当前位置: 仪器信息网 > 行业主题 > >

葡萄球菌蛋白质

仪器信息网葡萄球菌蛋白质专题为您提供2024年最新葡萄球菌蛋白质价格报价、厂家品牌的相关信息, 包括葡萄球菌蛋白质参数、型号等,不管是国产,还是进口品牌的葡萄球菌蛋白质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合葡萄球菌蛋白质相关的耗材配件、试剂标物,还有葡萄球菌蛋白质相关的最新资讯、资料,以及葡萄球菌蛋白质相关的解决方案。

葡萄球菌蛋白质相关的资讯

  • 山东检验检疫局成功研制并转让金黄色葡萄球菌快速检测试剂盒
    山东检验检疫局食品农产品中心青年专家高宏伟博士设计发明的“金黄色葡萄球菌快速检测试剂盒的制备和使用方法”近日以不菲的市场价格成功转让给青岛市高新区某企业。这标志着该项研究成果在获得领域内同行高度认可的同时,也在竞争激烈的生物技术市场赢得了一席之地。  2011年年末,一场“细菌门”的风波席卷冬日里的速冻食品行业,继思念、三全速冻食品后,湾仔码头也在南京市工商局公布的一份检测报告中被检出了金黄色葡萄球菌。当人们再一次为食品安全的问题焦虑纷扰的同时,一个直径只有0.5-1微米、平日里只闻其名、未见其“形”的小家伙——金黄色葡萄球菌迅速走进了普通百姓的视野。  小家伙制造大问题  据报道,全世界每年发生的食源性疾病近数十亿例,其中约有170万名15岁以下儿童因为食源性微生物污染引起腹泻而死亡。金黄色葡萄球菌是引起细菌性食物中毒的重要病原菌之一,在美国,每年超过18.5万人发生金黄色葡萄球菌食物中毒,占细菌性食物中毒的33%,每年损失约15亿美元 在日本,平均32.5%的食品存在金黄色葡萄球菌的污染 在加拿大,金黄色葡萄球菌中毒的发生率更高,占细菌性食物中毒的45%。近年来,在我国由金黄色葡萄球菌引起的食物中毒约占细菌性食物中毒事件的25%。金黄色葡萄球菌属于葡萄球菌属,在污染食品后,可以产生大量肠毒素,刺激食用者交感神经、双侧迷走神经的内脏的分支和脊髓,引起剧烈呕吐腹泻。由金黄色葡萄球菌引起的食物中毒已成为世界性的公共卫生问题。  新问题引出新课题  山东是我国食品农产品进出口第一大省,进出口总量占全国口岸四分之一至三分之一,已连续11年进出口食品农产品总量位居全国第一。每年,来自于世界各地的海量食品农产品在源源不断为当地经济注入活力的同时,也带来了巨大的食品安全风险。食品微生物污染一直是进出口食品安全的主要隐患,而其中金黄色葡萄球菌是最为重要的检测项目之一。仅2011年山东局技术中心微生物实验室完成了金黄色葡萄球菌3000余批次样品、上万项目次的检测工作、2012年截止到6月已完成金黄色葡萄球菌检测近8000项目次,同比增长30%。如此巨大的工作量以及还在继续快速增长的检测压力,向传统的检测技术提出了挑战,如何打破现状、创新技术体系成为一个检测人员绕不开的问题。  为了提升检测效率、缩短检测周期,针对国内外食品中金黄色葡萄球菌污染日趋严重的形势,该局食品农产品中心高宏伟博士等研究人员向国家质检总局申报了关于食源性致病菌新型高通量检测技术的研究课题。提出以更为快捷、简便、可视化的新型环介导等温扩增技术(LAMP)取代现有检测技术,全面提高金黄色葡萄球菌的检测灵敏度和精确度。  新发明攻克五个难关  金黄色葡萄球菌快速检测试剂盒的研制成功,在获得国家发明专利授权的同时,一举攻破了五个技术难关。  准确关。该发明针对金黄色葡萄球菌mecA基因的基本保守区的6个序列设计了两个特异性内引物和两个特异性外引物,是一种多位点多靶标的检测技术,与PCR技术的单区域双引物相比,在体系扩增过程中,具有更高的准确性和可靠性。该mecA基因的保守序列为金黄色葡萄球菌各不同血清型和菌株型所共有,保证了该种技术从种的水平上检测不同来源的金黄色葡萄球菌株的可靠性。  周期关。多引物的特性使其在具有高度链置换活性的DNA聚合酶作用下,具备更高的扩增效率。应用该种技术实施金黄色葡萄球菌检测,恒温下放置几十分钟即可完成检测,整个流程累计耗时1个小时左右,与传统检测方法动辄3、4天相比,缩短检测周期95%以上。  成本关。作为一种恒温扩增技术,该发明无须昂贵的PCR仪及配套电泳成像设备,只需水浴锅或其他简单温度加热装置即可,在仪器配置费用上可节省大笔购置费用。  环保关。由于可视化的特点,该种技术的检测结果无须使用特定光学呈相设备分析,只用肉眼直接目测观察即可对最终结果进行判定。在精简了分析流程的同时,也避免了具有强烈致癌的毒性凝胶染料的使用,省去了后续无害化处理步骤,解决了有毒有害的分子生物学试剂对环境安全的威胁问题。  场所关。目前,主流细菌鉴定方法包含了分离培养、免疫检测、PCR方法等,虽然原理各异,但对于环境及硬件设施条件都有特定要求,需要培养箱、微生物鉴定仪及PCR仪等必备仪器。而金黄色葡萄球菌LAMP快速检测试剂盒的问世解决了这一难题,一套试剂盒和一个简易温度控制设备即可组成一套便携式的现场检测装置,它可以走出实验室,摆脱时空限制,将检测关口前移,在任何需要的地方随时出现对可疑样品实施现场检测。  新专利产生四种效益  市场效益。与其他检测方法相比,具备完全自主知识产权的金黄色葡萄球菌试剂盒兼具了快速、精准化、便捷化、可视化及低成本化等五大优势,是山东检验检疫系统首个实现商业化成功转让的国家发明专利。该专利具有广阔的应用前景和领域,适合于有实际检测需求的各类企事业单位、机构和部门,能够在医疗、食品、卫生及环保等多个行业领域进行推广应用,一旦转化为商业化试剂盒将显现显著的市场效益。  生态效益。由于采用可视化的肉眼观察对结果进行直接判定,使得大量的后续的无害化处理措施得以省略,在节省成本的同时排除了传统的PCR检测凝胶电泳所使用的大量有毒有害试剂的使用,将其可能造成的生态环境安全风险降到最低。  生产效益。据统计,2011年食品安全在我国国民最关注热点问题排行榜高居第二位,类似于发生在湾仔码头等著名食品品牌的金黄色葡萄球菌污染事件,在给企业带来了公众信任危机的同时,给企业生产经营效益造成了重创。充分利用金黄色葡萄球菌LAMP快速检测试剂盒灵活机动不受时空限制的特点,打造食品产品的现场初筛和实验室系统性检测的多级检测网络,对于企业加强自检,实施源头管理,把好质量关、避免质量问题可能造成的巨大损失将起到关键性的作用。  社会效益。由金黄色葡萄球菌引起的食物中毒也已成为世界性的公共卫生问题,该专利的问世及下一步的市场化、产业化对于解决食品中金黄色葡萄球菌关键控制和检测技术的难题,保证国内及进出口食品安全,保障人民生命健康安全将产生积极的基础性推动作用。
  • 伟业计量8月20日食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会
    伟业计量线上研讨会,老时间,老地方,每周五上午九点半伟业计量官网来相见!2021年8月20日(周五)上午9:30分,由北京北方伟业计量技术研究院主办的“食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会”即将开启,欢迎大家锁定伟业计量直播间!直播当天,研讨会讲师、助教将进行在线答疑,您有任何关于课程、研讨会以及伟业计量的问题,都可以在留言区进行提问。另外,我们还为当天参会的观众准备了惊喜活动,让您在兼具趣味性与创意性的视频教学中吸收知识。“食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会”课程表讲师简介:罗双群,副教授,中共党员,硕士研究生,食品检验技师,漯河市青年拔尖人才。主要从事食品检测专业教学工作和管理工作。先后任教《食品理化分析》、《食品微生物检验》和《食品感官评定》。发表论文10余篇,获得食品检测类专利4项、漯河市自然科学学术奖一等奖2项、二等奖4项,主持河南省高等学校重点科研项目1项,主持漯河市科研项目1项,参与并完成省级重点科研项目4项,参与河南省教育教改项目1项。本期线上研讨会课程安排详见下图:食品中金黄色葡萄球菌和沙门氏菌的测定方法分享研讨会时间课题专家课程简介第1节(09:30-10:20)《食品中金黄色葡萄球菌的测定》罗双群《金黄色葡萄球菌的测定》首先介绍了金黄色葡萄球菌的概述和仪器准备,重点介绍金黄色葡萄球菌的操作步骤及要点。10:20-10:30互动答疑、礼品抽取第2节(10:30-11:20)《食品中沙门氏菌的测定》罗双群《沙门氏菌的测定》分别介绍了沙门氏菌的定义、仪器试剂的准备、沙门氏菌的检验程序以及操作步骤及要点。重点从典型沙门氏菌的预增菌、增菌、平板分离、生化试验、革兰氏染色、血清学鉴定等6个方面介绍了沙门氏菌的操作步骤及要点。11:20-11:30互动答疑、礼品抽取 (关注伟业计量公众号(微信号bzwzcom),免费观看线上研讨会)温馨提示:伟业计量线上研讨会将于每周五上午09:30(节假日除外)定期举办。如果您是食品/环境/微生物等检测相关专业老师,有相关检测类课程想与我们交流分享,欢迎您加入伟业计量讲师团队,共享学术赋能,课酬丰厚,期待您的加入!联系助教:手机微信同号:15637658007
  • 乳品中金黄色葡萄球菌和沙门氏菌快速检测的新体系
    食源性致病菌污染是乳制品安全问题的重要隐患之一。乳品中常见的食源性致病菌有金黄色葡萄球菌、沙门氏菌、阪崎肠杆菌等。目前乳品致病菌检测以培养法为主,但此类方法操作较为繁琐并耗时长,不能满足检测时效的需求。在本期的推送中,探索了荧光定量PCR技术在乳品中金黄色葡萄球菌和沙门氏菌快速检测方面的应用,并进行了大量验证试验、实际检测,形成乳品中致病菌快速检测创新体系,该创新体系可以实现金黄色葡萄菌和沙门氏菌24h内完成增菌和检测。缩短了整体检测时间,并降低了检测成本,为进一步改良乳品中致病菌快速检测提供了可参考的数据。珀金埃尔默旗下的良润生物研发出创新检测体系,优化了样品前处理过程,并引入了荧光定量PCR分子检测技术,可以实现金黄色葡萄菌和沙门氏菌在24h内完成增菌和检测。扫描下方二维码,即可下载珀金埃尔旗下良润生物《乳品中致病菌快速检测解决方案》及《微生物快速检测产品信息》另外为更好的了解乳制品企业致病菌的检测需求,精准的提供致病菌检测解决方案,珀金埃尔默旗下良润生物展开线上有奖问卷调查。点击下方链接,即可访问调研页面。https://mp.weixin.qq.com/s/Pu5LRwaQSfCxsOp7ZNbbbg
  • 中国食品科学技术学会发布《葡萄球菌肠毒素测定ELISA试剂盒法(征求意见稿)》
    各有关单位:   根据《中国食品科学技术学会团体标准工作管理办法》等规定,我学会组织起草了《葡萄球菌肠毒素测定 ELISA试剂盒法(征求意见稿)》团体标准。现公开征求意见,请于2023年8月11日前将相关意见反馈学会秘书处。   邮箱:zhanxiaoqingok@163.com    附件:    1.标准文本及编制说明.zip    2.意见反馈表.docx  中国食品科学技术学会   2023年7月10日
  • 宁夏化学分析测试协会批准发布《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法》等4项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法》等4项团体标准进行了评审,已经通过了专家审查,现予以发布,自2024年5月30日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA0288-2024一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法2024-05-172024-05-302T/NAIA0289-2024一次性使用卫生用品中绿脓杆菌检验 实时荧光PCR法2024-05-172024-05-303T/NAIA0290-2024一次性使用卫生用品中溶血性链球菌检验 实时荧光PCR法2024-05-172024-05-304T/NAIA0291-2024一次性使用卫生用品中环氧乙烷残留量的测定 气相色谱-质谱法2024-05-172024-05-30 2024协会团体标准公告-5.17.pdf
  • 宁夏化学分析测试协会发布《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光 PCR 法》等2项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光 PCR 法》和《一次性使用卫生用品中环氧乙烷残留量的测定 气相色谱-质谱法》 2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年2月30日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 宁夏化学分析测试协会2024年1月30日 关于团标征求意见函 -1.30.pdf团标表格7-专家意见表.doc团体标准 一次使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法 征求意见稿.pdf团体标准-一次性使用卫生用品中环氧乙烷残留量 征求意见稿.pdf
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录  过去需几年时间完成的工作现在仅用几天即可完成  据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。  结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。  为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。  为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。  高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。  但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。  该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 蛋白质工程:跨学科研究揭神奇面纱
    在基因工程基础上发展起来的蛋白质工程,被称为“第二代基因工程”。在亚太地区蛋白质学会主席、北京大学跨院系蛋白质科学中心主任昌增益教授看来,蛋白质工程不仅蕴涵着人类攻克癌症等生命难题的重大契机,其在产业化上的巨大发展空间也是不言而喻的。  近年来,蛋白质工程研究和应用已遍及医疗、工业、农业等领域。目前,分子生物学家们已经能够通过对蛋白质进行修饰、加工、改良,使蛋白质“升级换代”。例如,人们对药物蛋白进行PEG(聚乙二醇)修饰,可以延长药物蛋白的作用半衰期 葡萄糖异构酶在工业上有着广泛的应用,人们对其基因进行定点诱变,将第138位的甘氨酸(Gly138)替代为脯氨酸(Pro)后,可显著提高葡萄糖异构酶的热稳定性,有利于其在食品工业上的应用 转入多拷贝串联的金属硫蛋白α-结构域编码基因的转基因植株,有着比野生植株更高的对重金属的抗性等等。  然而,昌增益认为,对蛋白质工程这座“金矿”的开发才刚刚开始。“尽管几十年来人们在蛋白质基础研究方面有了很大进步,但是我们对蛋白质这类结构和功能极其多样的神奇生命分子的认知还很有限,对蛋白质功能机制的研究方法和手段还远不够完善。”  他表示,如何揭示蛋白质分子发挥作用的规律,是一个复杂而艰深的难题。“借助其他学科平台,通过跨学科研究对蛋白质工程提出新的理论、新的方法,从不同的层面揭示蛋白质运作的机制,将是一个新的挑战和机遇。”  据了解,蛋白质工程研究的触角已经延伸到了各个高科技领域,包括生物、化学、物理、医学、工程以及计算机等。  “多学科、多角度、多层次的系统研究,能够帮助人们更深刻地揭示蛋白质‘神奇’的面纱,同时也能促进各学科的发展。”昌增益说。
  • 蛋白分析利器-月旭科技助力探索蛋白质人工化学合成的奥秘
    1965年,中国科学家在世界上首次人工合成牛胰岛素,开启了生命化学研究的新时代。过去数十年历尽科研工作者的不断努力,蛋白质的人工化学合成取得了巨大进步。相较于自然界的生物合成,化学合成可创制具有各种精确控制结构及非天然结构的人造蛋白质,对于发展满足我们需求的蛋白质工具和蛋白质产品带来了新机遇。近期科研工作者们在化学合成蛋白领域又取得了新的成果,并应用了月旭科技的相关色谱柱产品,快来随小编一起饱尝科研的饕餮盛宴吧!化学合成大型镜像聚合酶并实现镜像DNA信息存储WELCH据悉,自然状态下的DNA,会经过精巧的进化来存储遗传信息。而手性倒链L-DNA具有相同的信息能力,但耐生物降解,可作为一个健壮的生物正交信息库。在一项新研究中,清华大学生命学院朱听课题组的研究人员们用化学方法合成了一个90kda的高保真镜像Pfu DNA聚合酶,它能够精确组装一个千碱基大小的镜像基因。该实验中首次使用的大型镜像蛋白质全化学合成策略及千碱基长度镜像基因的组装技术,解决了长期制约镜像生物学领域发展的大型镜像生物分子的制备难题。该研究成果以“利用高保真镜像Pfu DNA聚合酶实现生物正交的镜像DNA信息存储”(Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase)为题,于2021年7月29日发表在Nature Biotechnology杂志上。研究成果快览研究人员们用聚合酶在L-DNA中编码路易斯巴斯德1860年的一段话,这段话第一次提出了生物学的镜像世界。为突破全化学合成对蛋白质大小的限制,研究团队通过将嵌合的D-DNA/L-DNA关键分子嵌入到D-DNA存储库中,来实现手性隐写。团队将全长为775个氨基酸的Pfu DNA聚合酶分割为长度为467个氨基酸和308个氨基酸的两个片段分别合成,将其混合后共同复性,使其正确折叠为具有完整功能的90 kDa高保真镜像Pfu DNA聚合酶,为目前已报道最大的全化学合成蛋白质;研究者还利用该高保真镜像聚合酶组装出长达1.5 kb的镜像16S核糖体RNA基因,为目前已报道最长的镜像DNA。此外,他们发现保存在自然环境条件下(当地池塘水中)的微量L-DNA条形码,在1年内仍可扩增和测序;而在相同条件下的D-DNA条形码,在1天后就已经无法扩增。背后原因只有一个:它们的手性不同。在研究中,该课题组利用Ultimate XB-C4 (4.6*250mm, 5μm)来监测反应的进行,并检测肽段产品的纯度。同时用制备柱Ultimate XB-C4和C18 (21.2*250mm, 5μm或10*250mm, 5μm)来分离制备粗品肽段和连接产物。全化学合成富含二硫蛋白质WELCH在生物医学研究中,富含二硫的蛋白质是有用的药物或工具分子,但它们的合成由于折叠的困难而变得复杂。有鉴于此,清华大学的刘磊教授、中国科学技术大学的郑基深教授等研究人员,使用可移除的O-连接的β-N-乙酰葡萄糖胺策略,实现了正确折叠的富含二硫键蛋白质的全化学合成,该研究成果以“Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy”为题,发表于2022年1月3日的JACS杂志上。研究成果快览研究人员描述了一种可移除糖基化修饰(RGM)策略,它可以加速具有多个或甚至链间二硫键的正确折叠蛋白质的化学合成。实验过程中,利用Ultimate XB-C4(120Å或300Å,250mm×4.6mm,5μm)监测蛋白的合成反应,并用半制备柱Ultimate XB-C4和C18(300Å,250mm×10mm,5μm)成功制备得到目标蛋白。该策略包括在Ser/Thr位点引入简单的O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)基团,通过稳定其折叠中间体,有效地促进了富含二硫的蛋白质的折叠。折叠后,O-GlcNAc基团可以用β-N-乙酰氨基葡萄糖酶(OGA)被有效地去除,从而获得正确折叠的蛋白质。使用这种策略,该研究组完成了正确折叠的铁调素的合成,这是一种含有四组二硫键的铁调节激素。研究人员首次实现了正确折叠的白细胞介素5(IL-5)的全合成,这是一种26kDa的同型二聚体细胞因子,负责嗜酸性粒细胞的生长和分化。“工欲善其事,必先利其器”,月旭科技专门针对多肽、蛋白类等生物样品方法开发,推出Welch生物样品分析方法开发包,助力前沿的科学研究和日常生产分析制备工作。● 适合蛋白、多肽或其他大分子的方法开发。为了能更好地与键合相发生作用,需使用大孔径(300Å或450Å)的填料。● 不同保留能力的不同选择性键合相,满足各种分子大小的蛋白质、多肽的保留和分离。参考文献1. Ting F. Zhu, et al. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology,2021. Nature Biotechnology | VOL 39 | December 2021 | 1548–1555.2. Lei Liu, et al. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J. Am. Chem. Soc. 2022, 144, 349−357.
  • 蟑螂大脑可能成为对抗"超级细菌"的重要武器
    最近,随着一些几乎对各类抗生素都有很强抗药性的“超级细菌”在多国传播,医学专家也在紧急研究对策。英国研究人员近日发现,蟑螂和蝗虫体内含有的一种特殊蛋白,可能成为杀灭两种超级细菌的重要武器。  据悉,蟑螂大脑内和蝗虫体内所含有的蛋白质成分,能在实验室内有效杀灭90%以上的耐甲氧西林金黄色葡萄球菌(MRSA)和抗药性大肠杆菌,而且不会对人体细胞产生明显副作用。值得注意的是,此前,人们早已发现,蟑螂是传播20多种细菌和病毒的罪魁祸首。  资料显示,感染耐甲氧西林金黄色葡萄球菌和抗药性大肠杆菌都能带来严重后果。其中,前者可造成人体器官衰竭而死。后者也可能引起肾衰竭。今后,人类或许能从生活在“恶劣环境中”的蟑螂和蝗虫的神经系统中提取出有效物质来杀灭上述两种细菌了。
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 清华教授颜宁获2015年国际蛋白质学会青年科学家奖
    日前,国际蛋白质学会(Protein Society)将2015年&ldquo 青年科学家奖&rdquo 授予清华大学医学院教授颜宁博士,表彰她在跨膜物质运输的结构生物学领域所做出的一系列杰出工作。  该学会网站发布的声明指出:颜宁博士独立开展研究工作不到十年,但却在膜蛋白、特别是跨膜转运蛋白的结构生物学研究领域取得了一系列令人叹为观止的出色成果,这其中包括具有里程碑意义的人类葡萄糖转运蛋白GLUT1的三维晶体结构。此外,她在离子通道研究领域也卓有建树,为钠离子通道研究贡献了主要结构之一 最近她还利用最新冷冻电镜技术解析了高通量钙离子通道RyR1的高分辨率结构。颜宁博士不仅敢于挑战结构生物学研究中的&ldquo 硬骨头&rdquo ,而且致力于通过结构信息全面揭示蛋白质的功能与生物学意义。  国际蛋白质学会&ldquo 青年科学家奖&rdquo 前身为&ldquo 鄂文西格青年科学家奖&rdquo (The Irving Sigal Young Investigator Award),设立于1989年,每年颁给一至两位处于独立科研生涯早期(独立领导实验室一般不超过8年)、但已对蛋白质研究领域作出重要贡献的优秀科学家。2004年之前的获奖者、包括第一位华裔获奖者施一公教授(2003年),绝大多数都已经入选美国科学院。颜宁博士是该奖设立27年来的第30位获奖者。  颜宁教授将于2015年7月在西班牙巴塞罗那召开的国际蛋白质学会年会上领奖,并作获奖学术报告。  颜宁指导学生做实验  颜宁,1996-2000年就读于清华大学生命科学与技术系,获学士学位 2000-2004年于美国普林斯顿大学分子生物学攻读博士学位, 2005年获得由《科学》杂志和美国科学促进会评选的北美地区&ldquo 青年科学家奖&rdquo 2007年10月受聘清华大学医学院教授 2012年入选美国霍华德休斯医学研究院首批&ldquo 国际青年科学家&rdquo ,同年获得基金委&ldquo 杰出青年基金&rdquo 2015年入选教育部&ldquo 长江学者&rdquo 。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。  考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:  Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。  今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。  我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。  蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。姓 名工作单位主要贡献Richard D. Smith美国太平洋西北国家实验室1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白John Yates III美国Scripps研究所SEQUEST MS/MS数据库搜索程序Joshua Coon美国威斯康星大学麦迪逊分校发明了电子转移解离技术(ETD)Neil Kelleher美国西北大学Top-down蛋白质组学Kathryn Lilley英国剑桥大学蛋白质组学定量技术Pierre Thibault加拿大蒙特利尔大学应用生物质谱和蛋白质组学到细胞生物学Michael MacCoss美国华盛顿大学(西雅图)稳定同位素标记技术Albert Heck荷兰Utrecht大学基于质谱的结构生物学Catherine Costello美国波士顿大学HUPO前任主席,质谱技术发展及应用Alexander Makarov德国Thermo Fisher Scientific 生物质谱全球研发总监领导研发Orbitrap质谱仪Donald Hunt美国弗吉尼亚大学FT-MS and ETD  简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • AI辅助拉曼光谱+生物打印技术,用于血液中细菌的高通量检测
    美国斯坦福大学(Stanford University)开发了用于分析血液和废水的人工智能(AI)辅助方法。微生物的可靠检测和鉴别对于医学诊断、环境监测、食品生产、生物防御、生物制造和药物开发至关重要。虽然病原体检测通常使用体外液体培养方法,但据估计,使用目前的实验室方法,可以轻松培养的细菌种类不到所有细菌种类的2%。此外,在这2%中,根据细菌种类的不同,培养过程可能需要数小时到数天不等。因而由于诊断进程缓慢,在等待细菌培养结果时通常使用广谱抗生素,导致抗生素耐药细菌数量惊人地增加。拉曼光谱是一种无标记振动光谱技术,最近已成为一种有前途的细菌种类鉴别平台。由于每个细胞种类和菌株都有独特的分子结构,因而它们具有可用于鉴别的独特的光谱指纹。与基于核酸的检测方法(如聚合酶链式反应(PCR))和基于蛋白质的检测方法(如基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF)和酶联免疫分析(ELISA))相比,拉曼光谱检测技术只需很少或不需要使用试剂或标记,设备成本相对较低,并具有无扩增检测的潜力。此外,拉曼光谱检测技术是一种无损技术,首先,其激发激光功率很低,使细胞可以保持活性;其次,测量结果基本不受细胞中水分的干扰;最后,检测只需非常小的样本量。与等离子体或米式共振纳米颗粒结合,拉曼光谱信号平均可以增强10⁵-10⁶倍,最高可增强10¹⁰倍,从而实现对细胞的快速检测。由于这些优势,拉曼光谱检测技术已经成功地应用于基因分析、蛋白质检测,甚至单分子检测。最近的工作也显示了拉曼光谱检测技术在细胞鉴别方面的令人兴奋的进展,包括细菌鉴别、免疫分析和活体活检。然而,为了提高拉曼光谱检测技术的临床和工业实用性,它必须与简便的样本制备方法相结合。据悉,近期,美国斯坦福大学的一个研究项目开发了一种细菌鉴别技术,该技术结合了表面增强拉曼光谱(SERS)、机器学习和用于样本制备的生物打印方法。这项研究近期以“Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood”为题发表在Nano Letters期刊上。拉曼光谱技术用于细菌鉴别原理示意图据参与该项目的研究人员称,传统培养方法可能需要数小时或数天,作为传统培养方法的替代方法,这种新方法可以快速、廉价、更准确地对许多不同液体进行微生物分析。斯坦福大学Fareeha Safir说:“不仅每种细菌都表现出独特的光谱特征,而且给定样本中几乎所有其他分子或细胞都是如此。样本中的红细胞、白细胞和其他成分都在发送自己的信号,因此很难从其他细胞的噪音中区分微生物的光谱信号。”要解决这个问题,研究小组需要考虑的是如何利用极少量的样本达到最好的细胞分离效果,尽可能多地去除不必要的光谱信号。为了解决这一挑战,该研究借鉴了喷墨打印技术的原理,使用了一种被称为声学微滴喷射(ADE)的技术。在使用声学微滴喷射技术时,超声波将聚焦在流体-空气界面,产生辐射压力,从而使液体表面喷射出液滴,其液滴大小与换能器的频率成反比。从细胞原液中喷射出的图案化液滴未来的即时检测技术该平台的拉曼面利用金纳米棒(GNRs)进行表面增强,将金纳米棒引入样本液体中,通过声学打印操作将细菌和金纳米棒都沉积到镀金载玻片上。声学打印平台和共聚焦拉曼装置示意图该研究团队在其发表的论文中评论道:“这项试验首次展示了利用微观生物实体和纳米颗粒进行的多组分样本的稳定而精确的高频声波打印。”此外,在该项试验中,基于拉曼光谱的分析被应用于大肠杆菌、葡萄球菌,以及小鼠红细胞样本,并使用之前从均匀细胞样本中训练的机器学习算法来鉴别不同类别样本的拉曼光谱特征。利用拉曼光谱信号鉴别用金纳米棒(GNRs)打印的细胞样本基于机器学习算法和拉曼光谱技术鉴别大肠杆菌、葡萄球菌,以及小鼠红细胞样本结果显示,该系统对细胞纯样本的分类准确率超过99%,对细胞混合样本的分类准确率为87%。此外,使用金纳米棒和不使用金纳米棒的检测结果证实,拉曼光谱信号在生物打印样本中会发生表面增强,其放大倍数高达1500倍。根据该研究团队的说法,该方法可以帮助推进基于拉曼光谱的研究、临床诊断和疾病管理,为未来的即时检测系统提供基于流体的生物标志物微创检测。该平台也可以应用于其他液体的检测,比如公共卫生监测领域的饮用水检测。研究团队成员Amr Saleh说:“这是一种创新的解决方案,有可能挽救生命。我们对该方法潜在的商业化机会感到兴奋,这可以帮助重新定义细菌检测和单细胞表征的标准。”
  • ​ 王方军、田瑞军等用高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,中科院大连化学物理研究所研究员王方军团队与南方科技大学教授田瑞军、副教授李鹏飞等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。相关研究成果发表在Cell Chemical Biology上。与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。团队通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位和蛋白质组学规模化序列鉴定。相关论文信息:https://doi.org/10.1016/j.chembiol.2022.01.005
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identification in Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。厦门大学 钟传奇博士 报告题目《Investigation of Signaling Pathway Using Data-Independent Acquisition Proteomics》  研究组希望用质谱鉴定动态相互作用蛋白,而实际上这种蛋白随着时间变化非常快,很难用常规质谱方法做到定量。最近出现的蛋白定量新技术SWATH-MS(DIA的一种)具有可以进行多个样品之间的定量且定量精度很高的优点。DIA与DDA不同之处在于,DIA是把所有的母离子都打碎,而DDA只是随机地选择母离子进行二级分析。虽然SWATH-MS有众多的优点,但是其数据分析是领域内难点。钟传奇博士介绍了其课题组开发的Group-DIA软件,可以同时对SWATH-MS数据进行定性和定量分析。研究者利用SWATH-MS分析TNFR1复合物,以及后续利用Group-DIA进行数据分析,发现了一个TNFR1复合体上的新蛋白。钟传奇博士还在报告中举研究实例介绍了DIA的应用效果,证明了SWATH-MS是在信号通路中鉴定动态蛋白的有效方法。中国科学院遗传与发育生物学研究所 王秀杰博士 报告题目《Ubiquitously Expressed Genes Participate in Cell Specific Functions via Alternative Promoter Usage》  王秀杰博士通过生物信息方法比较了小鼠胚胎干细胞和分化的体细胞的转录组差异,发现104个在胚胎干细胞和体细胞中普遍表达的基因可以产生110个在胚胎干细胞中特异表达的转录本(SATS转录本)。这些SATS转录本在胚胎干细胞中的表达受到Oct4, Sox2,Nanog等关键多能因子的调控,其中61.8%SATS蛋白以不同的ORF编码蛋白。干扰SATS转录本的表达可以影响小鼠胚胎干细胞的多能性水平,提示SATS转录本在决定胚胎干细胞特性方面的重要功能,也表明广谱表达的基因可以通过SATS转录本参与细胞类型特性的功能调节。王秀杰博士还介绍了发生在RNA的6位N原子甲基化修饰m6A修饰)的形成机制研究及对mRNA的稳定性与翻译的影响,RNAm6A修饰也是影响转录组进而导致蛋白质组动态变化的一个重要因素。南方科技大学 田瑞军博士 报告题目《Proteomics toolbox for profiling intercellular signaling》  田瑞军博士研究团队做了很多体系中特定环境细胞-细胞相互作用的研究。也在不断探索如何用尽量少的样品做出更多的功能分析。为此,团队建立了SISPROT样品前处理方法,用于蛋白质组学样品前处理,样品经过SISPROT前处理可直接用质谱进行分析。此方法的优化过的消化时间仅需15min,其与质谱联用在分析10万个细胞耗时22小时,能够定量近90000个肽段,近8000个蛋白。另外,研究者还进行了免疫刺激的两种信号模型的研究。  中国科学院大连化学物理研究所 王方军博士 报告题目《New Chemical Isotope Labeling and Electrospray Ionization Strategies for Intact Proteins Analyses》  整体蛋白质分析可以区分不同蛋白质异构体,但是与Bottom-up相比难度较大,国际上进行相关研究的团队也相对较少。王方军博士研究团队不断探索整体蛋白高效色谱分离和质谱表征新技术新方法,目前对30K以下整体蛋白的分析表征已经有相对完善的解决方案。该研究团队利用浙江好创生物的密闭性可调气氛离子源,消除了三氟乙酸(TFA)的离子抑制效应,同时实现了高效色谱分离和高灵敏度质谱检测,在对大肠杆菌提取蛋白质样品进行分析时有效质谱信号提高了95%。另外,他们以二甲基化同位素标记原理对整体蛋白进行高效同位素标记和定量分析,目前已经能够在一次实验中实现约3000个蛋白质异构体的准确定量分析。中国科学院大连化学物理研究所 赵群博士 报告题目《Ionic Liquid Based Sample Preparation Strategy for Efficient Proteome Analysis》  膜蛋白在细胞内外的物质运输、信号传导等过程发挥着重要生物学功能。但由于具有组成复杂、疏水性强和丰度低等特点,不易分析。目前很多研究者致力于探索能更有效分析膜蛋白的溶解体系。膜蛋白溶解体系需要具备强溶解能力、较好的酶活兼容性和容易去除等特点。该研究组发现了离子液体体系非常适合膜蛋白分析,在探讨了离子液体结构对膜蛋白质的增溶机理之后,筛选出C12离子液体,并与目前主流增溶体系(SDS、尿素、Rapigest、SDC等)分析效果进行了比较。发现相同浓度下的C12比SDS有更加优秀的溶解能力,更保持了更好的酶活兼容性。研究组在C12离子液体基础上进行HeLa细胞膜蛋白的蛋白组学分析,鉴定出12234个蛋白,包含3785个膜蛋白和1916个跨膜蛋白质。研究者还建立了以C12离子液体为基础的i-FASP前处理方法,能够有效扩大蛋白质组鉴定及定量的覆盖度、准确度和精密度。上海交通大学陶生策博士报告题目《Protein Microarrays for Systems Biology: Construction, Application and Technology Development》  陶生策和他的团队长期致力于蛋白质芯片技术的研究和应用。蛋白质芯片具有通量高、样品用量少、高灵敏度等优势,目前该实验室有酵母、大肠杆菌和人类的蛋白质芯片。陶生策博士以结核菌蛋白芯片为例介绍了高密度蛋白芯片的构建,目前全国很多机构都在使用这种芯片。该研究组将蛋白质芯片应用于砷蛋白的鉴定,发现了360个ATO,为指导ATO在肿瘤治疗上的应用提供指引,建立的流程也可用于其他药物靶标蛋白的全局性发现。研究者利用蛋白芯片寻找胃癌的生物标记物,研究过程中采用1400个医学样品,找到了7个胃癌生物标质物。  尹沛源 中国科学院大连化学物理研究所 报告题目《Liquid Chromatography-Mass Spectrometry based Metabolomics Strategies Towards Clinical Applications》  目前的代谢组学研究正在从样品走向临床诊断应用。针对LC/MS代谢组学在临床中的应用难题,大连化物所代谢组学中心建立完善了新一代的代谢组分析技术,即样本导向的拟靶向方法。该分析法具有线性范围比较宽,重复性好,数据处理简单等优点,适用于大规模临床样本的研究。围绕拟靶向代谢组技术,研究组开发了系列数据处理软件,实现自动化的离子融合,离子对筛选等过程,简化了拟靶向方法建立的流程,使之更易于推广。同时,研究组发展了QC校正算法,使得拟靶向代谢组方法能够一次性实现多批次样本分析,每批次样本容量近300例,一次性完成千例以上样本的分析,同时多批次样本间数据稳定性,重复性均符合代谢组研究需要,为大批量代谢组临床研究提供了稳定可靠的工具。  ThermoFisher Scientific(赛默飞世尔科技)李静博士 报告题目《Orbitrap based Clinical Proteomics for Precision Medicine and Translational Research》  本报告中李静围绕如何实现和推动蛋白质组学的临床转化与应用这一热点问题进行了综述。每年文献报道的通过蛋白质组学发现的潜在癌症标志物均超过千种,但是通过最终验证、审批、并用于临床的仅仅只有卵巢癌标志物OVA1一个。为了跨越蛋白质组学从研究到临床的巨大鸿沟,多个实验室都开始致力于简单易用、高自动化、高重复性的蛋白质组分析流程的建立,比如Matthias Mann、Hanno Steen等研究组就分别针对血浆、唾液和尿液临床样本建立了快速的蛋白质组分析流程,为蛋白质组学临床转化指明方向。同时,在下游临床检测方面,李静介绍了美国针对临床检验新技术采用的兼顾监管和鼓励创新的LDT模式,以及一系列基于质谱检测的生物标志物LDT项目,包括Xpresys Lung、TG等,并针对生物标志物临床检测,指出了质谱取代免疫学方法的四个方向,全面展示了蛋白质组学和质谱技术的临床应用潜力。中国科学院计算技术研究所副研究员孙瑞祥致闭幕辞  在为期两天的26位邀请嘉宾的精彩报告之后,中科院计算所的孙瑞祥博士为本届研讨会致闭幕辞。孙瑞祥博士首先代表所有参会者感谢中科院大连化物所张丽华老师团队为会议提供的精心安排与服务。孙瑞祥博士将会议的简短开幕和闭幕仪式比作会议报告的“假阳性时间”,本届会议的“FDR(错误检出率)”极低,CNCP今后也将延续这一风格。另外,孙瑞祥博士还表示,第五届CNCP计划在2018年的下半年召开,并向大家发出报告嘉宾推荐邀请。最后,孙瑞祥博士祝愿我国的科研人员在国际计算蛋白组学领域能做出更出色的成绩。编辑:郭浩楠
  • 沃特世将在WCBP推出业内首台蛋白质、多肽、多聚糖分析平台
    1月28日,沃特世公司(NYSE:WAT)在2013年生物精神病学世界大会(WCBP 2013)专题报告会上再次强调了他们将推进生物治疗表征技术的承诺。更具体地说,沃特世在当天推出了一款扩展的使用UNIFI的生物制药解决方案平台,新的ACQUITY 平台性能卓越,可利用 LC (UPLC)CSH130 C18 和 XSelect™ HPLC CSH130 C18 色谱柱分析肽图并可运用三GlycoWorks™ 试剂盒进行多聚糖标记和样品制备。   这些创新表明沃特世持续专注于为正在研发生物治疗药物和生物仿制药物的科研人员及相关的合作实验室或机构开发有针对性的解决方案。这些新产品将进一步促进常规化学疗法的分析,特别是除精细蛋白和多肽水平结构分析外的糖蛋白的多聚糖修饰成分分析。在整个研发制造过程中运用更快、更精确的糖基化知识,生物制药企业能够更大程度地获得分子水平上的关键性质量控制。这也是达到更好监管生物治疗药物安全、有效这一目标的内在需求所要求的。  沃特世集成UNIFI的生物制药解决方案平台  该生物制药解决方案平台汇集了HPLC/MS表征技术和UNIFI的科学信息系统,是第一个可进行完整的蛋白质质量分析,肽图绘制和常规生物分离的平台。今天,沃特世扩展的解决方案已可支持一个网络工作组实验室中的混合四级杆飞行时间质谱(Q-TOF)和光学检测仪器的运行。该UNIFI的部署能力基于系统可指导生物制药公司调节或不调节实验室环境,并在整个生产和质量体系控制的全程灵活地采用高分辨率的UPLC和高性能质谱进行生物分离和分析。  最新发行的多聚糖应用工作手册扩展了该平台的功能,可通过荧光检测器支持常规的多聚糖检测和分析。结合高性能UPLC的HILIC(亲水作用色谱法)分离,沃特世的校准标准物质和试剂,以及NIBRT/沃特世 GlycoBase 3+ UPLC 多聚糖单元参考数据库可对多聚糖进行定性、定量和定型。  爱尔兰国家生物处理研究与培训学院(NIBRT)教授Pauline Rudd率领的研究小组开发的GlycoBase 3+ 数据库是世界首个多聚糖色谱保留值的资料库,采用葡萄糖校准单元表示,涵盖了与现代生物治疗糖蛋白相关的多种不同结构的多聚糖类型。  当前基于UNIFI的生物制药解决方案平台具有的特点是:  ACQUITY UPLC H-Class和H-Class生物系统具有生物惰性流路并附带自动混合的四元溶剂处理技术,在执行高分辨率的生物分离时具有很大的灵活性   沃特世的肽、蛋白质和多聚糖色谱柱分离技术,利用生物分子的特性设计选择性并通过QC测试来确保达到预期结果   沃特世提供的生物制药的分析标准物质和试剂确保了SEC(尺寸排阻色谱法)及多聚糖分离校准系统、系统整体质量的检查标准、肽图和释放多聚糖流程的准确性   Xevo G2-S Q-T质谱仪,一款高灵敏度、定性定量精确的台式质谱系统配备了沃特世专利的StepWave™ 离子光学技术,一种独特的离轴离子源技术,可为质谱提供顶级的灵敏度和优良的重现性   UNIFI科学信息系统,一种交互、工作流驱动的数据平台可进行灵活的仪器控制,先进的数据处理及出具综合性报告,通过GxP的实验室兼容性可实现工作站内的常规部署或工作组的实验室配置   GlycoBase 3+数据库,史无前例的色谱保留位置资料库记录了与一系列生物治疗药物相关联的以葡萄糖为单元的多聚糖结构。
  • 五分钟,芯片“抓”出食物致病菌
    一分钟,就能检测出牛奶中到底含多少真正的蛋白质 五分钟不到,就能检测出食品中的致病菌含量是否超过安全“警戒线”!昨日下午,在中科院合肥智能机械研究所,记者见到了刚问世的“牛奶蛋白质分析仪”和“食品安全快速检测仪”俩兄弟,研究人员介绍说,别看它们外表朴实、个头也不大,未来,它们将携手在食品安全领域发挥无穷的潜力!  检测牛奶“真蛋白”一分钟可出结果  牛奶中的蛋白质含量是衡量其营养价值的一项重要指标,而牛奶的蛋白质含量中,还分“真蛋白”和“假蛋白”。  “目前,牛奶中蛋白质含量测定的国家标准是‘凯式定氮法’,这个方法不能直接检测牛奶中的蛋白质成分,而是通过测总氮含量来推算蛋白质含量,这就有了非法添加三聚氰胺等非蛋白成分造成蛋白质含量虚高的漏洞。”中科院智能所的余道洋介绍。他负责的攻关项目,研制出一种基于荧光技术的牛奶蛋白含量便携式快速检测仪器。记者看到,小小的样机还没普通微波炉大。十余个牛奶样品倒进比色皿,加入荧光指示剂后,启动机器,不到一分钟时间,自动打印出一份蛋白质含量多少、是否达标的“报告单”。  “检验原理是通过荧光指示剂与液体中的真蛋白质结合,在光的激发下产生强烈的荧光,测试结果不受三聚氰胺、尿素等含氮物质的干扰,并且能通过荧光信号的强弱,反推出真正蛋白质的含量。 ”余道洋说,以后完全可做成同时检测1、2份样品的手持式仪器,常喝牛奶的家庭也可备上一个,随时检验。  食品致病菌是否超标五分钟就能确定  一盘麻婆豆腐里的致病菌是否超标了?用上“食品安全快速检测仪”,5分钟就知道结果。  杨良保博士在中科院合肥智能机械研究所的实验室里介绍,“核心不在机器,在那个只有指甲盖五分之一大小的芯片上! ”在芯片上滴一滴从食品中取样的液体,芯片中的“小抓手”们就能迅速“抓”住食物样品中的致病菌,连接“食品安全快速检测仪”的电脑显示屏上5分钟之内就会初步给出食品是否“安全”的判断。目前,这台快速检测仪器已可实现对正常食品中的副溶血弧菌、金黄色葡萄球菌、沙门氏菌、李斯特氏菌等多种致病菌的检测,稍加改造,还可用于水体中各种重金属离子的检测。 “芯片的研制成本很高,但今后如批量生产,成本会大大降低,一个芯片不过块把钱,能检测的致病菌种类也更多。 ”杨良保说。
  • 沃特世在WCBP2013年会上推出业界首个应用于蛋白质、多肽及寡糖分析的综合平台
    沃特世在WCBP 2013年会上推出业界首个可应用于蛋白质、多肽及寡糖分析的LC/MS综合平台  全新表面带电杂化颗粒色谱柱以及寡糖制备GlycoWorks工具包的推出进一步完善了生物制药平台解决方案  美国华盛顿DC - 2013年1月28日  沃特世公司(NYSE:WAT)今日在WCBP 2013研讨会上再次强调其将加大对推进生物药物表征研究技术的投入。沃特世今日宣布了UNIFI生物制药平台解决方案,用于肽图分析的全新ACQUITY超高效液相色谱(UPLC)CSH130 C18色谱柱和XSelect™ HPLC CSH130 C18色谱柱,以及用于寡糖标记和样品制备的配套GlycoWorks™ 工具包。  上述创新产品表明,沃特世一直致力于为生物创新药物研发公司、生物仿药物研发公司以及相关CRO公司提供具有针对性的解决方案。新推出的产品不但进一步优化了常规生物药物分析技术,而且使对糖蛋白的分析更加深入与便捷。在对糖蛋白的全面分析中,取得详细的蛋白质一级结构仅仅是第一步,还需进行更加全面的修饰寡糖分析。而随着在研发和生产过程中对蛋白糖基化知识越来越深入的认知,生物制药公司对糖基化蛋白药物的结构表征要求也在逐步提高,并且这也是日益严格的监管要求,并最终确保生物药物的安全有效。  沃特世UNIFI生物制药平台解决方案  新一代UNIFI作为以科学数据体系为框架的生物制药解决方案平台,以UPLC/MS数据为基础,可对完整蛋白质、肽图以及寡糖进行分项以及综合分析。而且,在沃特世所提供的拓展解决方案中,能够为网络实验室工作组内的多个四级杆飞行时间(Q-Tof) 质谱和光学检测仪器提供控制、记录及分析支持。配备了UNIFI的系统的生物制药公司能够在整个研发和质量控制机构中都能灵活地完成高分离度UPLC生物分离和高效质谱分析工作。  最新发布的寡糖分析工作流程进一步扩充了平台性能,使其可用于支持应用荧光检测的日常游离寡糖验证和糖谱分析。结合高效UPLC HILIC (亲水作用色谱) 、沃特世提供的校准标准品与试剂、以及NIBRT/沃特世GlycoBase 3+ UPLC 寡糖数据库,不但可使使用单位在寡糖验证、定量及糖谱分析方面信心十足,而且大大提高工作效率。  GlycoBase 3+ 数据库是由爱尔兰国家生物工艺研究培训所(NIBRT)Pauline Rudd教授的科研团队研发,是首个寡糖色谱保留数据库,以多聚葡萄糖校准数据为单位显示,涵盖了现代生物药物糖蛋白的各种寡糖结构。  UNIFI生物制药平台解决方案的特点:ACQUITY UPLC H-Class 和 H-Class Bio系统采用颇具特色的生物惰性材料和Auto-Blend Plus™ 四元溶剂管理技术,为高分离度生物分离的实现提供了可能性 沃特世为多肽、蛋白质和寡糖分离,分别提供适合的色谱柱,良好的质量控制又保证了实验结果的重现性 沃特世分析标准品及试剂覆盖了生物药物分析的众多方向,如SEC(体积排阻色谱技术)分析、游离寡糖的分析校准、完整蛋白质谱分析、肽图分析,以及游离寡糖制备实验流程的系统查验标准品 高灵敏度精准质量兼具定性和定量功能的台式高分辨质谱系统——Xevo G2-S Q-Tof 质谱仪采用了沃特世独有的StepWave™ 技术,该技术是一种独特的离轴离子传输技术,可使质谱分析具备稳定性、重现性和高灵敏度 UNIFI科学信息系统,一个可以灵活控制仪器、处理先进数据并生成复杂报告的交互式工作流程驱动数据的先进平台,符合GxP实验室相关规范,使得例行的工作站或工作组实验室配置部署成为可能 GlycoBase 3+数据库,首个含有游离寡糖色谱保留数据的资料库,以多聚葡萄糖校准数据为单位显示,并涵盖大量生物药物的多种寡糖结构。  沃特世表面带电杂化颗粒技术色谱柱  沃特世全新CSH130颗粒技术色谱柱为UPLC和HPLC在肽图和蛋白组学上的应用提供独特非常好的灵敏度。ACQUITY UPLC CSH130 C18及XSelect™ HPLC CSH130 C18色谱柱为多肽分析纯化、UPLC/LC/LC-MS分析数据带来了全新的标准,目前上市的产品有不同粒径及柱规格。  该色谱柱创新引入沃特世用于表面带电杂化颗粒的合成方法,使得填料颗粒表面均匀带有弱的正电荷。该填料技术使得色谱柱在与弱酸调节剂(如甲酸)共同使用时,表现出更好的分离度与灵敏度——其性能与采用对MS信号抑制性离子对添加剂(如三氟乙酸TFA)的标准LC-MS方法的分离性能相当,质谱信号更加出色。  沃特世UNIFI生物制药平台解决方案在寡糖分析、生物仿制药比较性研究、肽图分析上的应用优势在WCBP 2013的系列海报中进行了展示。  GlycoWorks系列消耗品  沃特世全新推出的GlycoWorks系列消耗品包含用于寡糖分析制备全过程各个步骤所需要的不同试剂和耗材以及配套的实验方法,从样品制备、荧光标记、SPE净化和相应的标准品,到具体操作方法和故障处理指南。  此产品线包含2种GlycoWorks产品,分别用于高通量需求和单次分析,均包含一套荧光标记组件。每套制备组件中包含:配有多种可供选择的糖苷酶,用于游离寡糖富集和净化的HILIC SPE产品,一套配合方法验证、开发和故障排除的标准品。GlycoWorks 2-AB标记组件包含用于游离寡糖标记过程的四种反应试剂。  沃特世支持游离寡糖分析的其它消耗品包括:经过专门质量检测的高分离度UPLC BEH寡糖分析色谱柱,经过2-AB标记的右旋葡聚糖水解物标准品,和一套经过2-AB标记的人IgG寡糖标准品。  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。  ###  Waters、ACQUITY UPLC、UPLC、UltraPerformance LC、XSelect、Xevo、UNIFI、GlycoWorks、AutoBlend Plus、Stepwave、Q-Tof和CSH是沃特世公司商标。  沃特世联系方式  媒体联系  Brian J. Murphy,  公共关系  +1 508-482-2614  brian_j_murphy@waters.com  叶晓晨  电话:021-61562643  xiao_chen_ye@waters.com
  • 完整蛋白质鉴定:基于UNIFI的沃特世生物制药系统
    目的以单克隆抗体完整蛋白的UPLC/MS分析为例,展示UNIFI&trade 科学信息系统这个平台在精确质量测定、数据处理和报告方面的强大功能。背景生物治疗药物得到了越来越多的关注,无论是药监部门还是生物制药企业,有效剖析单克隆抗体(mAb)尤为重要。在同一软件平台中实现数据采集和处理,并同时满足审计追踪的要求,是符合法规要求的重要因素。蛋白质药物会发生翻译后修饰,如糖基化等,由于糖基化在生物系统中有几项重要的功能,因此,准确鉴定抗体药物的糖基化情况是蛋白药物监管指导原则中的一部分。为确保生物药物的安全性和有效性,快速、准确地对糖蛋白进行分析是十分必要的。ACQUITY UPLC H-Class Bio系统的高分辨生物分子分离能力与Xevo G2 Tof 高质量精度的高分辨飞行时间质谱检测技术相结合,为生物药物分析实验室提供了常规分析用的UPLC/MS系统。基于UN IFI的完全一体化分析平台突破了以往采集、处理色谱及质谱数据的局限性,并可自动生成报告。每个mAb分析都会产生一个非常庞大的数据组,需要对各种不同的糖基化修饰进行阐释,以便对最终产品进行综合鉴定。这个步骤会限制其它高通量分析过程的效率,并且很难实现自动化。基于UN IFI的完全一体化分析平台突破了以往采集、处理色谱及质谱数据的局限性,并可自动生成报告。解决方案为解决数据分析耗时长的问题,促进治疗用单克隆抗体(mAb)的数据处理,基于UNIFI的生物制药系统解决方案专门配置了完整蛋白分析方案。这是一个完整的方案:采集了UPLC/MS数据后,以高通量方式进行全自动的数据处理和结果标注,得到的数据结果可在导出后进行数据管理。曲妥珠单抗的UPLC/MS分析以全自动的方式进行,使用0.1%甲酸水溶液和0.1%甲酸乙腈溶液分别用作流动相液A和B。为成功进行色谱分离,色谱柱的温度必须设定至80 ° C。这套完整的生物制药系统解决方案包括如下要素:ACQUITY UPLCH-Class Bio系统,ACQUITY UPLC BEH300 C4 色谱柱和Xevo G2 Tof质谱系统,UNIFI科学信息系统用于数据的采集、处理和报告。完整蛋白分析报告可显示不同的报告内容,用户可以自主设置具体的报告内容:TIC色谱图;原始质谱数据、去卷积处理后的数据和棒状质谱图;及LC/MS数据分析结果的总表(图-1)。该详细视图为在特定质量范围及以本方法设定的参数范围内的去卷积处理后数据。去卷积图谱反映了抗体药物的几个主要的糖型,与葡萄糖残基数量和岩藻糖基化程度对应。另一个报告的格式是表格,该表列出了完整单克隆抗体(mAb)的质量测定结果和不同糖型(图-2)。报告还列出了曲妥珠单抗不同糖型的质谱峰的测量值以及与理论值之间的误差,并列出了TIC色谱图的色谱保留时间。这样一种完整的LC/MS分析方法使用户可灵活运用原始数据和处理后的数据,并进行快速而有效的数据管理。总结本应用通过单克隆抗体(mAb)完整蛋白分析应用展示了基于UNIFI的生物制药系统解决方案的强大功能。现代仪器系统和先进的分析技术突破了生物制药企业以往的限制,能够对其生产过程进行严格的监控。高效而经济的UPLC/MS分析方法,结合UNIFI科学信息系统进行数据处理和报告,不仅可满足法规的要求,还有助于完整蛋白鉴定。UPLC/MS平台可覆盖从详细的蛋白结构鉴定到复杂的数据管理整个过程。
  • 我国开发定量蛋白质组学数据解析软件
    中科院计算所究团队与董梦秋实验室合作,成功开发了定量蛋白质组学数据解析软件,用计算方法排除干扰信号的影响、提高肽段和蛋白质的定量准确度并对每个定量值进行准确性评价。  基于质谱的定量蛋白质组学是现代生物学技术的生长点之一,用于测量复杂生物体系中蛋白质及其翻译后修饰在不同条件下的丰度变化,是研究蛋白质功 能和药物作用机制的重要工具。已有的定量软件往往不能有效排除干扰信号,定量值的计算方法有待完善,而且缺乏准确性评价,致使输出结果&ldquo 鱼龙混杂&rdquo ,引起 的假阳和假阴两方面的困扰都比较严重。  为了更好地解决问题,开发者研究了几百个可疑定量值的原始质谱图和色谱图数据,找原因、攒经验,充分挖掘肽段的质谱、色谱信号特点以及从肽段定量到蛋白 质定量的方法,灵活应用各种组合和统计算法,建立了一整套非常细致的数据分析流程。为了验证软件的性能,董梦秋实验室的同学通过轻重SILAC或 14N/15N标记哺乳动物细胞或细菌,从10:1到1:10按不同比例混合得到14套标准样品,产生了14套测试数据集。 测试结果表明,定量结果的准确性明显超过定量蛋白质组学领域的两个主流软件Census和MaxQuant,主要表现在输出的非数比值数目(即 不能定量的部分)占总比值数目的0.01&ndash 0.5%,远低于Census的MaxQuant的对应比例2.5&ndash 10.7%和 1.8&ndash 2.7%;Census和MaxQuant输出了许多不准确结果,其定量值的标准差是软件的1.3&ndash 2倍;给出了肽段和蛋白质定量比值的置信区 间,而Census和MaxQuant没有准确性评价。目前,该研究工作得到了科技部、基金委、中科院和北京市政府的资助。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 质谱技术帮助科学家发现蛋白质组学重要成果
    最近,来自瑞士和荷兰的科学家,对在22种不同生长条件下大肠杆菌表达的蛋白质,进行了定量和定性分析。确定了超过2300个蛋白质,其中一些处于每个细胞一个副本的平均水平。由此产生的数据集描述了细胞中大多数( 90%)的蛋白质量,对细胞生物学家来说这将是一个宝藏。相关研究结果发表在十二月出版的《Nature Biotechnology》。  为了了解细胞内的基因组信息和它们的生理机能之间的关系,重要的是要评估哪些基因在不同条件下积极参与产生蛋白质。收集这些信息的最直接的方式是,对细胞中存在的蛋白质进行定量测量。  随着技术的进步,最近才使得绝对蛋白质水平的大规模测量成为可能。来自巴塞尔大学和苏黎世大学(瑞士)、格罗宁根大学(荷兰)的科学家们,联手测量在22种不同条件下生长的大肠杆菌中的蛋白质。使用质谱法为基础的蛋白质组学方法,他们不仅确定了存在哪些蛋白质,而且还确定了每个细胞中有多少个副本。  大型数据集  系统生物学教授Matthias Heinemann说,来自大规模数据集的结果,将激励更多新的研究成果,他与巴塞尔大学的Alexander Schmidt一起协调实验。他解释说:“我们成功地分析了这些细胞中百分之90的蛋白质量。我们发现,有超过2300种不同的蛋白质,代表着4300个细菌基因中的超过一半。这使大肠杆菌中绝对定量的蛋白质数量增加了一倍。对于这些蛋白质中的一些,还没有确定其功能。但是,通过研究超过22种不同生长条件下的表达模式,我们现在获得了一个关于‘它们正在做什么’的线索。”  免费索取Life Tech蛋白质组学产品信息  蛋白质有非常不同的表达水平,从每个细胞平均超过100000个副本,到两个、一个甚至更少的水平。Heinemann说:“首先,这表明我们的方法是多么的敏感,但它也会让你想知道,在非常低的水平表达的蛋白质有什么功能,通过纯粹的随机效应,虽然一些基因可能是活跃的(从而随机产生蛋白质),但我们并不排除一个细胞中一个蛋白单拷贝的一种适当功能。毕竟,其他的生物实体——显示为单拷贝(如基因),也具有一种功能,研究还发现了对细菌蛋白质的新翻译后适应性。  新问题  在这篇论文中描述的数据集,正在被其他科学家所使用,并引发了新的令人兴奋的研究调查。作者指出:“我们的数据将作为新研究的参考数据,并已经促成了一些正待出版的研究结果。这个数据集可让科学家们能够提出并回答新的问题。”  对于这项研究,在不同条件下生长的细菌是在格罗宁根大学培养的。样品被运到巴塞尔大学,蛋白质含量(包括膜结合蛋白)是通过质谱分析法分离和分析的。最后,整个团队对这些结果进行了分析。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style="text-align: justify line-height: 1.75em "  詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。/pp style="text-align: center line-height: 1.75em "  span style="color: rgb(0, 112, 192) "strong深入剖析蛋白质组学技术最新进展与应用/strong/span/pp style="text-align: justify line-height: 1.75em "  詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。span style="text-indent: 2em "蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。/span/pp style="text-align: justify line-height: 1.75em "  蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 427px " src="https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title="1111111.png" alt="1111111.png" width="600" height="427" border="0" vspace="0"//pp style="text-align: center line-height: 1.75em "  图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019)/pp style="text-align: justify line-height: 1.75em "  如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 415px " src="https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title="2.png" alt="2.png" width="600" height="415" border="0" vspace="0"//pp style="text-align: center line-height: 1.75em "  图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019)/pp style="text-align: justify line-height: 1.75em "  “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。/pp style="text-align: justify line-height: 1.75em "  最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。/pp style="text-align: center line-height: 1.75em "  span style="color: rgb(0, 112, 192) "strong基于整合组学发现疾病标志物才是精准发展之重/strong/span/pp style="text-align: justify line-height: 1.75em "  1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案/pp style="text-align: justify line-height: 1.75em "  詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子/pp style="text-align: justify line-height: 1.75em "  机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。/pp style="text-align: justify line-height: 1.75em "  我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。/pp style="text-align: justify line-height: 1.75em "  在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。/pp style="text-align: justify line-height: 1.75em "  2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地?/pp style="text-align: justify line-height: 1.75em "  詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。/pp style="text-align: justify line-height: 1.75em "  我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。/pp style="text-align: justify line-height: 1.75em "  3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划/pp style="text-align: justify line-height: 1.75em "  詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。/pp style="text-align: justify line-height: 1.75em "  另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 802px " src="https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title="詹.jpg" alt="詹.jpg" width="600" height="802" border="0" vspace="0"//ppbr//p
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会
    安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议 2011年5月6-9日,亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议在世博之城上海隆重召开。本届会议由&ldquo 亚太地区蛋白质科学联合会(Asia Pacific Protein Association, APPA)和国际蛋白质学会(The Protein Society)主办、中国生化学会蛋白质专业委员会(The Chinese Protein Society)承办。本次会议以&ldquo Proteins and Beyond&rdquo 为主题,诚邀国内外蛋白质组学领域众多顶尖专家学者,围绕业内热点问题成功举行了一次高端学术盛宴,会议议题主要围绕蛋白合成/质控、蛋白翻译后修饰、蛋白相互作用、蛋白工程、蛋白定量、疾病蛋白质组学与药物发现、生物制药等热门领域。 安捷伦公司作为会议的主赞助商以及蛋白质组学领域的重要方案供应商,在本届会议上再次为广大用户呈现其蛋白质组学全面、完备、专业的解决方案。针对蛋白定量这一行业热点课题,安捷伦公司凭借其最新超高灵敏度6490三重四极杆质谱技术、灵活强大的软件功能以及高通量全自动样品前处理技术在这一应用上具有突出及独特的优势。 在5月8日下午的大会学术报告专场,来自安捷伦公司的蛋白质组学应用工程师陶定银博士为在场听众进行了题为《安捷伦6490三重串联四级杆质谱仪在超痕量蛋白定量分析中的应用》的精彩报告:全新一代安捷伦6490三重串联四级杆质谱仪集多种高精技术于一体,与不同流速范围的液相色谱仪&ldquo 无缝&rdquo 匹配,在纳流、微流及常规流速范围内均可提供高灵敏、高重现的超痕量蛋白定量分析结果。配合安捷伦的全自动样品前处理机器人,使用户彻底摆脱繁冗的手工处理,获得重现性优异的分析结果。Agilent 6490创新型串联质谱简介1.概况 2010年5月24日 安捷伦科技公司在美国犹他州盐湖城举行的第58届美国质谱年会上推出了基于iFunnel技术的6490三重四极杆液质联用系统。 iFunnel是一种革命性的大气压离子进样技术,可以在大多数应用上极大提高灵敏度。与旧型号相比,6490系统减少了25%的占地面积,但灵敏度却提高了10倍以上。革新产品6490展示了其尖端应用能力,即检测灵敏度可达到10-21mol(Zeptomol)及ppq级别,这种水平的灵敏度过去只能在昂贵的加速器质谱系统上实现。2.应用价值与意义 6490的尖端性能为富于高灵敏度挑战的分析工作带来的新的成功可能。比如环境领域通常要求灵敏度在ppt级别;制药/生物医药等领域,有时需要做到微小剂量、吸入药物检测和干血斑点分析等等。常规分析中这种高灵敏度也为临床、食品安全和蛋白质/肽定量分析带来了新机遇,而且全面提高了耐受性和样品制备效率。有关安捷伦6490三重四极杆质谱更多信息,请参考:http://www.chem.agilent.com/en-US/Products/Instruments/ms/Pages/6490.aspx有关安捷伦蛋白质组学方案更多信息,请参考:http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 走近大科学工程:国家蛋白质科学中心
    图为蛋白质科学研究(上海)设施核磁共振分析系统。  走近中国大科学工程  生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。  在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。  国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?  为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。  不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。  &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。  可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。  雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。  在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。  围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。  史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。  上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。  要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。  找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。  在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。  高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。  传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。  上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。  &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。  五线六站 透视蛋白质内部结构  蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。  肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。  大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。  在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。  记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。  国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。  &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。  过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。  &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。  核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。  在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。  分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。  离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。  和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。  &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。  为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。  蛋白质研究为药物研发铺路  蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。  一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。  细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。  然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。  上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。  &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。(原标题:探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象)
  • 国家蛋白质科学中心:不容小觑的仪器集群
    【科技日报】探秘蛋白质的&ldquo 前世今生&rdquo &mdash &mdash 国家蛋白质科学中心· 上海(筹)印象图为蛋白质科学研究(上海)设施核磁共振分析系统。  生活中的乌云总是不期而至。一位正值花季的美国女孩,突然被告知患上了一种非常难治的癌症。基因检测结果显示,她所患癌症的亚型发生率极低。  在患同一大类癌症的人群中,只有2%的人所患亚型和她一样。幸运的是,针对这一亚型恰好有一种特效药。经过不到3个月的治疗,她痊愈了。  国家蛋白质科学中心· 上海(筹)主任雷鸣用这个真实的案例,向科技日报记者生动阐释了精准医疗的未来图景。但并非所有的癌症患者都和那位女孩一样幸运。在人类通往精准医疗的道路上,蛋白质科学研究将扮演什么角色?身为国家大科学工程之一的蛋白质科学研究(上海)设施(以下简称&ldquo 上海设施&rdquo )对推进蛋白质科学研究将起到怎样的作用?  为回答这些问题,科技日报记者近日走进国家蛋白质科学中心· 上海(筹)一探究竟。  不容小觑的&ldquo 仪器集群&rdquo   和以往走进的国家大科学工程相比,上海设施没能在视觉上给人造成强大冲击。  &ldquo 我们这里主要是一些体量相对较小的生命科学研究的仪器集群,以至于在立项之初,是否将上海设施列入大科学工程都存在争议。&rdquo 雷鸣说道。  可别小瞧这里的&ldquo 仪器集群&rdquo 。上海设施自2014年5月试运行以来,前来参观的10多位诺贝尔奖得主和其他国际知名专家对设备的先进性纷纷&ldquo 点赞&rdquo 。  雷鸣回忆道,十多年前,我国在蛋白质科学研究领域虽然已取得一批达到国际一流水平的研究成果,但整体上仍落后于国际先进水平。科研基础设施建设滞后,是制约蛋白质科学发展的关键因素。  在科学家们的不懈努力下,蛋白质科学研究设施国家重大科技基础设施项目于2008年被批准立项,成为我国生命科学领域第一个大科学工程项目。蛋白质科学研究设施分为上海和北京两部分,上海设施以建设蛋白质结构解析能力为主。  围绕从生物体的空间尺度和生命过程的时间尺度来研究蛋白质,上海设施构建了由规模化蛋白质制备系统、蛋白质晶体结构分析系统、核磁分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微成像系统、分子影像系统和数据库与计算分析系统组成的9大技术系统,具备规模化蛋白质制备、多尺度结构分析、多层次动态研究、修饰与相互作用分析以及数据库与计算分析5大能力。  史蒂夫· 哈里森是雷鸣在哈佛大学读博士时的导师。参观上海设施后,史蒂夫感觉非常震撼,对雷鸣很年轻就有机会参与如此重大的项目表示赞赏和羡慕。收获羡慕之余,雷鸣多次被问道:&ldquo 在如此先进的科研平台上,你们能做出哪些世界一流的工作来?&rdquo   独一无二的蛋白质&ldquo 智能工厂&rdquo   每一个蛋白质就像一个人一样,有自己的脾气秉性。要把它研究透彻,需要时间。  上世纪六七十年代有句话叫&ldquo one protein,one career&rdquo ,意为一个教授一辈子只能研究透一个蛋白质。&ldquo 我主要研究端粒,从评上教授到现在,也只解析了数十个蛋白质的结构。&rdquo 雷鸣说道。  要摸清蛋白质的&ldquo 脾气&rdquo ,首先是要获取高纯度的蛋白质样品。想见到蛋白质的&ldquo 真身&rdquo ,就必须打破细胞。而细胞一旦被打破,里面90%的蛋白质就同时被破坏掉了,踪迹难觅。  找到目标蛋白质后,保存也是个难题。相对于&ldquo 皮实&rdquo 的基因,蛋白质要&ldquo 娇气&rdquo 得多。记载遗传信息的基因就像是张可以随意摆放的卡片,没有变性的担忧。蛋白质则不同,一旦温度、湿度、光线等环境因素发生变化,就会有变质的风险。  在传统的生物学实验室里,穿着白大褂的科研人员手持移液枪,往装有不同液体的瓶瓶罐罐里添加试剂是常见的场景。在上海设施的规模化蛋白质制备系统里,这一幕正在被自动化的机器操作所取代。  高通量克隆构建实验室的中心区域是一个用玻璃超净间封闭起来的自动化机械操作平台。操作台外有一台集成软件的计算机负责&ldquo 发号施令&rdquo 。科研人员启动预设程序后,白色的机械臂在平台的各个自动化仪器间来回挪动,轻巧地把一个个96孔板放置到指定的板位上。各个自动化仪器的板位分别可执行加液、振荡、离心、清洗等生物实验操作。  传统手工操作,一个人每天最多克隆十几个基因。眼前的这套自动化系统,一天可以克隆960个基因,生产效率相当于一个数百人规模的基因克隆企业。&ldquo 我们希望把自动化概念引入科研中,重复劳动让机器来做,科研人员可以有更多的时间去探索和思考真正的科学问题。&rdquo 规模化蛋白质制备系统主管邓玮告诉记者。  上海设施自主设计和研发应用流程的这套系统,如同&ldquo 智能工厂&rdquo 一般,能独立完成一整套从分子生物学到细胞生物学的全部实验操作。  &ldquo 集成化程度越高的自动化设备,出错的几率就越高。针对完全陌生的样品,我们这套系统的可靠性能达到70%,这已经是一个非常不错的结果了。&rdquo 雷鸣表示。  五线六站 透视蛋白质内部结构  蛋白质并不是由松散的氨基酸随机排列组合而成,每一种天然蛋白质都有自己特定的空间结构。结构决定着蛋白质的功能。  肌红蛋白是哺乳动物心肌和骨骼肌中贮存和分配氧的胞内蛋白质。1960年,英国科学家肯德鲁(John Kendrew)首次用X射线衍射法测定了来自抹香鲸的肌红蛋白的三级结构。这一发现,使他成为1962年诺贝尔化学奖的获得者之一。  大多数人都有医院照X光的体验,X射线衍射法相当于是给结晶后的蛋白质拍X光,拍出的是一幅蛋白质晶体原子尺度的三维结构图。  在建筑外观呈鹦鹉螺形状的上海光源里,有5条光束线和6个专用实验站(五线六站)用于蛋白质科学研究。五线六站包括4个X射线实验站和两个红外光谱实验站,它们构成了上海设施的蛋白质晶体结构分析系统和动态分析系统。  记者来到五线六站时,上海光源处在停光检修期,复合物晶体线站负责人秦文明正在进行设备调试,为第二天的复工做好准备。排成一长溜的设备间和操作间由厚重的屏蔽门把守,机器的轰鸣声给人置身工厂车间的感觉。  国家蛋白质科学中心· 上海(筹)副主任张荣光,是五线六站的负责人。2009年回国之前,他在美国阿贡国家实验室工作近20年。阿贡的APS(先进光子源)是世界上最先进的同步辐射中心之一,采用X射线衍射法在半小时内测定蛋白质晶体结构曾是阿贡的骄傲。在五线六站,这一时间被缩短为几分钟。  &ldquo 我们安装了先进的衍射仪和探测器,收集全套数据最快只需36秒,接着使用自建的软件系统,不到5分钟就能完成对数据的处理和分析,给出蛋白质的三维结构。&rdquo 张荣光表示,五线六站不仅配备了世界一流的硬件设施,在实验方法和自动化上也有了很大程度的改进和提升。  过去,科研人员带着蛋白质晶体样品来到线站做实验非常忙碌。因为不能确定收到的数据是否有用,针对同一个晶体样品,要反复不停收集多套数据,带回去做进一步分析。  &ldquo 现在很快就能看到结果,一次可以带上一批样品来线站做实验,节省了大量的时间和人力。我们的目标是,用户带到线站上来的是晶体,带回去的是蛋白质的结构。&rdquo 张荣光说道。  核磁共振拼搭蛋白质结构&ldquo 积木&rdquo   不是所有的蛋白质在纯化后都能顺利结晶。结晶了的蛋白质也可能由于晶体质量等原因,难以被X射线&ldquo 看清&rdquo 。此外,同步辐射产生的X射线能量很高,小一点的晶体在被它探测时有&ldquo 粉身碎骨&rdquo 的风险。  在晶体学力所不及的领域,同样借助X射线设立的生物小角线站能弥补一二。事实上,溶液状态下的蛋白质表现得更为&ldquo 动态&rdquo 和&ldquo 真实&rdquo 。小角线站负责人李娜介绍,小角散射技术能快速捕捉到溶液状态下蛋白质的瞬时结构。只需要秒量级,甚至毫秒量级的时间,就能看见两个分子是否形成复合物。  分辨率不高是小角散射的不足之处。张荣光进一步解释说,就像从远处看两个人的位置关系一样,能看清他们是靠在一起,但具体是手牵手,还是脚靠脚,就不得而知了。要在溶液状态下看清原子尺度的细节和运动,就要靠核磁系统了。  离开五线六站,记者来到了上海设施的核磁共振实验室。蓝色塑胶地板上,分布着5台白色圆柱状的&ldquo 大家伙&rdquo 。其中,体型最大的900兆核磁共振谱仪是目前国内在使用的最高场强的超导磁体设备之一。为了方便把样品放入仪器顶部,还专门搭建了高约四五米的扶梯。  和光束线站、电镜等设施的直接成像相比,核磁共振扫描得到的是&ldquo 间接&rdquo 信息&mdash &mdash 蛋白质分子里每2个氢原子之间的相对距离,据此勾勒出蛋白质的三维结构。对此,核磁系统技术主管刘志军打了个形象的比方:一个坐着的人,如果能测算出他的头、手、脚等部位两端的距离,就能画出他的大致轮廓。  &ldquo 也可以理解为,核磁共振扫描得到的是一盒子拼插积木,接下来的事情就是把积木一块块地搭建起来,难点就在于不知道这些积木分属于哪个部位,是头还是脚,需要先指认,再通过计算来还原成三维结构。&rdquo 刘志军说。  为了&ldquo 指认&rdquo 方便,刘志军和他的同事们正在构建一个大的数据库。理想状态是,核磁共振扫描溶液状态下的蛋白质后得到的实验信息,可以去数据库中进行对比,如果有类似的&ldquo 片段&rdquo ,就可判断出这块&ldquo 积木&rdquo 属于哪个部位,再进一步去还原。&ldquo 搭积木的效率高低,取决于已知信息的多少,还原蛋白质三维结构也是如此&rdquo 。  蛋白质研究为药物研发铺路  蛋白质(protein)的概念最早由瑞典化学家永斯· 雅各布· 贝采利乌斯在1838年提出。&ldquo protein&rdquo 源自希腊文&ldquo protos&rdquo ,意为&ldquo 第一的,首要的&rdquo 。其时,人们对于蛋白质在机体中的核心作用并不了解。  一直到上个世纪40年代,在美国的教科书里,蛋白质被认为都长着一副橄榄球的模样,为细胞提供黏稠度是它主要甚至唯一的功能。随着DNA(脱氧核糖核酸)双螺旋结构的提出和首个原子尺度的蛋白分子三维结构图的精准呈现,分子生物学时代的大幕开启,人们开始逐渐摸清蛋白质的&ldquo 长相&rdquo 和&ldquo 秉性&rdquo 。  细胞是生命体的基本单位。在构建细胞结构、生物催化、物质传输等方面,蛋白质发挥着重要的作用。生物体新陈代谢几乎离不开的催化剂&mdash &mdash 酶,绝大多数都是蛋白质。  然而,和DNA测序、基因组研究的耳熟能详相比,蛋白质研究似乎略显低调。事实上,蛋白质研究可视作基因研究的姊妹篇。雷鸣以肺癌为例说道,过去肺癌病人都用一种药物治疗,现在看来并不科学。尽管结果都表现为肺癌,但从分子尺度分析,发病机理千差万别。  上游致病的基因多种多样,不同基因组会产生数百种或数千种蛋白质组合,形成不同特质的癌细胞。每一种组合背后的原因也不尽相同,因为基因的表达方式错综复杂,同一个基因在不同条件、时期可能会起到完全不同的作用。如何找到精准的治疗靶点成为棘手的难题。  &ldquo 通过测序能知道多少种基因有病变,分析出主要矛盾是哪个,但基因检测只能用于诊断,给不了治疗的药物,下一步需要借助于蛋白质科学研究,为生物制药提供对症的&lsquo 靶点&rsquo 。在未来,精准医疗有望给每一种不同亚型的癌症患者提供有针对性的药物。&rdquo 雷鸣表示。
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制