当前位置: 仪器信息网 > 行业主题 > >

全氟辛烷磺酰氯

仪器信息网全氟辛烷磺酰氯专题为您提供2024年最新全氟辛烷磺酰氯价格报价、厂家品牌的相关信息, 包括全氟辛烷磺酰氯参数、型号等,不管是国产,还是进口品牌的全氟辛烷磺酰氯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟辛烷磺酰氯相关的耗材配件、试剂标物,还有全氟辛烷磺酰氯相关的最新资讯、资料,以及全氟辛烷磺酰氯相关的解决方案。

全氟辛烷磺酰氯相关的资讯

  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 石油产品辛烷值测定仪的原理和操作注意事项
    辛烷值测定仪是一种常用的检测仪器,具有体积小、操作简单、重复性好、检测速度快等特点,可以快速的分析出油的标号。测量原理石油辛烷值十六烷值测定仪的原理在于对汽油的辛烷值和柴油的十六烷值的绝缘导磁率和电磁感应的电荷特性测定测量出来的。通过测量油品的电介质特性,同已知的存在内存里的数据模型相比较,从而测定出结果。感应装置十分准确,可以测得微小的电介质参数变化.从而可以检测辛烷值和十六烷值等石油产品参数。石油产品辛烷值测定仪操作注意事项:1.严格遵守操作规程,严格控制标准试验条件。2.开机前要认真检查试验机,前要盘车3-4圈。3.停机前要往燃烧室中喷入少许未燃的柴油。 4.在配制标准或副标准燃料时,必须使用计量部门校正过的容器和量筒。5.除短时间外,发动机运转中要不间断高压油泵的柴油供应。6.当搬动手轮增加发动机压缩比时,必须要瞬时针方向(从发动机仪表面板一端看)转动手轮进行z终压缩比调节,以消除手轮机械中的间隙而造成的读数误差。7.停机后要将飞轮盘到压缩冲程的上死点。8.当发动机换用燃料时,必须先运转几分钟,以确保喷射系统彻底清洗并使发动机工作平稳后再次读取试验数据。9.必须定期用检验燃料检查试验机的状况。
  • 后汽柴油时代的“辛烷值机”和“十六烷值机”何去何从
    后汽柴油时代的“辛烷值机”和“十六烷值机”何去何从(杜伯会 山东省产品质量检验研究院 主任正高工;张会成 中国石化大连石油化工研究院 主任正高工;陈雪峰 江苏宿迁市产品质量检验研究院 主任;陈永华 青岛元辰仪器设备有限公司 技术总监)摘要:大炼化时代的来临,炼油生产逐渐从分散型趋于集中炼制;同时,市场多元化发展,减弱了对成品油的依赖强度;现代高效分析理念驱动对“辛烷值机”和“十六烷值机”分析技术进行革命。后汽柴油时代的“辛烷值机”和“十六烷值机”该何去何从?对此,进行一点思考讨论。关键词:辛烷值机;十六烷值机;未来发展1、背景分析(1)汽油的辛烷值和柴油的十六烷值是其分析中最重要指标。由于其是混合性的指标,目前汽柴油检测分析仪器方案,如图1-1所示,标准采用台架式模拟方式进行测试。其检测过程影响因素多,不同设备之间检测结果差异很大,是分析仪器中数据争议较大,分析精密度较低,性价比较低的一类分析设备。图1-1(2)大炼化项目的迅猛发展,导致炼油产能过剩现象日益凸显。在此背景下,中小企业的生存空间日趋狭窄,逐渐边缘化并面临淘汰的境地;另外,环保问题可能成为压倒其生存的最后一根稻草。(3)随着资源的日趋紧张,原油原料价格逐步呈现出上升态势。同时,原料品质呈现出下降趋势,导致汽柴油的上游原料成本不断攀升。展望未来10到20年,市场竞争将愈发激烈,并呈现出多元化态势,市场细分将成为不可避免的发展趋势。(4)如图1-2所示,随着新能源车辆技术的日益成熟与稳定,其市场认可度不断攀升,进一步坚定了消费者向新能源车辆转移的决心。特别是在以代步为主要需求的城市用车市场中,这种转变愈发显著,成品油产能过剩的现象也由此愈发凸显。长远看,预计10-15年内柴油还占消费主体长期存在,目前产能仍然2亿吨/年,这么大体量转型需要时间。电动车代替汽油车比代替柴油车要容易,大型电动车做长途运输用途还需要时间,氢能源等绿电性技术实现其替代可能更快些。图1-22、辛烷值机和十六烷值机的问题提出中国现在已经是炼油大国,未来也是汽柴油产品出口大国。需要有相应的自己的国际化标准做支持。标准是关键,我们不冲在科技前沿,碰不到前沿问题,设备只能仿造,目前存在大家对国产设备信心不足的问题。现在国产中低端设备进步很大,研究型高端设备与国外差距仍较大,国产设备受排挤含有部分非技术因素。作为只专注于分析某一项物性指标的辛烷值机和十六烷值机,高成本、低效率,已成为当前发展的痛点。其未来的发展方向应深入思考,是继续坚持现有的运行模式,还是通过技术和方法的创新与转移,以实现更高效、更精准的性能提升。在确保不低于现有检测结果准确性的前提下,积极探索利用现代微电子、电化学传感器等先进技术,并结合计算机大数据和人工智能等辅助手段,对辛烷值机和十六烷值机进行改造升级需要思考。同时,还应充分利用对光学、热学、力学、物理学、化学等多学科的综合理解,以全面解析现有技术中存在的矛盾和问题。时代的快速发展,如何快速而科学地应对必须持续思考。3、探讨解决发展途中的阻碍3.1 对标准方法的认识和依赖作为科学分析技术行业,应秉持科学精神,以事实和结果为依据,客观评价设备的优劣,而非盲目追随某些权威言论。只有这样,才能推动行业的健康发展,实现技术的自主创新与突破。如汽油辛烷值机的检测结果认可问题,当前业界普遍认可的是缸径为82.55mm(现称大缸径)的仪器所得出的数据;然而,这并不意味着其他缸径的仪器检测结果就必然不准确,目前尚缺乏有效证据支持这一观点。如我国曾研发出缸径为65mm的汽油辛烷值机,市场应用很好,基本实现国产替代。但受部分专家倾向西方的影响,以缸径差异为理由,对国产产品设置了障碍封锁,导致许多检测和生产单位不得不更新设备,损失巨大。此外,中石化大连研究院研制的风量法十六烷值机,经过三十多年的持续研究与改进,并在多数据比对中表现出远超瓦格厦的稳定性和准确性,而且性价比高。然而,却因检测方法不同为由而被拒之门外,这无疑是一种遗憾。因此,应重新审视现有的观念和做法。同样具备数据准确性的前提下,国外设备(如美国瓦格厦waukesha)被视为行业标杆,而国产设备则始终处于跟随地位,这一现状值得深思。3.2 目前台架式模拟在实际应用中存在的问题(1)大量的工作检测样本,如何进行快速高效检测分析以及准确的统计;(2)传统的模拟燃烧方式存在试剂用量大,导致燃烧过程中产生的污染量显著增加,还伴随着高昂的分析成本和较低的工作效率。3.3 目前影响辛烷值和十六烷值机检测误差原因分析(1)设备生产由于加工工艺导致每台仪器的工作点存在差异。这些差异主要源于设备各环节的配合工作间隙、传感器温度漂移的不一致性,人员操作的一致性差,以及工作环境的差异,如环境温度、大气压力、环境湿度等因素的共同作用。(2)在设备的长期运行过程中,由于磨损间隙、积碳问题,以及机械设备材料长期工作引起的热形变等因素产生影响。(3)作为检测的标的物质本身具有多样性复杂性,其辛烷值和十六烷值作为热值结果的定义。由于标的物为混合物,其性能受技术工艺和添加剂等多种因素的影响。(4)燃烧过程是否充分对检测结果具有至关重要的影响。3.4 解决途径探讨(1)为提高分析的准确性并减少误差,探索加入关键的其它物性指标,并进行融合分析。其中包括密度、粘度、闪点等关键性指标,以确保分析结果的全面性和可靠性。(2)针对当前采用的热传感器分析模式,探讨采用电化学传感器替代或热传感器与电化学芯片传感器进行结合使用。(3)数字化时代开启,如图3-1所示,大模型、大数据和大计算已成为主流趋势。以此为发展的多功能和智能化是未来的趋势之一;小型化、微型化、快速化和低耗材化也是当前及未来的重要需求方向之一。图3-1(4)新标准的及时建立与更新是新理念发展的基石。4、结论(1)大炼化时代下,需要建立与之适应的检测标准和仪器体系。不破不立,摒弃旧的思维模式,开创新局面。关于主动寻求进步还是被动跟随提升,有必要进行持续深入探讨。(2)AI必然融入常规检测设备中,进行过程控制应用,其最终验证还得经典技术支撑。但是相关修订标准制定,需要勇气破圈,进而打破这个规则。(3)市场作为检验真理的唯一标准,盲目崇拜会阻碍社会进步的步伐。(4)替代进口设备是前进方向,创新突破是未来主题,走出去是必由之路。5、展望在大炼化与多元化发展并存的新阶段,对汽柴油检测中的核心指标——“辛烷值”和“十六烷值”检测技术应该重新审视和探讨其未来发展。应秉持严谨、稳重、理性的态度,通过技术创新和方法转移,推动其性能提升和效率优化,以适应时代发展的需求。对分析仪器的方法要求,应该是客观的、多元化的,指标标准的质量具备可比性和可对照性,满足和符合指标要求结果的就应该是合理的方法。此外,随着大数据的积累,人工智能AI将逐步融入检测领域,微电子和电化学传感器技术为未来的检测工作开辟了新的发展路径。自信、自立、自强,国产化是否能够完全替代进口,技术是否具备引领国际标准发展的潜力,需要不断思考并努力探索。
  • 可参与现场分析 方便灵活 ----便携式辛烷值十六烷值测定仪
    油液监测技术是通过分析被监测机械设备在用润滑油的性能变化和油中磨损颗粒的情况,获得机械设备的润滑和磨损颗粒状态的信息,从而评价机械设备的运行工况和对其故障进行预测并确定其故障原因、类型和部位的技术"。油液分析的内容包括润滑油本身性能的分析和润滑油携带磨损颗粒分析两个方面,其测试手段有常规的理化分析、付立叶红外光谱分析、铁谱分析、光谱分析、颗粒记数、磁塞等。 润滑油油品分析主要分析油品的理化指标或受污染的程度,主要体现在油的衰化、添加剂损耗和污染等 润滑油磨损颗粒分析主要包括磨损微粒的数量、微粒尺寸分布、微粒化学成分以及几何形态几个方面。通过润滑油磨损颗粒分析可判断机械设备的磨损程度、磨损类型和磨损部位,从而可以进一步探讨机械零部件的磨损机理。由此可知,油液分析具有下列功能 故障诊断、确定润滑油的使用期限、判定润滑油的污染、了解添加剂的损耗、对新油的评定、基于摩擦学的设计以及确定机械设备的维修规范等。 油液监测技术自从70年代末引进我国以来,在国内得到长足的发展,其应用领域也在不断扩大。目前,油液监测技术已广泛地应用于机械、交通、石化、煤炭、冶金、航空和医学等部门,其研究领域和研究对象也在不断拓广。从分析铁谱技术、直读铁谱技术、旋转铁谱技术及离线铁谱技术到在线铁谱技术的研究都取得了可喜的成果。A2020辛烷值十六烷值测定仪常用于动力汽油的辛烷值现场分析,与马达法和研究法(RON和MON)相对应,也可适用于柴油的十六烷值分析。其测量方法符合国际标准:辛烷值测量符合:ASTM D2699, GB/T18339, ASTM D2700.柴油十六烷值测量符合:ASTM D4737, ASTM D613, EN ISO 5165,A2020辛烷值分析仪广泛的应用在各地。仪器特点1、采用对汽油的辛烷值和柴油的十六烷值的绝缘导磁率和电磁感应的电荷特性的分析原理。2、仪器可以测得微小的电介质参数变化有大气压力校正功能。3、可综合的准确的测量石油产品的各种数据。4、可以对各种含添加剂的汽油进行测量。5、测量柴油的十六烷值,柴油类型及凝结温度。6、同时显示RON,MON和抗爆指数(AKI). AKI=(RON+MON)/2。7、功能强大的处理芯片可以对数据快速准确的处理,同WINDOW系统兼容。8、带温度校正,使用成本低。9、简单易操作,体积小,便于携带,箱体防振,防溶剂,密封。10、四排带背光LCD显示,适于低温环境,电源指示,外带低压电源。技术参数辛烷值测量范围40-120辛烷值仪的允许测量误差:0.5辛烷值仪测量结果的可浮动范围:±0.2十六烷值仪的允许测量误差:±1十六烷值仪测量结果的可浮动范围:±0.5测量时间(秒):1-5电池电压过低的临界值: V5.4外形尺寸主机, 100 mmх210 mmх40 mm 传感器, 60mmх100mm重量0.7Kg正常工作时间(单位:小时)1000
  • 神开首台SKY2102-I型汽油辛烷值测定机通过用户现场验收
    上海神开石油仪器有限公司与中石化长岭分公司合作研制的首台SKY2102-I型汽油辛烷值测定机于近日通过了用户现场验收。  SKY2102-I型汽油辛烷值测定机是以替代进口为目标,按照国家标准,专门针对大型炼化企业用户研制的高端自动分析仪器。该仪器与进口仪器相比,体积更小,自动化程度更高,操作更方便。经过用户现场半年多的调试运行,仪器的稳定性得到充分的验证。在此次验收测试中,双方组成的验收小组分别采用马达法和研究法,经过近两周的反复试验,并将试验结果与进口仪器进行了全面比对,结果证明,该仪器测试数据的重复性和再现性均达到并优于GB/T503-1995和GB/T5487-1995标准的规定,完全符合大型炼化企业的使用要求。  此次SKY2102-I型汽油辛烷值测定机顺利通过验收,提高了神开石油仪器公司在行业内的知名度,为打破进口汽油辛烷值测定机在国内市场的垄断地位迈出了重要一步。
  • 中石化装备先进武器(ERASPEC汽油辛烷值测定仪)用于燃油市场的监控和检测
    中石化为了提高油品市场的监控管理能力。经过长达一年的评比和考查,以及大量的重复性再现性和稳定性试验比较,最终选中ERASPEC汽油辛烷值测定仪用于装备全国范围的汽油产品检测。投入使用后越来越好。以成为产品交接,加油站和混油仓库唯一指定的市场监控仪器,目前已装备了近300台。 新型的便携式全自动燃油分析仪可自动进样、自动清洗,5mL样品、自标定、自诊断3分钟可得结果,可分析辛烷值、十六烷值、馏程、蒸气压、密度等物理特性, 以及苯、芳烃、MTBE、稀烃等30种化学组份从整体上来说,技术系统非常先进可靠。ERASPEC汽油辛烷值测定仪/中红外汽油分析仪不仅是其它西方国家的民用石油产品成品检测市场,用于加油站及油库产品交接、市场监控的主流仪器产品,它还是美军,英军和北约快速精确油品监控的主力测试仪器,已服务外军包括海陆空军的各方面符合野战要求。其一键式简便操作.车载直流12DC和交流电的快速机动燃油测试性能受到了高度评价。 中国的高复杂性油样和混油与国外有很大的区别,培安公司投入了较大的力量组成红外专家和技术人员,ERASPEC汽油辛烷值测定仪/中红外汽油分析仪的数学模型和样品数据库均在中国根据催化裂化工艺为主而设计完成。ERASPEC汽油辛烷值测定仪/中红外汽油分析仪根据中国的情况加入了MMT对RON的贡献数学关系模型。另外ERASPEC汽油辛烷值测定仪/中红外汽油分析仪还加进了对辛烷值有影响的二烯类和胺类的测试,以及未知物的显示。这是为何ERASPEC汽油辛烷值测定仪/中红外汽油分析仪测试的整体精度要远高于其他仪器的原因。建立样品数据库得到中石化和中石油总公司的官方支持,每年可根据工艺进展进行更新。内存三种完善的数学分析模型,已建600个标样数据,且具备自学习标定功能,用户无需重新建模。对成品汽油的辛烷值,含氧化合物、苯、甲苯、C8-C12芳烃和总芳烃的多组分测定是唯一通过ASTM上述认证,可取代单一组分气相色谱分析的红外光谱仪。特别是ERASPEC汽油辛烷值测定仪/中红外汽油分析仪分析软件中专门增加了对中国FCC汽油及乙醇汽油对特性检测,其测试准确性和可信度将更加适合中国国情。 因此,ERASPEC汽油辛烷值测定仪/中红外汽油分析仪测试精度,技术支持和系统升级方面都具备独特优势和保障。ERASPEC汽油辛烷值测定仪/中红外汽油分析仪开机自检标定保证系统精度,抗各种自然条件变化,可通过软件如一张磁盘完成系统升级,无需送回原厂家标定。这是目前国际上红外仪器中独一无二的。预计ERASPEC汽油辛烷值测定仪快速燃油分析仪器介入中国市场,将大大改进中石化系统油品质量的监控能力,提高中石化油品质量保证系统的水平和声誉。 ERASPEC 汽油辛烷值测定仪/中红外汽油分析仪更多ERASPEC汽油辛烷值测定仪/中红外汽油分析仪信息,请联系培安公司 北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 全国新污染物治理版图已现!各地区行动方案全梳理
    随着2022年5月国务院印发《新污染物治理行动方案》(以下简称《行动方案》) ,持久性有机污染物、内分泌干扰物、抗生素、微塑料等新污染物开始得到人们重视。该《行动方案》提出了明确的任务线:即2022年发布首批重点管控新污染物清单,建立健全有关地方政策标准等;2023年年底前,完成首轮化学物质基本信息调查和首批环境风险优先评估化学物质详细信息调查;2025年年底前,初步建立新污染物环境调查监测体系。那么,截至2023年初,全国各地区是否已跟上国家脚步?仪器信息网近日对全国已发布的各地区新污染物治理行动方案进行了汇总,并梳理了其中值得关注的共性及差异。据不完全统计,截至发稿时,全国共有28个地区发布了新污染物治理工作方案,包括天津、河北、山西、内蒙古、上海、山东、江苏、浙江、江西、安徽、福建、湖南、河南、广西、海南、重庆、四川、贵州、云南、西藏、陕西、甘肃、宁夏、新疆、青海、黑龙江、吉林、辽宁。行动目标与国务院《行动方案》同步,各地区均已设下2025年长期目标,即2025年底前完成国家重点管控物质和本市重点行业化学物质基本信息调查,并完成高关注、高产(用)量的化学物质筛选和环境风险评估,逐步形成新污染物治理试点示范。其中,山西、山东、陕西、新疆、甘肃等地区已设下2023年短期目标,即2023年年底前,完成首轮化学物质基本信息调查和首批优先评估化学物质详细信息调查。可以预见的是,近期,各地区新污染物基本信息“摸底”工作将陆续开展,2025年前,各地区将逐步开始探索建立环境中新污染物痕量检测、同步检测分析方法,并建立相关监测网络。监测领域据统计,在监测领域这一维度上,水、土、气仍然是各大地区部署工作的重要脉络。比如在监测点布局方面,各地区均提到了要“在重点地区、重点行业、典型工业园区开展新污染物环境调查监测试点。”具体来说,在水环境监测方面,各地区皆有提到有关地下水、地表水、污染源废水中新污染物的调查监测。其中,山东、浙江、河南、湖南、海南等地区特别提出,要在各大江大河流域、各大河流入海口等重点区域设置新污染物的调查监测试点;在土壤环境监测方面,河南、福建、安徽、江西、辽宁等地区提到,要持续推进省内土壤新污染物监测,建立土壤污染隐患排查制度;在大气环境监测方面,黑龙江、云南、四川、甘肃、广西等地区提到要加强有毒有害大气污染物环境治理,对排放重点管控新污染物的企事业单位排放口及其周边环境定期开展环境监测,评估环境风险。目标污染物正如前文提到的,所谓新污染物,涵盖了持久性有机污染物、内分泌干扰物、抗生素、微塑料等。在国家刚刚发布的《重点管控新污染物清单(2023年版)》中明确提到,持久性有机污染物类、有毒有害污染物类、环境内分泌干扰物类、抗生素类这四大类14种污染物应严格按照要求落实禁止、限制、限排。可以看到的是,在污染物种类方面,各地区行动方案中提及的重点监测污染物亦有诸多共性。天津、河北、山东、浙江、江西、湖南、河南、海南、重庆、云南、西藏、陕西、甘肃、青海这14个地区明确要求要在重点地区、重点行业、典型地表水型集中式饮用水水源地、典型市政污水处理厂、典型工业企业或园区开展内分泌干扰物环境调查监测试点。作为内分泌干扰物下的重要一项,农药污染在近年广受各地重视,几乎所有地区均提到了要强化农药使用管理。作为重要的共性之一,仪器信息网发现,除内分泌干扰物外,抗生素、微塑料是被所有地区共同关注的重点,其市场的发展值得期待。所有地区均提到要将抗生素、微塑料等其他重点新污染物纳入“一品一策”管控措施,其中,上海更是在刚刚印发的《重点管控新污染物清单(2023年版)》中明确将微塑料提上重点管控名单。各地区行动方案的共性中仍然略有差异,各地区行动方案中虽然均提到要开展持久性有机污染物监测,但大多数地区并未给出此大类下的具体监管名单。少数地区提到了该大类下的具体化合物:河北提出,要开展全氟辛基磺酸类化合物、六溴环十二烷、十溴二苯醚、氯化石蜡、全氟辛酸及其盐类和相关化合物等持久性有机污染物以及汞或汞化合物的生产和加工使用企业环境信息调查;同样是持久性有机物污染物,上海给出的清单略有不同,包括全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS类)、全氟辛酸及其盐类和相关化合物(PFOA类)、全氟已基磺酸及其盐类和相关化合物(PFHxS类)、壬基酚、二氯甲烷、三氯甲烷、双酚A等;浙江要求严厉打击六溴环十二烷、氯氟烃、1,1,1-三氯乙烷、四氯化碳、含滴滴涕的涂料、三氯杀螨、醇等已淘汰持久性有机污染物;河南提到要探索开展含全氟辛烷磺酰基化合物废弃泡沫灭火剂环境无害化处置,同时,要从饮用水水源到用水末端全程关注消毒副产物、藻毒素和全氟化合物等。从上述名单中可以看出,含氟、含氯化合物是持久性有机污染物大类下备受重视的。我们再就“全氟化合物”这一关键词在各地区行动方案中进行了筛选,发现除上述地区以外,海南提到要重点关注饮用水中直接影响人民健康的消毒副产物、农药和全氟化合物等新污染物;宁夏提到要选取重点化工企业实施全氟化合物治理试点;四川提到在川南经济区选择自贡等市开展重点化工企业全氟化合物治理试点。可见,含氟、含氯化合物仍然在各地区存在不同程度的监测需求,并且多集中于水质监测领域。能力建设另外,作为各地区行动方案重要的共性,各地区在能力建设方面提出的要求是基本相同的,涉及到两大重要方向:1.加强新污染物监测技术攻关,开展有毒有害化学物质环境风险评估与管控关键技术研究。鼓励龙头企业加大科技投入,建设重点实验室,开展新污染物生态环境危害领域基础研究、应用基础研究。2. 培育一批符合实验室规范的化学物质危害测试实验室。开展相关专业人才队伍建设和专项培训,全面提升人才支撑能力。值得注意的是,在能力建设方面,有些地区特别提到了对于监测设备的最新配备需求。比如,福建提出要提升监督、执法装备和环境监测仪器设备的标准化水平;陕西提出要依托现有的分析测试能力,购置新污染物相关监测仪器设备;辽宁提出要完善新污染物环境监测资质、设备建设,提升新污染物非靶向监测分析能力;河北提出要培育化学物质危害测试实验室,完善新污染物环境监测资质、设备建设等。能力建设方面,共性中同样存在差异,这体现在各地区对于监测网络部署的具体方案上。有地区提出,要依托本省现有生态环境监测网络,进行新污染物信息调查后,再行构建新的监测方案,比如内蒙古、湖南等;有地区提出,要探索新污染物的调查监测试点,并逐步将其纳入全省环境监测体系,进而鼓励新污染物社会化监测,比如青海、山东等;有地区提到要依托高等学校、研究院所和企业等科技资源,进一步推进新污染物治理科技成果转化,比如重庆等;此外,山东特别提出,要搭建新污染物快检快评平台;结语2022年11月,生态环境部部长黄润秋主持召开部务会议,强调国家鼓励有条件的地方因地制宜制定本地区重点管控新污染物补充清单和管控方案,将新污染物治理融入水、大气、土壤污染防治工作中,进一步加强《清单》与现有污染防治制度机制的有机衔接。可以预见的是,在2023年,各地方新污染物的有关行动方案应会得到进一步完善,并于2025年建立各地独立完善的监测体系。
  • 185万!唐山市市场监督管理局进口气相色谱仪、进口液相色谱仪、辛烷值机采购
    项目编号:HBCN-2022025项目名称:唐山市市场监督管理局成品油实验检测设备(进口气相色谱仪、进口液相色谱仪、辛烷值机)购置预算金额:1850000最高限价(如有):1850000.00采购需求:气相色谱仪1套、液相色谱仪1套、辛烷值测定机1套。气相色谱仪主要用途:GBT 30519-2016 轻质石油馏分和产品中烃族组成和苯的测定;液相色谱仪主要用途:SH/T 0806 中间馏分芳烃含量的测定;辛烷值测定机主要用于测定汽车及点燃式航空发动机用汽油的抗爆性能。合同履行期限:合同签订生效后40日内送货安装调试完毕。本项目不接受联合体投标。
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 166.8万!安捷伦等中标唐山市市场监督管理局成品油实验检测设备(进口气相色谱仪、进口液相色谱仪、辛烷值机)购置
    一、项目编号:HB2022032280010001二、项目名称:唐山市市场监督管理局成品油实验检测设备(进口气相色谱仪、进口液相色谱仪、辛烷值机)购置三、中标(成交)信息供应商名称供应商地址供应商编码易安科仪(北京)国际贸易有限公司北京市东城区崇文门外大街3号南办1008室911101017621952896 四、主要标的信息货物类供应商名称货物名称货物品牌规格型号数量单价中标金额下浮率费率优惠率优惠产品简要描述信息优惠价/入围价易安科仪(北京)国际贸易有限公司详见货物明细表详见货物明细表详见货物明细表116680001668000
  • 瑞士万通中国提供全氟有机化合物(PFOS、PFOA)解决方案
    全氟有机化合物(PFCs)广泛应用于工业和民用的各个领域。近年来,其代表性化合物&mdash &mdash 全氟辛烷磺酸(PFOS)、全氟辛酸(PFOA)作为持久性有机环境污染物所造成的全球性生态系统污染引起了人们的关注,并逐步成为研究、分析的热点。 瑞士万通(Metrohm)为您提供简单、快捷的技术方案以测定PFOS、PFOA。该方法配置简单,采用液相色谱柱、等度分离、抑制电导检测、直接进样,无需预浓缩或基体消除,从而有效避免回收率差、线性欠佳等问题,特别适合痕量分析。 针对含高浓度二价阳离子的样品, 瑞士万通独有的英蓝(MISP)技术可实现在线去除二价阳离子,操作简便,准确度高。 欢迎致电瑞士万通垂询更多技术细节。
  • POPs2016上的“明星”—全氟化合物
    仪器信息网讯 谈起POPs,人们首先想到的就是垃圾焚烧厂排放的二噁英,然而最近在西安举办的第十一届持久性有机污染物国际学术研讨会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。会议现场  全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。  除了大会报告和各分会场中有多个涉及全氟化合物的报告外,为了集中讨论全氟化合物的问题,本次研讨会特设了“PFOS履约与安全替代”专场,邀请国内外专家共同探讨全氟化合物的危害和替代品。“PFOS履约与安全替代”专场  各位专家主要围绕全氟化合物的分布、危害和替代品三方面进行了报告。  POPs Environmental Consulting 的Roland Weber博士讲解了PFOS引起的水污染问题以及针对此问题的管理策略和成本。中科院生态环境研究中心王亚韡研究员以我国最大的全氟磺酸盐生产工厂为例,研究了周边地下水、表层土壤、职业工人、周边居民和周边母鸡中全氟化合物的分布、迁移、暴露以及消除规律,并根据研究成果提出了相应的安全防护措施。南开大学祝凌燕教授介绍了其团队在环境中全氟化合物的研究,主要结论包括河流输入是太湖水体中PFAFs的主要来源 直接排放是城市大气中PFOS和PFOA的主要来源 PFASs可以通过与气溶胶或颗粒物结合的形式在大气中传输 我国人体血清中以PFOS为主,短链化合物如PFHxS等有升高的趋势。  农业部环境保护科研监测所耿岳博士以“母亲全血中全氟化合物水平同胎儿先心病发生的相关性”为题,讲解了其在母亲全血中检出的全氟化合物浓度及种类,频率最高的是PFOS和PFOA,并且病例组和对照组之间没有显著性的差异。  中国民用航空飞行学院贾旭宏博士的团队成员为大家讲解了其团队开发的一种PFOS替代品——以短氟碳链(≤ C4)为基础的阴阳碳氟-碳氟表面活性剂复配体系, 并详细介绍了其在水成膜泡沫灭火剂中替代C8基氟表面活性剂的潜力。科慕化学(上海)有限公司Kai-Volker Schuber 博士介绍了其公司产品短链Capstone 含氟表面活性剂作为灭火剂原材料的风险,分别从原材料、产品以及降解产品三个方面,进行了环境、毒理、生态等方面的评估,论证了此种产品的环境友好性。中科院动物研究所戴家银研究员从分布特征和迁移转化规律、内分泌干扰与生殖毒性、复合毒性效应的表征、毒性效应的分子机制等四方面对全氟化合物进行研究,此次报告主要讲解了F-53B的研究成果,认为其各种效应仅次于PFOS和PFOA,不能作为PFASs的替代品。  在会议的茶歇期间,“PFOS履约与安全替代”专场主持人清华大学黄俊副教授接受了仪器信息网的采访,为我们系统介绍了全氟化合物的使用和研究情况。  仪器信息网:我国PFOS的应用情况如何?  黄俊:根据公约和我国的批准,总体来说,用于电镀、农药等特定豁免用途的PFOS将在五年之后全部淘汰,用于消防和全封闭体系电镀等可接受用途的PFOS将可继续使用。与无意产生的二噁英不同,PFOS是一种化工品。在消防领域,PFOS被认为是一种很好的灭火剂生产原料,由于我国石化基地比较多,可以说火灾防不胜防,如果不能找到效果良好的替代品,将对我国消防安全产生较大的影响。”  仪器信息网:PFOS是斯德哥尔摩公约新增列物质,这是否意味着PFOS的毒性小于二噁英等第一批列入公约的物质?  黄俊:这不一定,是否列入公约主要取决于科学认知和国家提名。一种物质如果产量较小,没有引起关注,但因为偶然原因发生危害并被证明毒性较大,可能就会被马上列入公约。再有一个是国家提名,不管一种物质的危害性如何,如果没有任何国家提名的话,也是不会列入公约的。  目前全氟化合物的很多毒理学性质还不清楚,虽然目前公约主要考虑PFOS和PFOA,但是研究者普遍认为应该有更多种类的全氟化合物属于POPs。现在的问题在于,研究众多,但是还没有一个公认的结论。就像阻燃剂一样,刚开始的时候,五溴二苯醚和八溴二苯醚被列入公约,对于十溴二苯醚大家经过了很长时间的争论,最终也列入了公约,这是一个科学证据完善的过程。  仪器信息网:全氟化合物的分析技术是否成熟?  黄俊:全氟化合物是表面活性剂,有阴离子型和阳离子型两种,种类非常复杂,且带有电性,有疏水性的,也有亲水性的,并且物质性质比较特别,所以在用液质联用同时分析多种全氟化合物时,就需要找到一个兼顾所有分析需求的方法。总之,多种全氟化合物的同时分析并不容易。  另外一个就是排除干扰。仪器中的很多密封件是采样特氟龙材质,这种材质会溶出全氟化合物从而形成干扰,目前的解决方法包括更换材质、增加预柱消除干扰、采用同位素稀释方法消除干扰。还有就是实验室的本底控制也很重要,像冲锋衣、地毯、涂料之类的,都会释放出干扰物质。编辑:李学雷
  • 警惕!日本多地水体检出全氟化合物含量超标,这些仪器及标准或引起关注
    据新华社6月26日报,日本多地近期陆续出现水体和居民血液中有机氟化合物含量超标的情况。现阶段,日本对全氟和多氟烷基物质含量的暂定国家标准为每升水50纳克,而多处水质检查报告显示,这类物质含量甚至达到日本暂定国家标准的420倍。那么,什么是全氟化合物?又有哪些危害呢?全氟化合物,一般指全氟和多氟烷基类物质 (per- and polyfluoroalkyl substances, PFASs),是碳骨架上氢原子部分或全部被氟原子取代的一类人工合成化合物。PFAS具有较强的的表面活性(加入水中可以降低水的表面张力)、化学和热稳定性(不易发生化学反应)、疏水性和疏油性。PFAS 半衰期(自行转变为无害元素,浓度降到一半的时间)长达10年之久,其稳定性强且极难降解,易在环境和生物体内累积,呈现出明显的生物富集性。其中,全氟辛烷磺酸(perfluorooctanesulfonic acid, PFOS)及其盐类以及全氟辛酸(perfluorooctanoic acid, PFOA)已被联合国环境规划署认定为持久性有机污染物(persistent organic pollutants, POPs),并被列入《斯德哥尔摩公约》进行国际管控。已有的毒理研究表明,全氟化合物会对实验动物造成肝脏毒性、发育与生殖毒性、遗传和免疫毒性以及致癌性等。美国环境保护署(EPA)也指出,暴露于一定水平的PFAS下可能会导致人体健康风险,包括影响胎儿和婴儿发育、癌症、肝损害、免疫疾病、甲状腺失调和心血管疾病等。全氟化合物检测标准有哪些?所属行业标准号标准名称所用仪器及设备环境ISO 21675:2019水质全氟及多氟化合物的测定固相萃取-液相色谱/质谱法固相萃取仪、液质联用仪、液相色谱仪更多实验室常用设备,请查看:旋转蒸发仪、浓缩仪、超纯水机、涡旋混匀器点击查找更多…EPA 533-2019饮用水中的全氟和多氟烷基物质的测定同位素稀释阴离子交换固相萃取-液相色谱/串联质谱法ASTM D7979-2019采用液相色谱串联质谱法(LC/MS/MS)测定水、污泥、流入物、 流出物和废水中全氟烷基和多氟烷基物质的标准试验方法EPA 537.1-2020固相萃取-液相色谱/串联质谱法测定饮用水中的多氟烷基物质DB 32/T 4004-2021水质 17种全氟化合物的测定高效液相色谱串联质谱法ASTM D7968用液相色谱串联质谱法(LC/ MS/MS)测定土壤中多氟化合物的标准试验方法DIN 38414-14:2011德国检验水,废水和污泥的标准方法.污泥和沉淀物(第5组)-第14部分:污泥,堆肥和土壤中选定全氟化合物(PFC)的测定.使用高性能液相色谱法的方法食品GB 5009.253-2016食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB 31604.35-2016食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定GB/T 5750.8-2023生活饮用水标准检验方法:第8部分:有机物指标工业制造GB/T 31126-2014纺织品 全氟辛烷磺酰基化合物和全氟羧酸的定GB/T 37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定 超高效液相色谱串联质谱法SN/T 5352-2021纸制耐热材料中全氟和多氟化合物的测定
  • 全球再禁十氯酮等9种有毒化学品
    POPs公约禁止生产和使用的化学物质增至21种    据《中国环境报》讯 2009年5月4日~8日,来自全球160多个国家的政府部长及官员齐聚瑞士日内瓦,参加《关于持久性有机污染物的斯德哥尔摩公约》(POPs公约)第四次缔约方大会,商讨如何推进全球消除这些世界上人类制造、最为有害的化学品的行动。  禁用物质新增9种  联合国环境规划署(UNEP)5月9日发表声明说,与会代表当天在日内瓦达成共识,同意减少并最终禁止使用9种严重危害人类健康与自然环境的有毒化学物质。  声明说,十氯酮等9种持久性有机污染物(POPs)在杀虫剂和阻燃剂等物品中广泛使用,与会代表因此决定,将它们列入POPs公约,这也使公约禁止生产和使用的化学物质增至21种。  联合国副秘书长、UNEP执行主任阿齐姆施泰纳指出,修改公约的禁用名单表明了国际社会已认识到这9种POPs的危害性,各国政府应该高度重视,减少并最终禁止使用这些有毒化学物质。  这是针对POPs公约的第一次修改,POPs公约从此打开新篇章。许多这类有毒化学物质仍然被作为杀虫剂、阻燃剂并在诸多其他商业用途广泛使用。  据悉,这9种有机污染物分别是:α-六氯环己烷 β-六氯环己烷 六溴联苯醚和七溴联苯醚 四溴联苯醚和五溴联苯醚 十氯酮 六溴联苯 林丹 五氯苯 全氟辛烷磺酸、全氟辛烷磺酸盐和全氟辛基磺酰氟。  三个公约开展协作  本次大会取得的另一个突破是,缔约方一致同意在POPs公约与其他两个有关危险化学品和危险废物的姊妹公约——鹿特丹公约和巴塞尔公约之间开展协作。这一活动将在2010年2月召开的UNEP理事会特别会议暨全球环境部长论坛期间进行,届时还将召开一次特别缔约方大会。而在以后的缔约方大会中,扩大的工作组将首次由来自这3个公约的人员组成。  本次大会还做出了一个具有里程碑意义的决定,即启动滴滴涕(DDT)全球伙伴关系。虽然POPs公约的目标是最终淘汰DDT,但公约也承认一些国家将继续使用这种杀虫剂来保护其公民免受疟疾和其他疾病的侵害。  多氯联苯(PCB)淘汰网络也获准建立。通过这个平台,各国将以环境友好的管理和处置方式来逐步淘汰PCB。这一网络将收集关键数据和评估PCB的使用是否真的减少,在淘汰PCB方面将发挥重要作用。  本次大会传递的信息是清晰的。如果没有“迎接一个没有POPs的未来的挑战”这一目标,这些有毒化学物质带来的“化学足迹”将留存,使其对人类健康和环境造成的影响最小化的全球努力也将失败。通过召开这次大会,世界各国政府将在POPs公约的旗帜下联合起来,把推动消除有毒化学品问题作为全球环保问题的首要问题来抓,以此消除有害物质对人类的危害。  人类面临四大挑战  直到本次缔约方大会开幕前,POPs公约仍然针对的是人们熟知的“肮脏一打”,即几种有毒物质。  这12种有毒有害杀虫剂和工业化学品对人类的神经和免疫系统都有伤害,同时可引发癌症及生殖系统紊乱,对于婴儿和儿童成长更是具有毁灭性的威胁。  专家认为,这些化学品所隐含的风险十分明显,这些有毒物质在全球留下了化学足迹。农民、怀孕的妇女、青年以及那些偏远社区,例如北极,都尤其脆弱。  如何面对尽量减少人类和全球受持久性污染物危害,最终应对无POPs的未来的挑战?这对于暴露在污染中的脆弱人群尤为重要。UNEP指出,人类面临四大挑战:  ——消除POPs在产品中的使用,转向更加安全的替代物,达到消除无意识生产POPs产品的目标   ——寻找新的对于人类健康和环境健康有危害的POPs   ——保证每个国家都有充足的技术和资金来支持他们在公约下应做出的行动   ——继续保证公约的保护人类和环境健康免受POPs危害的目标。  各国努力探寻DDT替代物  联合国环境规划署(UN-EP)、世界卫生组织(WHO)和全球环境基金(GEF)5月6日共同宣布将实施一系列充满活力的国际性措施,以期在不断减少综合性杀虫剂DDT使用的情况下消除疟疾。  作为全球性项目“展示与收集病媒管理中DDT可持续性替代物”的一部分,大约有40个国家将会参与这些新项目。  这些非化学品方式包括消灭潜在的蚊子繁殖点,用纱网保护人在房屋里免遭蚊子侵袭,种植令蚊子退避的树如橡木,以及在家庭中撒石灰减少蚊子和人之间的接触等。  据了解,这些新项目的目标是,到2014年实现削减全世界DDT使用量30%,最早到2020年逐步淘汰DDT,同时实现由世界卫生组织设置的疟疾控制目标。项目将获得GEF提供的近4000万美元资助。  2003年起在墨西哥和中美洲开展的示范项目是一次DDT替代品的成功示范。这种无农药的技术和管理模式帮助减少了60%疟疾病例。这个为期5年的示范项目的成功表明,DDT可持续替代选择的涌现也许就是区域乃至全球的一个价廉物美的解决方案。  另据《法制日报》消息,从5月17日起,我国将禁止生产、流通、使用和进出口滴滴涕、氯丹、灭蚁灵及六氯苯四种物质。2004年11月11日,由世界各国共同签署的一项国际环境公约《关于持久性有机污染物的斯德哥尔摩公约》在我国正式生效,这意味着我国将限制直至停止使用公约列出的12种对人类健康和自然环境最具危害的有机污染物,这12种物质中就包括滴滴涕、氯丹、灭蚁灵和六氯苯。  目前,我国滴滴涕主要用于应急病媒防治、三氯杀螨醇生产和防污漆生产,氯丹和灭蚁灵用于白蚁防治,六氯苯用于五氯酚钠生产。
  • 法规频出,需求攀升,食品中全氟分析方案你准备好了吗?
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼田雪飞 郭藤无处不在的全氟化合物,让你防不胜防全氟/多氟类化合物(PFAS)是一类特殊的人工合成有机化合物,其分子中氟原子全部或部分取代与碳连接的氢原子,因其毒性以及在环境和生物体中的广泛存在而成为全球关注的热点。由于C—F键极高化学键能,使得该类化合物具有强化学稳定性、高表面活性,被广泛应用于食品接触材料、纺织品、不粘锅涂层、阻燃剂等工业和消费品领域中;同时也由于不易降解,且容易通过食物链造成生物体的富集作用,使其成为目前新型的持久性环境污染物。此氟非福,正在侵害你的身体健康各国的研究表明,膳食摄入是人体PFAS暴露的主要途径。全氟化合物可通过饮食、饮水和呼吸等途径进入机体,当它们被生物体摄入后不会在脂肪组织中产生富集,而是与蛋白发生键合后存在于血液中,并在肝脏、肾脏、肌肉等组织中发生蓄积,同时呈现出明显的生物富集性。(点击查看大图)食品中全氟检测大势所趋欧盟从2023年起限制食品中四种“永久化学物质”含量,欧盟委员会的声明说,全氟烷基物质(PFAS)可能对免疫系统、胎儿及婴儿发育以及胆固醇产生负面影响,因为它们的化学成分无法分解,其中全氟辛烷磺酸(PFOS)、全氟辛烷基酸(PFOA)、全氟本甲酸(PFNA)和全氟己烷磺酸(PFHxS) 从2023年起适用新规定:2022年12月7日欧盟委员会发布的 (EU) 2022/2388条例,修订(EC) No 1881/2006 条例,即关于某些食品中全氟烷基物质最大限量。同时,在欧盟饮用水水质指令(DIRECTIVE (EU) 2020/2184)规定,从2021年1月12日起,所有PFAS物质在人类饮用水中的含量不得高于0.5 μg/L,由此也可以看出食品中全氟化合物检测的必然趋势。满足不同需求的解决方案,总有一款适合你!01三重四极杆定量方案● TSQ三重四极杆质谱系列集多种卓越性能于一身,将创新的硬件设计与软件系统融合一体,不仅提高了仪器灵敏度、耐用性和稳定性,而且简单易用,可以帮助专业和非专业级水平的用户获得更高质量的数据,为定量工作提供更高水平的分析效率和性能;● 液质应用团队在TSQ平台上开发了新污染物检测高通量方案,包含抗生素,内分泌干扰物,持久性有机污染物等300多种化合物,其中全氟化合物超过50种,适用于环境及食品中PFAS的检测。(点击查看大图)02高分辨筛查&定量方案● 全新的Thermo Scientific&trade Orbitrap Exploris 高分辨平台,Orbitrap高分辨质谱具有高分辨率、高灵敏度、出色的质量精度和宽动态范围等特点,同时兼具优异的定性和定量功能,是食品安全领域未知残留物的大范围筛查和定性定量分析的最佳平台。1全氟标准品数据库进行靶向筛查的方案TraceFinder靶向筛查全氟数据库:包含化合物中英文名称,CAS No,分子式,离子碎片,保留时间等详细信息(点击查看大图)TraceFinder靶向筛查结果判定策略:从质量误差、保留时间偏差、同位素峰形、特征碎片、二级谱图5个维度评判筛查结果,全氟化合物筛查结果展示如下(点击查看大图)2对筛查结果准确定量的方案Orbitrap高分辨质谱除了具有对未知物分析强大鉴定功能之外,凭借低至百万分率 (ppm) 的质量精度和高质量分辨率,Orbitrap的质量选择性更高,这有助于克服食品复杂组织提取物分析中的基质干扰,减少假阳性,化合物定量上更有优势,且具有多种定量模式可供选择:全氟化合物定量:以PFOA为例,展示不同采集模式的谱图及校正曲线(点击查看大图)PFOA在0.5ppt浓度下色谱图及0.5-80ppt范围校正曲线(点击查看大图)赛默飞特别推荐:全氟化合物检测必备分析包全氟化合物无处不在,存在于管路,流动相等仪器系统中,造成本底干扰,使用EPA推荐配置-PFAS free Kit+捕集柱来隔离背景干扰(点击查看大图)总结食品安全一直是人们关注的焦点话题,赛默飞对于食品安全领域尤为重视,致力于为广大用户群体提供从前处理到分离检测的专业解决方案,解决客户在检测中遇到的困难,助您不再谈氟色变,让您的实验更简单、更高效。如需合作转载本文,请文末留言。
  • 欧盟PFOS指令已实施 纺织企业出口再遇“绿色壁垒”
    就在国内企业为WEEE、RoHS指令挠头,对EUP指令茫然之际,今日起实施的一道新的“绿色壁垒”再次摆到了国内出口生产企业和经销商面前。  欧盟限制使用PFOS(全氟辛烷磺酰基化合物)的指令已于6月27日开始正式实施。近日,已有多个省市的相关职能部门对外贸出口企业发出了此项紧急风险预警:限令实施后,将在很大范围内对我国多个产品,特别是纺织品出口造成严重影响。  “绿色壁垒”不断 何为PFOS?  PFOS指令是欧盟继WEEE和ROHS之后,设下的又一道涉及面较广的“绿色壁垒”。2006年10月24日,欧盟议会正式通过决议,规定欧盟市场上制成品中全氟辛烷磺酰基化合物的含量不能超过质量的0.005%,若等于或超过0.005%的将不得销售 等于或超过0.1%的,其成品、半成品及零件也将被列入禁售范围,这标志着欧盟正式全面禁止PFOS在商品中的使用。该禁令的过渡期为18个月,于今年6月27日正式实施。此外,美国、加拿大等国家/地区也已经颁布了相关的法规,禁止该物质在某些领域的使用。  PFOS是“全氟辛烷磺酰基化合物”的简称,是一种用途十分广泛的化学物,又称C8。因其同时具备疏油、疏水等特性,被广泛用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂。还由于其化学性质非常稳定,被作为中间体用于生产涂料、泡沫灭火剂、地板上光剂、农药和灭白蚁药剂等。此外,还广泛地被使用在合成洗涤剂、义齿洗涤剂、洗发香波及其他表面活性剂产品等日用化学品中,以及大量用于纸张表面处理和器皿生产过程,包括与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。  PFOS也是目前最难降解的有机污染物之一,可以通过呼吸和食用被生物体摄取,被普遍认为是持久性有机污染物和持久累积性毒物。  PFOS指令的影响:出口成本再增 企业雪上加霜  禁令生效后,PFOS类产品的使用和市场投放将受到限制。据了解,直接受到PFOS指令影响的包括纺织品、皮革、造纸、包装、印染助剂、化妆品等制造领域,尤其在纺织业中存在范围最广。任何需要印染以及后整理的纺织品都需经过前处理洗涤,另外,如抗紫外线、抗菌等功能性后整理所使用的助剂也含有PFOS。  纺织品服装是我国支柱产业之一,欧盟是主要出口市场。禁令实施在即,由于我国还没有研发出能完全符合欧盟对PFOS控制标准的纺织用助剂,因此纺织等轻工行业将面临艰巨的挑战。为了满足PFOS禁令标准要求,纺织品生产企业须使用环保型纺织助剂,其生产成本必然有所增加。同时,纺织品生产企业还需支付必要的检测费用,这对疲于应对欧盟纺织品特保限制、欧盟有害偶氮染料等有害物质检测、人民币升值及出口退税调整下降等不利因素的纺织品生产企业,无异于雪上加霜。  据了解,国家质检总局曾于2007年年初专门下发通知要求各地检验检疫局和广大企业关注这一指令,各地检验检疫局也对此项指令进行了宣传。然而调查显示,我国大多数出口企业对PFOS指令尚未引起足够关注,甚至对自己产品中是否含有PFOS成分都不清楚,而限令一旦实施,这些企业必将在对外贸易中遭受损失。  近几年来,欧美等发达国家和地区纷纷通过设定严格的环保指标等来提升进口商品的进入门槛,这已成为未来出口企业必须面对的一个大国际背景。国内企业虽对此有一定的心理准备,但在人民币升值及出口退税调整下降等不利因素下,层出不穷的WEEE、RoHS、欧盟纺织品特保限制、欧盟有害偶氮染料等有害物质检测等指令,实在令国内企业心有余而力不足。业内人士分析,为了满足PFOS禁令标准要求,纺织品生产企业必须使用环保型纺织助剂,其生产成本必然有所增加,同时纺织品生产企业还需支付必要的检测费用。这对于纺织品生产企业来说无异于雪上加霜。  应对之策及其建议  质检部门加强宣传。质量监督、检验检疫及相关部门应广作宣传,让相关企业了解限令要求,同时也应制定相适应的产品标准和快速检测方法,帮助广大企业把好源头检测关,较好地应对国外技术性贸易措施。广东检验检疫局提醒,各相关企业要提高认识,加强警惕,采取有效措施积极应对。有实力的纺织大企业可加快PFOS替用品的研发和生产技术的升级改造,提高产品的环保要求,以应对将来限用PFOS及其衍生物给企业发展带来的影响。  相关企业积极应对。相关出口企业应尽快与欧洲进口商就有关问题进行沟通,加紧替代产品的选择、试验和应用,以减少指令实施带来的损失。同时,出口企业应在信息收集、生产环节管理、相关标准制订等方面多下工夫,建立相应的技术标准。企业自身还要提高产品的环保性能,在生产过程中既要注重材料的选择,保证产品质量,更要增强环保和健康意识,更新观念,跟上形势发展的需要,适应市场变化。注意收集相关信息,根据最新信息调整生产模式。
  • PFAS成全球最受关注新污染物 被多国限制后该如何治理?
    目前,全球多发全氟和多氟烷基物质(PFAS)污染,由于在环境和人体中不易降解,PFAS也被称为“永久化学物质”和“有毒定时炸弹”。PFAS俨然成为全球新晋最受关注污染物,个人如何防治PFAS所带来的影响也成为大众最关心的问题之一。据《国会山报》当地时间5日报道,美国地质调查局新发布的研究报告显示,美国至少45%的自来水中都含有有毒的全氟和多氟烷基物质(PFAS)。然而,这并非PFAS第一次出现在大众视野。据英国《卫报》5月24 日报道,两家英国环保公益机构对英国环境署公开数据进行分析后发现,英格兰 81%的河流湖泊中存在有毒的“永久性化学品”。环保人士建议,英国政府应封杀 PFAS 在化妆品、食品包装等领域的不必要使用,并制定安全标准避免出现“化学鸡尾酒效应”。此外,日本东京都政府7月5日公布,位于东京多摩地区的美军横田基地2010年至2012年间共发生3起含有机氟化合物的泡沫灭火剂泄漏事件。今年6月公布的一项血检结果显示,当地居民血液中检出较高浓度的PFAS。联络协议会的请愿书写道,很多东京都居民对PFAS的健康影响抱有不安,有必要尽早消除这种不安。横田基地“永久性化学物”PFAS在你身边无处不在资料显示,PFAS包括全氟辛烷磺酸和全氟辛酸等,广泛应用于塑料加工和制造过程,尤其是氟塑料和高性能工程塑料。由于PFAS是广泛使用的长效化学品,这类化学物质难以降解,会在环境和人体中累积,通常又被称为“永久性化学物”。PFAS可以存在于水、土壤、空气和食物,以及家庭或工作场所中的材料中,包括饮用水、废物场内或附近的土壤和水、垃圾填埋场、处置场和危险废物场、灭火泡沫、电子产品以及某些纺织品和纸张制造商、食品包装、家用产品和灰尘、个人护理产品等。并且随着时间的推移可以在人、动物和环境中积聚。美国同行评审科学研究表明,接触一定水平的PFAS可能带来孕妇生育能力下降、儿童发育延迟、癌症风险增加、身体免疫力下降、干扰人体的天然激素以及肥胖风险增加等影响。此前研究发现部分PFAS与严重健康问题有关。被多国限制使用的PFAS,究竟该如何治理?美国环保署署长迈克尔里根曾表示,“这个国家的社区长期以来一直受到PFAS污染威胁的影响。这就是为什么拜登总统发起了全政府积极应对这些有害化学物质的方法,而美国环保署正在引领前进的道路”。2022年12月,美国工业集团董事长兼首席执行官迈克•罗曼宣布 ,将退出全氟烷基和多氟烷基物质(PFAS)的生产,并努力在2025年底前停止在其产品组合中使用PFAS。今年2 月,美国环保署宣布从拜登总统的两党基础设施法中获得 2亿美元,用于解决全国饮用水中出现的污染物,并扩大饮用水中的PFAS监测。今年4月,拜登-哈里斯政府提出首个国家标准,以保护社区免受饮用水中PFAS的侵害。据生态环境部官网显示,我国今年3月1日开始施行的《重点管控新污染物清单》中,就包括全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS类)、全氟辛酸及其盐类和相关化合物(PFOA类)、全氟己基磺酸及其盐类和其相关化合物(PFHxS类)。而这三类污染物均已被列入《关于持久性有机污染物的斯德哥尔摩公约》,除了豁免用途外,在国际上已经被禁止生产和使用。《重点管控新污染物清单》目前各国都已经开始针对PFAS产品的流出发出禁令,那么PFAS已经带来的污染又该如何有效治理?清华大学教授、中国环境科学学会POPS专委会委员邓述波曾在中国环境报采访中表示,在众多去除水中PFAS的技术中,吸附技术是其中实用性最强,也最常用的技术,可以在去除传统污染物的同时去除PFAS。但通常要去除水中PFAS,处理成本都较高。另据资料显示,反渗透和纳滤(NF)等半透膜处理工艺已被证明可有效去除PFAS,但是在处理含有PFAS的浓缩物上仍有较大问题。根据Water Research期刊最新研究,使用新技术泡沫分馏(FF)可使NF浓缩物中的PFAS去除效率达到90%。研究人员还在FF工艺中添加阳离子助表面活性剂提高了短链PFAS 94%的去除效率。其中,PFPeA的去除效率为37%,PFHxA为9%,PFBS的去除效率分别为34%。个人或可通过富含纤维的饮食降低影响那么基于PFAS的长久性危害,个人究竟该如何预防?美国肯塔基大学似乎给出了一个具有可行性的方法。其研究人员表示,富含纤维的饮食可以降低与全氟辛烷磺酸(PFOS)暴露相关的疾病风险,抵消环境污染物对健康的不利影响。据美国环境卫生科学研究今年4月发布的资料显示,肯塔基大学SRP中心的Pan Deng博士领导小组研究了不同纤维(包括菊粉和果胶,另一种可溶性纤维)对全氟辛烷磺酸诱导的小鼠肝脏和肠道健康破坏的作用。结果显示,与喂食标准饮食的小鼠相比,菊粉和果胶喂养的小鼠不太容易受到全氟辛烷磺酸暴露的代谢结果的影响,例如肝损伤和脂质积累。喂食可溶性纤维的小鼠血浆和肝脏中的全氟辛烷磺酸含量也较低,并且具有较高的基因表达,可防止全氟辛烷磺酸诱导的动脉粥样硬化或动脉壁内和动脉壁上的脂肪堆积。项目负责人Bernhard Hennig博士表示,未来还需要更多的研究来了解膳食纤维对环境损害的预防特性所涉及的确切机制。团队接下来计划进一步了解积极的生活方式改变,如健康营养和增加身体活动将如何改变与PFAS暴露相关的疾病风险机制。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 农业部进一步加强高风险农药管控 氯磺隆等7种农药列入禁限用范围
    12月9日,农业部发布第2032号公告,决定对氯磺隆等7种农药采取进一步禁限用管理措施,这是农业部为保障农业生产安全、农产品质量安全和生态环境安全出台的又一有力举措。  公告显示,自2013年12月31日起撤销氯磺隆所有产品和甲磺隆、胺苯磺隆单剂的登记 自2015年12月31日起禁止在国内销售和使用。自2015年7月1日起撤销甲磺隆和胺苯磺隆的原药及复配制剂登记 自2017年7月1日起禁止在国内销售和使用。保留甲磺隆的出口境外使用登记,企业可在2015年7月1日前,申请将现有登记变更为出口境外使用登记。自公告发布之日起,停止受理福美胂和福美甲胂的农药登记申请,停止批准新增登记 自2013年12月31日起,撤销农药登记证,自2015年12月31日起,禁止在国内销售和使用。自该公告发布之日起,停止受理毒死蜱和三唑磷在蔬菜上的登记申请,停止批准新增登记 自2014年12月31日起,撤销在蔬菜上的登记,自2016年12月31日起,禁止在蔬菜上使用。  据了解,此公告生效后,我国禁用的农药品种将达到38种,限用的农药品种将达到21种。
  • 灵台县皇甫谧中医院460.00万元采购生物安全柜,核酸提取仪,冷藏柜,PCR,大分子作用仪
    详细信息 灵台县皇甫谧中医院灵台县拖挂式移动核酸检测方舱实验室建设项目竞争性磋商公告 甘肃省-平凉市-灵台县 状态:公告 更新时间: 2022-05-28 招标文件: 附件1 灵台县皇甫谧中医院灵台县拖挂式移动核酸检测方舱实验室建设项目竞争性磋商公告 灵台县皇甫谧中医院采购项目的潜在供应商应在平凉市公共资源交易中心网站获取采购文件,并于2022-06-10 09:00(北京时间)前提交响应文件。 一、项目基本情况 项目编号:202107JH620822010 项目名称:灵台县拖挂式移动核酸检测方舱实验室建设项目 预算金额:460.0(万元) 最高限价:460.0(万元) 采购需求:采购拖挂式移动核酸检测实验室(包含荧光定量PCR仪、全自动核酸提取仪、医用洁净工作台、生物安全柜、医用冷藏冰箱、离心机、紫外线消毒车、恒温水箱、灭菌器、废水处理系统、移液器、无线网卡、路由器等设施设备)1台,配套建设停放平台、配电、排污等附属设施。 合同履行期限:按合同约定执行 本项目(是/否)接受联合体投标:否 二、申请人的资格要求 1.1.满足《中华人民共和国政府采购法》第二十二条之规定,并提供《中华人民共和国政府采购法实施条例》第十七条所要求的材料: (1)具有独立承担民事责任的能力;(须提供有效的营业执照、组织机构代码证、税务登记证或具有统一社会信用代码的营业执照副本); (2)具有良好的商业信誉和健全的财务会计制度(提供2021年度经第三方审计的财务会计报告或基本开户银行出具的资信证明文件;若企业成立期限不足一年者以营业执照实际成立期限为准,并按实际成立期限之日起提供财务报表); (3)具有履行合同所必需的设备和专业技术能力(须提供企业声明函); (4)有依法缴纳税收和社会保障资金的良好记录(须提供2022年任意一个月纳税凭证和缴纳社会保险的凭证,享受免税政策的企业须提供免税证明); (5)参加本次政府采购活动近三年(2019年1月至今)内,在经营活动中没有重大违法记录(须提供企业声明函原件)。 (6)法律、行政法规规定的其他条件; 2.落实政府采购政策需满足的资格要求:(1)根据财政部发布的《政府采购促进中小企业发展管理办法》规定,本项目对小型和微型企业产品的价格给予6%的扣除; (2)根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予6%的扣除; (3)根据财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》规定,本项目对残疾人福利性单位产品的价格给予6%的扣除; 3.本项目的特定资格要求:(1)提供法定代表人资格证明(法定代表人参与投标时提供);或附有法定代表人身份证复印件的法人授权函(非法定代表人参与投标时提供); (2)供应商未被列入“信用中国”网站记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;方可参加本项目的投标。(查询时间以公告发出时间至投标截止日当天在“信用中国”网、中国政府采购网,如相关失信记录已失效,供应商需提供相关证明资料); (3)投标人须提供通过中国“中国裁判文书网”网站渠道查询无行贿犯罪结果(以网上查询结果打印并加盖单位公章为准,查询内容包含企业名称及企业法定代表人) (4)投标人须具有医疗器械经营或生产许可证及医疗器械备案表。 三、获取采购文件 时间:2022-05-30至2022-06-06,每天上午0:00至11:59,下午12:00至23:59 地点:平凉市公共资源交易中心网站 方式:须在平凉市公共资源交易中心网站“用户注册”进行注册,注册成功后点击项目公告信息页面的“我要投标”或直接在平凉市公共资源交易中心网站首页点击“系统登录”进行投标。如有疑问,可咨询甘肃文锐电子交易网络有限 售价:0.0(元) 四、响应文件提交 截止时间:2022-06-10 09:00 地点:平凉市公共资源交易中心网站 五、开启 时间:2022-06-10 09:00 地点:【甘肃中工国际官网】-【快捷通道】-【电子开评标】进入“甘肃中工国际电子开评标服务平台” 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无。 ①平凉市公共资源交易网:http://plsggzyjy.cn/f ②信用中国”网站:https://www.creditchina.gov.cn ③中国政府采购网网址:http://www.ccgp.gov.cn/ 八、凡对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:灵台县皇甫谧中医院 地 址:灵台县县城东大街140号 联系方式:0933-3625737 2.采购代理机构信息 名 称:甘肃中政天合招标有限公司 地 址:甘肃省平凉市崆峒区泾滩路金润国际2#写字楼10层B1004 联系方式:0933-8880988 3.项目联系方式 项目联系人:崔先生 电 话:18093330648 7.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:生物安全柜,核酸提取仪,冷藏柜,PCR,大分子作用仪 开标时间:2022-06-10 00:00 预算金额:460.00万元 采购单位:灵台县皇甫谧中医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:甘肃中政天合招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 灵台县皇甫谧中医院灵台县拖挂式移动核酸检测方舱实验室建设项目竞争性磋商公告 甘肃省-平凉市-灵台县 状态:公告 更新时间: 2022-05-28 招标文件: 附件1 灵台县皇甫谧中医院灵台县拖挂式移动核酸检测方舱实验室建设项目竞争性磋商公告 灵台县皇甫谧中医院采购项目的潜在供应商应在平凉市公共资源交易中心网站获取采购文件,并于2022-06-10 09:00(北京时间)前提交响应文件。 一、项目基本情况 项目编号:202107JH620822010 项目名称:灵台县拖挂式移动核酸检测方舱实验室建设项目 预算金额:460.0(万元) 最高限价:460.0(万元) 采购需求:采购拖挂式移动核酸检测实验室(包含荧光定量PCR仪、全自动核酸提取仪、医用洁净工作台、生物安全柜、医用冷藏冰箱、离心机、紫外线消毒车、恒温水箱、灭菌器、废水处理系统、移液器、无线网卡、路由器等设施设备)1台,配套建设停放平台、配电、排污等附属设施。 合同履行期限:按合同约定执行 本项目(是/否)接受联合体投标:否 二、申请人的资格要求 1.1.满足《中华人民共和国政府采购法》第二十二条之规定,并提供《中华人民共和国政府采购法实施条例》第十七条所要求的材料: (1)具有独立承担民事责任的能力;(须提供有效的营业执照、组织机构代码证、税务登记证或具有统一社会信用代码的营业执照副本); (2)具有良好的商业信誉和健全的财务会计制度(提供2021年度经第三方审计的财务会计报告或基本开户银行出具的资信证明文件;若企业成立期限不足一年者以营业执照实际成立期限为准,并按实际成立期限之日起提供财务报表); (3)具有履行合同所必需的设备和专业技术能力(须提供企业声明函); (4)有依法缴纳税收和社会保障资金的良好记录(须提供2022年任意一个月纳税凭证和缴纳社会保险的凭证,享受免税政策的企业须提供免税证明); (5)参加本次政府采购活动近三年(2019年1月至今)内,在经营活动中没有重大违法记录(须提供企业声明函原件)。 (6)法律、行政法规规定的其他条件; 2.落实政府采购政策需满足的资格要求:(1)根据财政部发布的《政府采购促进中小企业发展管理办法》规定,本项目对小型和微型企业产品的价格给予6%的扣除; (2)根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予6%的扣除; (3)根据财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》规定,本项目对残疾人福利性单位产品的价格给予6%的扣除; 3.本项目的特定资格要求:(1)提供法定代表人资格证明(法定代表人参与投标时提供);或附有法定代表人身份证复印件的法人授权函(非法定代表人参与投标时提供); (2)供应商未被列入“信用中国”网站记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;方可参加本项目的投标。(查询时间以公告发出时间至投标截止日当天在“信用中国”网、中国政府采购网,如相关失信记录已失效,供应商需提供相关证明资料); (3)投标人须提供通过中国“中国裁判文书网”网站渠道查询无行贿犯罪结果(以网上查询结果打印并加盖单位公章为准,查询内容包含企业名称及企业法定代表人) (4)投标人须具有医疗器械经营或生产许可证及医疗器械备案表。 三、获取采购文件 时间:2022-05-30至2022-06-06,每天上午0:00至11:59,下午12:00至23:59 地点:平凉市公共资源交易中心网站 方式:须在平凉市公共资源交易中心网站“用户注册”进行注册,注册成功后点击项目公告信息页面的“我要投标”或直接在平凉市公共资源交易中心网站首页点击“系统登录”进行投标。如有疑问,可咨询甘肃文锐电子交易网络有限 售价:0.0(元) 四、响应文件提交 截止时间:2022-06-10 09:00 地点:平凉市公共资源交易中心网站 五、开启 时间:2022-06-10 09:00 地点:【甘肃中工国际官网】-【快捷通道】-【电子开评标】进入“甘肃中工国际电子开评标服务平台” 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无。 ①平凉市公共资源交易网:http://plsggzyjy.cn/f ②信用中国”网站:https://www.creditchina.gov.cn ③中国政府采购网网址:http://www.ccgp.gov.cn/ 八、凡对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:灵台县皇甫谧中医院 地 址:灵台县县城东大街140号 联系方式:0933-3625737 2.采购代理机构信息 名 称:甘肃中政天合招标有限公司 地 址:甘肃省平凉市崆峒区泾滩路金润国际2#写字楼10层B1004 联系方式:0933-8880988 3.项目联系方式 项目联系人:崔先生 电 话:18093330648 7.pdf
  • 气质百川 | 明察秋毫 全二维GC× GC-qMS助力爆炸火灾事故物证鉴定
    公安部日前部署深入开展打击整治枪爆违法犯罪专项行动《公安部重要部署!》,严管严控枪爆危险物品。爆炸、火灾事故等具有严重的社会危害性,同时随着防爆防火等安全意识的增强,对于能够快速、准确的鉴别出危险爆炸物品及其制备材料、油料等易燃液体方法的需求也愈发迫切。然而由于爆炸火灾等事故现场的高温作用,使得许多痕迹和残留物证的萃取难度增大,同时基质成分复杂,给事故的快速鉴定带来不小的挑战。因此集卓越的色谱分离能力和优异的质谱检测能力的全二维气相色谱质谱联用技术在爆炸、火灾事故物证鉴定中的实用性逐渐凸显:如纵火现场微量助燃剂中油类制品鉴别、微量残留高聚物种属及特征物鉴别、微量爆炸残留助暴剂及引爆剂组分分析等。 卓越的色谱分离能力全二维气相色谱(GC×GC)是把分离机理不同而又相互独立的两根色谱柱通过调制器以串联方式连接成二维气相色谱柱系统,通过设置一定的调制时间(调制周期)将一维流出物捕集,聚焦后释放到二维色谱柱进一步的分离,通过专用软件将色谱峰转化成为全二维谱图。全二维气相色谱比普通一维气相色谱具有分辨率更高、峰容量大、灵敏度好、分析速度快等优点,为复杂样品提供全新而有效的分离方式。 特色环形设计调制解调器调制解调器是GC×GC技术的关键,特色环形设计的调制解调器通过液氮制冷连续切割技术可以高效率捕集宽沸程(C3~C55)组分,并在二维实现超快速分离,形成极尖锐的峰,更有利于复杂组分的分离。环形设计的调制器仅使用一个冷喷嘴和一个热喷嘴,相对于以往两个冷喷嘴和两个热喷嘴,冷却气消耗量大幅降低,柱温箱内温度也更加稳定。 优异的质谱检测能力 GC×GC的检测器可以是气相色谱的FID、ECD等或是质谱检测器,但爆炸火灾等刑事案件中分析的常是未知化合物,MS对于未知峰强大的定性能力,使得其与GC×GC联用的技术成为发展方向。岛津全二维气相色谱质谱联用仪依托高性能的单四级杆GCMS-QP2020 NX和三重四极杆GCMS-TQ8040 NX/GCMS-TQ8050 NX系统,为刑事物证鉴定分析提供快速、简单、可靠的解决方案 岛津气质产品优势 特色屏蔽板技术的高辉度离子源在保证高灵敏度的同时提供强大的抗污染能力。 ASSP技术保证高速扫描时离子在更短时间内飞过四极杆到达检测器,可以有效解决传统方式高质量端离子飞行速度较慢而导致质谱图正确性不足、灵敏度偏低的问题。 智能钟技术智能掌握GCMS运行时间,提高实验室效率。 岛津全二维GC×GC-qMS助力爆炸火灾事故物证鉴定应用实例 高辛烷值和常规辛烷值汽油样品比较辛烷值是衡量燃料(汽油)抵抗震爆燃烧能力的数字指标,其值高表示抗爆性好,不同化学结构的烃类具有不同的抗爆震能力。通过测定不同辛烷值汽油样品的特征组分可对油品进行分类和鉴别。 不同辛烷值汽油样品二维色谱图 优秀的油脂成分检测能力——鉴别动植物油在爆炸、纵火等刑事案件中,经常能够在案发现场或犯罪嫌疑人的衣物和作案工作上提取到相关的油脂物证,根据动植物油特征组分(脂肪酸)组成可对不同种类、不同品牌、不同地区的油品进行分类,从而为案件侦查提供线索。 不同品牌花生油的二维色谱图不同动物油的二维色谱图 利用岛津特色设计的全二维气质联用系统,可快速准确的对基质复杂的爆炸、火灾事故残留物证进行鉴定,以初步确定爆炸物、燃烧物来源,并为及时锁定犯罪嫌疑人和打击犯罪活动提供科学依据。 本文内容非商业广告,仅供专业人士参考。
  • 检测土壤中全氟化合物有难题?谱育科技LC-MS/MS来助力
    前言 近年来,全氟化合物的毒性检测研究已成为众多科研工作者关注的热点,欧盟、美国、加拿大相继出台了一系列环境中全氟化合物的检测标准。2022年2月,国务院发布第三次全国土壤普查文件,全氟化合物纳入本次普查监管范畴。 本文使用谱育科技 EXPEC 5210 超高效液相色谱-三重四极杆串联质谱仪(LC-MS/MS),建立了土壤中全氟辛磺酸和全氟辛酸的残留量检测方法。全氟辛烷磺酸和全氟辛酸的检出限、定量限、线性等完全符合标准要求,为普查开展提供强力的国产三重四极杆质谱产品支持。仪器部分EXPEC 5210 LC-MS/MS EXPEC 5210 LC-MS/MS 是谱育科技在“国家重大科学仪器设备开发专项”支持下,自主研发的三重四极杆串联质谱仪。具有卓越的灵敏度,优异的稳定性,集高性价比与可扩展性于一身,广泛应用于食品安全,医学司法检测,生物医药和环境领域。 EXPEC 570 全自动固相萃取仪谱育科技 EXPEC 570 全自动固相萃取仪可自动完成固相萃取全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱等),自动完成柱切换等功能,实现批量样品的处理。EXPEC 520 氮吹平行浓缩仪EXPEC 520 氮吹平行浓缩仪是通过水浴加热及利用氮气的快速流动打破液体上空的气液平衡,从而使液体挥发速度加快,达到快速浓缩溶剂的效果。实验部分液相和质谱条件典型谱图与标准曲线8分钟即可获得全氟辛烷磺酸和全氟辛酸的色谱图。全氟辛烷磺酸和全氟辛酸的色谱图(1ng/ml)全氟辛烷磺酸和全氟辛酸线性相关系数R均在0.999以上,标准曲线图如下:全氟辛酸标准曲线全氟辛烷磺酸标准曲线以标准曲线最低点(0.5ng/ml)计算所得全氟辛烷磺酸和全氟辛酸的检出限和定量限。总结高灵敏度、抗污染力强的EXPEC 5210配合谱育科技高效前处理设备,8分钟内快速分析全氟辛烷磺酸和全氟辛酸残留,检出限、定量限、线性等完全满足方法要求。
  • 2月13日起施行!《浙江省发布新污染物治理方案》发布
    近日,浙江省人民政府办公厅正式发布《浙江省新污染物治理工作方案》(以下简称《方案》),并自2月13日起施行。化学原料和化学制品制造、橡胶和塑料制造等被列为重点行业。《方案》明确,以有毒有害化学物质生产、使用和排放全生命周期风险管控为核心,以数字化改革为牵引,协同推进新污染物调查监测、筛查评估、管控治理,有效防范新污染物环境与健康风险。到2025年,基本掌握浙江省新污染物产生、排放和风险状况,新污染物环境与健康风险得到有效管控,政策、标准、技术和监管体系基本健全。为此,《方案》规划了5项重点任务。一是开展调查评估,掌握新污染物底数和风险。以化学原料和化学制品制造、医药制造、橡胶和塑料制造等行业为重点,开展有毒有害化学物质生产使用基本信息调查;在此基础上,以二氯甲烷、三氯甲烷和全氟化合物为重点,开展环境排放和风险状况详细调查。2023年底前,完成首轮基本信息调查和详细调查,建立全省有毒有害化学物质基本信息数据库。二是严格源头管控,防范新污染物产生。全面落实新化学物质环境管理登记制度,严格落实淘汰限用和含量控制措施,严格涉新污染物建设项目环境准入。其中,以化学原料和化学制品制造、医药制造、橡胶和塑料制造等行业为重点,落实企业(机构)新化学物质环境风险防控主体责任。三是强化过程控制,减少新污染物排放。加强清洁生产和绿色制造,“十四五”期间,须以所涉新污染物为重点,开展至少1轮强制性清洁生产审核。以化学原料和化学制品制造、橡胶和塑料制造等行业为重点,推进重点行业有毒有害化学物质的绿色产品替代。四是深化末端治理,降低新污染物环境风险。加强多领域协同治理,推进新污染物治理试点工程建设,扎实推进废弃含全氟辛烷磺酰基化合物泡沫灭火剂无害化处置试点建设。五是加强能力建设,夯实新污染物智治基础。包括探索构建新污染物治理数字化应用、开展新污染物环境调查监测、建立新污染物环境监测技术和标准体系、加大科技支撑力度。
  • 2019 英国皇家化学会『Top 1% 高被引中国作者』全榜单
    为彰显中国作者对国际化学研究领域的突出贡献,英国皇家化学会对旗下四十多本期刊发表论文的引用情况进行统计,按照综合化学类、材料类、物理化学类、能源与可持续类、无机化学类、有机与药物化学类、环境科学类、分分析、生物与化学交叉等大类进行划分,在每个大类中按照论文的被引次数进行排序。将 2017、2018 年发表的论文在 2019 年的被引频次在全球排名前 1% 的名单进行筛选,整理出了通讯作者来自于中国高校和科研院所的论文,后根据通讯作者的信息整理出“Top 1% 高被引中国作者”列表。  近日,2019年榜单已陆续发布,仪器信息网将各类榜单进行了汇总,共有415位中国作者入选2019年英国皇家学会“TOP 1%高被引中国作者”列表。(以下名单无前后顺序)  Top 1% 高被引中国作者:综合化学类 白若鹏重庆大学步文博华东师范大学曹荣中科院福建物质结构研究所陈少永四川大学陈浩铭台湾大学陈大钦杭州电子科技大学陈烽西安交通大学陈涛中科院宁波材料技术与工程研究所陈令新中科院烟台海岸带研究所陈冠英哈尔滨工业大学陈雨中科院上海硅酸盐研究所陈长伦中科院等离子物理研究所陈人杰北京理工大学成会明清华大学-伯克利深圳学院池振国中山大学丁松园厦门大学范壮军哈尔滨工程大学冯玮复旦大学傅强中科院大连化学物理研究所官建国武汉理工大学郭新闻大连理工大学沈国震中科院半导体研究所何纯挺中山大学洪学传武汉大学胡文平天津大学黄飞鹤浙江大学黄鹏深圳大学吉岩清华大学姜波江苏师范大学江海龙中国科学技术大学蓝宇重庆大学雷廷平华侨大学李兴伟中科院大连化学物理研究所李富友复旦大学李先锋中科院大连化学物理研究所李剑锋厦门大学李祥龙国家纳米科学中心梁叔全中南大学林伟英济南大学林静深圳大学刘刚国家纳米科学中心刘鸣华国家纳米科学中心刘凤玉大连理工大学刘进轩大连理工大学刘碧录清华大学-伯克利深圳学院鲁统部天津理工大学马凤才辽宁大学潘国庆江苏大学钱国栋浙江大学渠凤丽曲阜师范大学沈明武东华大学石枫江苏师范大学施剑林中科院上海硅酸盐研究所史向阳东华大学宋术岩中科院长春应用化学研究所宋春山大连理工大学/宾州州立大学孙旭平电子科技大学孙耀华中师范大学孙世国西北农林科技大学孙萌涛北京科技大学谭必恩华中科技大学谭平恒中科院半导体研究所唐本忠香港科技大学童明良中山大学化学学院屠树江江苏师范大学王心晨福州大学王博北京理工大学王成亮华中科技大学王祥科华北电力大学王飞中科院福建物质结构研究所危岩清华大学闻利平中科院理化技术研究所吴季怀华侨大学吴宇平复旦大学夏吾炯哈尔滨工业大学谢劲南京大学邢华斌浙江大学邢明阳华东理工大学熊宇杰中国科学技术大学徐艺军福州大学许建斌香港中文大学徐建铁华南理工大学严锋苏州大学杨青西安交通大学余孝其四川大学俞书宏中国科学技术大学于振涛南京大学喻国灿浙江大学(现美国国立卫生研究院)于法标中科院烟台海岸带研究所俞寿云南京大学曾海波南京理工大学张兵天津大学张志明天津理工大学张洪杰中科院长春应用化学研究所张亚杰中科院宁波材料技术与工程研究所张华民中科院大连化学物理研究所张锦北京大学张书圣临沂大学张强清华大学张泽会中南民族大学张健中科院福建物质结构研究所张袁健东南大学张晓兵湖南大学张金龙华东理工大学张新波中科院长春应用化学研究所赵娟中山大学赵勇河南大学郑炎松华中科技大学智林杰国家纳米科学中心周江中南大学朱宏伟清华大学朱成建南京大学邹志刚南京大学Top 1% 高被引中国作者:材料类包西昌中科院青岛生物能源与过程研究所蔡孟秋湖南大学曹茂盛北京理工大学陈光明中科院化学研究所陈玉金哈尔滨工程大学陈海宁北京航空航天大学成中军哈尔滨工业大学池振国中山大学丁辉中国矿业大学董显林中科院上海硅酸盐研究所董晓臣南京工业大学杜淼郑州轻工业学院杜亚平南开大学段炼清华大学段吉安中南大学房晓勇燕山大学顾宏伟苏州大学顾晓重庆大学郭志光中科院兰州化学物理研究所韩奎华山东大学何农跃东南大学何军中南大学贺艳兵清华大学深圳研究生院胡陈果重庆大学姬广斌南京航空航天大学赖跃坤苏州大学李立宏中科院化学研究所李东升三峡大学李建丰兰州交通大学李春电子科技大学李越中科院固体物理研究所李春燕哈尔滨工程大学李卫平北京航空航天大学李兴华西北大学梁瑞虹中科院上海硅酸盐研究所刘春森郑州轻工业学院刘生忠中科院大连化学物理研究所刘献明洛阳师范学院卢英杰郑州大学马录芳洛阳师范学院马建中陕西科技大学马忠雷陕西科技大学木士春武汉理工大学彭争春深圳大学渠凤丽曲阜师范大学单崇新郑州大学邵路哈尔滨工业大学邵光杰燕山大学邵进军南京工业大学宋延林中科院化学研究所宋宏伟吉林大学孙旭平电子科技大学汤龙程杭州师范大学陶凯宁波大学王志飞东南大学汪宏西安交通大学王鸿静浙江工业大学王丽熙南京工业大学王海宇吉林大学王静中山大学王祥科华北电力大学危岩清华大学魏志义中科院物理研究所吴竹莲西南大学吴明娒中山大学吴伟武汉大学吴兴隆东北师范大学吴昊四川大学谢志刚中科院长春应用化学研究所邢宏龙安徽理工大学闫培光深圳大学杨会静唐山师范学院杨志涌中山大学杨栋陕西师范大学易院平中科院化学研究所殷小伟西北工业大学余家国武汉理工大学袁杰中央民族大学张小勇南昌大学张楷亮天津理工大学张晗深圳大学张浩力兰州大学张华新加坡赵乃勤天津大学郑敏长春工业大学周子渊中国农业大学周迪西安交通大学朱春玲哈尔滨工程大学朱满洲安徽大学Top1%高被引中国作者:物理化学类张德元中山大学附属第一医院陈建荣浙江师范大学陈祥树江西师范大学陈红征浙江大学陈建中山东交通学院陈宝玖大连海事大学陈全中科院长春应用化学研究所戴洪兴北京工业大学董红军江苏大学董锦明南京大学高鹏中科院上海高等研究院高国华华东师范大学郭强辽宁大学绿源能源与环境科学研究院郭三栋西安邮电大学侯廷军浙江大学胡斌中科院兰州化学物理研究所胡文平天津大学黄慧苏州大学黄敏中科院武汉物理与数学研究所靳治良北方民族大学康振辉苏州大学李鑫华南农业大学李学兵中科院青岛生物能源与过程研究所李朝晖福州大学李妍北京科技大学李庆忠烟台大学李永庆辽宁大学李先锋中科院大连化学物理研究所李学锋湖北工业大学刘温霞齐鲁工业大学刘阳苏州大学刘中民中科院大连化学物理研究所刘治田武汉工程大学卢章辉江西师范大学马宁哈尔滨工程大学牟天成中国人民大学牛晓宇黑龙江大学牛承岗湖南大学潘勇西南石油大学萨百晟福州大学施敏敏浙江大学宋爽浙江工业大学孙志梅北京航空航天大学孙予罕中科院上海高等研究院孙振宇北京化工大学孙明磊东南大学汤文成东南大学田宝柱华东理工大学王风云南京理工大学王忠中科院青岛生物能源与过程研究所王剑波北京大学王进安中科院上海药物研究所(现堪萨斯大学)汪萨克金陵科技学院魏迎旭中科院大连化学物理研究所吴波福州大学吴西林浙江师范大学吴再生福州大学徐安武中国科学技术大学许运华天津大学徐赛大连海事大学严凯中山大学杨宗献河南师范大学叶青北京工业大学于雪莲中国地质大学袁忠勇南开大学曾光明湖南大学曾大文华中科技大学张金龙华东理工大学张泽会中南民族大学张锐郑州航空工业管理学院张小涛天津大学张华民中科院大连化学物理研究所赵彪郑州航空工业管理学院赵景祥哈尔滨师范大学朱宇君黑龙江大学Top1%高被引中国作者:能源与可持续类包信和中科院大连化学物理研究所曹少文武汉理工大学陈军南开大学陈立泉中科院物理研究所陈煜陕西师范大学党锋山东大学董崇礼淡江大学杜红亮空军工程大学何良年南开大学何卫民湖南科技学院黄飞华南理工大学黄福志武汉理工大学黄洪伟中国地质大学康振辉苏州大学雷永鹏中南大学李福军南京大学李阳光东北师范大学李宝华清华大学深圳研究生院李亚飞南京师范大学李昌治浙江大学梁叔全中南大学刘生忠中科院大连化学物理研究所刘兆清广州大学吕伟清华大学深圳研究生院马紫峰上海交通大学马华空军工程大学南策文清华大学潘春旭武汉大学彭强四川大学邱介山大连理工大学隋升上海交通大学孙靖宇苏州大学谭华桥东北师范大学唐卫华南京理工大学王双印湖南大学汪国雄中科院大连化学物理研究所王要兵中科院福建物质结构研究所王应德国防科技大学夏宝玉华中科技大学向全军电子科技大学徐艺军福州大学杨全红清华大学深圳研究生院杨楚罗苏州大学应磊华南理工大学于畅大连理工大学余家国武汉理工大学藏志刚重庆大学张怀武电子科技大学张福俊北京交通大学张力苏州大学张强清华大学张校刚南京航空航天大学张以河中国地质大学赵奎陕西师范大学钟杰武汉理工大学周江中南大学周苗重庆大学Top 1% 高被引中国作者:无机化学类敖燕辉河海大学曹荣中科院福建物质结构研究所陈大钦杭州电子科技大学潘志权武汉工程大学崔广华华北理工大学崔建中天津大学韩磊宁波大学侯红卫郑州大学胡明内蒙古大学胡小颖长春大学黄克靖信阳师范学院李鑫华南农业大学李宝龙苏州大学李东升三峡大学刘志锋天津城建大学马录芳洛阳师范学院毛宗万中山大学牛承岗湖南大学孙为银南京大学孙旭平电子科技大学陶凯宁波大学田宏伟吉林大学王沛芳河海大学王强首都师范大学王宝中科院过程工程研究所王丹中科院过程工程研究所吴春生西安交通大学武祥沈阳工业大学吴智磊河北大学杨吉民临沂大学英荣建临沂大学余家国武汉理工大学余火根武汉理工大学于然波北京科技大学曾光明湖南大学张潇哈尔滨工业大学张依福大连理工大学赵君三峡大学钟家松杭州电子科技大学Top1%高被引中国作者:有机与药物化学类何卫民湖南科技学院胡跃飞清华大学贾义霞浙江工业大学姜雪峰华东师范大学雷爱文武汉大学李兴伟中科院大连化学物理研究所陆展浙江大学马文博成都大学毛璞河南工业大学邱观音生嘉兴学院屈凌波郑州大学王歆燕清华大学王春江武汉大学吴劼复旦大学叶龙武厦门大学袁金伟河南工业大学张万斌上海交通大学郑雨军山东大学Top1%高被引中国作者:环境科学类安太成广东工业大学董帆重庆工商大学梁婕湖南大学牛承岗湖南大学邵荣盐城工学院汤琳湖南大学王殳凹苏州大学王祥科华北电力大学黄庭芳香港中文大学杨世通苏州大学袁兴中湖南大学曾光明湖南大学张丽莎东华大学Top1%高被引中国作者:分析&生物与化学交叉类分析类期刊:黄晋湖南大学蒋兴宇国家纳米科学中心刘蕾中科院高能物理研究所龙勉中科院力学研究所王柯敏湖南大学生物类期刊:李玉香宁夏医科大学杨中艺中山大学余建强宁夏医科大学张鑫宁波大学周明眉上海中医药大学
  • 新国标实施 | 福立液相精准检测全反式视黄醇,食品安全再升级
    全反式视黄醇是一种食品营养强化剂,也被称为维生素A。它是人体必需的营养素之一,对视觉、生长发育、生殖和免疫系统等方面都有重要作用。在食品中添加全反式视黄醇可以提高食品的营养价值,帮助预防和治疗维生素A缺乏症。然而,过量摄入全反式视黄醇也可能对人体造成负面影响,如头痛、恶心、呕吐、皮肤干燥等。因此,在使用全反式视黄醇作为食品营养强化剂时,需要严格控制用量。国家标准GB 1903.71-2024《食品安全国家标准 食品营养强化剂 全反式视黄醇》于2024年8月8日正式实施,为全反式视黄醇产品的各项质量技术指标提供了检测依据。福立仪器参照上述标准,采用LC5190低压超高效液相色谱仪对食品营养强化剂全反式视黄醇开展相关应用,为全反式视黄醇类食品的生产和政府监管提供了有力的技术支撑。 分析检测方法方法提要试样中的全反式视黄醇加正己烷溶解后,正相液相色谱柱分离,紫外检测器检测,外标法计算试样中全反式视黄醇的含量。仪器配置 福立LC5190低压超高效液相色谱仪配备:LC5190在线脱气机、LC5190四元低压输液泵、LC5190自动进样器、LC5190柱温箱、LC5190双波长-紫外检测器。色谱柱PolyPak Silica色谱柱,4.60 mm * 250 mm,粒径为5.0 µ m。分析检测数据01 全反式视黄醇标准溶液典型谱图及结果(20μg/mL)02 全反式视黄醇标准溶液六针重复性谱图及结果(20μg/mL) 03 标准曲线04 空白谱图05 样品典型谱图及2次测定结果说明:标准规定全反式视黄醇含量/(IU/g)≥2.5×106,从上表可得此样品的含量符合规定;标准规定在重复性条件下获得的两次独立测定结果的绝对差值不大于算数平均值的5%(即3.04×106×5%=0.152×106),从上表可得,连续两次的测定结果符合规定。小结 由以上实验结果可知,采用福立LC5190测定食品营养强化剂全反式视黄醇,方法稳定可靠,目标物线性范围良好,灵敏度较高,有很好的重现性,能够对样品准确定性定量测定。
  • 警惕!无形杀手PFAS,纳鸥科技率先推出17种全氟化合物检测整体解决方案
    PFAS危害人体健康全氟及多氟烷基物质(Perfluorinated alkyl substances, 简称PFAS),也被简称为全氟化合物(PFC),是含有至少一个完全氟化碳原子的全氟烷基和多氟烷基物质,包括全氟辛酸(PFOA)和全氟辛烷磺酸盐(PFOS)。作为一种新型的持久性污染物,PFAS对于人体的危害越来越令人担忧。 近些年来,越来越多的调查研究发现,在空气、沉积物、饮用水、海水和食品中检测出全氟类化合物。全氟化合物可通过饮食、饮水和呼吸等途径进入机体,当它们被生物体摄入后不会在脂肪组织中产生富集,而是与蛋白发生键合后存在于血液中,并在肝脏、肾脏、肌肉等组织中发生蓄积,同时呈现出明显的生物富集性。PFOA和PFOS还可造成新生儿的体重下降和体型变小,男性精子数量下降,PFOA还能导致内分泌功能紊乱,并存在致癌性,同时和甲状腺疾病也有一定关联。全氟类化合物具有生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物。PFAS检测难点和关键点:目前,全氟化合物的检测已成为全球关注的问题。各国每年需要花费巨额资金来治理全氟化合物所带来的污染。欧盟、美国、加拿大等国家也相继出台了环境中全氟化合物的检测标准。但全氟化合物的检测依旧面临非常大的挑战—— 各种途径带来的本底污染使得准确检测难上加难,可采取以下策略提高检测的准确度:采用低溶出样品瓶和低吸附滤膜采用全氟专用前处理小柱;采用高品质LC-MS级高纯溶剂;鬼峰捕集柱最大限度消除有机相中污染物带来的影响。纳鸥科技致力于让您的实验更简单、更高效。纳鸥科技集研发、生产、销售于一体,不断研发更好、更先进的产品,解决客户在检测中遇到的困难,竭力帮助检测工作者优化检测效果、提高检测效率,并积极倡导绿色化学:(1)呼吁减少塑料污染,降低由于包装物等带来的PFAS对生态环境的污染。(2)呼吁有关部门尽快将PFAS对地下水、食品、包装等污染开展长期监测,并制定相关标准;为助力PFAS的检测,纳鸥科技积极开展相应的检测方案,采用高效液相色谱-串联质谱技术结合Anavo PFC SPE小柱(食品中全氟化合物检测专用,AN60F020),方法对猪肉、鱼肉中17种全氟有机化合物的定量测定进行了开发,供各位老师参考!食品中17种全氟化合物的测定1、适用范围本方法适用于猪肉、鱼肉中17种全氟有机化合物的定量测定。 当试样量为2 g(精确至0.001 g)、定容体积为10.0 mL时,猪肉、鱼肉、全氟丁烷羧酸(PFBA)和全氟戊烷羧酸(PFPeA)的检出限为0.6 μg/kg、定量限为1.8 μg/kg;剩余15种全氟化合物的检出限为0.3μg/kg、定量限为1.0 μg/kg。 2、标准品配置17种全氟化合物:全氟丁烷羧酸、全氟戊烷羧酸、全氟己烷羧酸、全氟庚烷羧酸、全氟辛烷羧酸、全氟壬烷羧酸、全氟癸烷羧酸、全氟十一烷羧酸、全氟十二烷羧酸、全氟十三烷羧酸、全氟十四烷羧酸、全氟十六烷羧酸、全氟十八烷羧酸、全氟丁烷磺酸钾、全氟己烷磺酸钠、全氟辛烷磺酸钾、全氟癸烷磺酸钠。 2.1 混合标准中间液:用甲醇将17种混合标准溶液配制成浓度为200 ng/mL全氟化合物的混合标准中间液,4℃保存。(17种全氟化合物混合标准品:5000 ng/mL,货号:DRE-Q60009680) 2.2 同位素内标工作液:用甲醇将9种同位素混合内标溶液配制成浓度为200 ng/mL全氟化合物的内标工作液,4℃保存。(9种全氟化合物同位素混合内标:13C2-PFHxA、13C4-PFBA、13C4-PFOA、13C5-PFNA、13C2-PFDA、13C2-PFUdA、13C4-PFDoA、18O2-PFHxS 、13C4-PFOS (2000 ng/mL,货号:MPFAC-MXA) 2.3 混合标准工作溶液:用甲醇-水溶液(40:60)将混合标准中间液逐级稀释为浓度0.2 ng/mL、0.4 ng/mL、0.8 ng/mL、1.0 ng/mL、1.5 ng/mL、2.0 ng/mL混合标准系列溶液,标准曲线中全氟化合物的定量内标浓度为1.0 ng/mL。 3、试样制备与保存猪肉、鱼肉:取适量有代表性的可食部分试样,切成小块,组织捣碎机捣碎,均分成两份,作为试样和留样,分别装入洁净容器中,密封并标记,于-18℃避光保存。 3、提取准确称取样品2 g(精确至0.001 g)试样置于15 mL具塞离心管中,加入100 μL同位素内标使用液,准确加入2.0 mL超纯水,涡旋震荡3 min,8.0 mL乙腈,超声30min,10000 r/min常温离心10min,取上清液待净化。 4、净化吸取约3.0 mL上述上清液,过固相萃取柱Anavo PFC SPE(食品中全氟化合物检测专用,货号:AN60F020),弃去约1 mL流出液,过0.22 µm再生纤维素滤膜(低吸附,货号:AN40A025),供液相色谱-串联质谱仪测定。 5、液相色谱-串联质谱检测色谱柱:ES Industries色谱柱,Epic C18 100 x 2.1mm,1.8um(货号:522A91-EC18)流动相:A为甲醇,B为2 mmol/L甲酸铵溶液。。流速:0.3 mL/min。柱温:35 ℃。进样量:10 μL。梯度洗脱程序 时间(min)流动相A(%)流动相B(%)Initial40600.540608.0100010.0100010.14060 质谱条件a)离子源:电喷雾离子源(ESI源);b)检测方式:多反应监测(MRM);c)扫描方式:负离子模式扫描;d)毛细管电压:2000 V;e)脱溶剂气温度:500 ℃;f)脱溶剂流量:1000 L/Hr;g)锥孔反吹气流量:150 L/Hr。17种全氟化合物及内标总离子流图(1ppb)详细解决方案请咨询:400-860-5168转4892关于纳鸥科技北京纳鸥科技有限公司(简称:纳鸥科技),致力于为客户提供高品质实验室消耗品和常用实验室仪器,并可提供贴合客户需求的行业解决方案,让您的实验更简单、更高效。纳鸥科技集研发、生产、销售于一体,不断研发和引进更好、更先进的产品,解决客户在检测中遇到的困难,竭力帮助检测工作者优化检测效果、提高检测效率。
  • 农夫山泉水中现黑色不明物 5年来屡被投诉
    21世纪网“农夫山泉有点甜”是很多人耳熟能详的广告语,而这家号称选取天然优质水源,仅对水做最小限度的、必要的物理处理,有利于人体长期饮用的饮料企业,其产品却不断被曝出质量问题。  2013年3月8日,消费者李女士向21世纪网表示,其公司购买的多瓶未开封农夫山泉380ml饮用天然水中出现很多黑色的不明物。  发现这些水中的黑色不明物后,消费者李女士曾与农夫山泉联系,但是农夫山泉坚称产品合格的做法让其很气愤,也并未解答其黑色不明物究竟是何物的疑问,李女士这才诉诸媒体。  李女士送到21世纪网一箱未开瓶的农夫山泉380ml装的饮用天然水,24瓶中多多少少都能够看到黑色的悬浮不明物,其中有13瓶非常明显,这些水都来自农夫山泉湖北丹江口有限公司,生产日期为2012年10月30日。  2013年3月11日,21世纪网致电农夫山泉服务热线8008571058,就农夫山泉的饮用天然水如何辨别真伪的问题进行询问,其工作人员表示“目前380ml的水在市场上没有假冒伪劣产品”。  3月13日,21世纪网再次致电农夫山泉,其工作人员表示,此批次的水确实发现有黑色的类似颗粒的东西,但是有第三方检测机构检验结果表明此黑色不明物是矿物盐析出。不过,3月14日,其另外一位工作人员却表示,不知道有此检测报告。  而农夫山泉为了表明水是合格的,提供了一份专门针对农夫山泉湖北丹江口有限公司2012年10月30日生产的饮用天然水检验报告。  检验报告显示,检测日期为2013年1月6日,其检验依据为DB33/383-2005(瓶装饮用天然水浙江地方标准),此标准包括色度、浊度、肉眼可见物等,其样品全部合格。  但是,农夫山泉饮用天然水依据的浙江地方标准(DB33/383-2005)对肉眼可见物的规定是不得检出,而实际上此批次的水出现大量可以用肉眼看到的黑色不明物,此检测报告的真实性不免遭质疑。  而根据卫生部2003年09月24日发布并于2004年05月01日开始实施的标准号为“GB19298-2003”的《瓶(桶)装饮用水卫生标准》来看,对饮用水感官指标中“肉眼可见物”项目的要求均为“不得检出”。  同时,21世纪网发现,近年来农夫山泉的质量问题频频见诸报端,且很多消费者投诉均不了了之。  未开封瓶中现黑色不明物  在农夫山泉中喝出黑色不明物,这让李女士感到气愤。  据消费者李女士描述,她在某国企任职,购买农夫山泉瓶装水是公司购买,所以消耗量特别大,每次都是多箱购买。”  李女士的同事告诉21世纪网,由于公司平时买的水数量大,习惯在经销商处购买,同时经销商上门送水,订的水都是农夫山泉的。  但是,近期有员工在喝水时发现异常,水中有很多黑色的类似杂质的不明物。这些水的生产日期为2012年10月30日,随后员工把同批次的水都找出来,发现很多瓶装水中或多或少都有这样的黑色不明物体。  李女士称:“我那一箱里大概24瓶,每一瓶水里都有黑色的东西,而且不是一粒两粒,数不清,这些不明物有的像皮屑又像是胡椒面,后来看了其它批次的东西,里边也有絮状的东西,但不至于让人恶心,这种黑色的让人恶心。”  李女士表示,水是2012年12月到今年1月份之间订的,出问题的水集中在2012年10月30日的那批,保质期两年,水尚在保质期内。  李女士送来的24瓶农夫山泉股份有限公司生产的380ml饮用天然水瓶身上标有其生产日期,在瓶身的上半部分可以找到其批号,其编号分别为201210300704D1、201210300703D1、201210300702D1、201210300315D1等。  而通过21世纪网的查验,一箱水中共有13瓶能非常明显看到瓶中悬浮的黑色不明物,且有的附着在瓶身内壁。明显看到黑色悬浮不明物的13瓶水中,有11瓶印有“201210300704D1”的字样,另外有2瓶印有“201210300315D1”的字样。  从瓶身上的包装纸可以看到,农夫山泉饮用天然水的配料表一项为天然水,水源类别为深层库水,产品标准号为DB33/383。  而根据其标识的“生产商见生产日期后工厂代码”则可以获知,该水应该为产自湖北省十堰市丹江口市,生产商为农夫山泉湖北丹江口有限公司(工厂代码D)。  2013年3月11日,21世纪网致电农夫山泉服务热线8008571058,就农夫山泉的饮用天然水如何辨别真伪的问题进行询问。客服人员告知,“各个城市都有工作人员在流动查看,目前380ml的水在市场上没有假冒伪劣产品。”  农夫山泉坚称产品合格  在发现农夫山泉的水中有黑色悬浮不明物之后,李女士多次致电农夫山泉进行沟通。但是,农夫山泉的强硬态度让李女士感到气愤。  “农夫山泉答应赔偿我10箱水,但是我们买的20箱水已经喝得只剩不到两箱了。我希望农夫山泉公司向我们道歉,并且我需要了解公司员工饮用这个水后对身体有无影响。”李女士称。  李女士称,打过农夫山泉的热线电话后,其北京的工作人员也来过公司查看问题,但是走了之后就再也不接李女士的电话。  “它(农夫山泉)不接待我们,不理我们,不承认水是有问题的。”李女士告诉21世纪网,农夫山泉拿了一个检验报告说产品是没有问题的,并且农夫山泉的报告称,对于这种不明物的规定是肉眼不得检出。  “既然对于这个水的要求是肉眼不得检出,就是肉眼看不到这个东西,对于农夫山泉提供的合格报告,我们不能接受,农夫山泉对消费者应该有质量披露,到底合格不合格?”李女士称。  “农夫山泉现在的处理方式就是不接待我们,作为消费者,我觉得非常气愤,因为这个品牌不是小品牌,我希望大家能对这种企业有一个社会监督。”  3月13日,21世纪网再次致电农夫山泉,其工作人员表示,此批次的水确实发现里面有黑色的类似不明物的东西,已经接到投诉,但是有第三方检测机构检验结果表明此黑色不明物是水中的矿物盐析出。不过,3月14日,其另外一位工作人员却表示,不知道有此检测报告。  而农夫山泉为了表明水是合格的,提供了一份专门针对农夫山泉湖北丹江口有限公司2012年10月30日生产的饮用天然水检验报告。  检验报告显示,其检验依据为DB33/383-2005(瓶装饮用天然水浙江地方标),此标准包括色度、浊度、肉眼可见物等,其样品全部合格。  但是,瓶装饮用天然水浙江地方标准规定肉眼可见物为不得检出,而实际上此批次的水出现大量可以用肉眼看到的黑色不明物,此检测报告的真实性不免遭质疑。  同时,根据卫生部2003年09月24日发布并于2004年05月01日开始实施的标准号为“GB19298-2003”的《瓶(桶)装饮用水卫生标准》来看,对饮用水感官指标中“肉眼可见物”项目的要求均为“不得检出”。  农夫山泉问题迭出  国家食品质量监督检验中心一位工作人员告诉21世纪网,不管未开封瓶中的黑色悬浮不明物是什么物质,都已经说明农夫山泉的水存在问题。  该工作人员表示,如果特意检测黑色不明物是什么很难,需要准备足够剂量的黑色悬浮不明物。而且,如果要检测农夫山泉,要有农夫山泉开具的介绍信或是农夫山泉工作人员陪同证明所验产品为正品。  同时,21世纪网发现,农夫山泉的水中出现黑色悬浮不明物并非是第一次,近年来,农夫山泉多次被曝出质量问题。  2008年12月,有媒体报道,家住武汉的刘先生在徐东古玩城旁一副食店里买了一箱380ml的农夫山泉饮用天然水。回到家喝了半瓶后发现“水里面好像有脏东西”,水里漂浮着不少黑色颗粒。  而刘先生购买的农夫山泉产品,也是丹江口生产的,但是具体哪家生产商并未获知。当时的经销商与农夫山泉丹江口生产厂联系,初步估计漂浮物可能是因生产过程中过滤水管破裂导致铁屑落入导致。  2010年11月,四川师范大学的刘小川向媒体投诉,他购买的农夫山泉矿泉水中有似青苔的杂质。  刘小川所说的“有问题的矿泉水”是一瓶未开封的550毫升的农夫山泉,轻轻一摇就可以看到1、2厘米长、棉絮状、似青苔的黑色物体。  2011年9月12日,桂林蒋先生从购买的农夫山泉中看到一条棕色棉絮状的物体在瓶子里慢慢“游动”。从瓶子的标签上得知,这瓶水的生产厂商为农夫山泉广东万绿湖有限公司。  2012年5月12日,据媒体报道,银川市民刘先生在一家超市买了12瓶农夫山泉,发现其中6瓶有杂质。
  • 缺乏行业标准 温泉水硫磺粉+热水勾兑造假
    因为缺乏行业标准,假温泉频频出现,更有商家为获取更多利润,用硫磺粉勾兑热水来冒充温泉水。   温泉的行业标准有待推出  在河南漯河市区海河路,长达五公里的街道上密布着十几家洗浴中心。而打着“温泉”水招牌的店铺占到九成以上。在这些洗浴中心门前的简介上,诸如:含有多种对人体有益的矿物质和微量元素,养颜美容,强身健体等雷同的口号喊了又喊。  当地一位有着十多年经营洗浴行业经历的金女士说,采用硫磺粉勾兑人工热水来冒充温泉水的人造温泉,已不再是业内秘密。  “咱这没有温泉,咱这都是地下打个井充温泉,快十来年了。真的温泉水打起了,光资金都上百万,开多少年才能收回来?”金女士说。  在网上搜索“硫磺粉”用于勾兑温泉水的店铺有数百家。一位店主介绍,过程犹如泡咖啡般简单。“你想做什么样的温泉,就能买到什么样的配料。”一家名为鸟语花香的店主告诉记者,一个50平方米的水池只需1至2斤硫磺粉,而一斤硫磺粉的售价仅为2至10元。由此可见假温泉的暴利。所以销售形势十分看好,平均每月都能售出10吨以上。
  • 联合国环境规划署:再禁9种有毒化学物质
    新华网日内瓦5月9日电 联合国环境规划署9日发表声明说,来自全球160多个国家和地区的代表当天在日内瓦达成共识,同意减少并最终禁止使用9种严重危害人类健康与自然环境的有毒化学物质。  声明说,十氯酮等9种持久性有机污染物在杀虫剂和阻燃剂等物品中广泛使用,与会代表因此决定,将它们列入《关于持久性有机污染物的斯德哥尔摩公约》,这也使该公约所禁止生产和使用的化学物质增至21种。  联合国环境规划署执行主任施泰纳说,修改公约的禁用名单表明了国际社会已认识到这9种持久性有机污染物的危害性,各国政府应该高度重视,减少并最终禁止使用这些有毒化学物质。  这9种有机污染物分别是:α-六氯环己烷 β-六氯环己烷 六溴联苯醚和七溴联苯醚 四溴联苯醚和五溴联苯醚 十氯酮 六溴联苯 林丹 五氯苯 全氟辛烷磺酸、全氟辛烷磺酸盐和全氟辛基磺酰氟。
  • 大连依利特-鸡蛋中三聚氰胺检测的全套解决方案
    鸡蛋中三聚氰胺检测的全套解决方案 大连依利特分析仪器有限公司作为国内知名厂家,在续依利特人第一时间对&ldquo 三鹿奶粉三聚氰胺&rdquo 事件做出反应,并且为您提供符合三聚氰胺检测国标的包括分析方法及推荐仪器配置在内的全套解决方案之后,目前又及时地为您提供鸡蛋中三聚氰胺检测的全套解决方案。 【样品前处理】 将鸡蛋清和鸡蛋黄用搅拌器混匀,取1.0g,加入10mL具塞玻璃试管中,加入6mL 1%三氯乙酸,超声提取10min;再加入2mL 60g/L 磺基水杨酸,涡旋混匀,加乙腈定容至10mL。取样品,10000rpm,离心10min;上清液0.45&mu m 油系滤膜过滤。(注:该前处理方法适用于全蛋的测定。) 【仪器与试剂】 UV1201紫外-可见检测器;P1201高压恒流泵;ZWII型色谱柱温箱;三聚氰胺标准品(99%);三氯乙酸(分析纯)、磺基水杨酸(分析纯)、辛烷磺酸钠(色谱纯);氢氧化钠、柠檬酸(分析纯)、乙腈(色谱纯)、超纯水(二次过滤)。 【分析方法】 色谱柱:Elite MSP C18 5&mu m(ID4.6mm× 250mm) 流动相:乙腈/缓冲盐=15/85(缓冲盐&mdash &mdash 含10mM辛烷磺酸钠和10mM柠檬酸,调pH值至3.0) 流速:1.5mL/min 波长:240nm 温度:40℃ 进样量:20&mu L 【实验结果】 1. 标准品谱图 1mg/L的三聚氰胺标准品的实验谱图如下: 图1 1mg/L标准溶液谱图 2. 重现性 采用此方法分析三聚氰胺,连续进样重现性良好。 图2 5mg/L标准溶液连续进样11次重现性 表1 5mg/L标准溶液连续进样11次重现性数据 3. 标准曲线 配置浓度分别为0.05、0.2、1.0、5.0、10.0、15.0、20.0&mu g/mL的三聚氰胺标准溶液。将以上标准溶液在下述色谱条件下按浓度由低至高进样: 图3实验的校准曲线 4. 加标回收率 在鲜鸡蛋样品中分别加标1.0mg/kg、2.0mg/kg、4.0mg/kg、6.0mg/kg、8.0mg/kg,测试其回收率均在97%以上。 图4 阴性全蛋样品的加标谱图 表2 阴性全蛋样品的加标回收率结果 5. 检测限、定量限 依据噪声值,按3倍信噪比,计算其理论检出限,按10倍信噪比,计算其理论定量限如下: 检出限(mg/kg) 定量限(mg/kg) 0.033 0.11 6. 实际样品定性和定量结果 按照此方法分析三聚氰胺,三个平行样品测试稳定性良好。 图5 三个平行鸡蛋样品谱图叠加 表3 三个平行样品分析结果对比 附:鸡蛋中三聚氰胺检测依利特全套配置清单 测试用分析方法包 测试用前处理配置包 液相色谱仪标准配置包 备注:如需分析鸡蛋中的三聚氰胺,以上三个配置包所列仪器、试剂,都需配备,缺一不可。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制