吉白茶和福鼎白茶,都有明显的品种优势。安吉白茶的游离氨基酸含量测定显示最高可达8%,说明其富含茶氨酸。[/align][align=left]第二类来自于环境优势,比如高山茶中的庐山云雾茶、阿里山乌龙茶、杉林溪乌龙茶、奇莱山乌龙茶都具有“高茶氨酸”的特征。高山茶在生长的过程中经常处于云雾中,阳光受到较多遮挡,且高海拔区域的气温低于低海拔的区域,这类茶中的茶氨酸含量也就相对较高。[/align][align=left]第三类来自于工艺优势,日本人常用遮荫的方法来提高茶叶中茶氨酸的含量,以增进茶叶的鲜爽味。日本抹茶在生产时采用人工遮阴的方法,目的就是减弱茶叶生长过程光合作用而使得茶氨酸含量大大提升。当年酒户弥二郎分离茶氨酸,用的玉露茶就是通过人工干预茶叶生长过程中的光合作用而得来的。[/align][align=center][b] [/b][/align][align=left][b]怎样才能得到可以作为“食品原料”的茶氨酸呢?[/b][/align][align=left]不管是作为食品添加剂、膳食补充剂,还是食品原料,都需要相对纯度较高的茶氨酸。中国批准作为新食品原料的茶氨酸对纯度的要求为≥20%。这大大高于茶中茶氨酸的含量——也就是说,把茶氨酸分离提纯,是它实现这些用途的前提。目前,可采用的分离方法有:沉淀法、离子交换树脂法、膜分离法、化学合成法、生物发酵法、酶转化法以及植物细胞培养法等。[/align][align=left]前面说到茶氨酸易溶于水,那是不是只需要用水浸泡就可以提取出来呢?事情并没那么简单。茶氨酸溶于水的同时,茶多酚、咖啡因等各种其它成分同样会溶于水中。要分离出高纯度的茶氨酸,还需要除去其它我们不想要的成分。目前,工业上可采用的分离方法有三种:沉淀法、离子交换树脂法和膜分离法。[/align][align=left]沉淀法:是最传统的提取方法,就是通过改变提取时的温度、酸碱环境把混合物中的一种或几种成分充分地沉淀下来再进行过滤去除,从而把我们期望留下的茶氨酸和其他成分进行分离。这种手段优点是操作简单,缺点是流程比较长,步骤较多,在提取的过程中容易引人其他的有害物质。[/align][align=left]离子交换树脂法:大致原理是通过离子交换树脂,把茶氨酸吸附到树脂上,而让其他成分流过。再用溶液把茶氨酸从树脂上“洗脱”下来,就得到了茶氨酸含量大大提高的“粗品”。当然这类粗品可能含有的有害物质残留还比较多,所以需要再纯化之后得到高含量和安全性兼顾的茶氨酸成品。此方法的优点是提取的茶氨酸纯度高,缺点是成本相对传统提纯方法高。[/align][align=left]膜分离法:是现代天然产物分离中的新兴技术,在生产加工饮用水领域应用广泛,原理就是利用通过半透膜孔径把不想要的有害物质过滤掉。选择合适的过滤膜孔径是关键,可以把分子比茶氨酸大的和小的成分都去除,而只留下茶氨酸和分子大小与它接近的成分。膜分离法的优势在于不引入其他的物质,劣势是与目标分子大小相当的物质很难去除,单纯利用此方法提纯也很难获得高纯度的产品,而且此方法目前很难实现量产提纯茶氨酸。[/align][align=left]除此之外,生产茶氨酸还有化学合成法、微生物发酵法、细胞培养法,但是这些方法都各有其优势和局限性。[/align][align=left]茶叶中的茶氨酸含量本来就不高,受技术限制,目前要量产茶氨酸就会面临提取成本高的问题,再加上如果从茶叶中只是提取茶氨酸的话,经济效益就很低。春季茶树鲜叶茶多酚含量较高,做出的优质春茶往往能卖出更好的价格,也就不会用来提取茶氨酸了。不过,茶中有经济价值的成分并不止茶氨酸,比如茶多酚、咖啡因含量高,也更有提取价值。可以在提取茶多酚时产生的废液中合理利用其中含有的茶氨酸,作为一举多得的附加值产品,由此得到的茶氨酸的成本自然就跟着降低了。[/align][align=left][b][/b][/align][align=left][b]茶氨酸的安全性及法规管控[/b][/align][align=left]有科研人员对茶氨酸进行安全性实验,结果表明茶氨酸的大鼠急性毒性在5g/kg以上。他们对大鼠每天服用2g/kg茶氨酸在连续28天的亚急性毒性实验中没有观察到任何毒性反应。此外,在突然变异的实验中也没有发现茶氨酸的任何诱变作用。[/align][align=left]在日本,对茶氨酸的摄入量没有限制。1964年,日本批准了L-茶氨酸作为食品添加剂使用。而美国FDA也在1985年给予了L-茶氨酸GRAS的分类,意味着可以根据需要用于各种食品中。中国在2014年7月18日,原国家卫计委批准了它作为新食品原料。原国家卫计委关于批准茶叶茶氨酸作为新食品原料的公告(2014年第15号)做了如下规定:[/align][align=left](1)必须以茶叶为原料,经提取、过滤、浓缩等工艺制成;----这意味着化学合成法和生物发酵法制成的茶氨酸不能用作新食品原料;[/align][align=left](2)每日食用量≤0.4 克/天;[/align][align=left](3)对产品质量的要求,性状为黄色粉末、茶氨酸含量≥20g/100g、水分≤8g/100g,也就是作为新食品原料的茶氨酸含量(纯度)必须≥20g/100g;[/align][align=left](4)使用范围不包括婴幼儿食品,卫生安全指标应符合国家相关标准规定。[/align][align=left]我国现行有效的茶氨酸产品标准《QB/T 4263-2011 L-茶氨酸》中对采用生物发酵法、酶法转化或提取精制而得的L-茶氨酸的感官、理化、含量、重金属、微生物等十几个指标制定了限量要求。茶氨酸相关指标的检测方法有《QB/T 4263-2011 L-茶氨酸》中的附录B和《GB/T 23193-2017 茶叶中茶氨酸的测定高效液相色谱法》。[/align][align=center][color=black] [/color][/align][align=left][b]茶氨酸在食品加工中的应用[/b][/align][align=left]茶氨酸在日本、美国可作为食品添加剂,目前在我国可用作新食品原料使用(需要注意每日食用量和适宜人群)。茶氨酸具有优良的加工特性和稳定性,可以广泛应用于各类点心、糖果及果冻、饮料、口香糖等食品中。总的来说,茶氨酸主要应用在如下领域:[/align][align=left]1)作为茶饮料的品质改良剂,在茶饮料生产过程中添加一定量的茶氨酸,能明显改善茶饮料的品质和风味;[/align][align=left]2)作为改善食品风味的原料,研究表明,茶氨酸可改善咖啡、可可、果蔬饮料、啤酒等的苦味,减轻葡萄酒的涩味,因此,可作为这些食品的风味改良剂。[/align][align=left]茶氨酸在常规的食品加工条件下(如杀菌、pH和加热等)比较稳定,应用范围广。目前日本已开发出添加茶氨酸的巧克力、果冻、布丁、口香糖、保健茶和各种清凉饮料。茶氨酸功能作用这么好,但在食品生产加工过程中同样要注意茶氨酸原料是否达到食品级要求以及其他安全指标是否达标国家管控要求。[/align]

  • 红外特征峰?

    甘氨酸,苯丙氨酸,精氨酸,丙氨酸,甲硫氨酸,胱氨酸,苏氨酸需要的是带有标记了特征峰的红外谱图,哪本书里有也可以。网站就更好了!看了很多网站都只有标准谱图。谢谢!

  • 基因工程构建菌种生产L-苏氨酸

    摘要 文章主要介绍以基因工程构建菌种E. coli (pTH08+prh-T04)/VT418发酵生产L-苏氨酸,在10M3发酵罐中发酵产酸8.5-9.0%;转化率39-41%;周期48-52小时。文章强调在苏氨酸发酵过程中pH值以及溶氧的控制非常重要关键词:基因工程、发酵、苏氨酸一、前言L-苏氨酸是一种必需氨基酸,按世界粮农组织的标准计算,一克食品蛋白质中含苏氨酸40mg,占全部氨基酸的11%。欧美型食品中缺少苏氨酸,补充苏氨酸就能提高食品的营养价值。配合饲料也需要苏氨酸,因此近十年来,苏氨酸生产增长了5.3倍。具统计,1990年全世界苏氨酸产量为700吨/年,1996年增加到4000吨/年,2002年则猛增至35000吨。资料显示,使用植物型饲料,成畜必需添加赖氨酸和苏氨酸,比例为10:1,而幼畜为3:1。按10:1计算,目前全世界苏氨酸的需求量不应低于5万吨/年,缺口为较大。苏氨酸的生物合成途径及代谢调控机理来看,苏氨酸和赖氨酸一样,同属天冬氨酸族氨基酸。是葡萄糖经糖酵解途径生成丙酮酸,再经三羧酸循环CO2固定反应生成四碳二羧酸,后经氨基化反应生成天冬氨酸。国内外通常用传统育种和基因工程方法来获得苏氨酸的高产菌种,传统育种目前最高产酸为2-3%。在基因工程菌方面,木柱等将解除AKⅠ和HDⅡ反馈抑制的突变株HNr59的Etr-1基因导入产苏氨酸25g/L的T-693菌株,选育出具有6种调节变异组合的转导子T-1026,相同条件下可产苏氨酸40g/L。据日本味之素公司报道,用E.coliK12菌株(AHVr+Ile-+Met-+pro-)含苏氨酸合成酶操纵子基因的质粒转化E.coliK12(Thr-),积累苏氨酸13.4g/L(转化率40%),小罐发酵产酸65g/L,转化率48%。前苏联全苏工业微生物遗传育种研究所的Debabov等构建了大肠杆菌基因工程菌E.coli BKIIMB-3996 工程菌,重组质粒Pvic40中含苏氨酸操纵子的三个基因thr A, thrB, thrC,遗传标记为Sac+(能以蔗糖为碳源), thr r (抗苏氨酸)和Hser(抗高丝氨酸),在蔗糖为碳源的流加补料方式,最高产量为85.0 g/L。综上所述,国内外用传统育种方法的菌种产酸水平在30-40g/L;用基因工程方法的菌种产酸水平在80-90g/L。二、材料与方法1. 菌种:E. coli (pTH08+prh-T04)/VT418 (上海新立公司构建)2. 培养基配方2.1 斜面培养基(g/l)葡萄糖 2.0 NH4Cl 1.0 KH2PO4 1.5 Na2HPO4 3.5 MgSO4·7H2O 0.1琼脂 20.0 加蒸馏水溶解,调pH7.0-7.2,定容1000ml,0.8Kg/cm2灭均30分钟,冷却至50℃左右加入氨苄青霉素溶液,最终浓度为50γ/ml。2.2 摇瓶种子培养基(g/l)葡萄糖 40.0 KH2PO4 1.0 MgSO4·7H2O 0.5 (NH4)2SO4 10.0 玉米浆2.0 CaCO3 15 氨苄青霉素 50γ/ml 加自来水溶解,调pH7.0-7.2,定容1000ml,分装至500ml摇瓶,0.8Kg/cm2 灭菌30分钟,接种前加入CaCO3(121℃,60分钟灭菌,烘干)和氨苄青霉素。2.3摇瓶发酵培养基(g/l)葡萄糖 80.0 (NH4)2SO4 25.0 KH2PO4 2.0 MgSO4·7H2O 1.0MnSO4·5H2O 0.5 FeSO4·7H2O 0.5 CaCO3 30.0 加自来水溶解,调pH7.0-7.2,定容1000ml,分装至500ml摇瓶,0.8Kg/cm2 灭菌30分钟,接种前加入CaCO3(121℃,60分钟灭菌,烘干)2.4 种子罐培养基葡萄糖4% (NH4)2SO4 1% KH2PO4 0.1% MgSO4·7H2O 0.05% 玉米浆 0.2% 泡敌0.01%。加水溶解pH自然,121℃灭菌20分钟,消后定容400L。接种前加入无菌氨苄青霉素50ug/L。2.5 发酵罐培养基葡萄糖8% (NH4)2SO4 2.5% KH2PO4 0.2% MgSO4·7H2O 0.1%FeSO4·5H2O 0.05% MnSO4·5H2O 0.05% 泡敌 0.01%。加自来水溶解pH自然,121℃灭菌20分钟,消后定容5.1M3。1.0Kg/cm2灭菌20分钟。

  • 【求助】求助:红外特征峰!!谢谢!!!

    需要的是带有标记了特征峰的红外谱图,哪本书里有也可以。网站就更好了!看了很多网站都只有标准谱图。谢谢!甘氨酸,苯丙氨酸,精氨酸,丙氨酸,甲硫氨酸,胱氨酸,苏氨酸氢化可的松琥珀酸钠多谢!

  • 【原创大赛】VIII因子氨基酸含量测定之:组氨酸与甘氨酸快快分开!

    本人在8月发表的一篇原创中提及”甘氨酸与组氨酸无法分离“的问题,在经过10多天的准备,已有不小的收获,现在分享。摘要 目的: 建立用高效液相色谱法测定人凝血因子VIII中氨基酸含量。方法: 采用6 - 氨基喹啉- N - 羟基琥珀酰亚氨基氨基甲酸酯( AQC) 为衍生剂,与氨基酸柱前衍生后,用Agilent 1200 高效液相色谱仪,AccQ·Tag C18柱( waters 150 mm ×3. 9 mm,4 μm) ,以水Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液和乙腈进行梯度洗脱,检测波长为248 nm,柱温37 ℃,进样量10μL。结果: 各氨基酸在32 min 内测定完毕,回收率为98.7% ~ 101.5%。RSD 均小于1. 5%。结论: 本法分离度好,快速、简便,可作为产品的质量控制方法。关键词: 6 - 氨基喹啉- N - 羟基琥珀酰亚氨基氨基甲酸酯; 人凝血因子VIII; 甘氨酸; 衍生物; 梯度洗脱; 高效液相色谱法;氨基酸; 含量测定人凝血因子VIII,本品对缺乏人凝血因子礓所致的凝血机能障碍具有纠正作用,主要用于防治甲型血友病和获得性凝血因子Ⅷ缺乏而致的出血症状及这类病人的手术出血治疗。该药物制备过程中使用了氨基酸( 精氨酸、丙氨酸、甘氨酸、组氨酸、盐酸赖氨酸、脯氨酸 等) 做稳定剂,为了保证药品质量和用药安全,应对其中氨基酸的含量进行控制。该法依据过量的6 - 氨基喹啉基- N - 羟基琥珀酰亚氨基氨基甲酸酯( AQC) 在一定条件和氨基酸形成稳定的衍生产物( 柱前衍生) ,用高效液相色谱法测定衍生产物,根据衍生产物的含量计算人凝血因子中各氨基酸的含量。1 仪器和试药1200 高效液相色谱系统( 美国Agilent 公司) ,配置低压四元梯度泵、1314B 紫外吸收检测器、自动进样器、柱温箱、Chemistations 化学工作站; Sartorius CP225D 电子微量天平( 德国Sartorius 公司) ; SartoriusPB - 21 型pH 计( 德国Sartorius 公司) ; LDZ5 -2 低速自动平衡离心机( 上海医用离心机厂) 等。各标准品均来自于中国食品药品检定研究院2 色谱条件及系统适用性试验色谱柱: Waters AccQ·Tag C18色谱柱( 3. 9 mm ×150 mm) ; 流动相: 水为溶剂D,Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液( A) - 乙腈( B) - 水( D) ,柱温:37 ℃; 检测波长: 248 nm。精密量取对照品溶液与供试品溶液10 μL,分别注入液相色谱仪,记录色谱图32 min。3 溶液制备3. 1 Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液称取三水乙酸钠190. 4 g,加注射用水1000 mL,搅拌,溶解,用稀磷酸将pH 调至5. 2,加入乙二胺四乙酸二钠溶液( 称取乙二胺四乙酸二钠100 mg,加注射用水100 mL,摇匀使其溶解) 10 mL,加入叠氮化钠0. 1 g 及三乙胺23. 7 mL( 17. 2 g) ,用稀磷酸滴定至pH 4. 95,用0. 45 μm 的滤膜过滤,于4 ℃储存,备用( 此条件下可保存6 个月) 。量取该溶液100 mL,加注射用水稀释至1000 mL,混匀,即得Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液。3. 2 对照品储备液混合对照品储备液精密称取各氨基酸对照品适量,置同一100 mL量瓶中,以注射用水溶解并定容至刻度。制成含氨基酸含量均含5. 0 mg·mL - 1 的混合对照品溶液,即得。单个对照品储备液: 精密称取各含氨基酸的各对照品适量,分别置100mL 量瓶中,用注射用水溶解并定容至刻度。制成分别含各氨基酸的单个对照品溶液,即得。3. 3 供试品储备液3. 3. 1 加样回收率试验溶液精密称取各氨基酸各0. 3200,0. 4000,0. 4800 g 和辅料适量,加人凝血因子VIII原液7. 5 mL,肝素钠适量,用1. 0 mol·L - 1 盐酸调pH 至6. 9,加0. 01 mol·L - 1枸橼酸三钠溶液溶解并定容于20 mL。分别制备成16. 0, 20. 0, 24. 0 mg·mL - 1溶液。3. 3. 2 空白溶液 按公司处方,加入辅料的混合物,用注射用水制备各空白溶液3. 4 内标溶液精密称取α - 氨基丁酸( AABA)0. 4 g,加注射用水定容至100 mL。4 氨基酸衍生方法4. 1 精密量取供试品储备液、样品及对照品储备液各1. 0 mL,加1. 5%磺基水杨酸9. 0 mL,混匀静置2 h以上, 3000 r·min - 1离心10 min,留取上清液。4. 2 精密量取“4. 1”项下上清液1. 0 mL( 其中对照品储备液对应上清液分别精密量取0. 06, 0. 4,0. 8,1. 0, 1. 2, 1. 6 mL) ,分别置10 mL 量瓶中,用注射用水定容。制备成供试品溶液、样品溶液及浓度分别为1. 5, 10. 0, 20. 0, 25. 0, 30. 0,40. 0 mg·mL - 1 的对照品溶液。4. 3 精密量取“4. 2”项下溶液各100 μL,分别加注射用水0. 4 mL 及内标溶液20 μL,混匀备用。4. 4 精密量取“4. 3”项下溶液30 μL 放入衍生管中,加硼酸缓冲液( pH 8 ~ 10) 210 μL 涡旋混合,并加入AQC 衍生剂60 μL 涡旋混合15 s,即为各供试品溶液,待用。

  • 迪马AAA氨基酸柱 这样测半胱氨酸 可以吗??

    迪马AAA氨基酸柱 这样测半胱氨酸 可以吗??

    先简单 介绍——————做氨基酸 检测想了解详细资料,请自己到迪马科技官网自行下载http://simg.instrument.com.cn/bbs/images/brow/em09510.gifPITC柱前衍生法18种天然氨基酸分析(异硫氰酸苯酯柱前衍生法)——序列号: D0241 适用范围 该方法适用于氨基酸注射液、动植物性食品和饲料中 Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(蛋氨酸)、Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、 Lys(赖氨酸)等 18种天然氨基酸的检测http://ng1.17img.cn/bbsfiles/images/2012/03/201203131711_354396_2019107_3.jpg2 溶液配制 氨基酸储备液: 称取一定量氨基酸标准品,用 0.1 mol/L HCl水溶液溶解,胱氨酸为0.01 mol/L,酪氨酸为0.02 mol/L,其他氨基酸为 0.05 mol/L 氨基酸使用液: 将储备液用0.1 mol/L HCl水溶液稀释,得到浓度为 0.002 mol/L 的氨基酸单标和混标 内标液: 以正亮氨酸作为内标物。称取一定量正亮氨酸,溶于 0.1 mol/L HCl水溶液,得到 0.02 mol/L 的正亮氨酸内标液 异硫氰酸苯酯溶液: 将 250 μl 异硫氰酸苯酯用乙腈乙腈定容至 10 ml,得到0.2 mol/L 异硫氰酸苯酯溶液 三乙胺溶液: 将1.4 ml三乙胺用乙腈定容至 10 ml,得到1.0 mol/L 三乙胺溶液 标准溶液衍生化 量取 200 µl氨基酸混合标准溶液(每种组分浓度均为 0.002 mol/L),置于 1.5 ml塑料离心管中,准确加入20 μl正亮氨酸内标溶液、100 µl 1 mol/L三乙胺乙腈溶液和100 µl 0.2 mol/L 异硫氰酸苯酯乙腈溶液,混匀,室温反应 1 小时,然后加入正己烷 400 µl,旋紧盖子后剧烈振荡5~10 s,静置分层,取 200 µl下层溶液与 800 µl水混合,0.22 µm 针式过滤器过滤,待分析。注: 通过控制原始样品质量或稀释等方法,使样品溶液中的氨基酸总量不超过0.04 mol/L 或3.0 g/L(两者中取最小值) 只有采用内标法分析时,才需要加入正亮氨酸作为内标物 衍生得到的样品溶液中含有50%的乙腈,这与流动相溶剂体系存在较大差距,因而需要加水稀释,否则会引起峰前沿或分叉迪马科技AAA氨基酸柱子 洗脱条件 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646181_2019107_3.gifhttp://ng1.17img.cn/bbsfiles/images/2011/04/201104221943_290383_2019107_3.gif

  • 求助:哪里可以买到如下标准品

    急购如下标准品: 细胞色素C(MW12500)、抑肽酶(MW6500)、杆菌酶(MW1450)、乙氨酸—乙氨酸—酪氨酸—精氨酸(MW451)、乙氨酸—乙氨酸—乙氨酸(MW189)。提供分子量相近的多肽或蛋白标准品也可。[em61]

  • 关于谷氨酸和焦谷氨酸

    最近在做一个课题,夏天测谷氨酸的标线还是好好的,这俩天就不行了,我想问下谷氨酸的液相测定方法是如何测定的,我用的流动相是磷酸水溶液,因为谷氨酸是微溶于水的,所以配的浓度最高是25 mmoL/L,想问下大神们液相测定谷氨酸和焦谷氨酸的方法~ 谢谢~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制