当前位置: 仪器信息网 > 行业主题 > >

埃索美拉唑杂质

仪器信息网埃索美拉唑杂质专题为您提供2024年最新埃索美拉唑杂质价格报价、厂家品牌的相关信息, 包括埃索美拉唑杂质参数、型号等,不管是国产,还是进口品牌的埃索美拉唑杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合埃索美拉唑杂质相关的耗材配件、试剂标物,还有埃索美拉唑杂质相关的最新资讯、资料,以及埃索美拉唑杂质相关的解决方案。

埃索美拉唑杂质相关的资讯

  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain沃特世公司,美国马萨诸塞州米尔福德方案优势■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典621章指南的规定。■ 将样品运行时间缩短80%,从而提高了生产能力。■ 将溶剂用量减少90%,降低了运行成本。沃特世提供的解决方案ACQUITY UPLC H-Class系统Alliance HPLC系统XSelect&trade CSH&trade C18色谱柱Empower 3软件eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶关键词美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药引言全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典621章色谱分析指南的规定。621章列出了允许的方法变化幅度。噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。实验条件Alliance 2695 HPLC色谱条件流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵分离模式: 等度洗脱检测波长: 219 nm色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m,部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m,部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m,部件号:186006111柱温: 25 ℃洗针液: 95:5乙腈/水样品清洗液: 95:5水/乙腈密封垫冲洗液: 50:50甲醇/水流速: 根据方法调整进样量: 根据方法调整ACQUITY UPLC H-Class色谱条件流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵分离模式: 等度洗脱检测波长: 219 nm色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m,部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m,部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m,部件号:186006727柱温: 25℃洗针液: 95:5乙腈/水样品清洗液: 95:5水/乙腈密封垫冲洗液: 50:50甲醇/水流速: 根据方法调整进样量: 根据方法调整数据管理: Empower 3软件样品描述用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。结果与讨论全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典621章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。在HPLC仪器上使用XP色谱柱进行有机杂质分析噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典621章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典621章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。在UPLC仪器上使用XP色谱柱进行有机杂质分析如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典621章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典621章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。结论在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典621章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。参考文献1. USP General Chapter 621, USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012.2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012.3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • 惠氏营养品在南京铭奥购买德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E
    惠氏营养品在南京铭奥购买了德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E。 技术参数 全自动杂质度测定仪 → 用于乳品,牛奶杂质度的测试→ 检测速度:800样品/小时→ 每一滤膜可测500ml牛奶溶液→ 杂质度板直径:32mm
  • 岛津推出玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法
    玉米赤霉醇是略带雌激素活性的合成激素,有催生长、提高瘦肉率的药物特性,作为家畜增重的外源激素,效果良好,但对人体生殖系统的形成和血浆中的甲状腺素水平有影响。家畜组织中玉米赤霉醇残留量一般为&mu g/kg水平,尽管极微量,但它仍对人体有潜在的危害。目前,许多国家对玉米赤霉醇用作动物促蛋白合成激素有严格控制,甚至禁止使用。我国农业部第235号公告明确规定玉米赤霉醇禁止用于所有食用动物,所有可食动物尿液。 &alpha -玉米赤霉醇结构式如图1所示。 图1:&alpha -玉米赤霉醇结构图 本文在研究&alpha ‐玉米赤霉醇(&alpha ‐zearalanol)标准物质时,采用高效液相色谱/离子阱-飞行时间/串联质谱仪(HPLC‐IT‐TOF MS)对其中杂质进行定性鉴定。高效液相色谱/离子阱-飞行时间/串联质谱仪是将高效液相色谱和离子阱质谱仪(IONS TRAP)以及飞行时间质谱仪(TOF MS)串联起来,使其在准确质量数和灵敏度方面较之其它多级质谱有较大提高,仪器具备高分辨率性能,能够准确提供分子和碎片离子的结构信息。由HPLC‐IT‐TOF MS 得到杂质的多级谱,对碎片裂解规律进行了探索,利用TOF较高的质量准确度,推测了杂质的可能结构,并用标准品对方法进行验证,结果表明,高效液相色谱/离子阱-飞行时间/串联质谱方法对杂质定性分析是很有效的。 有关玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171768.htm。岛津高效液相色谱‐离子阱‐飞行时间质谱LCMS‐IT‐TOF LCMS-IT-TOF是岛津公司的高端质谱仪,该仪器曾于2005年3月获得了全球著名分析仪器匹兹堡展会的银奖,这是该年度质谱仪整机产品得到的最高奖。而后,又获得了国际权威的分析仪器杂志R&D的2006年新产品大奖。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 珀金埃尔默获颁IBO杂志2014年度公司大奖
    2015年1月29日,珀金埃尔默公司宣布其荣获《仪器商情展望》(Instrument Business Outlook,IBO)杂志颁布的&ldquo 2014年度公司(2014 Company of the Year)&rdquo 大奖。  每年,IBO杂志通过对分析仪器制造商在技术、运营以及财务等方面做出的卓越成就进行综合考量,最终评选出一个年度公司,评判标准包括财务状况、市场领导力、新产品发布以及重要战略投资。  据悉,IBO对珀金埃尔默的描述是&ldquo 行业先锋&rdquo 和&ldquo 先进技术仪器的非凡开发者&rdquo ,而珀金埃尔默则是凭借其&ldquo 强大的财务业绩、市场领导地位、推出的创新产品和重要的战略投资&rdquo 当选。  珀金埃尔默在诊断(新兴市场的新生儿和传染性疾病筛查业务)、食品检测、环境分析等多个市场的优势,被IBO认为是评选该奖项的重要优势。珀金埃尔默最近还收购了波通仪器集团,扩大了其食品检测技术组合;对收购科学实验室IT软件服务商Ceiba Solutions的收购,则增强了其OneSource实验室服务能力。  珀金埃尔默在2014年推出的几款创新产品也给其加分不少,包括Lamina&trade 多功能幻灯片扫描仪、Opera Phenix新一代高内涵筛选系统、Solaris&trade 定量光学分子成像系统、LabChip GX Touch以及GXII Touch自动化电泳系统。
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 珀金埃尔默发布《药物元素杂质检测解决方案》
    珀金埃尔默发布《药物元素杂质检测解决方案》ICH Q3D指导原则与中、美药典国际人用药品注册技术协调会(ICH)在2014年发布元素杂质指导原则Q3D,适用于原料药和制剂中元素杂质的风险评估,对由合成、生产工艺步骤的变化,原料药、药辅料以及密闭容器系统的使用等而引入的元素杂质进行控制。《中国药典》接轨ICH规则已成趋势,2020版药典《元素杂质限度和测定指导原则》和《分析方法验证指导原则》的部分内容即参照ICH Q3D完成修订,检测方法和方法验证必须符合中国药典要求。《美国药典》(USP) 通则232根据ICH Q3D规则,规定了不同给药途径的元素杂质限值和使用ICP-MS和ICP-OES 两种分析方法;而USP通则233则提供检测方法的验证指导。珀金埃尔默药物元素杂质检测解决方案珀金埃尔默一直致力于为药物生产和监管提供真正合规、全面、有效、创新的药品安全解决方案。最新发布《药物元素杂质检测解决方案》,全面覆盖从样品前处理到实验数据合规处理的各个环节,帮助中国制药企业顺利应对2020版中国药典的变化和原料药出口业务严格遵循ICH Q3D的要求。 欲了解制药杂质元素的相关法规,以及珀金埃尔默解决方案是如何满足法律合规性的,请扫描下方二维码即刻获取《珀金埃尔默药物元素杂质检测解决方案》。扫描上方二维码即可下载资料
  • 国内药物研发与质控对杂质研究用力过猛
    p  国内近些年之所以专注于杂质研究(尤其是有机杂质)、并逐渐呈现“面面俱到、尽善尽美”之态势,盖因大部分研发者认为杂质与药物不良反应息息相关,并习惯性地认为“杂质越小/越少、临床不良反应发生几率就会越小/越少”,进而在进行杂质研发与控制时陷入“精益求精、追求完美”的学术思维窠臼。殊不知,药物不良反应与杂质的关联性并非想象得那样密切,甚至是基本无关。br//pp  在ICH组织于2002年9月12日颁布的《疗效--M4E(R1)人用药品注册的通用技术文档:模块2的临床回顾和临床概述与模块5:临床研究报告》中有如下阐述:“对看起来与药物有关的较常见的不良反应(例如,显示出剂量-效应和/或药物和安慰剂组发生率明显差异的事件),应对下列相关因素给予更多关注。这些因素包括:剂量 单位剂量 给药方案 疗程 总剂量 人口统计学特征 联合用药 其他基础特征 效能特性 药物浓度。”可见,药物不良反应主要与主成分的不合理使用和患者个人体质差异相关,而与杂质无关。/pp  下面笔者解读不同给药方式下杂质与药物不良反应间的关系:/pp  1口服给药/pp  此种给药方式使得药物在进入人体血液循环系统过程中具备了最为坚固的消化道屏障,因此这是一种最安全的给药方式,适量的杂质几乎不会带来安全性问题,临床不良反应多为药物自身引起。因为“是药三分毒”,当用法用量不当、超出安全用药浓度上限时,将对人体带来伤害、产生不良反应(如治疗窗狭窄药物就常发生此情形)。这些不良反应均是主成分所为,而非杂质所为。/pp  而目前我国此类药物的主要问题是:部分仿制药质量与原研药存在较大差距,此差距是对于各种患者体内生物利用度的差距,绝非杂质差距 而生物利用度又与体外溶出行为密切相关。国家食品药品监管总局自2008年起开展“国家药品评价性抽验”工作至今,已发现国内已上市的部分口服固体制剂体外多条溶出曲线与原研制剂具有显著性差异,这也为临床差距提供了强有力的佐证。/pp  至于少量杂质会阻碍药物靶点/结合点、影响药物有效性的观点,笔者认为这是没有任何根据的臆断。/pp  2静脉滴注给药/pp  很多同仁认为,静脉滴注给药方式已无生物利用度问题,此时不良反应与杂质密切相关,故应着重关注。其实这种认知是偏颇的。/pp  静脉滴注给药方式使得药物进入人体封闭血液循环系统过程中,外来物质一股脑儿地侵入,此时人体必然产生应激反应,其中呈现出的不良反应强弱和患者的身体机能与主成分自身毒性/用法用量息息相关,与杂质基本无关。因此,此种给药方式带来的不良反应是必然存在的。虽然这些不良反应为“小概率事件”,但由于其发生率依然远高于肌肉注射和口服给药方式,所以世界卫生组织早在多年前就已制订“能吃药不打针(系指肌肉注射,此时存在肌肉组织屏障)、能打针不输液”的用药准绳。/pp  然而过去的十多年间,我国临床用药由于某些主观因素,导致大量无序地使用静脉滴注给药方式,且还往往使用至最高剂量与频次,这就使得临床不良反应发生率无限增高,最终使得“小概率事件”在某种程度上变成了“大概率事件”。/pp  但令人遗憾的是,在探求注射剂不良反应根源时,很多专家将其归咎于杂质,并逐渐形成一种思潮,于是自2008年起拉开了对杂质研究的大幕:科研立项、投入巨资,并购买大量高精尖设备,甚至很多科研工作者已趋于吹毛求疵之状态。/pp  此外,2002~2006年间,很多五类“改装”仿制药堂而皇之上市 同时,我国药物上市后的再评价也很不到位,使得因药物自身毒性、只能采取口服给药方式的药物,在我国却长期采用注射给药方式,结果导致不良反应发生率较高。/pp  3其他给药方式/pp  对于如软膏剂、滴眼剂等外用剂型,杂质对于临床而言无足轻重,更是无需投入过多精力去研究。/ppbr//p
  • 历经30载----《中国药学杂志》岛津杯30年座谈会成功举办
    《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自1991年由中国药学会药物分析专业委员会、《中国药学杂志》编辑部与岛津公司三方共同策划设立至今,历经30载,为了更好地总结“岛津杯”的成功经验,进一步推动即将在明年举办的《中国药学杂志》岛津杯第十五届全国药物分析优秀论文评选交流会在形式创新与策划组织工作中进一步提升,中国药学会药物分析专业委员会于2020年12月4日在上海成功举办“《中国药学杂志》药物分析前沿专题组稿会暨岛津杯30年座谈会”,征集并交流研讨以往各届优秀论文作者代表最新科研成果与学术观点,并进行专题约稿。 本次座谈会由中国药学会编辑出版部、《中国药学杂志》编辑部戴罡主任主持中国药学会编辑出版部、《中国药学杂志》编辑部戴罡主任 座谈会伊始,岛津企业管理(中国)有限公司(以下简称“岛津”)分析计测事业部吴彤彬事业部长率先进行了致辞,在致辞中提到,2020年是特殊的一年,医药卫生行业在抗疫中处于关键地位,药物分析界的各位同仁更是起到了保驾护航的作用,岛津也为之贡献了一份力量。岛津杯即将迎来30周年,对中国药学会药物分析专业委员会、《中国药学杂志》社30年的坚守和付出表示敬意,今年也正值岛津质谱50周年,岛津推出了串联四极杆液质联用仪旗舰机型LCMS-8060NX,成像质谱显微镜iMScope QT,小型化数字离子阱质谱MALDImini-1等各类质谱新品,希望能对从事医药领域老师的科研工作提供更有力的帮助。岛津分析计测事业部吴彤彬事业部长 随后,中国药学会药物分析专业委员会主任委员马双成与中国药学会副秘书长车明凤分别进行了致辞。其中,马双成主任委员回忆了“岛津杯”过往30年,提到“岛津杯”每两年举办一次,已形成精品系列会议,成为药物分析领域高层次会议,作为药物分析学科的重要学术交流平台,对推动药学学科发展发挥了重要作用,提到“岛津杯”过往30年活动的开展也见证了几代药学工作者成长历程。马双成主任最后总结到,希望更多年轻药物分析工作者能积极参与“岛津杯”活动,希望与会专家学者能在此次座谈会上充分交流研究成果与学术观点,就下一届岛津杯活动开展建言献策。中国药学会车明凤副秘书长提到中国药学会药物分析专业委员会是学会成立最早的分支机构之一,多年来一直致力于我国药物分析学科的科技传播与人才培养,对学术交流活动尤为重视。其与《中国药学杂志》编辑部、岛津于1991年共同策划岛津杯全国药物分析优秀论文评选交流会,至今历经近30载,成功举办了十四届,成为中国药学会历史最悠久,最具代表性的学术活动品牌之一。 中国药学会药物分析专业委员会主任委员马双成 中国药学会副秘书长车明凤 致辞结束后,座谈会进入报告环节,首先由大会特邀专家、浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏发表了题目为《手性药物分析技术及应用》的报告。浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏 本次座谈会邀请了历届(第1~14届)岛津杯获奖者代表,依次进行座谈会专题报告,其中,第一届获奖者代表张朝选博士(原:中国食品药品检定研究院)由于不能现场参会,特向此次岛津杯30年座谈会发来了祝贺信并于现场由戴罡主任进行了宣读,在祝贺信中,张朝选先生特别提到生物制药是一种知识密集、技术含量高的新兴产业,还有很多未知领域,分析技术的使用、分析数据的解读以及分析技术在生物药质量控制中的作用值得广泛探索,因为CE非常适合水溶性的生物样品分析,并且CE以及相关分析技术在生物药物分析领域有很大潜力。第一届奖者代表张朝选博士 第二届获奖代表何丽一研究员(原:中国医学科学院药物研究所分析室)则向此次岛津杯30年座谈会发来了祝贺视频。她提到30 年过去了,现在拥有的条件远远优于当初,而且药物分析工作的要求从深度和广度两方面也会拥有更高的要求,迎接新的机遇和挑战。随着分析化学学科的发展,药物分析也会经历飞速发展,相信今后在药物分析领域肯定会人才辈出,硕果累累。第二届获奖代表何丽一研究员 座谈会现场报告的专家学者有:国家药典委员会化药标准处李慧义处长、中国医学科学院药物研究所王琰教授、国家药典委员会陈蕾主任药师、中国药科大学杭太俊教授、北京大学药学院陈世忠教授、中国科学院上海药物研究所陈笑艳研究员、空军军医大学药学系中药与天然药物学教研室谭光国副教授、海军军医大学药学院陈啸飞副教授、岛津(中国)创新中心李晓东博士、中国医学科学院药物研究所药物代谢室符洁助理研究员、中国食品药品检定研究院王莹副研究员、中国药科大学李博副教授、江苏省食品药品监督检验研究院黄敏文副主任药师。 座谈会报告结束后,岛津分析计测事业部分析中心黄涛宏部长带领与会嘉宾参观了岛津上海分析中心并进行了详细介绍,双方持续进行了友好交流直至会议结束。与会嘉宾合影
  • 美杂志质疑中国科研基金分配体制 科技部反驳
    科技部新闻发言人11月8日表示,今年9月,美国《科学》杂志刊登的“中国的科研文化”一文,涉及中国基础研究科研经费分配问题,科技部认为与事实不相符合。  清华大学生命科学学院院长施一公和北京大学生命科学学院院长饶毅今年9月在美国《科学》杂志发表“中国的科研文化”一文,讨论目前中国科研基金分配体制及科研文化问题。他们认为,尽管近年来中国研究经费持续以20%的比例增长,但这种增长没有对中国的科学和研究起到应有的强大的促进作用,现行的科研基金分配体制甚至在某种程度上阻碍了中国创新能力的发展。  资料图片:图为作者之一清华大学生命科学学院院长施一公。(图片来源:科学网)  资料图片:图为作者之一北京大学生命科学学院院长饶毅。(图片来源:科学网)  科技部新闻发言人表示,我国基础研究科研项目经费在支持方向上分为两类,一类是以资助科学家自由探索为主的基础研究,例如国家自然科学基金,支持的面广,项目数多 另一类是以国家重大需求为目标的基础研究项目,例如国家重点基础研究计划(973计划)等,是根据经济社会发展方向和重大科学问题所部署的前瞻性重点基础研究任务,由科学家申报,经过公正、公开的评审程序来确定,所有项目都在网上公示,项目所获支持力度一般比较大,项目数少,竞争性强。此类项目在规划、立项、评审和验收等各个环节,按照国际通常办法,都建立了由各学科领域高层专家所组成的专家委员会,参与项目全过程的评审和监督管理。  科技部新闻发言人表示,近年来,973计划在农业、信息、材料、能源、人口与健康、资源环境、综合交叉和科学前沿等领域,解决了一批重大科学技术问题,为经济社会发展提供了重要的科技支撑。例如:超导材料科学,脑结构与功能的可塑性,太赫兹重要辐射源及探测,量子通信与量子计算,诱导性多能干细胞培育活体小鼠、化学复合驱采油、高强度钢等一批世界瞩目的重大基础研究成果,大大提高了我国基础研究领域的原始创新能力,也为世界科学事业作出了贡献。这些成就凝结着承担科研任务和参与规划、立项、评估、管理的一大批科学家、科技管理人员的辛勤汗水和求实奉献的精神,我们诚挚感谢他们为我国基础研究所作的杰出贡献。  科技部新闻发言人表示,“中国的科研文化”一文的两位作者施一公教授、饶毅教授,都被聘为国家973计划项目首席科学家,饶毅教授也是国家863计划项目课题负责人,他们都承担了我国基础研究和前沿技术领域的科研项目,国家通过多个渠道对他们在科研经费和条件保障上给予了大力支持。  科技部新闻发言人表示,科技部作为国家科学技术的行政管理部门,与各科研机构、学术机构、院校、企业、各学术领域科学家、科研人员等联系和反映问题的渠道是畅通的。我们热忱欢迎所有关心我国科技事业发展的人们,就所关心的问题向我们了解情况、交换意见、提出建议。我们重申对任何违反科学道德、科研诚信、违规违纪的不端行为,采取零容忍态度,有举必查,查实必究,绝不姑息。
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 内外皆精密 | 珀金埃尔默 FT-IR自动分析系统助力精确检测硅晶圆中杂质
    半导体产业的蓬勃发展离不开硅晶圆这一基础材料的质量控制。今日分享一项来自珀金埃尔默的革新成果——基于FT-IR(傅立叶变换红外光谱)技术的全自动分析系统,专门用于高效、精准地测量硅晶圆中的杂质含量。随着消费电子产品、汽车和太阳能发电领域对硅器件的需求激增,硅晶圆的生产和纯度把控显得至关重要。尤其是Float Zone(FZ)和Czochralski(CZ)两种主流生产工艺中,尽管FZ工艺能产出更高纯度的硅晶圆,但CZ工艺因其经济高效及优良的热应力特性被广泛应用。不过,CZ工艺生产的晶圆含有较多碳和氧杂质,这些杂质可能影响半导体器件性能,因此,有效测定并控制杂质水平成为业界关注焦点。珀金埃尔默的Spectrum 3 FT-IR光谱仪结合MappIR晶圆支架和自动化软件,可实现从2英寸至12英寸硅晶圆的全面、自动化分析。系统能在透射或反射模式下工作,通过连续氮气吹扫消除大气干扰,采集高分辨率光谱数据,进而确定晶圆中的碳、氧杂质浓度。△Spectrum 3 FT-IR 和 MappIR 系统依据国际认可的标准方法,通过比较CZ工艺晶圆与高纯度FZ参考晶圆的光谱差异,可在特定波数(如1107 cm-1 和513 cm-1 对应间隙氧,605 cm-1对应替代碳)处测得杂质吸收系数,并进一步转化为原子浓度(ppma)。△FZ 工艺 晶圆光谱(红色)和CZ 工艺 晶圆光谱(黑色)显示光谱差异(点击查看大图)△“CZ 工艺-FZ 工艺” 晶圆光谱的扣减光谱显示由于 CZ 工艺材料中的杂质而产生的谱带(点击查看大图)在此基础上,珀金埃尔默还展示了如何借助AutoPRO7软件绘制整个晶圆表面的杂质分布地图,实现了对碳和氧杂质分布的精细刻画,有助于制造商优化工艺、提高产品质量。△Auto PRO7 软件中测量位置的示意图(点击查看大图)SUMMARY 综上所述,珀金埃尔默 FT-IR自动分析系统的引入极大地提升了硅晶圆中元素杂质的检测效率和准确性,不仅推动了半导体产业链的技术升级,也为高质量硅晶圆的大规模稳定生产奠定了坚实的基础。未来,这一创新技术将在半导体行业的持续进步中发挥重要作用。敬请关注珀金埃尔默,获取更多关于FT-IR自动分析系统在硅晶圆杂质检测方面的专业解决方案和案例分享,共同见证科技力量如何驱动产业升级!扫描左侧二维码即刻获取产品样本 关注我们
  • 化学药物杂质检测技术大升级:探索科学仪器如何保障用药安全
    杂质的研究是药品研究的重要方面,它贯穿于整个药品研究的始终。药品中的杂质是否能得到合理、有效的控制,直接关系到药品的质量可控性与安全性。仪器信息网将于2024年7月30日举办第八届“化学药物杂质研究及质控技术”网络会议。特邀专家学者共同剖析有机杂质、无机杂质及残留溶剂的来龙去脉,深入探索杂质控制策略。从源头到成品,从理论研讨到实践技术,交流讨论药物质控的每一个环节。欢迎大家踊跃报名!报名链接:https://www.instrument.com.cn/webinar/meetings/impurity240730/会议亮点1. 多技术:高分辨质谱技术、液质联用技术、ICP-OES/ICP-MS技术2. 多内容:聚焦药物质量研究解析、药物杂质分析技术突破、新技术新方法的开发、先进仪器在药物杂质分析领域的应用潜力。3. 多角度:包括对有机杂质、无机杂质及残留溶剂等药物杂质。(点击图片,快捷报名)会议日程07月30日 第八届化学药物杂质研究及质控技术网络研讨会14:00-14:30山广志中国医学科学院医药生物技术研究所 副主任药物质量研究新技术与新思路14:30-15:00孟海涛岛津企业管理(中国)有限公司 高级应用工程师液质联用技术在药物杂质分析中的应用15:00-15:30徐新军中山大学药学院 副教授罗达那非原料药质量标准研究15:30-16:00曾 梦安捷伦科技(中国)有限公司 应用工程师ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究16:00-16:30周熙广东省科学院测试分析研究所(中国广州分析测试中心) 博士高分辨质谱技术在药物杂质分析中的应用会议嘉宾中国医学科学院医药生物技术研究所 山广志 副主任《药物质量研究新技术与新思路》山广志,博士,副研究员,中国医学科学院北京协和医学院医药生物技术研究所分析测试中心副主任,北京协和医学院硕士生导师。主要从事药物开发、药物分析、药品质量以及检测技术研究工作。将NMR、LC-HRMS、GC-MS、ICP-MS、2D-HPLC、HPLC、GC、SFC、Biacore、iTC、μDSC等新技术和新方法综合应用于药物发现、开发和质量表征工作,具体研究领域涉及基于靶点的新药筛选、结构确证、杂质谱研究、蛋白相互作用研究等。完成企业科研合作50余项,协助多个品种完成质量研究获批上市。在国内外学术期刊发表研究论文60余篇。【摘要】报告详细介绍了药物质量研究的过程、药品质量控制理念的变迁及团队在药物质量研究方面开发的新技术,围绕基于靶点的药物发现和基于片段的药物设计等两个方面阐释了新技术新方法助力精准药物发现的案例。点击报名》》岛津企业管理(中国)有限公司 孟海涛,高级应用工程师《液质联用技术在药物杂质分析中的应用》孟海涛,高级应用工程师,具有十多年色质谱应用支持经验,长期负责医药行业相关仪器使用培训、应用方法开发、客户合作项目支持,在药物杂质谱分析、基因毒性杂质方法开发、新型热点事件跟进及方案应对等相关领域积累了丰富的应用经验。【摘要】药物杂质的种类及涉及的分析技术,常规杂质定性分析中的痛点及二维液相在杂质鉴定中的应用案例,基因毒性杂质的分析思路及案例分享。点击报名》》中山大学药学院 徐新军 副教授《罗达那非原料药质量标准研究》徐新军,药物分析学博士,中山大学药学院副教授,广东省现代中药工程技术研究开发中心副主任,中国合格评定国家认可委员会(CNAS)实验室认可评审员,广东省科技厅、广州市科信局、广州市生产力促进中心专家库专家,广东省食品药品监督管理局药品、保健食品审评专家。主要从事中药、化学药质量标准研究及中药健康产品开发方面科研工作,在药品检验、药品质量标准制订及体内药物分析方法建立方面具有多年工作经验,已与企业合作完成多项药品质量标准及药物生物等效性研究并通过国家药审中心审核,已建成药品质量评价技术平台及中药化学对照品制备平台并对外提供技术服务。已发表论文144篇,其中SCI论文81篇,获授权发明专利6项。【摘要】罗达那非是中山大学药学院团队研究发现的一种PDE5抑制剂,其可选择性的抑制PDE5,而对其他的亚型磷酸二酯酶没有或具有微弱的抑制作用,主要用于治疗男性勃起功能障碍。按照国家药监局新药申报的相关要求及指导原则,对其质量标准进行了全面研究,主要有残留溶剂分析、有关物质分析、杂质谱分析、杂质结构鉴定、含量分析等。点击报名》》安捷伦科技(中国)有限公司 曾 梦 应用工程师《ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究》曾梦,原子光谱应用工程师,有多年原子光谱分析仪器使用经验,主要负责ICP-MS、ICP-OES在各行业的应用与方法开发,专注于制药、环境、半导体等领域的分析应用。【摘要】药品中的元素杂质不能给患者提供任何治疗益处,超规定限度的杂质水平甚至会引发一些不良反应,给患者带来危害。同时,元素杂质的存在会影响药物的稳定性,缩短药物有效期。因此,对药中的元素杂质水平和种类进行检测,并将其控制在限度范围内是至关重要的。本报告介绍了药物中杂质元素分析的特点/难点,以及安捷伦分析仪器ICP-OES/ICP-MS在化学药元素分析中的应用及优势。点击报名》》广东省科学院测试分析研究所(中国广州分析测试中心) 周熙 博士《高分辨质谱技术在药物杂质分析中的应用》周熙,博士研究生,从事中药物质基础及中药质量标准等方面的研究,在Food chemistry、 Journal of Chromatography B、Analytical Biochemistry、分析化学、分析测试学报等期刊发表论文10余篇。【摘要】高分辨质谱技术在药物杂质分析领域扮演着越来越重要的角色。因其在高分辨率、高质量精度和宽动态范围等优势,在药物杂质分析中显示出了巨大的应用潜力。点击报名》》第八届化学药物杂质研究及质控技术网络研讨会,更多精彩内容,我们直播当日见!点击链接,抢占席位!报名链接:https://www.instrument.com.cn/webinar/meetings/impurity240730/
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP232对元素杂质的限量要求及USP233对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP233规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 梅赛德斯-奔驰联合研究:减少锂电生产过程中杂质颗粒的 4 种方法
    Nature Energy|梅赛德斯-奔驰联合研究成果:减少锂电池生产过程中杂质颗粒的 4 种方法目前,尽管在实验室研究的锂离子电池材料的研发已经取得巨大进展,但是从实验室几克材料的合成,到千克、以及吨级大规模生产,还存在许多质量控制的盲点。本文作者重点关注下一代锂离子和锂金属电池,分别从电池的原材料、正负极加工工艺、超轻量集流体、以及电池生产过程中的清洁度把控(锂电池清洁度分析)等方面出发,给出了锂电池大规模量产的机遇和挑战。这一研究成果《锂电池从实验室研究到大规模量产》,由太平洋西北国家实验室、华盛顿大学、宾夕法尼亚州立大学和梅赛德斯 - 奔驰北美研发公司以及赛默飞世尔科技共同完成,并发表在国际顶级期刊《nature energy》上。原文链接:https://doi.org/10.1038/s41560-023-01221-y文章解读文中在“对锂电池原材料和生产过程的表征”部分指出,为了实现可控且高品质的电池材料生产,先进的表征手段在这个过程中非常关键。品质把控包括原材料、电极形貌和成分、以及表面处理等众多步骤。在品质把控的过程中,来料中有 2 类金属杂质对于电池性能危害最为严重。一种是非磁性颗粒,比如铜 (Cu)、锌 (Zn) 类。另一种是磁性颗粒,比如铁 (Fe)、铬 (Cr)、镍 (Ni) 以及合金颗粒。目前电池制造商们主要采用以下 4 种策略来减少生产过程中的杂质颗粒。对原料进行严格的品质把控 策略一 这一过程可以借助电感耦合等离子体发射光谱仪、光学显微镜和扫描电镜(ParticleX Battery 锂电清洁度检测系统),来识别原材料的杂质颗粒并分析其成分,这些方法对于磁性颗粒和非磁性颗粒都具有适用性。使用 ParticleX Battery 锂电清洁度检测系统,识别到的磁性和非磁性异物颗粒某些生产环节加入除磁步骤策略二生产工艺中(如搅拌池),添加除磁工艺,以去除磁性颗粒物。监测生产车间的环境清洁度 策略三 生产车间中任何金属零件的磨损,都有可能产生异物颗粒,都会影响生产环境的清洁度。这一过程可以使用光学显微镜和扫描电镜(PaticleX Battery 锂电清洁度检测系统)来追溯污染来源。生产设备的金属表面涂覆防护涂层 策略四 比如在金属储罐表面涂覆聚四氟乙烯涂层,以减少浆料中混入金属碎片的风险。/ ParticleX Battery 全自动锂电清洁度检测系统 /文中使用扫描电镜进行的清洁度检测,正是使用飞纳电镜的 ParticleX Battery 锂电清洁度系统完成的。锂电池中金属异物可能导致严重的安全事故,对金属异物的管控也已经成为行业共识。飞纳电镜 ParticleX Battery 全自动锂电清洁度分析系统,从异物颗粒的图像出发,结合颗粒的能谱(成分)信息,可以自动识别、分析和统计铜(Cu)、锌(Zn)、铁(Fe)等金属异物,进而帮助准确分析异物来源,改善生产条件,减少安全事故的发生。- 自动杂质颗粒识别- 自动高清图像采集- 自动能谱成分分析- 自动杂质颗粒分类
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style="text-indent: 2em "不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。/pp style="text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong相关政策/strong/spanbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "为控制药物中遗传毒性杂质潜在的致癌风险,span style="color: rgb(255, 0, 0) "strong2020版中国药典/strong/span四部通则部分,添加了span style="color: rgb(255, 192, 0) "strong《9306 遗传毒性杂质控制指导原则》/strong/span。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。br//pp style="text-indent: 2em "药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。/pp style="text-align: justify text-indent: 2em "EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》/pp style="text-indent: 2em text-align: justify "对于未知数据的基因毒性杂质,制定了span style="color: rgb(255, 0, 0) "strong相关摄入阈值TCC/strong/span(span style="color: rgb(255, 192, 0) "strongThreshold of Toxicological Concern,毒性物质限量/strong/span),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。span style="color: rgb(255, 0, 0) "strongTTC的限度为1.5 μg/d/strong/span。/pp style="text-indent: 2em text-align: justify margin-top: 20px "span style="color: rgb(0, 112, 192) "strong基因毒性杂质来源与分类/strong/span/pp style="text-indent: 2em text-align: justify margin-top: 10px "基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图)/pp style="text-align: center margin-top: 15px "img style="max-width: 100% max-height: 100% width: 505px height: 423px " src="https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title="种类.jpg" alt="种类.jpg" width="505" height="423"//pp style="text-align: justify text-indent: 2em margin-top: 15px "化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。/pp style="text-align: justify text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong基因毒性作用原理/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong酰基卤化物:/strong/span由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong甲醛:/strong/span高活性致癌物,与DNA发生多种反应。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong卤代脂肪族类:/strong/span毒性取决于卤素的性质、数量和位置以及化合物的分子大小。/pp style="text-align: justify text-indent: 2em "一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。/pp style="text-align: justify text-indent: 2em "二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。/pp style="text-align: justify text-indent: 2em "三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。/pp style="text-align: justify text-indent: 2em "四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong亚硝酸烷基酯亚硝酸酯:/strong/span亚硝酸酯和DNA上的氮发生酯交换反应。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strongα,β-不饱和羰基:/strong/span活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong醌:/strong/span亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong烷基化间接作用试剂:/strong/span单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong肼类:/strong/span该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strongN-亚硝胺化合物:/strong/span一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "strong芳香胺:/strong/span必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。/pp style="text-align: justify text-indent: 2em margin-top: 20px "span style="color: rgb(0, 112, 192) "strong检测方案/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括span style="color: rgb(255, 0, 0) "strongGC、LC、GC-MS和LC-MS法/strong/span等,还有相关的前处理技术包括span style="color: rgb(255, 0, 0) "strong顶空分析法、固相萃取法和衍生化法/strong/span等。下图所示为,不同的基因毒性杂质的检测策略。/pp style="text-align: center "span style="font-size: 14px "strong表1 /strong不同类型杂质的检测方法和前处理办法/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 443px height: 475px " src="https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title="不同杂质的解决方案.png" alt="不同杂质的解决方案.png" width="443" vspace="0" height="475" border="0"//pp style="text-align: center margin-top: 20px "span style="font-size: 14px "strong表2 /strong常用分析方法的特点/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 461px height: 303px " src="https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title="分析方法特点.gif" alt="分析方法特点.gif" width="461" height="303"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 525px height: 428px " src="https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title="决策树.png" alt="决策树.png" width="525" height="428"/br//pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong具体解决方案【附连接】/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:卤代烷)/span/pp style="text-align: justify text-indent: 2em "【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷)br/ Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:N-亚硝基二甲胺,NDMA)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-928363.html#advant" target="_blank"【Thermo】缬沙坦及雷尼替丁/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-924963.html" target="_blank"【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912288.html" target="_blank"【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro/a/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:环氧化物/醚)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-911034.html" target="_blank"【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI/a/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:磺酸类、磺酸酯、氨基酯类)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-871218.html" target="_blank"【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912519.html" target="_blank"【SHIMADZU】维格列汀:GCMS-TQ8050 NX/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-926017.html" target="_blank"【SHIMADZU】酸肌酸钠/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-532949.html" target="_blank"【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-813258.html" target="_blank"【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法/abr//pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:4-硝基卞醇)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-912413.html" target="_blank"【Thermo】 TSQ 8000 Evo+Unknown Screening 插件/abr//pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:氯苯胺)/span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-822564.html" target="_self"【SHIMADZU】/aspan style="color: rgb(255, 0, 0) "br//span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(255, 0, 0) "(杂质:丁酸氯甲酯和2,3-二氯苯甲醛)/spanbr//pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/application/Solution-910495.html" target="_blank"【SHIMADZU】丁酸氯维地平/a/ppbr//pp(文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).)/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 151px height: 46px " src="https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title="箭头分割线.gif" alt="箭头分割线.gif" width="151" height="46"//pp style="text-align: center"a href="https://www.instrument.com.cn/zt/chemmed-impurity" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title="w640h110impurity.jpg" alt="w640h110impurity.jpg"//a/ppspan style="color: rgb(255, 0, 0) "strong span style="color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击span style="background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) "图片/span进入以上专题~/span/strong/span/pp style="text-align: center margin-top: 10px "a href="https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target="_blank"img style="max-width: 100% max-height: 100% width: 640px height: 110px " src="https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title="2020 banner.jpg" alt="2020 banner.jpg" width="640" vspace="0" height="110" border="0"//a/pp strong2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】/strongspan style="color: rgb(255, 0, 0) "strong/strong/spanbr//p
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax柱,符合USP通则中621色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气 @ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。4.辅料峰药用辅料是指在药品制剂中经过合理的安全评价的不包括有效成分或前体的组分。例如,在配制注射剂时,可以根据药物的性质加入适宜的辅料,如渗透压调节剂、pH值调节剂、增溶剂、组溶剂、抑菌剂和抗氧剂等,注射剂中所用到的辅料应在标签及说明书中说明。对于在HPLC法中会出峰的辅料,在对药物进行有关物质检测时,应扣除辅料峰的影响。《中国药典》收载了利巴韦林原料及利巴韦林注射液,标准规定利巴韦林原料及其注射液中单个杂质的峰面积应不得大于对照溶液主峰面积的0.25倍(0.25%),各杂质峰面积的和应不得大于对照溶液的主峰面积(1.0%)。研究发现,采用《中国药典》的方法检查利巴韦林注射液的有关物质时,对于加有氯化钠的利巴韦林注射液而言,氯化钠会在利巴韦林的杂质峰处同样出现吸收峰。文献报道,氯离子在200~220nm范围内有较弱的紫外吸收,而且氯离子在磺酸型阳离子交换柱上存在离子排斥,故氯化钠在色谱柱上基本不保留,对有关物质检查干扰很大,故在有关物质检测时应排除氯化钠峰的影响,或者建议企业在利巴韦林注射液的处方中标注氯化钠的量或不加氯化钠以利于检测。 同时,在对硝酸甘油片有关物质研究中,建立了液质联用法确证了色谱图中保留时间2.8min前的色谱峰为聚维酮K29/32的辅料峰,解决了硝酸甘油片质量标准中有关物质辅料峰的判定和扣除问题。在扣除辅料峰后,3批硝酸甘油片样品的有关物质结果均符合规定,为《中国药典》中硝酸甘油片质量标准修订提供了参考。 此外,《中国药典》收载的阿奇霉素分散片的有关物质检验明确规定了计算时予以扣除相对保留时间0.12之前的色谱峰为辅料峰,必要时应取辅料进行对照。研究表明,罗红霉素分散片中的辅料糖精钠的保留时间受仪器、色谱柱、流动相配比影响不大,在一定的流速范围内只根据保留时间就能很好地对其进行定性,在做有关物质检查时可以直接将其扣除。国家药典委员会药典业化函8号文对杂质峰的问题作了如下规定:“杂质峰不包括溶剂峰和确认的辅料峰,药品说明书应列出制剂中所用辅料名称”。按照理解,已被确认的辅料峰在有关物质判定时不被认为是杂质峰,可以将其扣除。但将其扣除前必须对其进行研究,以确认其确实为某种辅料峰,而非辅料中的杂质峰,如无法确认是何种辅料则无法扣除。笔者建议,在制剂的有关物质方法开发中,也可以避开辅料存在的吸收波长,同时选取主成分和各杂质的特征波长,使辅料无吸收或有较低吸收,以消除或降低辅料峰的干扰;或者更改提取溶剂,利用药用辅料和主药的溶解性差异,在充分了解辅料和主药理化性质的情况下更换提取溶剂,将辅料峰降至最低干扰,以便可以忽略不计。5. 结语药物中有关物质的研究是药物研发和质量控制的一个重要方面,贯穿于药品研究、生产和储存的整个过程。这就要求分析工作者对检验过程中出现的杂质峰予以重视,以免出现错误的结果。只有这样,才能真正使HPLC法测定有关物质的检验数据准确、可靠。
  • LC-MS 2050助力药品杂质分析-方便准确我全都要!
    背景介绍近年来,随着人们生活水平的提高、生活方式的改变,高血压合并冠心病的发病率呈逐年增高趋势,其患者多伴有不同程度的血脂异常,阿托伐他汀钙为他汀类血脂调节药,可减少胆固醇的合成,增加低密度脂蛋白受体合成,使血胆固醇和低密度脂蛋白胆固醇水平降低,中度降低血清甘油三酯水平和增加高密度脂蛋白水平。阿托伐他汀钙常与氨氯地平等降压药联用,不仅能够有效控制高血压患者的血压水平,还具有抗动脉粥样硬化作用,明显减少心血管意外事件的发生。 在进行阿托伐他汀钙原料药质量控制时,一般用HPLC-UV法评价纯度,但传统的UV检测器对于无/弱紫外吸收的物质和共流出物无法进行有效的检测,在出现未知杂质时也无法确认其结构,此时我们需要质谱来进行检测。岛津新推出的LCMS- 2050小型化单四极杆质谱系统,其高灵敏度和高选择性可轻松应对无紫外吸收峰、共流出峰,利用Mass-it功能可以将质量信息自动添加到PDA检测器数据中以方便识别峰,并使用源内CID技术分析和识别杂质,您可同时享受如同LC检测器般方便的操作体验和质谱检测器的灵敏准确! 分析条件取市售阿托伐他汀钙原料药(纯度98%)样品溶解成1 mg/mL的溶液。采用Nexera HPLC和LCMS-2050相结合的LC-MS系统进行分析。 分析条件如下 表1 梯度洗脱程序质谱条件Mass-it对阿托伐他汀溶液进行同时紫外-质谱检测,得到的紫外图谱如图1所示。阿托伐他汀出峰在10.5 min,在主峰前后检测到多个杂质峰。利用岛津的Mass-it功能可以将从LCMS-2050中获得的质量信息沿保留时间叠加在紫外图谱上。这样可以直观地了解主要组分和杂质的大量信息,也容易检查是否存在紫外吸收低的隐藏组分。 图1阿托伐他汀的紫外色谱和质谱信息图 源内CID为了进一步对杂质结构进行确认,需要通过离子碎片信息来进行定性分析。LCMS-2050可以通过向Qarray施加电压,在样品进入质谱四极杆分析之前,诱导分析物分子的碰撞解离来测量碎片信息,这种用于结构阐明的测量碎片离子的技术被称为源内CID。 图2源内CID技术图解 用源内CID对上述两种杂质得到的质谱如图3所示。为了阐明结构,将检测到的离子碎片的m/z与通过ACD/Labs MS Workbook Suite软件对已知杂质进行模拟的碎片信息进行匹配。结果显示杂质1和2分别为EP10.4中列出的杂质H和G(图3)。 图3 杂质1与杂质2碎片信息 操作简便LCMS-2050打破了质谱操作维护要求较高的“刻板印象”。在产品设计、仪器控制、数据分析等方面,我们都追求将其作为LC检测器的可用性。LCMS-2050体积小巧,可理想融合在现有实验室里,与岛津LC系统均可连接;它设置简单与光学检测器同样便捷,真空停止状态下,启动后6分钟即可开始工作,启动后,还可以自动检查仪器状态;配合LabSolutions LCMS软件从数据采集到数据分析,提供全程支持,并配有 “AI”积分处理算法,消除分析人员熟练程度和分析经验等的差异而产生的偏差;离子导入口(DL)无需使用工具便可轻松更换,且无需卸除真空状态,停机时间短。为了您的轻松使用,我们在每一个细节竭尽全力~ 总 结在Nexera HPLC系统中添加质谱检测器用于原料药和杂质分析,可轻松获得分子量信息,利用Mass-it功能可将质量信息直接叠加在标准的UV色谱图上,使操作人员可以一目了然地解读分析数据,杂质的结构可以通过源内CID进行确认,LCMS-2050与现有LC系统融合,显著提高数据质量和运营效率。 本文内容非商业广告,仅供专业人士参考。
  • 《科学》杂志公布2012年度10大科学突破
    今日视点  美国《科学》杂志20日公布了本年度10大科学突破,科学家在难以捉摸的希格斯玻色子亚原子粒子研究领域取得的成果被评为2012年最重要的科学发现。40多年前,科学家假定了希格斯玻色子的存在,它是解释其他基本粒子(诸如电子和夸克等)如何获取其质量的关键。  1.希格斯玻色子  7月4日,科学家宣布找到了希格斯玻色子存在的证据,从而完成了粒子物理标准模型。该模型解释了粒子如何通过电磁力、弱核力和强核力相互作用以组成宇宙中的物质。然而,在今年之前,科学家无法解释这些基本粒子如何获得它们的质量。  《科学》新闻记者艾德里安表示,物理学家假设空间由与电场类似的“希格斯场”所填充。粒子与“希格斯场”相互作用以获取能量以及质量。“希格斯场”是由分布在真空中的希格斯玻色子组成,物理学家现在将它们从真空中轰出并进入短暂的存在状态。  但是,观察到希格斯玻色子可谓来之不易甚或代价不菲。在瑞士日内瓦附近的粒子物理实验室中,与造价高达55亿美元的原子加速器相伴的数千名研究人员借助两台巨型粒子探测器(ATLAS和CMS)发现了盼望已久的玻色子。  除希格斯玻色子的发现外,《科学》杂志及其发行机构美国科促会确认的本年度其他9项具有开创性的科学成就如下:  2.丹尼索瓦人基因组  一种将特定分子绑定在DNA(脱氧核糖核酸)单链上的新技术帮助研究人员仅用一块远古人的小指骨碎片,就完成丹尼索瓦人完整的基因组测序。该基因组序列让研究人员能够将丹尼索瓦人——这是与尼安德特人密切相关的古老人类——与现代人进行比较。研究显示,该指骨属于生活在7.4万年至8.2万年之间的一个眼睛、毛发和皮肤均为棕色的女孩,她死于西伯利亚。  3.让干细胞形成卵子  日本研究人员证实,小鼠的胚胎干细胞可被诱导成为具有生育能力的卵细胞。在研究中,他们让实验室中受精的细胞在代孕母体发育并产下小鼠幼仔。这种方法要求发育中的卵子在雌性小鼠体内存留一段时间。虽然这没有达到科学家追求的完全在实验室中得到卵细胞的终极目标,但是它为研究基因和其他影响生育力和卵细胞发育的因素提供了强有力的工具。  4.好奇号的着陆系统  尽管无法在火星条件下测试其探测器所有的着陆系统,但在加州帕萨迪纳美国宇航局喷气动力实验室里承担探索火星使命的工程师们仍安全并准确地将好奇号探测车抵达火星表面。这个3.3吨的飞行器因过重而无法以传统的方式登陆,为此该团队从起重机和直升飞机那里得到灵感,创建了“空中起重机”着陆系统,它将带轮的好奇号吊挂在3根线缆的末端让其着落。这一完美无暇的着陆让设计人员再次获得了信心,宇航局希望未来在已有的探测车附近让第二辆探测车着陆,并将第一辆探测车取得的样本收集起来送回地球。  5.X射线激光解开蛋白质的结构  研究人员用一种比传统的同步加速辐射源亮10亿倍的X射线激光确认了布氏锥虫所需的一种酶的结钩,这种寄生虫是引起非洲昏睡病的原因。新的研究进展证明了X射线激光解密蛋白质的潜力,而这是传统的X射线源所无法做到的。  6.基因组的精密工程  通常,人们无法确定对高级生物的DNA进行修改和删除的最终结果。然而,在2012年,名为“转录激活子样效应因子核酸酶”(TALENs)的工具赋予研究人员改变或关闭斑马鱼、蟾蜍、牲畜及其他动物甚至病人的细胞中特定基因的能力。这种技术以及其他新兴的技术与已有的基因靶向技术一样廉价和有效,同时它能让研究人员在健康人和病人中确认基因及变异的特定作用。  7.马约拉纳费米子  人们有关马约拉纳费米子是否存在的问题的争论已有70多年,该粒子会作为它们自己的反物质并湮灭它们自己。今年,由荷兰物理学家和化学家组成的研究小组首次提出了马约拉纳费米子以准粒子形式存在的可靠证据,它们是相互作为的电子群,其行为像单个粒子。该发现促使人们努力将马约拉纳费米子结合到量子计算中,因为科学家们认为由这些神秘粒子组成的“量子比特”与目前数字计算机中所拥有的比特相比,能够更有效率地存储和处理数据。  8.ENCODE项目  今年,超过30篇文章报道的一项长达10年的研究显示,人类基因组比研究人员曾经认为的更具“功能”。尽管只有2%的基因组会为实际蛋白编码,但“DNA元素百科全书”(ENCODE)研究项目表明,基因组的大约80%是有活性的,可帮助开启或关闭基因。这些新的细节有望帮助研究人员理解基因受到控制的途径,以及澄清某些疾病的遗传学风险因子。  9.大脑/机器界面  曾经用大脑神经记录移动电脑荧幕上光标的同一个研究团队在2012年向人们展示,瘫痪的病人能够用他们的思想来移动一个机械臂并从事复杂的三维运动。该技术虽然仍处于试验阶段且极端昂贵,但科学家希望更先进的计算程序可改善这种神经性假体以帮助因中风、脊髓损伤及其他疾病导致瘫痪的病人。  10.中微子混合角  数百名在中国大亚湾反应堆中微子实验中工作的研究人员报告了一个模型的最后的未知参数,该模型描述了被称作中微子的这种难以捉摸的粒子在以接近光速穿行时,如何从一种类型或“特色”变形为另一种类型。这些结果显示,中微子和反中微子可能会以不同的方式改变其特色,并提示中微子物理可能有朝一日帮助研究人员解释为什么宇宙含有如此多的物质及如此少的反物质。如果物理学家无法发现超越希格斯玻色子的新粒子,那么中微子物理可能会代表粒子物理学的未来。(驻美国记者 毛黎)
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 赛默飞推出高分辨质谱在药物微量杂质定量中的解决方案
    2015年4月13日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出了基于Thermo Scientific? Q Exactive? Focus高分辨液质产品的药物杂质定量分析解决方案,该解决方案利用Q Exactive Focus的高灵敏度定量能力,实现了对盐酸美金刚片中微量杂质N-(二甲基金刚烷)甘氨酸的完美定量分析。药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用,因此加强对药物杂质的分析与控制已成为国内外药品生产企业共同关注的话题,随着对药物杂质的不断认识和法规要求的日益严苛,需要有更高灵敏度的检测手段来应对此类挑战。Q Exactive Focus结合了高性能四极杆和Orbitrap高分辨质量分析器,具有媲美高端三重四极杆的灵敏度和极佳的重现性,本应用利用Q Exactive Focus的多种高分辨扫描模式,对中重度至重度阿尔茨海默型痴呆治疗药物盐酸美金刚片中杂质N-(二甲基金刚烷)甘氨酸进行了不同方式的定量,获得了远优于进口药品注册标准中的液质定量效果,这表明Q Exactive Focus作为高分辨液质,不仅能胜任定性工作,同时也能够完美的应用于杂质定量研究,Fullscan、SIM和PRM三种扫描方式更可满足杂质定量的广泛性、灵敏度和专属性需求。 产品手册下载链接:http://www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/Q%20Exactive%20Focus%E4%B8%8D%E5%90%8C%E9%AB%98%E5%88%86%E8%BE%A8%E5%AE%9A%E9%87%8F%E6%96%B9%E5%BC%8F%E5%9C%A8%E8%8D%AF%E7%89%A9%E5%88%86%E6%9E%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8-20150304.pdf---------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn- See more at: http://www.thermoscientific.cn/about-us/news/Thermo-Fisher-launched-a-solution-for-for-trace-impurities-quantitative-measurement-in-the-drug-by-high-resolution-mass-spectrometry.html#sthash.9BjSejtj.dpuf
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 《中国药学杂志》岛津杯30年专刊
    “岛津杯”简介 中国药学会药物分析专业委员会主办,《中国药学杂志》编辑部、岛津企业管理(中国)有限公司共同承办的中国药学杂志岛津杯全国药物分析优秀论文评选交流会自1992年创办至今分别在北京、苏州、广州、武汉、西安等地召开了14届,该会议已成为药物分析界的品牌会议,得到了中国药学会领导的肯定并在药学界取得了很好的反响,有很好的社会效益。 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会2 年举办一次,已形成精品系列会议和药物分析学科的重要学术交流平台,对促进药学学科的发展发挥了重要作用。每一张奖状,浓缩一段历史;每一座奖杯,讲述一份情谊。 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会为推动药物分析学科发展、新技术应用和人才培养起到积极作用,有很好的社会效益,收载于《中国药学会百年史》一书中。 《中国药学杂志》岛津杯30年座谈会成功举办 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自1991年由中国药学会药物分析专业委员会、《中国药学杂志》编辑部与岛津公司三方共同策划设立至今,历经30载。 为了更好地总结“岛津杯”的成功经验,进一步推动即将在明年举办的《中国药学杂志》岛津杯第十五届全国药物分析优秀论文评选交流会在形式创新与策划组织工作中进一步提升,中国药学会药物分析专业委员会于2020年12月4日在上海成功举办“《中国药学杂志》药物分析前沿专题组稿会暨岛津杯30年座谈会”,征集并交流研讨以往各届优秀论文作者代表最新科研成果与学术观点,并进行专题约稿。 会议上,中国药学会药物分析专业委员会主任委员马双成与中国药学会副秘书长车明凤分别进行了致辞。中国药学会药物分析专业委员会主任委员马双成 马双成主任委员回忆了“岛津杯”过往30年,提到“岛津杯”每两年举办一次,已形成精品系列会议,成为药物分析领域高层次会议,作为药物分析学科的重要学术交流平台,对推动药学学科发展发挥了重要作用,提到“岛津杯”过往30年活动的开展也见证了几代药学工作者成长历程。马双成主任最后总结到,希望更多年轻药物分析工作者能积极参与“岛津杯”活动,希望与会专家学者能在此次座谈会上充分交流研究成果与学术观点,就下一届岛津杯活动开展建言献策。 中国药学会副秘书长车明凤 中国药学会车明凤副秘书长提到中国药学会药物分析专业委员会是学会成立最早的分支机构之一,多年来一直致力于我国药物分析学科的科技传播与人才培养,对学术交流活动尤为重视。其与《中国药学杂志》编辑部、岛津公司于1991年共同策划岛津杯全国药物分析优秀论文评选交流会,成功举办了十四届,成为中国药学会历史最悠久,最具代表性的学术活动品牌之一。以往的14届交流会共产生优秀论文270余篇,相关论文作者逾千人。这些药物分析领域的科研成果在不同时期对推动药学研究、新药开发及药品质量控制等均发挥了重要作用。 浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏 致辞结束后,座谈会进入报告环节,首先由大会特邀专家、浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏发表了题目为《手性药物分析技术及应用》的报告。 历届岛津杯获奖者代表进行座谈会专题报告第一届获奖者代表张朝选博士 第一届获奖者代表张朝选博士(原:中国食品药品检定研究院)由于不能现场参会,特向此次岛津杯30年座谈会发来了祝贺信并于现场由戴罡主任进行了宣读,在祝贺信中,张朝选先生特别提到生物制药是一种知识密集、技术含量高的新兴产业,还有很多未知领域,分析技术的使用、分析数据的解读以及分析技术在生物药质量控制中的作用值得广泛探索,因为CE非常适合水溶性的生物样品分析,并且CE以及相关分析技术在生物药物分析领域有很大潜力。第二届获奖代表何丽一研究员 第二届获奖代表何丽一研究员(原:中国医学科学院药物研究所分析室)则向此次岛津杯30年座谈会发来了祝贺视频。她提到30 年过去了,现在拥有的条件远远优于当初,而且药物分析工作的要求从深度和广度两方面也会拥有更高的要求,迎接新的机遇和挑战。随着分析化学学科的发展,药物分析也会经历飞速发展,相信今后在药物分析领域肯定会人才辈出,硕果累累。 历届获奖者代表报告题目想要了解药物分析前沿技术研究进展吗?扫描上方二维码查看 第十四届“岛津杯”专家和获奖代表采访视频历届《中国药学杂志》岛津杯优秀论文和在校学生优秀论文获奖名单《中国药学杂志》历届会议报道… … 第十五届《中国药学杂志》岛津杯优秀论文评选交流会征稿活动即将开始请持续关注我们
  • 肉眼能看出水中杂质 仪器检验竟合格
    近年来,七贤井家沟村村民也曾多次向有关部门反映,“每当反映得比较激烈时,村委会就会贴出一份水质检测报告,证明水质是合格的”。  在井家沟村一个公告栏里,记者也见到了一份水质合格的检测报告,对这一报告,很多村民半信半疑。记者也采访了出具检测报告的部门,该部门表示,该报告是基于送样进行的检测,他们只对样品检测结果负责,至于样品采集过程,他们没法控制。  村子里一些人得病,怀疑与水有关  在井家沟村,一提起村里饮用水的问题,村民们都有很多话要说。“人可以几天不吃饭,但不能一天不喝水。”一村民说,他们村里的饮用水是绿色的,还有异味,没法正常饮用。  这时,另一位村民接过话头说:“没法喝也得喝呀,人家经济条件好的,可以买大桶的纯净水,或是安装一个净水器,像我们这些条件不好的,就只能喝这个水了。”据了解,井家沟村总共4000多口人,绝大部分村民还是会饮用村里的水,洗衣、做饭也全都得靠它。另外,也有一些经济条件不算好,却不怕麻烦的村民会到外村去接水回来用。“喝村里的水,身体会有什么反应?”记者问。“以前经常会拉肚子,不知道与水有没有关系,现在都已经习惯了。”井先生说,但他担心村里的孩子们长年喝这样的水,会对其身体健康和成长有影响。  据介绍,近几年,井家沟村的一些老年人,患结石病、心脑血管疾病的人比较多,也有患癌症的,还有一些中年人,刚刚40多岁,就已经半瘫了,现在说话、走路都不利索。  不过,村民们同时表示,由于没有正规权威部门鉴定,他们也不能确定一些人得病就与这水有关系。“只是怀疑而已。”井先生说,“俗话讲‘病从口入’,我们更加希望我们喝的水是安全的。”  村民曾改喝外部自来水  既然村民怀疑饮用水受到了污染,并且污染已严重到肉眼可见的程度,那么村民就甘愿一直喝这样的水,而没有反映过吗?对于这个问题,村民在回答时都略显激动。“怎么可能没反映过,这些年都反映了不知多少次了,有什么用啊?”村民井先生说。  在采访中,一些村民向记者证实,他们怀疑饮用水有问题已经多年了,也曾向有关部门汇报过。前几年,村里曾一度不再喝皇上岭井里的水,改喝从外面调来的自来水。“当时,感觉口感和水质明显改善,与村里的井水很不一样。”井先生说。  然而过了一段时间,一些村民反映,外来自来水费用太高,就又换回了原来的井水。据介绍,喝自己村里的井水,村民只要交一些电费就可以了,花费并不大。  也有村民向记者表示,当时村里改喝外部自来水,与村里井水水质没有关系,“只是因为当时井水压力太低,不足以供应村民饮用”。  水质检测合格,村民仍有疑虑  “那你们反映怀疑水质有问题的事,相关部门就不管吗?”记者追问村民。一位村民笑了笑,指着井家沟村的一个公告栏说:“管,当然管。这不是贴出了告示嘛,找的次数多了就会贴这个,都已经贴了四五次了。”  在村民所指的公告栏上记者看到,上面贴了一份检测报告书,出具单位为济南市市中区疾病预防控制中心,检品名称为生活饮用水,委托单位为济南市市中区井家沟村,报告日期为今年7月31日。  记者细读检测报告书内容发现,本次检测为送样检测,样品采集时间和送检时间均为今年7月18日。当时一共送检了2份饮用水样品,分别为500毫升瓶装水和5升桶装水。共检测了13个项目、26项次,检测项目分别为色度、浑浊度、臭和味、肉眼可见物、pH、总硬度、硝酸盐、砷、铅、铁、铜、总大肠菌群以及细菌总数。  检测及评价依据也一条条罗列其中,除了常见的生活饮用水卫生标准外,还有生活饮用水标准检验方法,感官性状和物理指标,无机非金属指标,金属指标及微生物指标。  这些检测依据非专业人士可能并不了解,但下面所写的结论却是很多人都能看懂的。结论及评价上这样写着:“根据GB5749-2006生活饮用水卫生标准,2份样品所检项目符合卫生要求。”  检测报告书的最底部还有相关负责人的签字,以及济南市市中区疾病预防控制中心所盖的公章。  当记者仔细阅读检测报告书时,一位村民指着报告书说:“虽然我不知道什么检测标准,可我们的饮用水颜色发绿,  还有杂质,用肉眼都能看出来,那么高级的仪器检测出来的结果竟然是合格的,我不相信。”  在井家沟村,记者随机调查了10位村民,问他们是否认为检测结果能证明其整天饮用的水就是合格的,不少人都表示怀疑。  检测部门:样品为送检,采样过程无法控制  针对一些井家沟村村民的疑虑,22日,记者联系到水质检测报告书的出具方——— 济南市市中区疾病预防控制中心,就相关问题采访了质量科相关负责人程先生,以下是记者与他的一段对话。  记者:有井家沟村民反映该村饮用水是绿的,有异味,但你们出具的检测报告书证明,水是合格的,实际情况是怎样的?  程先生:他们当时是送样检测,我们只对送来的样品负责,样品的检测结果绝对是符合要求的。至于这些样品是从哪里采集来的,我们就不知道了。采样的中间过程我们监督不了,我们也不负责采样。  记者:村民反映水是绿的,有异味,你们没有发现吗?  程先生:送到我们这里检测的水是用小瓶装着的,水很少,我们看不出颜色,也没有仔细品尝味道,只能是闻一闻。  记者:据我所知,新的饮用水卫生标准中有106项水质指标,你们给井家沟村检测的怎么才13项?  程先生:对,国家饮用水标准是106个指标,常规的40多个,常做的20多个。农村用水一般要求20多个指标,但井家沟村这次是委托我们检测,是需要花钱的,检测项目越多花费越多,我们检测也需要付出大量劳动,一份样品,不是一两天就能检测出来的,一个人做20多个项目需要10多天的时间。  记者:你们平时对井家沟村的饮用水做过抽样检测吗?不是送检,就是你们自己采集样品然后检测。  程先生:饮用水抽检,国家有固定安排,每年在几个固定地点轮流抽样,费用由国家财政出。我们作为第三方检测机构,去年接受委托抽检了几个村,今年抽检了5个,我不记得有井家沟村,具体有没有抽查还得再查。至于村里打的井,在打井之前,水务部门有要求我们才会去检测。再说,村里的井,水质变化很快,枯水期或许是合格的,涨水期一下雨,井边的垃圾被冲进去,可能又不合格了。
  • 高纯金属基体的ICP-OES分析 | 强大的干扰消除能力:Avio ICP-OES分析金属镍中的杂质
    伦敦金属交易所(London Metal Exchange,LME)是世界上最大的有色金属交易所,成立于 1876 年,于 2012 年被香港证券交易所英镑收购,成为其全资附属公司。伦敦金属交易所的交易品种主要有铜、铝、铅、锌、镍和铝等,发布的成交价格被广泛作为世界金属贸易的基准价格,其价格和库存对世界范围的有色金属生产和销售有着重要的影响。如同 24K 金与 18K 金的差价一样,不同纯度金属的价格差异明显。因此,伦敦金属交易所对交易金属的纯度有着严格的分级和要求,对检测手段也有着严格的规范。从本文开始,我们将陆续推出伦敦金属交易所有色金属质量控制系列 —— 高纯基体金属的 ICP-OES 分析,以镍、铅、铝等为例,让大家了解电感耦合等离子体发射光谱(ICP-OES)技术在分析高纯度金属基体中的杂质元素的应用,以及珀金埃尔默 Avio 系列 ICP-OES 在此领域应用的技术特点和优势。ICP-OES 的英文为 Inductively Coupled Plasma Optical Emission Spectrometer,基本原理简单说来就是元素的原子或离子受热或电激发后,发生电子层跃迁,随后从激发态回到基态时发射出具有特征波长和强度不同的电磁辐射,从而进行元素的定性和定量。ICP-OES 系统的组成如下图所示。ICP-OES 技术具有高效稳定,连续快速多元素同时测定,精确度高,检测线性宽等特点,能够进行 70 多种金属元素和部分非金属元素的分析,多数元素的检出限能达到 ppb 级,在地质、冶金、环保、化工、生物、医药、食品、农业等方面用途广泛。那么,让我们先从用途最为广泛的合金材料之一金属镍中的杂质检测开始说起吧!金属镍中的杂质检测金属镍(Ni)由于其具备高温和低温下的高耐腐蚀性和高强度,成为合金材料生产制备中最广泛使用的金属材料之一。伦敦金属交易所发布了不同规格的金属镍的杂质要求,表 1 列举了99.80% 纯度金属镍标准规范中的杂质要求。表1.伦敦金属交易所 99.80% 纯度金属镍(镍标准规范)众所周知,谱线干扰是使用 ICP-OES 检测高纯基体金属样品中的杂质时常常遇到的难题。我们看看珀金埃尔默如何使用 Avio 500 电感耦合等离子体光谱仪(ICP-OES),并利用多谱拟合专利技术(MSF)解析谱线,成功消除主体元素 Ni 对 某些杂质元素如 Bi 和 Sn 的测定干扰,准确检测高纯度金属镍中的杂质元素。样品样品以 5% 硝酸(v/v)消解。按照“99.80% 纯度金属镍标准规范”的要求,所有分析在 1% Ni 溶液中进行,并按照其对杂质元素含量的规定进行加标回收实验。标准工作曲线用 5% 硝酸(v/v)溶液配制浓度水平为 0.25,0.5 和 1.0 ppm 的混合标准溶液。仪器珀金埃尔默 Avio 500 ICP-OES,仪器参数、实验条件设置见表 2,各杂质元素的测定波长见表 3。表2. Avio 500 ICP-OES 仪器参数和实验条件表3. 各杂质元素的测定波长回收率混合标准溶液加到 1% Ni 溶液中的回收率均在 ±10% 以内,结果如图 1 所示,表明能够准确检测低浓度的杂质元素。图1. 各杂质元素在 1% 浓度 Ni 溶液中的加标回收率干扰消除在检测中,Bi 和 Sn 的测定会明显受到 Ni 基体的光谱干扰。使用珀金埃尔默多谱线拟合(MSF)专利技术(原理如图 2 所示),建立模型,可以消除 Ni 谱线干扰。图2. 珀金埃尔默多谱线拟合(MSF)专利技术方法检出限方法检出限定义为连续 7 次测量 1% Ni 溶液中各杂质元素为 0.25 ppm 的测量值的标准偏差的 3 倍,结果如图 3 所示,表明方法的检出限符合金属镍标准规范要求。图3. 1% Ni 溶液中各杂质元素的检出限(蓝色)和金属镍标准规范要求(红色,按100倍稀释99.80%纯 Ni 计算)仪器稳定性通过 6 小时连续分析 1% Ni 溶液中内标物 钪(Sc)的光谱信号强度的变化考察仪器的稳定性,结果见图 4,信号强度的变化在 ±10% 以内,表明仪器有着良好的稳定性 。图 4. 1% Ni 溶液中内标物钪(Sc)的光谱信号强度变化本文证明了珀金埃尔默 Avio ICP-OES 可以对高纯 Ni 中的杂质元素进行准确分析,符合伦敦金属交易所对高纯金属 Ni 的要求。通过使用多谱线拟合(MSF)技术解析谱线, 成功消除了主体元素 Ni 对 Bi 和 Sn 的测定干扰。 Avio 200 ICP-OESAvio 500 ICP-OES 扫描下方二维码,即可下载珀金埃尔默ICP-OES相关应用资料。下期预告伦敦金属交易所有色金属质量控制系列(2),高纯金属基体的ICP-OES分析:Avio 500 分析金属铅中的杂质,将介绍伦敦金属交易所对金属铅的标准规范,以及Avio 系列ICP-OES在其分析中,特别是在成本控制方面的表现,敬请期待。
  • 干货 | ICH Q3D指导原则与中国、美国和欧洲药典中杂质元素的检测要求
    元素杂质控制在药物安全中扮演着重要的角色,制药工业中引入杂质元素的途径多种多样,主要有原料药生产中使用的金属催化剂、动植物原材料、药辅料、包装材料与药品之间的杂质元素迁移、生产设备带入等。因此,国际人用药品注册技术协调会(ICH)在2014年针对性发布了元素杂质指导原则Q3D,适用于原料药、制剂中元素杂质的风险评估,对由合成、生产工艺步骤的变化,原料药、药辅料以及密闭容器系统的使用等而引入的元素杂质进行控制。ICH Q3D指导原则ICH Q3D指导原则主要分为三个部分:评估潜在元素杂质的毒性数据;确定每一种有毒元素的每日允许暴露量(PDE);运用ICH Q9质量风险管理指导原则来评估和控制药品中的元素杂质。下表列举了ICH Q3D按对人体安全危害程度对各种元素进行的分级。1级2A级2B级3级药品生产中限制使用或禁止使用的有毒元素在药品中出现可能性较高的元素因丰度低或与其它材料分离的可能性较低,所以在药品中出现可能性较低的元素通过口服给药途径毒性较低的元素要求风险评估要求风险评估无需进行风险评估吸入和非口服途径需进行风险评估砷As, 镉Cd, 铅Pb, 汞Hg钴Co, 镍Ni, 钒V银Ag, 金Au, 铱Ir, 锇Os,钯Pd, 铂Pt, 铑Rh, 钌Ru, 硒Se, 铊Tl钡Ba, 铬Cr, 铜Cu, 锂Li, 钼Mo, 锑Sb, 锡Sn 为满足和适应ICH Q3D指导原则,美国和欧洲等相关标准做出了如下调整:美国药典(USP)在2018年1月生效的USP-40将杂质元素种类和限度与ICH Q3D保持一致。欧洲药典(EP)先后颁布多个文件,引用ICH指导原则对原料药、药物制剂中的元素杂质进行控制,并成为强制要求。中国药典(ChP)由于更新周期等方面的原因,目前中国药典(ChP)中的元素杂质检测方法并没有完全追随ICH Q3D原则,其设计和要求主要针对的是中药中的有害残留物质的限定,并不是针对低水平金属催化剂和试剂的残留,难以满足药品安全性控制的需要。下表总结了最近更新的中、美、欧药典中对元素杂质的限定状况。药典版本通则要求检测方法USP-41USP232,23324种元素,种类和限度与ICH Q3D一致ICP-OES和ICP-MSEP-9.65.20 元素杂质,2.4.20 元素杂质测定,2034 原料药,2619 药物制剂24种元素,引用ICH Q3D;术语、内容与ICH Q3D一致;强制要求遵循ICH Q3D;强制要求遵循ICH Q3DAES, AAS, XRFS, ICP-OES, ICP-MSChP-20159302 中药有害残留物限量制定指导原则9种杂质元素,铅Pb, 汞Hg, 镉Cd, 铜Cu, 银Ag, 铋Bi, 锑Sb, 锡Sn, 砷AsAAS, ICP-OES, ICP-MS 针对于美国、欧洲药典和中国原料药出口厂商对 ICH Q3D的严格遵循,以及中国药典对中药质量严格控制,珀金埃尔默提供全面的元素分析解决方案,全面覆盖从样品前处理到实验数据合规处理各个环节。近日,珀金埃尔默推出《珀金埃尔默药品质量控制应用文集》电子版,包含多篇杂质分析应用文章,完美解决您的顾虑。扫描下方二维码,即可获取详细资料!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 中国生物工程杂志生物芯片技术专题研讨班通知
    生物芯片作为我国重点发展的高新技术领域之一,在疾病诊断、药物筛选和新药开发、中药基因组学研究和中药现代化、环境保护及其他等与生命活动有关的研究和应用领域均具有重大应用前景。生物芯片技术将会为疾病检测和诊断、新药开发与药物筛选、分子生物学、农作物优育优选、航空航天、司法鉴定、食品卫生和环境监测等领域带来一场革命,甚至还将改变生命科学研究方式。为帮助生命科学和医学研究与应用领域的专业人员更快、更直接地了解与掌握生物芯片的应用技术、发展现状和未来趋势,中国生物工程杂志社(中国生物工程学会、中国生物技术发展中心、中国科学院文献情报中心主办)特举办“生物芯片技术专题研讨班”。   本期研讨班邀请生物芯片北京国家工程研究中心、军事医学科学院等国内从事生物芯片技术开发与应用的一线专家授课,采用专家讲座为主、辅以引导学员讨论实际案例的学习方式;根据以往研讨班上的意见反馈,特别增加了生物芯片如何与测序技术相结合进行应用的专题。 研讨班主要内容: ◆美国FDA批准的应用于辅佐肿瘤临床治疗的基因芯片应用现状◆世界范围内学术机构和商业公司正在开发的生物芯片类型◆如何把现代测序技术和生物芯片技术进行结合◆生物芯片技术用于微生物的检测,包括:(1)细菌类检测应用型芯片(2)病毒类检测应用型芯片(3)能同时高通量检测多种微生物包括未知病毒的应用型芯片◆在基因组序列不清楚的情况下如何应用生物芯片技术,包括:(1)在DNA水平上筛选不同物种特异的DNA片段用于农作物分子育种或品质保护(2)在RNA水平上发现新功能的基因◆利用蛋白芯片检测小分子化合物◆从基因芯片出发最终筛选到蛋白水平的分子标记物用于疾病的诊断 会议时间、地点:2009年4月11-12日,中国科学院文献情报中心(北京中关村北四环西路33号国家科学图书馆),报到时间:2009年4月10日,报到地点:《中国生物工程杂志》编辑部。 参会办法:参会代表请于4月6日前填写会议回执后Email/邮寄/传真至中国生物工程杂志社会议费每人1200元,在读研究生每人1100元(凭有效证件),食宿统一安排,费用自理。 联系方式:通信地址:北京市海淀区中关村北四环西路33号中国生物工程杂志社(100190)联 系 人:任红梅13641036700电 话:(010)82624544,82626611-6511 传真:(010)82624544电子邮件:renhm@mail.las.ac.cn 生物芯片技术专题研讨班报名回执表(参会代表请于4月6日前Emial/传真/邮寄至中国生物工程杂志社)单位名称 通信地址邮编姓名性别职称电话传真E-mail是否住会 生物芯片技术专题研讨班住宿预定表(会议住地:中科院第一招待所,需住会者请务必于4月6日前回传本表)单位名称联系人电话手机电子邮件代表姓名性别是否需要单人间入住日期离店日期 会议驻地:中科院第一招待所(010-62564642),标准间每天150元。公交线路:913、983、740、696、826、466、641、26、47、320区间、运通113等各路公交车至中关村一街站即到。
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制