哪位大虾有SN/T 1504.3-2005:食品容器、包装用塑料原料第3部分:乙烯聚合物和乙烯-醋酸乙烯酯(EVA)共聚物中丁基-羟基甲苯(BHT)的测定[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法标准,给我传一份,不胜感激!邮箱:sunjw428@126.com
预聚物、调聚物、齐聚物、缩聚物、共聚物、均聚物的概念 1、预聚物聚合度介于单体与最终聚合物之间的一种分子量较低的聚合物,通常指制备最终聚合物前一阶段的聚合物。2、调聚物在聚合反应中,如ktr(链转移速率常数) kp(再引发速率常数),则形成聚合度很小的低聚物,这类反应称做调聚反应,因此这种调聚反应得到的聚合物也称为调聚物。其分子量较低,一般只有二到十个链节,分子的两端是与调聚剂分子分裂部分结合的。如果新自由基活性减弱,则再引发相应减慢,会出现缓聚现象,聚合速率和聚合度都将显著降低。极端的情况是新自由基稳定,难以继续再引发增长,就成为阻聚作用。3、齐聚物又称低聚物。高分子与低分子的区别在于前者分子量很高,通常将分子量高于约1万的称为高分子(polymer),分子量低于约1000的称为低分子。分子量介于高分子和低分子之间的称为低聚物(oligomer,又称齐聚物)。一般高聚物的分子量为104~106,分子量大于这个范围的又称为超高分子量聚合物。但是在行业中,比如PAM,分子量在1500~1800万以上的才称为超高分子量PAM。4、缩聚物生成聚合物时有水或其他简单分子放出的聚合称为缩聚,用这种方法合成的聚合物称为缩聚物。5、共聚物两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。6、均聚物由一种单体聚合而成的聚合物称为均聚物。P.S:英文的“高分子”主要有两个词,即polymer和macromolecule。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指分子量很大的一类化合物,包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
1、预聚物聚合度介于单体与最终聚合物之间的一种分子量较低的聚合物,通常指制备最终聚合物前一阶段的聚合物。2、调聚物在聚合反应中,如ktr(链转移速率常数) kp(再引发速率常数),则形成聚合度很小的低聚物,这类反应称做调聚反应,因此这种调聚反应得到的聚合物也称为调聚物。其分子量较低,一般只有二到十个链节,分子的两端是与调聚剂分子分裂部分结合的。如果新自由基活性减弱,则再引发相应减慢,会出现缓聚现象,聚合速率和聚合度都将显著降低。极端的情况是新自由基稳定,难以继续再引发增长,就成为阻聚作用。3、齐聚物又称低聚物。高分子与低分子的区别在于前者分子量很高,通常将分子量高于约1万的称为高分子(polymer),分子量低于约1000的称为低分子。分子量介于高分子和低分子之间的称为低聚物 (oligomer,又称齐聚物)。一般高聚物的分子量为104~106,分子量大于这个范围的又称为超高分子量聚合物。但是在行业中,比如PAM,分子量在1500~1800万以上的才称为超高分子量PAM。4、缩聚物生成聚合物时有水或其他简单分子放出的聚合称为缩聚,用这种方法合成的聚合物称为缩聚物。5、共聚物两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。6、均聚物由一种单体聚合而成的聚合物称为均聚物。P.S:英文的 “高分子”主要有两个词,即polymer和macromolecule。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指分子量很大的一类化合物,包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
[align=center][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸共聚物[/size][/font][font='times new roman'][size=16px]及其应用[/size][/font][/align] 苯乙烯与马来酸酐的[back=#ffffff]共聚物[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]-[/back][back=#ffffff]马来酸([/back][back=#ffffff]SMA[/back][back=#ffffff])[/back][back=#ffffff]首先由[/back][back=#ffffff]Alfred[/back][back=#ffffff]和[/back][back=#ffffff]Lavin[/back][back=#ffffff]在[/back][back=#ffffff]1945[/back][back=#ffffff]年制[/back][back=#ffffff]备。[/back][back=#ffffff]之后[/back][back=#ffffff],[/back][back=#ffffff]Mayo[/back][back=#ffffff]等提出[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚体系是典型的交替共聚模型[/back][back=#ffffff],[/back][back=#ffffff]具有强吸电子基团的马来酸酐与具有给电子基团[/back][back=#ffffff]的[/back][back=#ffffff]苯乙烯是一对电荷转移复合物,在自由基引发体系中具有很好的交替共聚特征,但是传统的自由基聚合会导致[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的聚合不可控且分子量分布较宽等问题,限制了[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚物[/back][back=#ffffff]的应用,“活性”[/back][back=#ffffff]/[/back][back=#ffffff]可控自由基聚合法为[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的合成提供了解决方案,[/back][back=#ffffff]但是也有着显著区别。[/back][back=#ffffff]对于[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法,马来酸酐会与催化剂中金属离子发生反应,导致催化剂失效,因此只能采取光引发等无金属[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法合成。对于[/back][back=#ffffff]N[/back][back=#ffffff]MP[/back][back=#ffffff]法,由于聚合所需的温度较高,只能得到[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的无规[/back][back=#ffffff]则[/back][back=#ffffff]共聚物。利用[/back][back=#ffffff]R[/back][back=#ffffff]AFT[/back][back=#ffffff]法可以较好地进行共聚,并且可以得到交替共聚物。在实际的聚合反应体系中,苯乙烯与马来酸酐的交替共聚速率远大于苯乙烯的自聚速率,并且马来酸酐的自聚能力很低,因此在苯乙烯过量的情况下,会首先形成[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替共聚物,此后再是苯乙烯的自聚,最终可形成具有[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替和[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]自聚的嵌段共聚物[/back][back=#ffffff]。[/back] [back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的一个重要优势在于马来酸酐中酸酐基团的高反应活性,可以在较温和的条件下发生酯化、酰胺化等反应,因此可以引入新的功能性基团,得到改性的[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]衍生物,这大大拓展了其应用范围[/back][back=#ffffff]。[/back][back=#ffffff]由于[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]及其衍生物具有独特的两亲性和生物相容性,已经被大量应用于膜蛋白增溶提取、药物递送和新材料合成等领域。[/back] [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜蛋白质[/size][/font][/align] 在多细胞生物中,膜蛋白约占总蛋白质的三分之一。它们在细胞间信号传导和跨细胞膜转运中发挥着重要作用。2009年Knowles等首次报道了SMA共聚物可以直接将生物膜溶解成脂质纳米圆盘(SMALPs),既保留了圆盘内的蛋白质,又确保了膜蛋白稳定的天然脂质环境。此后,使用SMA共聚物的无去污剂增溶方法被大量应用于从生物膜中直接提取蛋白质和脂质。 目前为止,研究人员发现对于苯乙烯与马来酸组成比为3:1或2:1的共聚物结构对于膜的溶解最有效。以3:1的SMA为例简要描述其增溶机制,首先在阶段1中,苯乙烯单元穿透到磷脂双分子层的疏水部分且马来酸酐与亲水性头基结合,此时SMA从一开始紧凑且聚集的构象转变为解聚、延伸的构象,SMA已经插入到磷脂双分子层中。在阶段2中,SMA在磷脂双层中达到饱和状态,此时SMALPs形成,并与SMA饱和的磷脂双层共存。在第3阶段,SMA饱和的磷脂双层完全转化为SMALPs,磷脂双层全部溶解,SMA分布在磷脂双层中,过量的SMA附着在双层周围,生物膜实现增溶。 [align=center] [/align][align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物[/size][/font][/align] 随着对SMA增溶机制的深入研究发现,SMA的分子量、化学组成与衍生基团的类型等会影响膜蛋白的提取效率与选择性。此外,由于SMA中马来酸的存在,酸的质子化或者与金属阳离子的络合会导致SMA变得过于疏水而无法维持纳米圆盘的结构,比如Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]的浓度高于10 mM或pH低于6时通常会导致SMA沉淀,从而导致SMALPs分解。为了解决上述问题,研究人员开发了大量SMA衍生物,增加了对于pH与金属阳离子(Cu[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Ca[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font])的耐受性,为膜蛋白与膜脂的研究提供了更多的选择。例如,Brady等发现2-丁氧基乙醇功能化的SMA衍生物可以促进膜蛋白从蓝藻类囊体膜的提取,而未功能化的SMA基本上是无效的,且较长的疏水性烷氧基乙氧基化物侧链可以提高增溶效率。Burridge等同时合成了SMA-Glu/AE/Neut/Pos四种衍生物,所有的SMA衍生物都能够与以棕榈酰油酰磷脂酰胆碱制备的脂质体反应,形成不同尺寸的SMALPs,都显示出稳定的物理特性,在较宽pH范围和高达100 mM Mg[font='times new roman'][sup][size=16px]2+[/size][/sup][/font]下也可以发挥作用。Lindhoud等通过2-氨基乙硫醇对SMA的部分衍生化,合成了SMA-SH,其可以溶解生物膜,同时SMA-SH中的巯基基团可以与其它活性基团进行衍生化得到新的功能化SMA衍生物,进而实现膜蛋白的选择性提取与纯化,为SMA的应用提供了新思路。 除了对SMA进行衍生化用于提高对膜蛋白的提取效率与选择性之外,部分研究人员也探索了SMA共聚物本身的性质,比如苯乙烯与马来酸酐的比例、链的长度与化学组成分布等,以提高形成SMALPs的能力与稳定性。例如,Cunningham等报道了一种迭代RAFT聚合法合成了具有窄分子量分布与化学组成分布的SMA共聚物。在深入研究之后发现分子量分布与化学组成是影响膜增溶的两个主要因素,宽分子量分布的SMA共聚物,往往具有较高的链长,影响SMA的活性。事实上,较短链长的SMA更有利于SMALPs的形成,因为长链SMA会导致聚合物自身的缠绕,此外长链会同时参与多个SMALPs的形成,进一步影响增溶效率。 [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜脂[/size][/font][/align] SMA及其衍生物已经广泛应用于膜蛋白的提取与研究。事实上,SMALPs也是用于研究蛋白质周围局部脂质环境的优良体系,但是相关的报道较膜蛋白要少。 Juarez等[font='times new roman'][sup][size=16px][95][/size][/sup][/font]用SMA从两种菌株(野生型N2和细菌抗性菌株agmo-1)中提取脂质,然后通过薄层色谱法和质谱法进行表征,发现从细菌抗性菌株agmo-1中提取的脂质含有醚连接的(O-烷基链)脂质,与仅含有酯连接的(O-酰基)脂质的野生型N2菌株相反。这与细菌抗性菌株agmo-1中功能性烷基甘油单加氧酶(AGMO)的丧失保持一致。此外,与传统的脂质提取方法(需要有机溶剂的方法)相比,SMA可用于生物活体中脂质的提取而不影响其活性,证明了SMA在脂质组学的研究中具有良好潜力。 Rehan等采用电喷雾离子化质谱(ESI-MS)法分析了由SMA提取的人体平衡核苷转运蛋白-1(hENT1)中的脂质组成,因为hENT1是一种需要脂质膜来维持其结构和功能的蛋白质,其周围脂质双层的组成对其活性和稳定性至关重要。分析结果发现,每个hENT1-SMALPs中含有16个磷脂酰胆碱(PC)和2个磷脂酰乙醇胺(PE)脂质分子。除此之外,研究发现使用SMA比使用洗涤剂溶解的hENT1更加稳定。
表征共聚物的分子量及分子量分布通常要用到GPC,但是我是做接枝共聚物的,聚合物的结构与PS标样相差很大。因此导致做出来的数据很难说清楚其物理意义。因此恳请大家来谈一谈GPC表征接枝共聚物的优劣,改进方法以及替代方法等。热切期待中.......................
是几个Tg还是说几个熔点,或其他的。如何说明我合成的聚合物就是嵌段成功了呢?主要是用于区别于无规共聚物或共混物
如何用DSC区别乙丙共聚物与聚乙烯/聚丙烯共混物
[em0706] 请教熟手:我是新手,想学习凝胶色谱,请指点。1目前单位分析的对象是一系列丙烯酸共聚物(分子量6000左右),制作样品的方案是:第一步:0.1克左右,用丁酮溶解,电热板烘干(不明白这一步的意义);第二步,用流动相(四氢呋喃)按100倍稀释,然后进样60UL.请说明,谢谢。1如果测试笨乙烯试样应该怎样配置样品。谢谢。(窄分布标样是苯乙烯)
请问嵌段共聚物用核磁如何表征?
共聚时应该会有新的吸收峰出现,那么原有的吸收峰的位置是否会发生移动?比如丙烯酰胺和丙烯酸共聚物的红外光谱中属于丙烯酰胺单元的吸收峰和丙烯酰胺均聚物的红外光谱中的相应吸收峰位置是否重合? 如果不重合,那么是否可以通过吸收峰位置的改变说明原有的聚合物链上出现了别的基团? 不好意思!我是个外行,问的问题可能有点幼稚,希望大家多多指点。
甲醛苯胺共聚物中的苯胺和甲醛在红外光谱上油特征峰吗?能否进行定量?
reach中的甲醛苯胺共聚物如何进行测试?
接枝共聚物自组装成球状结构,可通过核磁来确认核和壳的结构吗?如何操作可以得到比较可靠信息呢?
[em0812] 拜托大家,有谁知道丙烯共聚物的一些表征方法(除了IR、DSC、NMR、TREF、SM、GPC、X-ray外),这些在我们实验室做不了,能不能有一些简单点的,例如用正庚烷萃取测等规度,二甲苯可溶物的测定。
我作了一个小实验。利用一种共聚物经过挤出成棒材,植入小耗子的皮下,想观察一下材料的降解情况。在几个固定点取出后测试了DSC,结果发现,熔点逐渐增加,玻璃化温度在逐渐下降。这种情况一般如何解释?通常是哪些原因造成的?在最后一个取出点的时候,其熔点比原材料的熔点还要高(高1℃左右),当然也可以认为是与原材料是一样的。
最近扩项,按照HJ/T 39-1999《 固定污染源排气中氯苯类的测定方法》——无水乙醇洗脱—气相色谱法,对于氯苯类的采样,需要一种很奇特的富集剂。标准原文如下:5.13 富集剂:二乙烯苯与乙基苯乙烯共聚物类多孔高分子小球型载体,比表面积约400㎡/g,颗粒度0.45-0.9mm。事先在脂肪提取器中用无水乙醇(5.1)处理8个小时。晾干后于80℃烘8h,备用采样用的富集柱:于40mm×5mm(内径)的硬质玻璃柱中,填装0.5g富集剂(5.13)并于两段塞少量玻璃棉,或视样品浓度,适当增加柱长度。
[table=100%][tr][td][align=center][table=100%][tr][td=2,1][align=center][b]小核磁(台式核磁)研究共聚物界面相容性([url=http://www.niumag.com/vtmr.html]相关仪器[/url])[/b][/align][/td][/tr][tr][td=2,1][color=#595757]小核磁(台式核磁)可以提供全面的科研解决方案,适用对象涵盖从橡胶等弹性体 材料到生物领域的膜材料和纳米材料等多种物质。可以利用[b]小核磁(台式核磁)研究共聚物界面相容性[/b]。小核磁(台式核磁)不仅仅提供单个的检测值,无损、快速、便捷的分析过程为工艺改进、过程研究等提供全程、长时间的在线监测。[/color][/td][/tr][tr][td=2,1][align=left][b][color=#595757]以下为用小核磁(台式核磁)研究共聚物界面相容性的部分相关案例[/color][/b][/align][/td][/tr][tr][td=2,1][align=center][img=,329,237]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300917594952_7763_1423_3.jpg!w329x237.jpg[/img][/align][/td][/tr][tr][td=2,1][align=center][b][color=#595757]图一.与添加剂结合后T2弛豫图谱[/color][/b][/align][/td][/tr][tr][td=2,1][align=center][img=,333,236]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300918101302_9239_1423_3.jpg!w333x236.jpg[/img][/align][/td][/tr][tr][td=2,1][align=center][b][color=#595757]图二.与不同添加剂结合后样品的T22弛豫时间[/color][/b][/align][/td][/tr][tr][td=2,1][align=left][b][color=#595757]在高分子材料领域,小核磁(台式核磁)可为您提供以下科研方案[/color][/b][/align][/td][/tr][tr][td=2,1][color=#595757] 1)评价交联聚合体(尤其是橡胶,橡胶产品)的交联信息; 2)评价交联的聚合体(尤其是橡胶,橡胶产品)的物性信息 3)使用过的聚合体材料老化过程的品质鉴定; 4)基于橡胶的硫化,处理和生产条件优化的研究; 5)固体,半硬的聚合体,凝胶体,乳状液和液体的分子活动性研究 6)固体基质中水分和水含量的成像和测定(例如:环氧树脂和半导体器材 7)环氧树脂和橡胶的硫化过程中硫化状态、粘度和过程的探测 8)样品中水或溶液粘合性和活动性的研究 9)聚合物中增塑剂或橡胶含量的测定 10)共混物或共聚物中橡胶含量测定 11)共聚物相对含量测定 12)橡胶胶乳中的固体含量测定 13)临界水及水合作用的研究 14)流变学的的研究,如粘性、密度、及材料的稳定性[/color][/td][/tr][tr][td=2,1][align=left][color=#2778be]使用仪器:[url=http://www.niumag.com/vtmr.html]VTMR20-010V-I核磁共振交联密度成像分析仪[/url][/color][/align][/td][/tr][tr][td=2,1][color=#595757]纽迈专注于“低场核磁共振”技术及应用推广、具备强大的研发能力、完备的生产、服务和成熟的运营管理体系。公司自主开发多款核磁共振分析仪器并已获得多项国家奖项和资质认证,产品广泛应用于农业食品、能源勘探、高分子材料、纺织工业、生命科学等行业领域,获得业界一致认可。[/color][/td][/tr][/table][/align][/td][/tr][/table]
有机硅/聚氨酯共聚物的制备研究与应用【作者中文名】 窦建芝 陈煜 【文献出处】 化工新型材料 2008年 03期
求助:有一样品含有“环氧乙烷和环氧丙烷的共聚物”,不知该类化合物能否进LCMS系统呢?谢谢!
嵌段共聚物在氘带试剂中只有一段溶解,另一端不溶,此时溶解部分的NMR谱图准确吗?
哪位大虾有【DIN EN ISO 1264-1997】 塑料.氯乙烯的均聚物和共聚物树脂.水萃物的pH值测定这个标准?谁发个上来啊!3Q啦!
这个是H NMR 图, 溶剂是TCB, 135度, 样品是丙烯与POSS的共聚物, 我想知道POSS 在样品中的含量,所以测了H NMR,但是不知道各个峰都是谁的,希望高手来帮小弟解析一下.谢谢~~~POSS是 Polyhedral oligomerix silsesquioxane.的简写.聚合后的图片见下帖(因为我不太会发帖,所以请原谅)[img]http://ng1.17img.cn/bbsfiles/images/2006/04/200604131027_16711_1862693_3.jpg[/img]
请教各位专家一个问题: 聚偏氟乙烯和聚偏氟乙烯-六氟丙烯共聚物通过红外光谱能区分吗?不知道有没有标准谱图帮解释一下,谢谢!
该样品为PCL与PB的嵌段共聚物,PCL的重量百分数为38%。下图给出的是一段升降温的DSC曲线图,奇怪的是降温过程没有出现明显的结晶特征峰,反倒是在60度左右出现了一个小的放热胞,该放热胞不可能是PCL结晶所致,是不是相转变过程导致的呢?还是其它原因所致。请各位同仁指点!http://ng1.17img.cn/bbsfiles/images/2010/09/201009011430_240356_2034213_3.jpg
共聚物氢谱为什么不符合n+1规律
[align=left][font='times new roman'][size=20px]苯乙烯[/size][/font][font='times new roman'][size=20px]-[/size][/font][font='times new roman'][size=20px]马来酸酐共聚物[/size][/font][font='times new roman'][size=20px]作用及合成[/size][/font][/align][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物([/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]是一种[/size][/font][font='times new roman'][size=16px]两亲性[/size][/font][font='times new roman'][size=16px]交替共聚物,用途广泛,多用[/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]化工材料领域作为辅助材料修饰在某种材料表面[/size][/font][font='times new roman'][size=16px]或与其它材料共混[/size][/font][font='times new roman'][size=16px]以改变其物理化学性质[/size][/font][font='times new roman'][size=16px]。例如,[/size][/font][font='times new roman'][size=16px]聚氯乙烯[/size][/font][font='times new roman'][size=16px]超滤膜与[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]共混后可以[/size][/font][font='times new roman'][size=16px]调整膜的微观结构[/size][/font][font='times new roman'][size=16px],并[/size][/font][font='times new roman'][size=16px]显著[/size][/font][font='times new roman'][size=16px]提高了[/size][/font][font='times new roman'][size=16px]膜的[/size][/font][font='times new roman'][size=16px]孔隙率[/size][/font][font='times new roman'][size=16px],并且[/size][/font][font='times new roman'][size=16px]复合膜表面存在完整的酸酐基团,[/size][/font][font='times new roman'][size=16px]增强了膜的[/size][/font][font='times new roman'][size=16px]渗透性[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]2009[/size][/font][font='times new roman'][size=16px]年,[/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px]首次[/size][/font][font='times new roman'][size=16px]被报道用于提取膜蛋白,[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以与细胞膜结合,将其溶解为“纳米圆盘”,也被称为[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]脂质粒([/size][/font][font='times new roman'][size=16px]SMALP[/size][/font][font='times new roman'][size=16px])。[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]磷脂双[/size][/font][font='times new roman'][size=16px]分子层相互作用围绕在圆盘外侧,膜蛋白则被包裹在“纳米圆盘”中央,如图[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]所示。[/size][/font][align=center] [img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158447807_3006_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1[/font][font='times new roman'] SMALP[/font][font='times new roman']示意图[/font][/align][font='times new roman'][size=16px]膜蛋白提取常用的洗涤剂在分离膜蛋白的同时往往会破坏膜蛋白周围的脂质环境,从而影响蛋白质的活性,而[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以插入膜蛋白质周围的[/size][/font][font='times new roman'][size=16px]磷脂双[/size][/font][font='times new roman'][size=16px]分子层中,与磷脂发生相互作用包裹住膜蛋白质(图[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])。因此,其溶解膜蛋白质的同时不破坏其周围的脂质结构,使得膜蛋白质处于一个接近生理环境的状态下,从而使膜蛋白质最大程度地保持活性。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158453285_8933_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']2[/font][font='times new roman'] SMA[/font][font='times new roman']增溶膜蛋白质[/font][font='times new roman'][sup][size=13px][49][/size][/sup][/font][/align][font='times new roman'][size=16px]近年来,为满足不同的需求,研究人员开发了一系列[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物。最简单的便是通过水解反应将[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]中的马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团水解为马来酸结构。目前最常见的修饰方式是采用不同的开环试剂对聚合物中的马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团进行开环修饰,该反应主要包含酰化和酯化反应,目前文献报道的开环试剂主是带有[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]NH[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]或[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]OH[/size][/font][font='times new roman'][size=16px]基团[/size][/font][font='times new roman'][size=16px]。此外,[/size][/font][font='times new roman'][size=16px]将马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团[/size][/font][font='times new roman'][size=16px]换做马来酰亚胺[/size][/font][font='times new roman'][size=16px]基团或者[/size][/font][font='times new roman'][size=16px]将共聚物中的苯乙烯换做其[/size][/font][font='times new roman'][size=16px]它[/size][/font][font='times new roman'][size=16px]烯烃单体[/size][/font][font='times new roman'][size=16px]也可用于制备[/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px]衍生物,如[/size][/font][font='times new roman'][size=16px]二异丁烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物[/size][/font][font='times new roman'][size=16px]和乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物。最近的研究也报道了先对苯乙烯和马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]两种单体进行改性再聚合的修饰方式。几种典型的[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物如图[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]所示。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158457165_9035_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']3[/font][font='times new roman'] SMA[/font][font='times new roman']及其衍生物示意图[/font][/align][align=center][font='times new roman']Fig.[/font][font='times new roman']3[/font][font='times new roman'] Schematic diagram of SMA and its derivatives[/font][/align][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]的合成方法有很多种,近年来被报道使用最多的是可控自由基聚合反应,其中以可逆加成[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]断裂链转移聚合([/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][size=16px]AFT[/size][/font][font='times new roman'][size=16px])最为常见(图[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])。可控自由基聚合反应生成的[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以控制聚合物链的长度,分子设计能力强。但由于可控自由基聚合对反应条件要求较高且引发剂价格昂贵,因此并未得到广泛推广。传统自由基聚合反应流程简单,试剂廉价易得,[/size][/font][font='times new roman'][size=16px]通常以过氧化物[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]过氧化二苯甲酰[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]过氧化二异丙苯[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]和偶氮[/size][/font][font='times new roman'][size=16px]类化[/size][/font][font='times new roman'][size=16px]合物[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]偶氮二异丁腈[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]偶氮二异庚[/size][/font][font='times new roman'][size=16px]腈[/size][/font][font='times new roman'][size=16px])为[/size][/font][font='times new roman'][size=16px]引[/size][/font][font='times new roman'][size=16px]发剂[/size][/font][font='times new roman'][size=16px]进行反应[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]是目前制备[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]较为常见的方法(图[/size][/font][font='times new roman'][size=16px]1-11[/size][/font][font='times new roman'][size=16px])。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158459230_7118_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']4[/font][font='times new roman'] RATF[/font][font='times new roman']法合成[/font][font='times new roman']S[/font][font='times new roman']MA[/font][font='times new roman']然后水解成聚(苯乙烯[/font][font='times new roman']-[/font][font='times new roman']共马来酸)[/font][font='times new roman'][sup][size=13px][71][/size][/sup][/font][/align][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman']图[/font][font='times new roman']5[/font][font='times new roman'] [/font][font='times new roman']自由基聚合法合成[/font][font='times new roman']SMA[/font][font='times new roman']并对其进行氨解改性[/font][font='times new roman'][sup][size=13px][75][/size][/sup][/font][/align]
近阶段运用国标方法测定氯乙烯-乙酸乙烯酯共聚物中乙酸乙烯酯含量时,发现空白值小于样品测定值,而计算公式中空白值是大于样品测定值的,不知是否有老师做过该方面工作,愿能探讨,谢谢!
[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103304][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定MADQUAT/AM共聚物组成和竞聚率[/url]
St-AA-MAH 三元共聚物的合成及其在厌氧胶中的应用作者:富丹, 傅相锴, 邹旷东, 龚永锋 - 出处:西南师范大学学报: 自然科学版, 2006谢谢
哪位朋友有ASTM D 5576-2000 用付里叶变换红外光谱(FT-IR)法测定聚烯烃和聚烯烃共聚物结构实体的标准实施规程