当前位置: 仪器信息网 > 行业主题 > >

吲哚四氟硼酸盐

仪器信息网吲哚四氟硼酸盐专题为您提供2024年最新吲哚四氟硼酸盐价格报价、厂家品牌的相关信息, 包括吲哚四氟硼酸盐参数、型号等,不管是国产,还是进口品牌的吲哚四氟硼酸盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吲哚四氟硼酸盐相关的耗材配件、试剂标物,还有吲哚四氟硼酸盐相关的最新资讯、资料,以及吲哚四氟硼酸盐相关的解决方案。

吲哚四氟硼酸盐相关的资讯

  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。  该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。  其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。  然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。  RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。  王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。  有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。  有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。  在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。  表格一 拟议的统一分类和标签以及物质使用范例。物质名称EC号CAS号拟议统一分类和标签使用范例环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮218-499-02164-08-1对水生环境有危害对水生环境的危害未分类作为一种除草剂硼酸233-139-210043-35-3生殖毒性硼酸被用于许多行业和专业应用,被添加在消费品中。硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。  *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。 今天关于新标准的技术解析,您都Get到了吗? 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
  • 两项光学晶体国家标准发布实施
    据中科院网站消息,由中科院福建物构所、福建光电子材料工程技术研究中心和福建福晶科技股份有限公司联合起草的《硼酸盐非线性光学单晶元件通用技术条件(GB/T 22452-2008)》、《硼酸盐非线性光学单晶元件质量测试方法(GB/T 22453-2008)》两项标准,日前已获批,将于今年4月1日开始实施。   据悉,国内外目前尚无与硼酸盐非线性光学单晶元件相关的技术标准。这两项技术标准的实施将有助于提升元件的制备加工和测试的技术手段及检测水平,保证产品质量的一致性,控制产品成本,提高我国非线性晶体元件行业的整体技术水平。
  • 福建物构所制订的2项光学晶体国家标准发布
    由中科院福建物构所、福建光电子材料工程技术研究中心和福建福晶科技股份有限公司联合起草的“硼酸盐非线性光学单晶元件通用技术条件(GB/T 22452-2008)”、“硼酸盐非线性光学单晶元件质量测试方法(GB/T 22453-2008)”两项标准,日前已由中华人民共和国国家标准委员会批准实施,将于今年4月1日开始实施。据悉,国内外目前尚无与硼酸盐非线性光学单晶元件相关的技术标准。这两项技术标准的实施将有助于提升元件的制备加工和测试的技术手段及检测水平,保证产品质量的一致性,控制产品成本,保护我国的知识产权,提高我国非线性晶体元件行业的整体技术水平。
  • 国标委发布3项牙膏测定标准 涉及HPLC、ICP-MS和ICP-AES
    p style="margin-bottom: 15px "  近日,国家标准委发布2020年第8号中国国家标准公告,其中发布了3项与牙膏成分测定有关的标准,涉及span style="color: rgb(49, 133, 155) "HPLC法、ICP-MS法和ICP-AES法/span。新标准将在span style="color: rgb(255, 0, 0) "2020年11月1日/span正式实施。由中国轻工业联合会主管,归口单位是全国口腔护理用品标准化技术委员会(SAC/TC 492)。/pp style="text-align: center margin-bottom: 5px "img style="max-width: 100% max-height: 100% width: 450px height: 118px " src="https://img1.17img.cn/17img/images/202005/uepic/4b769fa6-58b9-4e1f-8066-41ac19eba2eb.jpg" title="GB 封面.png" alt="GB 封面.png" width="450" vspace="0" height="118" border="0"//pp style="margin-bottom: 15px "  新发布的3个国家标准分别是:strongGB/T 38741-2020/strongspan style="color: rgb(255, 0, 0) "《口腔清洁护理用品 牙膏中氯己定、呋喃西林、双氯芬酸、氯二甲酚和己脒定二(羟乙基磺酸)盐5种杀菌剂含量的测定 高效液相色谱法》/span;strongGB/T 38789-2020/strongspan style="color: rgb(255, 0, 0) "《口腔清洁护理用品 牙膏中10种元素含量的测定 电感耦合等离子体质谱法》/span;strongGB/T 38791-2020/strongspan style="color: rgb(255, 0, 0) "《口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法》/span。/pp  strongspan style="color: rgb(0, 112, 192) "标准解读/span/strong/pp style="margin-bottom: 20px "  牙膏是日常清洁用品。在GB 29337-2012中对“口腔清洁护理用品”(oral care and cleaning products)定义为,以洗刷、含漱、涂擦、喷洒、贴或者其他类似的方法,作用于人的牙齿或口腔粘膜,以达到清洁、减轻不良气味、修饰、维护,使之保持良好状态的日用化学工业产品。包括牙膏、口腔清洁护理液、牙粉以及口腔用啫喱。此类直接接触口腔粘膜的日用品必须保证安全,相应国家标准的出台十分必要。标准中规定了牙膏中有关物质的测定方法。/pp style="margin-bottom: 15px "  span style="color: rgb(255, 0, 0) "(1)杀菌剂测定/span:GB/T 38741-2020是关于高效液相色谱法HPLC对牙膏中氯己定、呋喃西林、双氯芬酸、氯二甲酚和己脒定二(羟乙基磺酸)盐5种杀菌剂的含量的测定。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 205px " src="https://img1.17img.cn/17img/images/202005/uepic/e3ef898e-39f1-42cc-a7fb-dafb01d2d35f.jpg" title="牙膏-5抗菌素N.png" alt="牙膏-5抗菌素N.png" width="450" vspace="0" height="205" border="0"//pp  span style="color: rgb(0, 32, 96) "ispan style="background-color: rgb(253, 234, 218) "实验中使用的仪器及试剂主要有/span/i/spanspan style="background-color: rgb(253, 234, 218) ":HPLC(配有DAD或UV检测器)、分析天平(感量0.001 g和0.0001 g)、离心机、超声波清洗仪和涡旋振荡器等。/span/pp  标准中给出了液相色谱混合标准品以及试样的配制方法。Csub18/sub色谱柱(5 μm 填料,150 mm * 4.6 mm 内径);流动相:A:0.1% 三氟乙酸-甲醇溶液,B:0.1% 三氟乙酸溶液,C:符合GB/T 6682的一级水;流速:1.0 mL/min;柱温:30℃;进样量:20 μL;波长:280 nm。下表为梯度洗脱条件。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 400px height: 167px " src="https://img1.17img.cn/17img/images/202005/uepic/3a7b046e-aa23-4f63-b010-359e27ac4dd4.jpg" title="牙膏-5抗菌素 A 梯度洗脱条件.png" alt="牙膏-5抗菌素 A 梯度洗脱条件.png" width="400" vspace="0" height="167" border="0"//pp  标准的span style="color: rgb(0, 112, 192) "i附录A/i/span为5种杀菌剂标准物质的相关化学信息;span style="color: rgb(0, 112, 192) "i附录B/i/span中有标准溶液的液相色谱图与紫外光谱图;span style="color: rgb(0, 112, 192) "i附录C/i/span中是确证试验,包括液相色谱参考工作条件以及质谱参考工作条件(MRM模式优化参数)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 485px height: 354px " src="https://img1.17img.cn/17img/images/202005/uepic/20888e79-9e00-4795-beb5-c8d5fd57d5b8.jpg" title="牙膏-5抗菌素 B 标准物质和谱图.png" alt="牙膏-5抗菌素 B 标准物质和谱图.png" width="485" vspace="0" height="354" border="0"//pp style="margin-bottom: 15px "  span style="color: rgb(255, 0, 0) "(2)元素测定/span:GB/T 38789-2020是关于使用电感耦合等离子体质谱法ICP-MS对牙膏中10种元素的测定。标准适用于Pb、As、Hg、Se、Fe、Cu、Mn、Cd、Cr、Ti的测定。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 162px " src="https://img1.17img.cn/17img/images/202005/uepic/c4797cd4-af9d-462a-928a-83dc3f9d8aa5.jpg" title="牙膏-10中元素N.png" alt="牙膏-10中元素N.png" width="450" vspace="0" height="162" border="0"//pp  span style="color: rgb(0, 32, 96) "ispan style="background-color: rgb(253, 234, 218) "实验中使用的仪器及试剂主要有/span/ispan style="background-color: rgb(253, 234, 218) ":/span/spanspan style="background-color: rgb(253, 234, 218) "电感耦合等离子体质谱仪(ICP-MS),分析天平(精密度0.0001 g),微波消解仪和离心机等;硝酸、30%过氧化氢、氢氟酸;内标元素储备液。/span/pp style="margin-bottom: 15px "  标准工作液和内标使用液的信息在span style="color: rgb(0, 112, 192) "i附录A/i/span中。微波消解参考工作条件、仪器操作参考条件、元素分析模式以及干扰矫正方程。在标准文件span style="color: rgb(0, 112, 192) "i附录B/i/span中。/pp  span style="color: rgb(255, 0, 0) "(3)硼酸和硼酸盐含量/span:GB/T 38791-2020是关于电感耦合等离子体原子发射光谱法对牙膏中的硼酸及其盐的测量。待测样品经5%硝酸溶液处理后,Csub18/sub固相萃取柱净化,使用ICP-AES测量。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 162px " src="https://img1.17img.cn/17img/images/202005/uepic/15ece232-dc02-41cf-b92d-5f55ea0fc760.jpg" title="牙膏-硼酸盐N.png" alt="牙膏-硼酸盐N.png" width="450" vspace="0" height="162" border="0"//pp  ispan style="background-color: rgb(253, 234, 218) color: rgb(0, 32, 96) "实验中使用的仪器及试剂主要有/span/ispan style="background-color: rgb(253, 234, 218) color: rgb(0, 32, 96) ":/spanspan style="background-color: rgb(253, 234, 218) "ICP-AES、IC-ICPMS、分析天平(精密度0.1 mg,0.01 mg)、Csub18/sub固相萃取小柱、塑料比色管、微孔滤膜(水相,孔径0.45 μm,直径25 mm);硝酸、甘露醇、甲醇 钇标准溶液、硼酸标准品等。/span/pp  span style="color: rgb(0, 112, 192) "i附录A/i/span给出了实验的仪器条件;span style="color: rgb(0, 112, 192) "i附录B/i/span中是确证性实验中的标准硼酸溶液的IC-ICPMS的谱图。(如图所示)/pp style="text-align: center"img style="width: 432px height: 189px " src="https://img1.17img.cn/17img/images/202005/uepic/0bd4099a-fdcd-4519-b648-a78bb3646d2a.jpg" title="牙膏-硼酸盐 A.png" width="432" height="189"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 404px height: 274px " src="https://img1.17img.cn/17img/images/202005/uepic/4b661feb-6e9c-4331-abdf-ae4b8a98a99a.jpg" title="牙膏-硼酸盐 B.png" alt="牙膏-硼酸盐 B.png" width="404" height="274"//pp style="margin-bottom: 15px "  此外,姜黄试纸法、分光光度法、ICP-AES和ICP-MS法是日常生活中食品和饮用水中硼砂和硼酸国标现行的检测方法。/pp  strongspan style="color: rgb(0, 112, 192) "牙膏的成分与国标的意义/span/strong/pp style="margin-bottom: 15px "  牙膏是由粉状摩擦剂、湿润剂、表面活性剂、粘合剂、香料、甜味剂及其它成分构成。具体成分的作用如下表格。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 476px height: 393px " src="https://img1.17img.cn/17img/images/202005/uepic/1023c052-88d8-4f8c-8659-3881300be165.jpg" title="牙膏的成分.png" alt="牙膏的成分.png" width="476" vspace="0" height="393" border="0"//pp style="margin-bottom: 15px "  牙膏中的杀菌剂是其质量和有效性的保证,但是含量和种类不能超限。且其中的杀菌剂不可以对人体造成其他伤害。牙膏作为化工产品,不免会带来一些重金属或者其他杂质元素的进入。而硼酸和硼酸盐作为药物具有span style="color: rgb(118, 146, 60) "收敛、杀菌以及黏膜保护/span作用;内服还具有span style="color: rgb(118, 146, 60) "抑菌、抗惊厥、抗癫痫/span的作用。硼砂曾经作为食品添加剂使用,可以使韧性增加或防腐保鲜。现在证明硼酸及其盐类有明确的致癌作用,已被禁止添加在食品中。(span style="color: rgb(255, 0, 0) background-color: rgb(255, 255, 0) "strong温馨提示/strong/span:span style="text-decoration: underline color: rgb(255, 0, 0) "药理作用必须是在医师指导下,按照剂量使用才能保证安全!/span)/pp style="margin-bottom: 15px "  为了避免上述杂质和过量杀菌剂和硼酸(盐)带来的危害,新国标的出台无疑起到领航标的作用。相信随后相关span style="color: rgb(0, 112, 192) "地方标准/span以及span style="color: rgb(0, 112, 192) "行业、企业标准/span的建立可以更加规范口腔清洁护理用品的质量规范,让合格的牙膏帮助我们更自信的微笑:)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/7f0225d5-0644-4625-9720-a15c95497c16.jpg" title="微笑.jpg" alt="微笑.jpg"/img style="max-width: 100% max-height: 100% width: 664px height: 83px " src="https://img1.17img.cn/17img/images/202005/uepic/7ab4539e-cdda-43eb-95e5-afd6cfb06e5a.jpg" title="分割线.png" alt="分割线.png" width="664" height="83"//pp style="text-indent: 2em margin-bottom: 15px "strongspan style="font-size: 18px "详细文件请点击链接:/span/strong/pp style="text-indent: 2em margin-bottom: 20px "a href="https://www.instrument.com.cn/download/shtml/950185.shtml" target="_self"span style="text-decoration: underline color: rgb(0, 112, 192) "strongspan style="text-decoration: underline font-size: 18px "GB/T 38741-2020《口腔清洁护理用品 牙膏中氯己定、呋喃西林、双氯芬酸、氯二甲酚和己脒定二(羟乙基磺酸)盐5种杀菌剂含量的测定 高效液相色谱法》/span/strong/span/a/pp style="text-indent: 2em margin-bottom: 20px "a href="https://www.instrument.com.cn/download/shtml/950184.shtml" target="_self"span style="text-decoration: underline color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) text-decoration: underline font-size: 18px "GB/T 38789-2020《口腔清洁护理用品 牙膏中10种元素含量的测定 电感耦合等离子体质谱法》/span/strong/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/950186.shtml" target="_self"span style="text-decoration: underline color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) text-decoration: underline font-size: 18px "GB/T 38791-2020《口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法》/span/strong/span/a/p
  • 原装进口高纯助熔剂特价回报客户
    为回报中国广大新老用户对我公司总代理的澳大利亚XRF Scientific Ltd公司高纯助熔剂产品的厚爱,我公司决定:对澳大利亚XRF Scientific Ltd高纯助熔剂以特惠价1200元/千克进行促销,每位客户最低多限订购100千克,有效期为2009年9月1日至2009年12月31日 在熔融中加入硼酸盐助熔剂是一种*的粉末样品熔融处理技术。这样品处理方法在X-射线荧光光谱(XRF)、原子吸收光谱(AA)、电感耦合等离子体发射光谱(ICP)等分析技术中有着广泛的应用。因为这种助熔剂是一种样品溶剂,选择这种溶剂对实现质量分析具有非常重要的作用。 澳大利亚XRF Scientific Ltd公司在助熔剂技术方面20多年来的专业技术值得信耐,并能帮您改进分析技术。我们提供的硼酸盐助熔剂有以下显著特点: &bull 熔融物获得完美的均质性 &bull 严格可控的粒度分布 &bull 高密度:1.2-1.4 g/cm3 &bull 极低的灼烧减量:一般<0.05% &bull 防尘,易流动 &bull 高纯品质:>99.98% &bull 分析保证:经过分析认证 XRF Scientific 的助熔剂由四硼酸锂(Li2B4O7),四硼酸钠(Na2B4O7)或偏硼酸锂(LiBO2)制得。 我们也提供完整的其它添加剂,如氧化剂、除湿剂 (NWA)等。 通过认证的批量生产硼酸盐助熔剂的纯度:99.98%+ 我们可按您的要求定制助熔剂。 关于XRF Scientific Ltd 澳大利亚XRF Scientific Ltd公司是世界领先的激光诱导击穿光谱仪(LIBS)、熔样机、高纯助熔剂、铂金/铂合金器皿制造商。 它生产的助熔剂以其高品质在世界钢铁行业内被广泛使用,已成为X荧光光谱用户首选的进口助溶剂之一。 关于上海凯来实验设备有限公司 总部设在中国上海,成立于2004年。作为德国Haver & Boecker公司、Bϋ rkle公司、英国Optical Activity公司和Index Instruments公司、美国Ahura公司、Inorganic Venture公司、Reichert公司和W.S. Tyler公司、澳大利亚XRF Scientific 公司、瑞士SONOSWISS公司等在中国的总代理,以及作为德国Hirschmann、HosokawaAlpine的南方区总代理和Dionex液相产品上海区总代理。凯来公司致力于为生命科学和化学分析实验室用户提供优质的科学仪器及服务,同时希望不断完善自身,为客户提供更多更好的解决方案。更多信息请登录www.chemlabcorp.com了解。
  • 口腔清洁护理用品,IC-ICP-MS法验证《GB/T 38791》
    IC-ICP-MS可以很好的分离硼的不同种形态,有助于硼酸和硼酸盐含量的准确测定,且可同时实现溴、碘元素形态分析。 2020年4月28日,《GB/T 38791-2020口腔清洁护理用品 牙膏中硼酸和硼酸盐含量的测定 电感耦合等离子体原子发射光谱法》正式发布,2020年11月1日正式实施。 硼酸,是一种外用杀菌剂,消毒剂和防腐剂。对多种细菌,霉菌都有抑制作用。可在临床上常常用于止血和防腐剂,但是如果不慎食用了,就会出现恶心,呕吐,腹痛,腹泻等胃肠道症状。 硼砂有杀菌作用,在医学上,硼砂用于皮肤黏膜的消毒防腐、氟骨症等的治疗,近年来还用于肿瘤的治疗,但口服对人体有害。 根据GB/T 38791-2020前处理方法,提取的是可溶性的含硼化合物,然后采用ICP-OES进行总量测定,但标准后面提到可以采用IC-ICP-MS方法对测定结果进行验证。 IC-ICP-MS 可以将硼酸根离子与其他可溶性硼离子进行有效分离,从而准确得到硼酸根离子的含量。 由于ICP-MS具有多元素同时检测的功能,通过不同质量数通道可以检测不同种元素,通过实验发现,在该实验条件下,溴、碘的形态分析可同时得到很好的分离。 IC-ICP-MS 即在一次进样中,同时分析B、Br、I的形态;且IC的惰性能更适合与ICP-MS联用,可有效避免金属等杂质的溶出,同时可降低测定元素的残留。采用IC-ICP-MS的方法,可以高效的同时分离、定量分析硼、溴、碘离子及酸根离子的形态,该方法适用于牙膏等样品的常规分析,更多详细信息请致电岛津。 IC-ICP-MS
  • 蓝国祥先生在我国光散射研究方面的贡献
    南开大学是国内开展光散射研究得比较早的单位之一。早在1935年,我校的沈寿春先生就与吴大猷、饶毓泰先生合作,在北京大学开始了拉曼光谱研究。抗日战争时期,在昆明西南联大,沈寿春和吴大猷二位先生合作研究了硝酸镍氨晶体的拉曼光谱,考察了晶体场对硝酸根离子的效应。解放后,在沈寿春先生领导下,陈文驹、王之仁等老师较早开始了拉曼光谱的工作,研究最多的是有机磷化合物。1965年教育部决定在北大、复旦、南开三校成立固体能谱科研组,由复旦的谢希德先生牵头,合作开展半导体的基础研究,教育部定期给三校下达研究经费。张光寅先生利用该项经费,购买了一台在当时很先进的英国产的Hilger E612型拉曼光谱仪。该仪器采用石英棱镜分光,光源是汞弧光灯,记条仪是笔式的。但在十年文革期间三校的固体能谱研究组都中断了研究工作,这台光谱仪就一直闲置到20世纪七十年代末。此时南开物理系固体物理教研室正式恢复,固体能谱研究组也就合并到固体物理教研室。当时固体物理教研室主要从事激光技术所需要的非线性光学晶体钽酸锂和铌酸锂的研究及其光学器件的研制。时任教研室主仼的是王华馥先生和副主仼张光寅先生。蓝国祥教授是王华馥先生研究组的成员,当时研究组主要从事非线性光学晶体基础性方面的研究。鉴于蓝国祥教授有扎实的晶体学和晶格动力学的基础知识,又从事晶格振动光谱的研究,从仪器设备、晶体样品的选取和基础知识的储备这三方面考虑,都具备了开展非线性光学晶体激光光谱研究的条件。因此,王华馥先生决定由蓝国祥先生和青年教师李兵承担此项课题的研究,王先生还把他的第一个博士研究生分配到该课题组一起参加研究工作。课题组对Hilger E612光谱仪进行了改造,配置了自行研制的氩离子激光器,开始了非线性光学晶体的拉曼光谱研究。当课题组获得第一批研究成果时,正好迎来1981年在厦门大学召开的全国第一届光散射学术会议,课题组在会议上宣读了相关的研究成果。虽然参加此次学术会议的单位不少,但受制于当时的科研条件,国内有条件开展光散射研究的大学和研究单位毕竟比较少,能提供研究论文的单位并不多。在南开,有很多位老师从事过光散射的研究,力量非常之强,据了解到的,还有陈文驹、陈亭、张春平、刘思敏等多位老师,涉及多种材料。例如,非线性光学晶体偏硼酸钡、钽酸锌锂、铌酸锂和钽酸锂等,关注压力、温度对晶体结构的影响;利用拉曼光谱研究晶体中的电磁激元、铁电性质、铁弹性质,缺陷和非晶化过程等;随着表面增强效应的发现,我校也开展了表面增强光谱的研究,首次观察了吸附于银胶体表面的邻菲啰啉等分子的表面增强拉曼光谱。在从事光散射研究的几十年过程中,蓝国祥教授对待研究生宽严相济,以身作则,学生深刻体会到研究者应该具备的素养和追求。蓝先生带领组内老师和学生,在国内外学术期刊上发表论文百余篇,取得了丰硕的成果。非线性光学晶体的拉曼光谱一直是南开固体教研室关注的重点。对于铌酸锂和钽酸锂的光谱研究非常细致深入,取得一些重要的结果。铌酸锂和钽酸锂室温下是铁电晶体,属于三角晶系的单轴晶体。为获得钽酸锂晶体的异常声子的色散,在蓝先生的指导下,老师和学生精心设计实验方案,共制备11个不同取向的样品,用来获得波矢与光轴成不同夹角的光谱。由于钽酸锂和铌酸锂的折射率约2.1左右,所以表面反射率高达14%。为了消除内反射光引起的附加散射,在样品的表面上镀了增透膜(SiO2)。经过细致的实验测试和严谨的理论分析,获得了钽酸锂晶体的全部13个异常声子,也对之前相关研究报道中的疑点进行了澄清;通过分析测试钽酸锂晶体的变温拉曼光谱,结合中子衍射的晶体结构数据,做出了钽酸锂的铁电相变是有序-无序型的推论,并用结构相变的先兆丛团理论给予解释。20世纪80年代我国的紫外非线性光学晶体的研制得到了飞速发展,例如偏硼酸钡(BBO)、三硼酸锂(LBO)以及三硼酸铯锂(CLBO)等。蓝国祥教授带领课题组的师生对这些晶体的室温、低温以及高压下的光谱进行了较为全面的研究,利用层状和阴离子基团模型,并结合群论和理论计算分析对晶体的外振动、内振动以及阴离子基团的特征振动谱进行了识别和确认。BBO晶体单晶高压拉曼光谱的研究表明了在50 Kbar的压力下拉曼光谱发生突变,预示着存在由压力导致的结构相变。获得非晶材料的传统方法有多种,如熔体急冷,蒸发沉积和离子注入等。上世纪90年代,蓝国祥教授研究组开始利用拉曼光谱进行晶态物质在高压下非晶化转变的研究,先后研究了硼酸盐(硼酸钡、硼酸锂),锗酸盐(锗酸铅、锗酸锂、锗酸铜),以及铌酸锂、钽酸锂等晶体的高压拉曼光谱,在原子水平上研究了这些晶体的非晶态转变机制。对于硼酸盐而言,是由于硼酸基团被破坏,导致结构发生塌缩,由晶态变成非晶态。课题组另外的一项重要工作是有关碳材料的制备和拉曼光谱研究,包括石墨、石墨插入化合物,C60碱金属插入化合物,碳纳米管等。其中一个非常重要和难度很大的问题是单壁碳纳米管的呼吸模谱峰的认定。因为呼吸模的频率与碳管的直径密切相关,困难的原因在于样品中碳管的直径和类型不是单一的;另外,用可见和近红外光激发的单壁碳纳米管拉曼光谱中存在共振散射效应,使得谱峰数目较多且随激发光波长而变化,所以将这些谱峰归属于何种碳管不是显而易见的。为了进行这种认定,我们计算了一系列碳管的电子态密度、呼吸模的频率,并考虑到双共振增强效应,建立了一个图表法,可以对单壁碳纳米管光谱中的呼吸模特征峰进行指认。这种指认包括管子类型的确定,是金属的还是半导体的,是扶手椅管、锯齿管还是一般的手性管,当然也可确定碳管的直径和指数。SPEX 1403 激光拉曼光谱仪(小图:实验室自制的碳纳米管制备装置)为了给研究生开展晶格振动光谱研究打好基础,张光寅先生率先开设了晶格振动光谱课程,并编写了讲义,两年后由蓝国祥先生接替讲授晶格振动光谱学直到退休。这本讲义经过多年的教学积累和反复修改,著成《晶格振动光谱学》一书,由高等教育出版社出版。该本书先后发行了两版,成为教育部研究生教学的推荐用书。无论是科学研究还是教书育人,先生对中国光散射事业的发展都做出很大的贡献。从第一届厦门光散射会议开始直到退休前的第十一届,没有错过一届会议;从第二届光散射会议开始担任光散射专业委员会副主任;退休前一直担任《光散射学报》副主编,全心全力支持学报的发展。80年代国内很多学校科研单位都购置了Spex系列的谱仪,南京大学物理系也有一台Spex激光光谱仪,在使用过程中缺少了一个小部件,张明生老师就向南开大学物理系借用这个部件。考虑到我们这个部件休置不用,就送给南京大学。这也是先生一直秉承的理念:兄弟院校之间和同行之间要有相互帮助和团结的精神,不要彼此拆台闹予盾。参加1999年8月第十届全国光散射学术会议师生合影留念(长春)先生退休多年,留给我们后辈做人做学问的精神一直在,激励我们前行!文中所述纯属个人点滴所见,不当之处,欢迎斧正!作者:南开大学物理学科学院 王玉芳教授
  • 化妆品要做哪些检测,你知道吗?
    化妆品常规检测项目常规检测项目:铅、砷、汞、甲醇等。卫生指标:PH、镉、锶、总氟、总硒、氢氧化物、硼酸和硼酸盐、甲醛、苯酚、防晒剂、防腐剂、染料、抗生素、维生素、可溶性锌盐等。化学禁用、限用物质:二甘醇、重金属、色素、防腐剂、甲醇、甲醛等。微生物指标:细菌总数、粪大肠菌群、铜绿假单胞菌、金黄色葡萄球菌、霉菌和酵母菌等 。 激素含量:糖皮质激素、性激素、雌激素、孕激素等。新的《化妆品安全技术规范》自 2016年12月1日起施行《化妆品安全技术规范》是原卫生部印发的《化妆品卫生规范》( 2007 年版) 的修订版。 2015年11月经化妆品标准专家委员会全体会议审议通过, 2015年12月23日由国家食品药品监督管理总局批准颁布,自2016年12月1日起施行。 一、《化妆品安全技术规范》(2015年版)特点1、化妆品安全性保障进一步提高调整了化妆品中的禁限用组分要求调整了部分准用组分的限量要求和限制条件调整了铅、砷的管理限值要求增加了镉的管理限值要求收录了二噁烷和石棉的管理限值要求2、适应性与可操作性进一步提高 对《技术规范》中涉及的名词和术语提供了释义,细化和明确相关概念,重点增加化妆品产品技术要求内容、通用检测方法等与化妆品质量安全密切相关的技术标准与要求在保留《卫生规范》原有相关检验方法的基础上,收录了国家食品药品监管部门颁布的60个针对有关化妆品中禁限用物质的检验方法,满足化妆品技术研发和安全监管的需要。二、化妆品安全通用要求化妆品上市前应进行必要的检验,检验方法包括相关理化检验方法、微生物检验方法、毒理学试验和人体安全试验方法等。
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • 中国化学会第七届全国热分析动力学与热动力学学术会议顺利闭幕
    pstrong仪器信息网讯/strong  2019年4月21日,由中国化学会主办、中国化学会第七届全国热分析动力学与热动力学学术会议中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办的中国化学会第七届全国热分析动力学与热动力学学术会议于合肥顺利闭幕。21日上午的大会由桂林电子科技大学的孙立贤、河北师范大学的张建军、天津科技大学的邓天龙联合主持。在闭幕式上,颁发了“最佳张贴报告奖” 并发布2021年第八届全国热分析动力学与热动力学学术会议筹备的最新消息。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b77b6d53-6fc5-4cf5-9718-398f495537a8.jpg" title="孙立贤_副本.jpg" alt="孙立贤_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "桂林电子科技大学孙立贤/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/f0a1c4e0-09b9-4d96-b3ce-745c45ed36de.jpg" title="张建军_副本.jpg" alt="张建军_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "河北师范大学张建军/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/90a6779e-fa06-42d5-bd4d-122190562706.jpg" title="邓天龙_副本.jpg" alt="邓天龙_副本.jpg" style="width: 400px height: 294px " width="400" vspace="0" height="294" border="0"/  /pp style="text-align: center "天津科技大学邓天龙/pp  中国科学院化学研究所院士韩布兴首先作了题为“绿色溶剂体系热力学、催化材料合成与化学反应中的溶剂效应”的主题报告。当前,70%以上的化学化工过程都会使用到溶剂,尤其是有机溶剂,但也同时面临着效率低、功能有限和环境污染等问题,因此无法满足当代化工可持续发展的要求,开发利用绿色溶剂是必然发展趋势。绿色溶剂应具有无毒、无害、便宜易得、容易循环利用和具有特定功能等特性。其中,具有代表性的绿色溶剂包括水、超临界流体、离子液体和生物质基溶剂等。韩布兴课题组目前的主要研究工作就是围绕超临界CO2、离子液体和水等绿色溶剂,通过化学热力学研究以及发展实验方法,实现绿色功能介质创制、催化材料合成等应用。报告中,韩布兴介绍了其目前的研究成果,包含超临界流体体系局域热力学模型、离子液体与超临界流体/离子液体乳液体系、超临界CO2中表面活性剂自组装及组装体催化功能、配合物催化剂稳定的CO2包水型微乳液光催化CO2还原、MOF稳定CO2/水乳液及MOF界面组装、超临界CO2/IL乳液制备有序介孔MOF纳米球、多孔金属制备及生物质基资源转换、离子液体/有机盐体系制备介孔无机盐、离子液体制备负载型纳米催化材料等。韩布兴课题组还尝试了用离子液体解决CO2反应中的热力学问题,实现了两相体系的甲酸合成 利用CO2形成碳酸解决动力学问题和用于纳米催化等,并介绍了溶剂效应在化学反应中的应用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c173d718-ce88-4413-bc02-5cf5159d12aa.jpg" title="韩布兴_副本.jpg" alt="韩布兴_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学院化学研究所院士韩布兴/pp  武汉大学刘义作了题为“蛋白纤维化纳米抑制剂的设计及其作用机制”的主题报告。阿尔兹海默症近年来受到人们的普遍关注 研究表明,其与蛋白纤维化关系密切。目前,主要的蛋白纤维化抑制剂分为多肽类抑制剂、小分子抑制剂和新型纳米材料三种。新型纳米材料由于其稳定性强、比表面积大和表面易修饰的特点,受到广泛青睐。碳点是一类生物相容性很好的纳米材料,刘义通过设计一系列表面改性的碳点(如氧化改性),并以与阿尔兹海默症相关的胰岛素蛋白为研究对象,利用等温滴定量热、荧光光谱、圆二色谱和显微分析等仪器,证实了其对与疾病相关的HI蛋白的聚集和生长有抑制作用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b8ca13a8-ab38-466b-8635-f03976de0064.jpg" title="刘义_副本.jpg" alt="刘义_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "武汉大学刘义/pp  桂林电子科技大学孙立贤作了题为“新型储能材料设计与热力学调控”的主题报告。我国对可再生能源的需求迫切,氢能源利用是支持可再生能源大规模应用的重要途经,但目前缺乏安全高效的氢储运技术,制约了氢能的发展。孙立贤介绍了其在可控形貌低维催化剂制备及配位氢化物储氢、金属与配体调变以及符合纳米化MOFs储氢等工作。此外,还分享了孙立贤课题组首次创建的国内储氢材料数据库基本情况。/pp  陕西师范大学的刘志宏作了题为“热化学在硼酸盐功能材料制备及其性能研究中的应用”的主题报告。报告主要介绍了硼酸盐微孔晶体材料的液-固相吸附热动力学、硼酸盐纳米阻燃材料应用的研究和多级孔硼酸盐材料制备及其吸附性能的研究等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8c4c8e97-1587-41d4-aae8-d3bbbb67608b.jpg" title="刘志宏_副本.jpg" alt="刘志宏_副本.jpg"//pp style="text-align: center "陕西师范大学刘志宏/pp  河北师范大学张建军作了题为“稀土超分子配合物的晶体结构、热分解反应动力学及热力学的研究“的主题报告。报告中,张建军主要阐释了稀土超分子配合物中第一系列配合物、第二系列配合物和第三系列配合物的热分解机理 并提出了简单反应处理的改进双等双步法,从而确定了活化能E、指前因子A以及其他热力学参数。/pp  中国科学技术大学丁延伟作了题为“仪器间差异对于热分析动力学结果影响的研究“的主题报告。报告中对影响热分析曲线的多种因素进行了分析讨论,其中包含样品量、制样方式、样品状态、样品前处理条件、温度控制程序、支架类型、仪器结构、实验气氛及流速、仪器状态、仪器间差异、人员差异等。丁延伟特别强调,要不定期进行仪器的校准,尤其在进行重要的实验前,最好一定要做仪器的校准。/pp  在报告中,对“仪器间差异”这一重要因素进行了深入、全面的分析和解读。理化科学实验中心先后与美国赛默飞、美国珀金埃尔默公司、美国TA公司等6家仪器厂商共建联合实验室,目前已经装备不同型号热分析仪器近30台。除了考察不同实验室中仪器对同一样品的测试差异之外,利用理化科学实验中心的优势,特别补充同一测试条件下、不同仪器对同一样品的测试差异分析。报告中以三家公司(匿名)的DSC数据说明了仪器间差异对最终测试结果的影响较大。通过比对了不同公司仪器、相同型号仪器、不同类型仪器的热重分析结果,丁延伟发现相同型号仪器对比差别不大,不同类型仪器对比差别较大。通过考察同一公司不同型号仪器之间的差异,发现数据结果并不吻合 丁延伟认为,不一定是仪器的质量问题,而是有可能是校准方法差异的问题。通过对比同一公司不同类型的仪器,测试结果也会产生差异,这可能是由于仪器结构的影响。报告还指出,即使是同一公司的同一产品,测得的结果也可能不同,这可能是由于仪器状态不同导致的。因此,校准方法、结构和仪器状态都可能对热分析动力学结果产生影响。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/4c89254e-800e-422a-82dc-54ab6200f331.jpg" title="丁延伟_副本.jpg" alt="丁延伟_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学技术大学丁延伟/pp  大会闭幕式由张建军主持。闭幕式上颁发了“最佳张贴报告奖” 获奖名单由辽宁大学房大维宣布:山东农业大学的兰孝征、西北大学的陈湘、南京师范大学的刘浩、南京大学的谢科峰、北京理工大学的钟野、河南师范大学的邢肇碧、辽宁大学的宋宗仁、广西师范大学的陈志凤、中国科学院上海硅酸盐研究所的张赵文斌和北京理工大学的任杰。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7d1e3620-9c8a-41fd-afec-4c28560cda4b.jpg" title="房大维_副本.jpg" alt="房大维_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/ /pp style="text-align: center "辽宁大学房大维/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fac4c8ae-f987-4091-8f1d-4c6662013f46.jpg" title="大会颁奖.jpg" alt="大会颁奖.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "颁奖现场/pp  随后,大会合作厂商、美国TA公司的经理王健女士发表了讲话 武汉大学刘义对大会进行了总结发言。最后,大会特别通告,2021年第八届热分析动力学与热动力学学术会议由陕西师范大学承办,并邀请下一届会议主办方代表刘志宏登台发言。诸多参会代表纷纷组团在即将关闭的大会主屏幕前合影留念,为本次大会圆满结束留下了最后的注脚。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/ad559fe0-de58-41b8-9275-132c4800061b.jpg" title="大会留影.jpg" alt="大会留影.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "组团合影留念/ppbr//p
  • 欧盟更新用于食品塑料接触材料的添加剂清单
    欧盟委员会近期发布了一份用于食品塑料接触材料及物品的添加剂临时清单更新版本(请见:http://ec.europa.eu/food/food/chemicalsafety/foodcontact/docs/080410_provisional_list_7_211009.pdf)。本次用于食品塑料接触材料及物品的添加剂临时清单包含2006年12月31日有效申请中涉及的添加剂。这些添加剂尚未得到欧共体授权。  自2010年1月1日起,2002/72/EC指令规定用于食品塑料接触材料及物品的添加剂清单将明确排除其他一切非清单列出的添加剂。这份临时清单上的物质可根据各国立法在2010年1月1日以后继续使用,直到临时清单做出其他扩充或缩减的更改决定。  该清单包括动物及蔬菜油脂和脂肪中的酸性物质、油脂(C8-C22),直链类,单羟基、初级的饱和脂肪族醇(C3-C22),(丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯)共聚物,银含量低于0.5%的含银玻璃(银-镁-铝-钠-磷酸盐-硅酸盐-硼酸盐)等物质。指令对过渡期做出指示:2010年11月1日前含2,4,4’-三氯-2’ 联羟基联苯乙醚的塑料材料及物品生产制造和市场投放,可按各国立法持续到2011年11月1日。  清单上的物质并非必须经由EFSA评估。有关安全评估状态的详细信息,请查询EFSA官方网站www.efsa.europa.eu。这些添加剂皆由各成员国规定。有关添加剂的合法验证信息,请咨询各成员国主管机构。相关评议意见请见:http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_ScientificDocuments.htm
  • MALDI-TOF质谱再次鉴定出新型变异血红蛋白(hemoglobin variant)
    近日,北京大学深圳医院检验科纪玲博士团队使用融智生物的QuanTOF质谱平台再次发现新型变异血红蛋白(hemoglobin variant),即Hb-柳州,这是该团队继Hb-辽宁后发现的又一种新型变异血红蛋白。相关研究结果已经发表在Scandinavian Journal of Clinical and Laboratory Investigation上,在此,小融将此篇文献进行解读分享给大家,供参考。血红蛋白(Hb)是由两对α和β珠蛋白链组成的多肽四聚体。血红蛋白变异是最常见的遗传性单基因疾病之一,以血红蛋白结构缺陷为特征。迄今为止,已有超过1350种主要由α-或β-珠蛋白基因突变引起的变异血红蛋白被记录在案,每种变体都具有特定的生物学特性。虽然大多数Hb变异杂合子是无症状的,但一些复合杂合子或纯合子会产生显著的临床症状。因此,对Hb进行产前基因鉴定和咨询具有重要意义。目前,检测血红蛋白组分及其糖化形式的最常用方法是基于阳离子交换高效液相色谱(HPLC)或毛细管电泳(CE)技术。此外,质谱(MS)已被用于分析血红蛋白变异。本文报道了用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测定HbA1c时发现的一种新的变异血红蛋白,而基于 HPLC和CE技术的HbA1c检测程序未能确定其存在。一位来自广西柳州的23岁妇女来我院做例行检查。她的血糖结果为3.99 mmol/L(参考区间:3.90–6.10 mmol/L)。HbA1c分析最初由Variant II Turbo 2.0进行,与正常对照组相比,在展开色谱图右侧观察到异常凸起。因此,我们进一步检测了残留样本,发现了一个新的Hb变异体,用病人的出生地把它命名为Hb-柳州。使用HPLC系统、硼酸盐亲和层析系统、CE系统(HbA1c程序)和MALDI-TOF MS系统(QuanTOF,融智生物)重新分析HbA1c,用CE系统的Hb程序进行Hb分析。图. 糖化血红蛋白和血红蛋白分析。通过Variant II Turbo 2.0(A),HPLC系统(B),和CE系统(HbA1c程序)(C)检测糖化血红蛋白。血红蛋白分析是通过CE系统的Hb程序(D)。如上图所示,HbA1c结果分别为4.8%(29 mmol/mol,Variant II Turbo 2.0)、4.7%(28 mmol/mol,硼酸盐亲和层析系统)、4.2%(22 mmol/mol,HPLC系统)和4.6%(27 mmol/mol,CE系统)。上述HbA1c技术均未检测到异常峰值。血红蛋白分析也显示97.7%HbA和2.3%HbA2没有异常。图. MALDI-TOF MS(QuanTOF)血红蛋白分析。(A)非变异样品的质谱图显示α-链(15127 Da)、β-链(15868 Da)以及相应的糖基化α-链(15289 Da)和糖基化β-链(16030 Da)。(B) Hb-柳州的质谱图显示一个变异的α-链峰(15155Da)。QuanTOF检测的HbA1c值为4.8%(29 mmol/mol)。同时,在质谱图中发现了质量为15155da的变异链,变异链占总α链的26.4%。基因分析证实了QuanTOF的检测结果。通过Sanger测序发现在HBA1基因上存在一个新的杂合突变[HBA1:C.182A→G],该突变导致密码子60处的编码从赖氨酸(分子量:146 Da)改变为精氨酸(分子量:174Da)。该结果与QuanTOF的检测结果一致。图.Hb-柳州Sanger序列测定结果。箭头表示杂合突变[HBA1:C.182A→G] 在HBA1基因中。该研究发现了一个新的变异株Hb-柳州,用MALDI-TOF MS代替传统的阳离子交换HPLC和CE的HbA1c检测方法,可以很容易地鉴别出是否存在Hb-柳州。研究结果表明,阳离子交换HPLC和CE法在检测新的血红蛋白变异方面面临挑战。然而,MALDI-TOF MS通过正常和变异链之间足够的质量差可以检测到变异链,可以作为鉴别和定量变异血红蛋白(hemoglobin variant)的选择方法。参考文献:Anping Xu, Weidong Chen, Weijie Xie & Ling Ji (2020): Identification of a new hemoglobin variant Hb Liuzhou [HBA1:C.182A→G] by MALDI-TOF mass spectrometry during HbA1c measurement, Scandinavian Journal of Clinical and Laboratory Investigation, DOI:10.1080/00365513.2020.1783698
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 央视曝光!网红玩具毒素超标!拉曼光谱仪竟是药用硼砂“鉴定官”
    【央视曝光网红玩具毒素超标 硼砂毒副作用大】专家表示,目前市面上几乎所有的“史莱姆”水晶泥内全都含有硼砂成分,再加上这种玩具质地黏软,极易粘在皮肤上,孩子们经常接触,就有可能会发生轻微的皮肤过敏。如果皮肤有破损,再接触硼砂,毒副作用的显现就会更快更大。对于成人来说,中毒量大概是一到三克,致死量就是十五克。而对于婴幼儿来说的话,致死量就是二到三克;对于儿童来说(致死量)就是五克。(网红玩具-史莱姆)硼砂(Borax)一种无机化合物,一般写作Na2B4O710H2O,为硼酸盐类矿物硼砂经精制而成的结晶,为常用外用中药品种之一,其主要成分为四硼酸钠[Na2B4O5(OH)48H2O,Na2B4O710H2O],性能甘,咸,凉,归肺、胃经,具有清热消痰,解毒防腐等功效。硼砂具有一定的毒性,应用不当,易对人体产生伤害,目前市场上,药用硼砂和工业用硼砂混杂,其中质量不合格的工业硼砂充当药用,严重的影响了临床用药安全有效。质量安全问题突出,检测就成了安全使用最重要的一环。奥谱天成科研级显微拉曼光谱仪‍拉曼Raman光谱分析是一种快速分析技术,它是利用拉曼散射原理,得到可以表征分子振动能级的指纹光谱,提供成分和结构的信息,拥有非破坏性和精细如“指纹”的分辨能力。拉曼光谱峰形尖锐明显,分子结构信息明确,其在药品检测中的应用主要为定性鉴别。根据有关文献,硼砂(Na2B4O710H2O)在拉曼光谱中的拉曼位移主要体现在四面体硼( BO5-4 )、三角形硼( BO3-3 )、水分子以及B ( OH) 键〔9〕。其中,拉曼位移在576cm-1处的7号峰是四面体硼( BO5-4 )振动最强吸收的特征峰 在460、385和350 cm-1处的 10 号、12号、13号峰为BO5-4对称弯曲振动中强吸收的特征峰 在762 cm-1处的6号峰为BO5-4对称伸缩振动 在948 cm-1处的4号峰为三角形硼( BO3-3 ) 的对称伸缩振动 其余的16、17、19和20这4个共有峰属于晶格振动。(硼砂样品拉曼光谱特征)综上所述,奥谱天成拉曼光谱仪可通过直观分析鉴别硼砂及其粉末的真伪,可用于硼砂及其粉末的鉴别。对于硼砂的两种易混淆药材:白硇砂和白矾,图谱的特征峰明显与硼砂正 品不同,可以准确区分,说明该图谱特征专属性较高,可为硼砂真伪鉴别提供基本和可靠的依据;中药硼砂拉曼指纹特征图谱,与正 品硼砂拉曼图谱相似度高,指纹特征明显,专属性强,为硼砂的快速鉴别提供了可靠的方法。
  • 首个气流调谐液滴激光器出现
    荷叶沾水珠而不湿,日本科学家借助这一“荷叶效应”,利用简单的方法,制造出了一种新型离子液滴,这种微滴可用作灵活、持久而可调谐的激光器。与现有不能在大气中工作的“液滴激光器”不同,最新进展有望使激光器在日常环境中使用,从而催生出更便宜的光纤通信设备。相关研究刊发于最近的《激光与光子学评论》杂志。荷叶具有显著的自洁特性,在荷叶表面,水滴不会变平,而是会形成近乎完美的球体并滚落,带走灰尘。这种“荷叶效应”由叶片内的微小突起造成。在最新研究中,筑波大学科学家利用人工“荷叶效应”,创造出了可以像激光一样工作的液滴,而且,这种液滴激光器可在长达一个月的时间里保持稳定,而目前的“液滴激光器”不能在开放环境条件下使用,只能将其封闭在容器内,否则它们会蒸发。在新研究中,科学家将名为“1-乙基-3-甲基咪唑四氟硼酸盐”(EMIBF4)的离子液体与一种染料混合,使其成为激光介质。之所以选择这种液体,是因为它蒸发得非常缓慢,并且具有相对较大的表面张力。然后研究团队在石英衬底上涂上微小的氟化二氧化硅纳米颗粒,使其表面排斥液体。当EMIBF4沉积其上时,液滴几乎能完美地保持球形,持续时间长达30天。研究人员表示,数学计算显示,即使暴露在气流中,这种新液滴的理想形态和光学性质也会保持不变。据目前所知,这是第一个可通过气流调谐的液体激光振荡器。此外,研究人员利用3D打印方法,打印出了这种液滴激光器,且打印出来的液滴阵列无需进一步处理即可工作。研究团队指出,这种产品具有高度的可扩展性和易用性,很容易用于制造廉价的传感器或光通信设备,有望催生更灵敏的气流探测器或更便宜的光纤通信设备。
  • 3.15晚会海能发布权威解决方案:亚硝酸盐,还在把它“当饭吃”!
    今天,3月15日,CCTV-2财经频道315晚会如约而至。两个多小时的时间里,过半的时间被用来披露食品安全相关的内容。网络订餐卫生、义齿重金属、红参泡糖、食品中铅、二氧化硫、菌落、过氧化值超标,食品安全问题俨然成为消费者权益受到危害的重灾区!    针对以上问题,海能仪器第一时间做出反应,科学解读相关问题,提供一手解决方案,希望对您有所帮助。    亚硝酸盐,还在把它“当饭吃”!解决方案一事件315晚会第一案,“饿了吗”背后的黑心快餐作坊!危害解读  “饿了么”背后的黑心作坊监管不力、无证经营,卫生安全不达标。甚至为了省事一次性贮存大量盒饭,隔天、数天之后再送到我们嘴边。饭菜放置的时间久,会在细菌的分解作用下,将所含的硝酸盐还原成亚硝酸盐。亚硝酸盐有致癌作用,即使加热也不能去除!  解决方案:  1 仪器与试剂  1.1 仪器  Hanon i8双光束紫外可见分光光度计    海能仪器 i8 双光束紫外可见分光光度计  1.2 试剂配置  (1)饱和硼砂溶液(50g/L) :称取5.0g硼酸钠,溶于100mL热水中,冷却备用。  (2)亚铁氰化钾溶液(106g/L):称取106.0g亚铁氰化钾,用水溶解,并稀释至1000mL。  (3)乙酸锌溶液(220g/L):称220g乙酸锌,先加30mL乙酸溶解,用水稀释至1000mL。  (4)对氨基苯磺酸溶液(4g/L):称0.4g对氨基苯磺酸,溶于100mL20%(V/V)盐酸中,混匀后,至棕色瓶中,避光保存。  (5)盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶于100mL水中混匀后,至棕色瓶中,避光保存。  (6)亚硝酸钠标准溶液(100μg/mL):准确称取0.1000g亚硝酸钠,加水移入1000mL容量瓶,加水稀释至刻度,混匀。  (7)亚硝酸钠标准使用液(10μg/L):临用前,吸取10mL亚硝酸盐标准溶液,置于100mL容量瓶,加水稀释至刻度。  2 实验过程  2.1 样品制备  将切碎的样品取5g左右,置于50mL的烧杯中,加12.5 mL饱和硼砂溶液,搅拌均匀,以70°C左右的水约250mL,将试样洗入500mL容量瓶,加热沸腾15min,取出冷却,并放置至室温。  2.2 样品净化    在震荡上述提取液时,加入5mL亚铁氰化钾溶液,摇匀,再加入5mL乙酸锌溶液,以沉淀蛋白质。加水定容至刻度,摇匀,放置30min,除去上层脂肪,上层清液用滤纸过滤,并弃去30mL初滤液,滤液备用。  2.3 建立标准曲线  吸取亚硝酸钠标准使用液配置测试溶液,绘制标准曲线。  2.4 样品测试  吸取40mL上述滤液于50mL容量瓶中,分别加入2mL对氨基苯磺酸溶液,混匀,放置3-5min,加入1mL盐酸萘乙二胺溶液,加水至刻度,混匀,静置15min,用2cm比色皿,以零管调节零点,于波长538nm处测吸光度。    2.5 结果讨论  实验样品为2组对照实验和一个空白实验,检测发现放置较长的菜品确实亚硝酸盐高于新的菜品,不同的蔬菜本身亚硝酸盐的含量也有差别,所以放置一段时间以后亚硝酸盐的增加量也有所不同。
  • 中石油昆仑润滑油兰州研发中心参加973项目
    2009年12月24日,由中国石油兰州研发中心参与研究工作的国家重点基础研究发展计划(973计划)项目——《苛刻环境下润滑抗磨材料的基础研究》,在该项目首席科学家刘维民研究员的主持下,在北京举行了2009年度的工作总结会。中石油兰州研发中心徐小红、李久盛应邀参加了此次会议。  突破极端苛刻环境条件下的润滑抗磨损材料技术瓶颈,推动我国润滑抗磨材料技术发展,已成为我国高技术、能源、资源等领域急需解决的重大基础科学问题之一。作为国内摩擦学领域的首个重大基础研究项目,《苛刻环境下润滑抗磨材料的基础研究》这一课题的目标,正是为了解决若干极端苛刻环境下高性能润滑抗磨材料的基础科学问题,建立适应极端苛刻环境和条件的摩擦学(摩擦、磨损、润滑)基础理论,争取产生一批对国家重大工程和重要国防装备具有保障作用的润滑、抗磨材料制备技术。  作为合作单位,兰州研发中心积极参与了本项目的基础研究工作,与河南大学一起承担了其中的第6项子课题《高性能润滑抗磨材料的分子设计、结构调控与制备技术》,并以此为支撑平台,近3年来集中开展了如纳米TiO2、纳米硼酸盐和纳米SiO2等高性能润滑抗磨材料的分子设计、制备表征、性能评价及应用研究。截至2009年底,已累计发表SCI论文6篇,国内核心期刊论文10多篇,并在国际会议上宣读论文3篇,不但为提高昆仑润滑油的内在品质进行了技术储备,同时扩大了昆仑品牌的影响力。
  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。  在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。  最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。  福建物构所深紫外非线性光学晶体材料研究获进展
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250g H109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mg F101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25g B101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 岛津EPMA超轻元素分析之(二)| 浙大学者解决超轻元素Be的微区定量
    超轻元素Be 浙江大学饶灿教授团队利用岛津电子探针EPMA-1720H对各种铍矿物进行原位分析,探索定量分析的理想条件,精准分析了羟硅铍石、硅铍石和绿柱石等铍矿物。铍的电子探针精确分析不仅可以深入了解铍的赋存形式,发展铍的成矿理论,也有利于系统认识铍的矿物地球化学性质,相关研究成果发表在《科学通报》上。 超级金属-铍 铍是一种“战略关键金属”,被誉为“超级金属”、 “尖端金属”、 “空间金属”、 “核子堆保护神”,铍在国防和尖端科技中的应用具有不可替代的地位。地学研究领域,铍的准确定量测试对矿物工艺学研究、矿床成因解释、矿产资源评价以及地质过程的推演具有极其重要的意义。 铍测试的难点铍的研究和利用都具有重要的现实意义,但其原位精确地电子探针分析一直是地球科学领域的难题。 1、高次线的干扰“对于常见的铍矿物如绿柱石和硅铍石或羟硅铍石,Si 元素的高次线可能对 Be 的 Kα 线有干扰”; 2、特征X射线峰位偏移“相对于金属铍(峰位 11.4 nm),其它铍矿物的峰位均出现了不同程度右移现象,其中铍的硅酸盐和氧化物的峰位均在 12.0 nm 左右,而铍的硼酸盐矿物(Hambergite 和孟宪民石)的峰位右移较小,在 11.6 nm 左右。” 3、受基体吸收影响很大“绿柱石(13.96 wt.% BeO)、孟宪民石(4.30 wt.% BeO)、羟硅铍石(42.00wt.% BeO)、 Hambergite (53.00 wt.% BeO)、 Bromellite (100.00 wt.% BeO)对应的峰位强度分别为 350 cps、 480 cps、700 cps、2300 cps 和1100 cps,而金属铍的峰强最高,为70350cps。” 解决方案岛津电子探针EPMA-1720H 1、测试的过程选择PHA过滤高次线的干扰影响; 2、分别确定铍矿物中 Be 的特征峰位、合适的背景扣除(BG+和BG-),尽可能选择相同或相似的铍矿物标样; 3、根据需要延长测试时间50-100 s 之间。由于基体效应对超轻元素测试的影响很大,选择配置52.5°高位特征X射线取出角,以及具有高灵敏度的全聚焦晶体的电子探针EPMA仪器,可以保证高精度的测试。 结 论1.优化了铍的最佳分析条件:加速电压为 12 kV、无水铍矿物的分析束流为 100-200 nA、含水铍矿物的分析束流为 50-100 nA、需要选择PHA过滤高次线的干扰; 2.使用上述条件,定量分析了几类主要铍矿物,包括羟硅铍石、硅铍石和绿柱石,均获得了很好的测试结果; 3.同时探讨了铍定量分析的技术问题,如铍的特征 X 射线峰形较平坦、强度不高和发生右移等现象。 用户声音 我国本身铍资源较为匮乏,对外依存度达到80%以上。自然界已发现的含铍矿物约120余种,如绿柱石、磷铍钙石、硅铍石等。Be作为一种超轻元素,由于其特征能量弱、易吸收等原因,其微区原位定量测试非常困难。岛津电子探针的分辨率和灵敏度很高,常规元素的峰形都非常尖锐,对于超轻元素能够很好地检出,这也给含铍矿物的测试带来了很大的机遇和挑战。2019年年底,饶教授在昆明举行的岛津电子探针用户会上,专门就这方面的分析做了报告分享,引起了与会者的关注和热烈讨论。浙江大学饶灿教授 参考文献吴润秋, 饶灿, 王琪. 关键金属铍的电子探针分析[J].科学通报. DOI:10.1360/TB-2020-0082。 撰稿人:赵同新、崔会杰
  • 水质中硼含量的测定
    一、背景介绍硼(Boron)是一种化学元素,元素符号是B。单质硼为黑色或深棕色粉末,有多种同素异形体,在自然界中主要以硼酸和硼酸盐的形式存在。人们每日从食物及饮用水中会摄人1~3 mg硼,硼也是植物生长所必需的微量元素。但是硼的过量摄取或灌溉水中硼含量过高会对人体和作物产生危害。GB 5749-2006《生活饮用水卫生标准》、GB 3838-2002《地表水环境质量标准》、GB/T 14848-2017《地下水质量标准》等水质标准对硼含量均有限值要求,故我们需要对水质中硼含量进行检测。下面我们将具体介绍硼含量检测的标准要求、测试方法、具体测试过程及结果。 二、标准及限值硼的测定方法主要有甲亚胺-H分光光度法、姜黄素分光光度法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法。甲亚胺-H分光光度法是一种快速、简单、灵敏度高的测量方法,硼与甲亚胺-H形成黄色配合物,在波长420nm处,其颜色与硼的浓度在一定范围内成线性关系。对应的部分标准限值如下:GB 5749-XXXX《生活饮用水卫生标准》的征求意见稿参数限值检测方法依据硼1mg/LGB 5750.5-2006 生活饮用水标准检验方法 无机非金属指标甲亚胺-H分光光度法GB 3838-2002《地表水环境质量标准》参数最|低检出限检测方法方法依据硼0.02mg/L姜黄素分光光度法HJ/T 49-19990.2mg/L甲亚胺-H分光光度法生活饮用水卫生规范GB/T 14848-2017《地下水质量标准》参数I类II类III类IV类V类硼(mg/L)≤0.02≤0.10≤0.50≤2.00>2.00 三、硼含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:硼工作试剂包:硼测定试剂、硼显色剂、抗坏血酸粉剂硼标准溶液:ρ=100.0mg/L3、检测流程及结果:参数方法号方法国家标准检出限mg/L测量范围mg/L重复性测量误差硼52甲亚胺-H分光光度法GB/T 5750.50.020.02-4.002.00%±5% 图 1 硼含量测定流程 图2 硼含量测定显色图(从左到右依次为0mg/L、0. 5mg/L、1mg/L、2 mg/L、4mg/L)图3 硼含量测定曲线图4、结果总结:我们对4mg/L 、2mg/L 、1mg/L及0.5mg/L的硼溶液进行检测,示值误差<1.0%,重复性<2%,结果良好。 DGB-480型多参数水质分析仪产品,采用8波长光学测量系统和90度光散射浊度检测光路,内置40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 明日开播!第七届热分析与联用技术网络会议聚焦三大主题专场
    由仪器信息网联合中国化学会热力学与热分析专业委员会共同主办的第七届与联用技术网络会议将于2021年9月15-16日举办。会议主题将围绕化学热力学、热分析技术、联用技术、量热技术及其应用和先进仪器与表征技术等方向,邀请中国化学会热力学与热分析专业委员会的多位委员和领域内知名学者以及主流科学仪器厂商分享经验成果和最新进展,旨在促进国内热力学与热分析领域先进仪器技术及前沿科学研究的发展。会议时间:2021年9月15-16日会议日程:本次会议共设置了热分析与联用技术(9月15日) 、热力学与热分析及其应用(9月16日)、量热学与量热技术(9月16日)三大主题会场。热分析与联用技术(9月15日) 报告时间报告题目报告嘉宾09:30--10:00热分析/红外光谱联用曲线解析及其合理表述中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师 丁延伟10:00--10:30热分析方法的选择及其在运动场地合成材料中的应用研究华东理工大学副研究员 于惠梅10:30--11:00绿色溶剂研究中的热分析及联用技术中国人民大学教授 牟天成11:00--11:30热重/红外联用技术(TG/FTIR)的检测原理与谱图解析北京大学分析测试中心正高工 章斐13:30--14:00热失重/热裂解与GC/MS联用分析的原理及应用上海交通大学研究员 朱邦尚14:00--14:30热重分析仪联用解决方案梅特勒-托利多国际贸易(上海)有限公司 技术专家 陈成鑫14:30--15:00二维/多维异步相关谱在解析热重红外光谱联用实验产生的双线性数据上的应用进展北京大学化学与分子工程学院副教授 徐怡庄15:00--15:30热分析联用技术及应用西安近代化学研究所副研究员 王晓红热力学与热分析及其应用(9月16日)报告时间报告题目报告嘉宾09:30--10:00反应临界状态精确分析方法中国科学院工程热物理研究所研究员 夏红德10:00--10:30热分析方法的选择及其在运动场地合成材料中的应用研究华东理工大学副研究员 于惠梅10:30--11:00动态力学分析及其常见应用苏州大学分析测试中心高级实验师 徐颖11:00--11:30结晶动力学的DSC表征进展南京大学化学化工学院胡文兵教授课题组成员 何裕成量热学与量热技术(9月16日)报告时间报告题目报告嘉宾13:30--14:00碱金属硼酸盐学溶液体系热力学性质量热学研究天津科技大学二级教授/院长 邓天龙14:00--14:30大体积量热计研究进展中国科学院化学研究所副研究员 张武寿14:30--15:00低温量热在材料热力学性质研究中的应用中国科学院大连化学物理研究所研究组长/研究员 史全15:00--15:30具有等温环境微型转动弹燃烧-溶解多功能量热计的搭建与性能评价湘南学院二级教授 李强国15:30--16:00量热仪技术在锂电池热安全与热管理领域的应用中国计量大学副研究员 许金鑫嘉宾阵容:报名方式:点击下方链接立即报名https://www.instrument.com.cn/webinar/meetings/thermalanalysis2021/或扫描参会二维码报名。扫码报名
  • TSKgel色谱柱在单抗药物研发中的应用实例
    与传统小分子药不同,单抗类蛋白药是非均一性的结构复杂的大分子,因此使这类原研药或仿制药的研发与质控工作难度增大。通过液相色谱-质谱联用技术(LC/MS),结合蛋白分子量的测定、异构体、氨基酸修饰、糖基化修饰以及聚集情况分析等多种检测手段,可对单抗类药物进行全面的结构表征。 在文献《Physicochemical and Functional Comparability Between the Proposed Biosimilar Rituximab GP2013 and Originator Rituximab》中提到了将利妥昔单抗与其生物类似药(GP2013)之间,针对各项物化性质和功能性指标进行了对比分析试验。 利用尺寸排阻色谱法(SEC)的分子空间结构不同的原理可对抗体的多聚体、抗体片段以及PEG蛋白等进行有效分析。在该文献中,对原研和仿制药样品的非均一性分析(抗体聚集情况分析)时使用了TSKgel G3000SWXL色谱柱(请参照该文献2.12 SEC,CE-SDS,AF4部分)。 硼酸盐亲和色谱法多用于对糖或糖蛋白等生物分子进行分离。该文献中,使用了亲和色谱柱TSKgel Boronate-5PW对GP2013样品中糖基化和未糖基化的抗体异构体进行了分离。(请参照该文献2.13 Boronate Affinity Chromatography部分) 在该文献2.14 Glycan Analysis部分中,通过N-糖苷酶F来释放单克隆抗体Fc部分上的糖链,并对游离的N-末端糖链进行2-AB荧光标记后进行糖基化分析。其中使用到了TSKgel Amide-80(2.0 mm ID X 15 cm,3 um)色谱柱用来分离2-AB标记的糖链。 TSKgel Amide-80亲水相互作用(HILIC)色谱柱适用于亲水性低分子、核酸以及糖类等化合物的分离分析。在单抗药物分析应用上,TSKgel Amide-80常用来分析结合在抗体上的糖链的结构差异性。 为了满足广大色谱工作者对抗体药高效分析的需求,东曹公司作为分离纯化产品的生产商,不断致力于开发出在色谱分离度、灵敏度以及分析速度上具有革命性提升的色谱柱产品。特别是在对抗体药物质量控制中的HPLC检测方法上可以提供完备的解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制