当前位置: 仪器信息网 > 行业主题 > >

二水合三氟化硼

仪器信息网二水合三氟化硼专题为您提供2024年最新二水合三氟化硼价格报价、厂家品牌的相关信息, 包括二水合三氟化硼参数、型号等,不管是国产,还是进口品牌的二水合三氟化硼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二水合三氟化硼相关的耗材配件、试剂标物,还有二水合三氟化硼相关的最新资讯、资料,以及二水合三氟化硼相关的解决方案。

二水合三氟化硼相关的资讯

  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf关键词:三氟化硼甲醇 脂肪酸 甲酯化上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 上海市分析测试协会立项《三氟化硼-11B同位素丰度比的测定 电感耦合等离子体质谱法》等4项团体标准
    各会员单位及有关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《上海市分析测试协会团体标准管理办法》规定,在相关部门指导下,结合行业发展需要,上海市分析测试协会对《三氟化硼-11B同位素丰度比的测定 电感耦合等离子体质谱法》、《胎牛血清中碱性磷酸酶的测定 荧光分光光度法》、《核酸提取用磁珠检测通则》、《甲基化分析中的DNA样品制备方法 沉淀法》4项团体标准进行了立项审查,经相关专家审议,上述所申报的4项团体标准符合立项条件,批准立项,现予以公告(详见附件)。请各制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。同时,欢迎有关企业和机构加入团体标准的起草编制工作。联系人:钱相如电话:15751007487邮箱:1318155546@qq.com上海市分析测试协会2024年5月8日上海市分析测试协会关于《三氟化硼-11B同位素丰度比的测定 电感耦合等离子体质谱法》等 4 项团体标准立项的公告.pdf
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 自来水合格率50%?悬疑不能一直稀里糊涂
    开栏的话:大家好,我是小蒋。国事,家事,天下事,天天都有新鲜事。你评,我评,众人评,百花齐放任君看。观点各有不同,角度各有侧重,只要我们尊重客观、理性公正。  自来水合格率50%?悬疑不能一直稀里糊涂  背景:有媒体披露,2009年下半年,住建部水质中心作了被认为是近十几年来最大规模的一次普查,但结果至今都没有对外公开,据参与的知情人透露,合格率也就50%左右。  华商报发表杨鹏的文章:消息一出,南京、广州等牵扯在内的城市就公开“辟谣”,称各自区域内的水质达标。显然,这种嘴巴上的自证清白,是很难服众的。自来水水质不合格,说起来,原因无非三个方面:水源地不合格 自来水厂处理工艺跟不上污染 老旧管道的二次污染。目前,已经很难找到毫无污染的水源地,这是个无奈的现实。在令人忧虑的用水安全面前,自来水厂的价值更为重要。但据媒体披露,“我国现在99%的自来水厂用的仍然是100年前的常规工艺。”而专家认为,“自来水安全问题不能不归于国家水质标准的长期落后。内地长期使用的饮用水标准是1984年制定的。”“2007年7月1日,国家颁布了新的饮用水水质标准,检测指标从35项提高到了106项。但目前除了北京等个别超大城市外,绝大部分城市没有检测106项指标的能力。”技术是百年前的,管道是几十年前的,殊不知,上游的污染程度早已今非昔比,这样的硬件根本不足以应付今日之局面,自来水能真正合格吗?水质的问题,就是个钱的问题,就是谁来承担因更新工艺、改造管道而带来的终端成本上涨压力?专家测算每年的用水成本增加约200亿元左右。对于我们这个经济实力已经跃居全球第二的国家,每年200亿相当于个零头而已,即便相较于每年动辄上千亿的三公消费而言,省下这点钱也不是什么难事,或者说,每年200亿,于今日而言,不是个能力问题,某种程度上,更是个良心问题、责任问题、伦理问题。  小蒋随想:自来水的合格率究竟是多少?2007年底,国家发改委、水利部、卫生部、建设部、环保总局等多部委联合印发《全国城市饮用水卫生安全保障规划》称“全国城市供水单位监督抽检集中式供水水质合格率仅为83.4%”。而近期某媒体披露的“未公开的合格率”只有50%左右。这两个数据不可能都是真实的,至于哪个数据“不真”,恐怕不能稀里糊涂。或者说,这已不是“数据误差”的问题,而是关系到行政公信力与媒体底线操守的问题。有人可能会说“这种事很敏感”。其实呢,在一些统计数据与居民切身感受不符的背景下,在虚假新闻不时让人大跌眼镜的时候,无论是行政者,还是公众,都有相应的心理承受力。人们需要的是真相,而不是看上去不错的数据或耸人听闻的猛料。只有在获得真相的基础上,宏观决策与民主监督,才能制定并实施针对性的举措。除了合格率,人们同样关注自来水价格。不得不说,近年各地的水价听证会往往成了“听涨会”。经营成本上涨、水资源紧张、运用价格杠杆……这些说辞人们听得都腻了。如果能喝上合格的水,人们至少觉得没白涨价。倘若水真的存在不合格的可能,“质次价高”让人情何以堪?水是生命之源,水的合格与否不能稀里糊涂。
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。  在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。  合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 所见即所测!当拉曼光谱仪遇上混凝土水合过程!
    当拉曼光谱技术遇上混凝土的水合过程,会发生什么?麻省理工学院的这一研究成果,给你惊喜!拉曼光谱需要将高强度激光照射到材料上,并测量其被构成材料的分子散射时的强度和波长,来创建出一幅特殊的图像。由于不同的分子和分子键,都具有各自独特的散射“指纹”,因而这项技术也可用于制作有关创建材料内部分子结构和动态化学反应的图像。有关报告指出,混凝土中使用的水泥,占据了全球二氧化碳排放总量的8%左右,已经与大多数国家产生的排放量不相上下,降低碳排放是当今时代及未来的发展趋势。今年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告。“碳达峰”是指我国承诺2030年前,二氧化碳的排放不再增长,达到峰值之后逐步降低。“碳中和”是指通过各种节能减排的形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。随着对水泥化学性质的深入了解,科学家们就能够改进生产流程或配方成分,从而让混凝土产生更少的排放,或者添加其它能够主动吸收二氧化碳的成分。为达成这一目标,麻省理工学院使用了显微拉曼光谱技术,来仔细观察混凝土在水合期间发生的特定化学反应的动态过程。研究期间,MIT科学家们使用这套装置观察了一个放置在水下的普通混凝土样品,并努力模拟了真实世界的环境条件。该团队总结道:通常情况下,混凝土的水合过程,是从硅酸盐水合产物的无序相开始的,之后它会渗透到整个材料并产生结晶。此前,科学家们只能研究具有平均体积特征、或某个时间节点的混凝土水合快照。但在拉曼光谱仪新技术的加持下,他们几乎可以连续地观察所有变化,并提升了他们的时间和空间尺度上的图像分辨率。如上图所示,水合作用期间,白色的硅酸三钙(alite)形成了蓝色的水合硅酸钙(CSH)与红色的硅酸盐(portlandite)。剩余绿色部分为二钙硅酸盐(belite),而黄色部分则是方解石(calcite)。
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    centerimg style="width: 285px height: 300px " title="" alt="" src="http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height="300" hspace="0" border="0" vspace="0" width="285"//centerp  钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。/pcenterimg style="width: 402px height: 300px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height="300" hspace="0" border="0" vspace="0" width="402"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄/pp  5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。/pp  水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。/pp  中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。/pp  “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。/pp  经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。/pp  “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。/pp strong 1.研发显微镜核心部件和方法,达到原子水平观测的极限/strong/pp  这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。”/pp  为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。/pp  第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。/pp  科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。”/pp  为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。”/pp  strong2.离子水合物的幻数效应有什么用/strong/pp  江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。/pp  结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。/pp  江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。”/pp  有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。/pp  江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。”/pp  王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。/pp strong 3.水合离子变得可以操控,能为我们带来什么?/strong/pp  据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/pp  王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。”/pp  比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。”/pp  另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。/pcenterimg style="width: 450px height: 292px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height="292" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄/pcenterimg style="width: 450px height: 338px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄/pcenterimg alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height="600" width="439"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄/p
  • 惊爆价!拯救你一整年的采购量
    活动说明:购买任意指定耗材产品,即可享受7折优惠!更有VWR仪器 & J.T.Baker折扣产品促销时间:即日起至2021年2月10日促销对象:中国大陆所有客户促销规则和说明:1)促销价格不包含危险品运费2)促销产品数量有限, 售完即止本次活动最终解释权归艾万拓威达优尔国际贸易(上海)有限公司所有。本次促销包含三大品类:实验室耗材、实验室仪器、高纯试剂详细列表及促销活动见以下列表:? 实验室耗材产品名称货号描述未税原价(元)未税促销价(元)低型厚壁烧杯VWRI213-0462低型厚壁烧杯50mL190133VWRI213-0476低型厚壁烧杯100mL190133VWRI213-0477低型厚壁烧杯150mL190133VWRI213-0478低型厚壁烧杯250mL327229VWRI213-0479低型厚壁烧杯400mL400280VWRI213-0481低型厚壁烧杯1000mL453318玻璃低型烧杯VWRI213-1120烧杯,低型,25mL,硼硅酸玻璃3.3225158VWRI213-1122烧杯,低型,100mL,硼硅酸玻璃3.3235165VWRI213-1123烧杯,低型,150mL,硼硅酸玻璃3.3245172VWRI213-1124烧杯,低型,250mL,硼硅酸玻璃3.3235165VWRI213-1125烧杯,低型,400mL,硼硅酸玻璃3.3310217VWRI213-1128烧杯,低型,1000mL,硼硅酸玻璃3.3420294VWRI213-1130烧杯,低型,3000mL,硼硅酸玻璃3.3340238VWRI213-1131烧杯,低型,5000mL,硼硅酸玻璃3.3470329蓝盖实验室瓶VWRI215-0057试剂瓶, GL45 5 L 高硼硅玻璃 3.3905634VWRI215-1592试剂瓶 GL45 100 mL 高硼硅玻璃 3.3269189VWRI215-1593试剂瓶 GL45 250 mL 高硼硅玻璃 3.3300210VWRI215-1594试剂瓶 GL45 500 mL 高硼硅玻璃 3.3369259VWRI215-1595试剂瓶 GL45 1000 mL 高硼硅玻璃 3.3564395VWRI215-1596_U试剂瓶 GL45 2000 mL 高硼硅玻璃 3.31132793VWRI215-3261试剂瓶 GL45 50 mL 高硼硅玻璃 3.3485340蓝盖琥珀色实验室瓶VWRI215-2327棕色蓝盖瓶 硼硅酸玻璃3.3 500mL 179126VWRI215-2328棕色蓝盖瓶 硼硅酸玻璃3.3 1000mL 174122VWRI215-3275棕色蓝盖瓶 硼硅酸玻璃3.3 50mL 12789不带边试管VWRI212-0013试管 75X12X0.8-1.0 钠玻璃 无卷边 170119VWRI212-0015试管 100X12X0.8-1.0 钠玻璃 无卷边 230161VWRI212-0016试管 100X16X0.8-1.0 钠玻璃 无卷边 260182VWRI212-0017试管 100X14X0.8-1.0 钠玻璃 无卷边 250175容量瓶VWRI612-3738玻璃容量瓶 A级 NS10/19 5mL PE盖9063VWRI612-3740玻璃容量瓶 A级 NS10/19 10mL PE盖12789VWRI612-3741玻璃容量瓶 A级 NS10/19 20mL PE盖9265VWRI612-3742玻璃容量瓶 A级 NS10/19 25mL PE盖9063VWRI612-3743玻璃容量瓶 A级 NS12/21 50mL PE盖148104VWRI612-3744玻璃容量瓶 A级 NS14/23 100mL PE盖169119VWRI612-3745玻璃容量瓶 A级 NS14/23 200mL PE盖240168VWRI612-3746玻璃容量瓶 A级 NS14/23 250mL PE盖227159VWRI612-3818玻璃容量瓶 A级 NS19/26 500mL PE盖285200VWRI612-3819玻璃容量瓶 A级 NS24/29 1000mL PE盖164115VWRI612-3820玻璃容量瓶 A级 NS29/32 2000mL PE盖211148琥珀色容量瓶VWRI612-3821玻璃容量瓶 棕色 A级 NS10/19 5mL13293VWRI612-3822玻璃容量瓶 棕色 A级 NS10/19 10mL148104VWRI612-3823玻璃容量瓶 棕色 A级 NS10/19 20mL148104VWRI612-3824玻璃容量瓶 棕色 A级 NS10/19 25mL143101VWRI612-3825玻璃容量瓶 棕色 A级 NS12/21 50mL164115VWRI612-3826玻璃容量瓶 棕色 A级 NS14/23 100mL232163VWRI612-3827玻璃容量瓶 棕色 A级 NS14/23 200mL222156VWRI612-3828玻璃容量瓶 棕色 A级 NS14/23 250mL243171VWRI612-3829玻璃容量瓶 棕色 A级 NS19/26 500mL353248VWRI612-3830玻璃容量瓶 棕色 A级 NS24/29 1000mL264185VWRI612-3831玻璃容量瓶 棕色 A级 NS29/32 2000mL464325玻璃量筒VWRI612-3833玻璃检测量筒 高型 A级 10mL 8862VWRI612-3834玻璃检测量筒 高型 A级 25mL 9466VWRI612-3835玻璃检测量筒 高型 A级 50mL 10070VWRI612-3836玻璃检测量筒 高型 A级 100mL 174122VWRI612-3837玻璃检测量筒 高型 A级 250mL 190133VWRI612-3838玻璃检测量筒 高型 A级 500mL 264185VWRI612-3839玻璃检测量筒 高型 A级 1000mL 227159VWRI612-3840玻璃检测量筒 高型 A级 2000mL 390273刻度移液管VWRI612-4767移液管 AS级 0.5mL 6647VWRI612-4768移液管 AS级 1mL 6042VWRI612-4769移液管 AS级 2mL 6042VWRI612-4770移液管 AS级 5mL 6244VWRI612-4771移液管 AS级 10mL 6848VWRI612-4772移液管 AS级 20mL 7352VWRI612-4773移液管 AS级 25mL 7352VWRI612-4774移液管 AS级 50mL 227159量杯,PP材质VWRI213-3402量杯 500ML 带手柄 蓝色印刷550385VWRI213-3404量杯 2000ML 带手柄 蓝色印刷7754低型烧杯,PP材质VWRI213-1623烧杯 100ml 低型 PP 蓝色 带刻度230161VWRI213-1642烧杯 1000ml 低型 PP 蓝色 带刻度5740VWRI216-1643烧杯 2000ml 低型 PP 蓝色 带刻度9668VWRI222-1645烧杯 5000 ml 低型 PP 蓝色 带刻度215151量筒,PP材质VWRI612-4403量筒 100 ml PP 蓝色 带刻度890623VWRI612-4405量筒 500 ml PP 蓝色 带刻度145102VWRI612-4406量筒 1000ml PP 蓝色 带刻度180126VWRI612-4407量筒 2000ml PP 蓝色 带刻度320224? 实验室仪器产品名称货号描述未税原价(元)未税促销价(元)磁力加热搅拌器VWRI444-0614Professional系列磁力搅拌器,陶瓷面板大小:25×25mm, 转速:60-1600转/分钟128006400VWRI444-0618Professional系列加热板,陶瓷面板大小: 18X18 CM , 温度范围:室温+5度到500度157507875VWRI444-0635Professional系列磁力加热板搅拌器,陶瓷面板大小: 25X25 CM , 转速:60-1600转/分钟,温度范围:室温+5度到500度150507525超声波清洗仪VWRA142-03039.5L 超声波清洗仪(标配盖子,托架,排水管) 92004600Nodic超低温冰箱IBSAN123001ULT U100 立式超低温冰箱, -60°C TO -86°C, 93 L6637229081IBSAN113001ULT C75 卧式超低温冰箱, -60°C TO -86°C, 74 L5604724042摇床VWRI444-29043500型旋钮摇床,回旋式,转速 25 - 500转/分钟, 平台宽度×深度 (mm):330×279169258463VWRI444-29103750型摇床,往复式,转速 20 - 300转/分钟, 平台宽度×深度 (mm):330×2792245011225VWRI444-29165000型摇床,回旋式,转速 20 - 500转/分钟, 平台宽度×深度 (mm):610×4572920014600VWRI444-29011000型旋钮摇床,回旋式,转速 40 - 300转/分钟, 平台宽度×深度 (mm):222×29984504225VWRI444-7094微孔板摇床,转速 100 - 1200转/分钟,最大固定微孔板的数量:488754438VWRI444-7093迷你摇床,回旋式,转速 100 - 1200转/分钟, 平台宽度×深度 (mm):222×29889254463VWRU10127-876旋钮型摇摆摇床,2层,转速 1 - 75 转/分钟,倾斜角度:0 to 15°, 平台宽度×深度 (mm):356×279129256463摇床配件VWRI444-2954微孔板夹具,适用VWRI444-7094380190VWRI444-7087摇床垫 330×279 mm,适用3500,3750型摇床1900950VWRI444-7040夹不锈钢10毫升,适用3500,3750,5000型摇床310155VWRI444-7041夹不锈钢25毫升,适用3500,3750,5000型摇床285143VWRI444-7042夹不锈钢50毫升,适用3500,3750,5000型摇床260130VWRI444-7043夹不锈钢125毫升,适用3500,3750,5000型摇床295148VWRI444-7044夹不锈钢250毫升,适用3500,3750,5000型摇床275138VWRI444-7045夹不锈钢500毫升,适用3500,3750,5000型摇床340170迷你离心机VWRI521-2850Mini 离心机,最大转速:4000转/分钟, 转子适用显微镜载玻片,带转子和两个载玻片盒58002900VWRU75993-410VWR 迷你离心机,最大转速:8500转/分钟,含2个转子和适配器, 一个转子适用8*1.5/2ml,一个转子适用8×0,2 ml PCR条23001150加热/制冷循环水浴VWRI462-0558VWB2型 水浴,18L,温度范围:室温+5度到99度85004250VWRI462-0556VWB2型 水浴,5L,温度范围:室温+5度到99度71253563VWRI462-0226加热/制冷循环水浴,7L, 温度范围:-20度到200度6510032550VWRU89501-478恒温水浴,28L, 温度范围:室温+5度到99度124756238水浴配件VWRI462-05660.5ML 微量离心管架子,适用于VWB2型水浴1625813VWRI462-05671.5ML 微量离心管架子,适用于VWB2型水浴1625813VWRI462-0568不锈钢升降架子,适用于VWB2 12水浴1925963VWRI462-0569不锈钢升降架子,适用于VWB2 18水浴23001150VWRI462-0570不锈钢升降架子,适用于VWB2 26水浴27001350易燃品安全柜VWRU89522-626易燃物安全柜,柜体颜色:黄色, 深*宽*高(米):0.45*1.65*1.09,层架:2119255963? 高纯溶剂(试剂需整箱购买)产品名称货号描述未税促销价 (元/瓶)未税促销价 (元/箱) 高纯 试剂BAKR9222-03二甲基甲酰氨, 光谱纯,4L,4瓶/箱2521008BAKR9440-03四氢呋喃,HPLC,4L,4瓶/箱5382152BAKR9229-03无水乙醇,光谱纯,4L,4瓶/箱227908MACR2858-25四氢呋喃 HPLC,2.5L,4瓶/箱3141256MACR2969-25二甲亚砜 HPLC,2.5L,4瓶/箱2981192BAKR9177-03正庚烷,HPLC,4L,4瓶/箱9853940BAKR9480-03异辛烷,HPLC,4L,4瓶/箱1,0434172BAKR9292-03环己烷,HPLC,4L,4瓶/箱5522208BAKR2818-01辛烷磺酸钠,HPLC,500G,4瓶/箱3,46013840 基础 试剂BAKR9111-07三乙胺,99.5%,500ML1832196MACR2549-04硼酸,ACS,500G,4瓶/箱122488BAKR3506-01碳酸氢钠,ACS,500G,4瓶/箱127508BAKR0128-01甲酸88%,ACS,500ML1872244MACR7708-10氢氧化钠,ACS,500G,4瓶/箱91364BAKR3624-01氯化钠,ACS,500G,4瓶/箱134536BAKR0260-01磷酸,ACS,500ML,12瓶/箱1041248BAKR9508-03冰醋酸,ACS,2.5L,6瓶/箱1831098BAKR4011-01一水合磷酸二氢钠,500G,1瓶/箱155155BAKR4004-013-吗啉丙磺酸,500G,1瓶/箱436436BAKR4012-01磷酸氢二钾,500G,1瓶/箱181181BAKR4018-044-羟乙基哌嗪乙磺酸,500G,1瓶/箱364364BAKR4296-01二水合醋酸锌,ACS,500G,4瓶/箱170680BAKR8993-05二水合EDTA二钠盐,ACS,2.5KG,4瓶/箱5602240BAKR2554-01甘露醇,ACS,500G,4瓶/箱196784BAKR3162-01碘化钾,ACS,500G,4瓶/箱4911964BAKR4106-05 三羟甲基氨基甲烷盐酸盐,2.5KG,1瓶/箱12761276BAKRD293-03溴酚蓝,ACS,25G,1瓶/箱306306BAKR4008-01磷酸二氢钾,500G,1瓶/箱288288BAKR0784-01磷酸氢二铵,ACS,500G,4瓶/箱104416如有这方面的需求,请随时跟我们联系:400-860-5168转3728
  • 锌、铅精矿化学分析方法新标准解读
    锌、铅精矿中的目标金属元素主要以硫化物的形式存在,还有可能以可溶性状态存在,如可溶性锌和可溶性铅。可溶性锌、铅的存在会直接影响烧结块的温度,脱硫率,及结块性。因此在今年已经实施和即将实施的GB/T 8151.24-2021和GB/T 8152.15-2021分别规定了锌、铅精矿中可溶性锌、铅的测定方法。 GB/T 8151.24-2021锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法于11月1日正式实施,此标准重点补充了锌精矿中可溶性锌含量的测定,测定范围:0.1%~10.5%。原理:利用可溶性锌(硫酸锌、碳酸锌、氧化锌等)易溶解于氨水-氯化铵溶剂的特点,选择氨水-氯化铵为溶剂,加入适量抗血酸与二水合二氧化亚锡作为抑制剂,使样品中可溶性锌与硫化锌及难溶性锌实现有效分离。然后用火焰原子吸收法测定可溶性锌的含量。 GB/T 8152.15-2021铅精矿化学分析方法 第15部分:可溶性铅含量的测定 火焰原子吸收光谱法也将于12月1日实施,此标准重点补充了铅精矿中可溶性铅含量的测定,测定范围:0.3%~10.5%。原理:利用可溶性铅(硫酸铅、碳酸铅、氧化铅等)易溶解于乙酸-乙酸铵溶剂的特点,选择乙酸-乙酸铵为溶剂,加少量二水合二氧化亚锡消除Fe3+的干扰,使样品中可溶性铅与硫化铅及难溶性铅盐实现有效分离。然后用火焰原子吸收法测定可溶性铅的含量。 AA-7000系列AA-6800系列 这两个标准都涉及火焰原子吸收光谱法,岛津原子吸收分光光度计AA-6880系列和AA-7000系列,拥有优异的性能和灵活的配置,可满足GB/T 8151.24-2021和GB/T 8152.15-2021中可溶性锌、铅的测试要求。 火焰法工作条件 本文内容非商业广告,仅供专业人士参考。
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 雅安地震中心灾区饮用水质正常
    4月21日14时,四川省环保厅发出《四川省“420”芦山地震环境应急监测专报(第二期)》,截至当天12时,芦山县中心灾区、雅安、成都、乐山、眉山等地饮用水源地水质监测正常 极重灾区天全县水质采样已完成 宝兴县水质监测受阻,仍无法采样。  截至21日12时,雅安三水厂、乐山绵竹水厂、眉山洪雅桫椤峡、成都水六厂饮用水源地水质自动监测结果表明:pH、溶解氧、高锰酸盐指数、氨氮均达标,生物毒性监测显示水质正常。雅安三水厂三个时段的浊度偏高,是由于上游雨城电站水库为防止坝体裂口,采取了放水措施,导致泥沙进入河流。  省环境监测总站对中心灾区芦山县城二水厂、三水厂,芦山县中宝山乡镇水站取水口,县城观音阁地下涌水(地下水)进行了现场分析,pH值达标,重金属和有机物指标均未检出,生物毒性监测显示水质正常。  根据城市集中式饮用水水源地水质手工监测结果,邛崃市白鹤断面、雅安猪儿嘴断面、眉山洪雅县青衣江饮用水取水口、成都水六厂取水口、乐山姜公堰断面、李码头断面、蒲江县西河彭水碾、蒲江河王山坡断面、新津县西河断面等,pH、溶解氧、氨氮、氰化物、硫化物、汞、砷、挥发酚、六价铬、氟化物、高锰酸盐指数及部分选择性监测指标均达标,生物毒性监测显示水质正常。  目前,极重灾区天全县监测站已完成县城及11个乡镇的饮用水源地采样,样品送省环境监测总站检测。21日上午,省环境监测总站及雅安市环境监测站各派两只队伍,采用乘车或徒步方式,试图进入宝兴县城进行监测,但均受阻,仍无法采样。  除雅安、成都、眉山、乐山外,省环境监测总站要求,自贡、德阳、绵阳、宜宾、内江、资阳、甘孜、阿坝和凉山等9市(州),也将全面开展灾后水质监测。
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 质检总局、标准委批准发布192项国家标准
    5月12日,国家质检总局、国家标准委发布了192项国家标准。该批国家标准中,制定128项,修订64项 强制性标准29项,推荐性标准163项。标准名称、编号及实施日期在《中华人民共和国国家标准公告》(2011年第6号)中向社会发布。序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 620-2011化学试剂 氢氟酸GB/T 620-19932011-12-012GB/T 623-2011化学试剂 高氯酸GB/T 623-19922011-12-013GB/T 628-2011化学试剂 硼酸GB/T 628-19932011-12-014GB/T 636-2011化学试剂 硝酸钠GB/T 636-19922011-12-015GB/T 641-2011化学试剂 过二硫酸钾(过硫酸钾)GB/T 641-19942011-12-016GB/T 644-2011化学试剂 六氰合铁(Ⅲ)酸钾(铁氰化钾)GB/T 644-19932011-12-017GB/T 645-2011化学试剂 氯酸钾GB/T 645-19942011-12-018GB/T 646-2011化学试剂 氯化钾GB/T 646-19932011-12-019GB/T 647-2011化学试剂 硝酸钾GB/T 647-19932011-12-0110GB/T 648-2011化学试剂 硫氰酸钾GB/T 648-19932011-12-0111GB/T 651-2011化学试剂 碘酸钾GB/T 651-19932011-12-0112GB/T 653-2011化学试剂 硝酸钡GB/T 653-19942011-12-0113GB/T 655-2011化学试剂 过硫酸铵GB/T 655-19942011-12-0114GB/T 657-2011化学试剂 四水合钼酸铵(钼酸铵)GB/T 657-19932011-12-0115GB/T 659-2011化学试剂 硝酸铵GB/T 659-19932011-12-0116GB/T 661-2011化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)GB/T 661-19922011-12-0117GB/T 664-2011化学试剂 七水合硫酸亚铁(硫酸亚铁)GB/T 664-19932011-12-0118GB/T 666-2011化学试剂 七水合硫酸锌(硫酸锌)GB/T 666-19932011-12-0119GB/T 675-2011化学试剂 碘GB/T 675-19932011-12-0120GB/T 677-2011化学试剂 乙酸酐GB/T 677-19922011-12-0121GB/T 687-2011化学试剂 丙三醇GB/T 687-19942011-12-0122GB/T 688-2011化学试剂 四氯化碳GB/T 688-19922011-12-0123GB/T 1156-2011旋套式注油油杯GB/T 1156-19792011-10-0124GB/T 1271-2011化学试剂 二水合氟化钾(氟化钾)GB/T 1271-19942011-12-0125GB/T 1274-2011化学试剂 磷酸二氢钾GB/T 1274-19932011-12-0126GB/T 1281-2011化学试剂 溴GB/T 1281-19932011-12-0127GB/T 1288-2011化学试剂 四水合酒石酸钾钠(酒石酸钾钠)GB/T 1288-19922011-12-0128GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分:漏斗法GB/T 1479-19842012-02-0129GB/T 1479.2-2011金属粉末 松装密度的测定 第2部分:斯柯特容量计法GB/T 5060-19852012-02-0130GB/T 3683-2011橡胶软管及软管组合件 油基或水基流体适用的钢丝编织增强液压型 规范GB/T 3683.1-20062011-12-0131GB/T 3915-2011工业用苯乙烯GB 3915-19982011-11-0132GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的测定GB/T 4698.2-19962012-02-0133GB/T 4698.7-2011海绵钛、钛及钛合金化学分析方法 氧量、氮量的测定GB/T 4698.7-1996,GB/T 4698.16-19962012-02-0134GB/T 4698.14-2011海绵钛、钛及钛合金化学分析方法 碳量的测定GB/T 4698.14-19962012-02-0135GB/T 4698.15-2011海绵钛、钛及钛合金化学分析方法 氢量的测定GB/T 4698.15-19962012-02-0136GB/T 5158.1-2011金属粉末 还原法测定氧含量 第1部分:总则 2012-02-0137GB/T 5158.2-2011金属粉末 还原法测定氧含量 第2部分:氢还原时的质量损失(氢损)GB/T 5158-19992012-02-0138GB/T 5158.3-2011金属粉末 还原法测定氧含量 第3部分:可被氢还原的氧 2012-02-0139GB/T 5158.4-2011金属粉末 还原法测定氧含量 第4部分:还原-提取法测定总氧量GB/T 5158.4-20012012-02-0140GB 6249-2011核动力厂环境辐射防护规定GB 6249-19862011-09-0141GB/T 6548-2011瓦楞纸板粘合强度的测定GB/T 6548-19982011-09-1542GB 7063-2011汽车护轮板GB 7063-19942012-01-0143GB/T 8005.2-2011铝及铝合金术语 第2部分:化学分析 2012-02-0144GB/T 9082.1-2011无管芯热管GB/T 9082.1-19882011-10-0145GB/T 9082.2-2011有管芯热管GB/T 9082.2-19882011-10-0146GB/T 10597-2011卷扬式启闭机GB/T 10597.1-1989,GB/T 10597.2-19892011-12-0147GB 11291.1-2011工业环境用机器人 安全要求 第1部分:机器人GB 11291-19972011-10-0148GB 11557-2011防止汽车转向机构对驾驶员伤害的规定GB 11557-19982012-01-0149GB 11568-2011汽车罩(盖)锁系统GB 11568-19992012-01-0150GB/T 12688.1-2011工业用苯乙烯试验方法 第1部分:纯度和烃类杂质的测定 气相色谱法GB/T 12688.1-19982011-11-0151GB/T 12688.3-2011工业用苯乙烯试验方法 第3部分:聚合物含量的测定GB/T 12688.3-19902011-11-0152GB/T 12688.4-2011工业用苯乙烯试验方法 第4部分:过氧化物含量的测定 滴定法GB/T 12688.4-19902011-11-0153GB/T 12688.5-2011工业用苯乙烯试验方法 第5部分:总醛含量的测定 滴定法GB/T 12688.5-19902011-11-0154GB/T 12688.8-2011工业用苯乙烯试验方法 第8部分:阻聚剂(对-叔丁基邻苯二酚)含量的测定 分光光度法GB/T 12688.8-19982011-11-0155GB/T 12688.9-2011工业用苯乙烯试验方法 第9部分:微量苯的测定 气相色谱法 2011-11-0156GB/T 13306-2011标牌GB/T 13306-19912011-10-0157GB/T 14405-2011通用桥式起重机GB/T 14405-19932011-12-0158GB/T 14406-2011通用门式起重机GB/T 14406-19932011-12-0159GB 14569.1-2011低、中水平放射性废物固化体性能要求 水泥固化体GB 14569.1-19932011-09-0160GB 14587-2011核电厂放射性液态流出物排放技术要求GB 14587-19932011-09-0161GB/T 14627-2011液压式启闭机GB/T 14627-19932011-12-0162GB/T 15354-2011化学试剂 磷酸三丁酯GB/T 15354-19942011-12-0163GB 15580-2011磷肥工业水污染物排放标准GB 15580-19952011-10-0164GB 17930-2011车用汽油GB 17930-20062011-05-1265GB/T 18623-2011地理标志产品 镇江香醋GB 18623-20022011-11-0166GB/T 18691.1-2011农业灌溉设备 灌溉阀 第1部分:通用要求 2011-10-0167GB/T 18691.2-2011农业灌溉设备 灌溉阀 第2部分:隔离阀 2011-10-0168GB/T 18691.3-2011农业灌溉设备 灌溉阀 第3部分:止回阀GB/T 18691-20022011-10-0169GB/T 18691.4-2011农业灌溉设备 灌溉阀 第4部分:进排气阀GB/T 18693-20022011-10-0170GB/T 18691.5-2011农业灌溉设备 灌溉阀 第5部分:控制阀GB/T 19793-20052011-10-0171GB/T 26124-2011临床化学体外诊断试剂(盒) 2011-11-0172GB/T 26125-2011电子电气产品 六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定 2011-08-0173GB/T 26378-2011粗梳毛织品 2011-09-1574GB/T 26379-2011纺织品 木浆复合水刺非织造布 2011-09-1575GB/T 26380-2011纺织品 丝绸术语 2011-09-1576GB/T 26381-2011合成纤维丝织坯绸 2011-09-1577GB/T 26382-2011精梳毛织品 2011-09-1578GB/T 26383-2011抗电磁辐射精梳毛织品 2011-09-1579GB/T 26384-2011针织棉服装 2011-09-1580GB/T 26385-2011针织拼接服装 2011-09-1581GB 26386-2011燃香类产品安全通用技术条件 2011-09-1582GB 26387-2011玩具安全 化学及类似活动的实验玩具 2011-09-1583GB/T 26388-2011表面活性剂中二噁烷残留量的测定 气相色谱法 2011-09-1584GB/T 26389-2011衡器产品型号编制方法 2011-09-1585GB/T 26390-2011浸渍纸层压木质地板用表层耐磨纸 2011-09-1586GB/T 26391-2011马桶垫纸 2011-09-1587GB/T 26392-2011慢回弹泡沫 复原时间的测定 2011-09-1588GB/T 26393-2011燃香类产品有害物质测试方法 2011-09-1589GB/T 26394-2011水性薄膜凹印复合油墨 2011-09-1590GB/T 26395-2011水性烟包凹印油墨 2011-09-1591GB/T 26396-2011洗涤用品安全技术规范 2011-09-1592GB/T 26397-2011眼科光学 术语 2011-09-1593GB/T 26398-2011衣料用洗涤剂耗水量与节水性能评估指南 2011-09-1594GB/T 26407-2011初级农产品安全区域化管理体系 要求 2011-09-0195GB/T 26408-2011混凝土搅拌运输车 2012-01-0196GB/T 26409-2011流动式混凝土泵 2011-07-0197GB 26410-2011防爆通风机 2012-01-0198GB 26451-2011稀土工业污染物排放标准 2011-10-0199GB 26452-2011钒工业污染物排放标准 2011-10-01100GB 26453-2011平板玻璃工业大气污染物排放标准 2011-10-01101GB/T 26454-2011造纸用单层成形网 2011-09-15102GB/T 26455-2011造纸用多层成形网 2011-09-15103GB/T 26456-2011造纸用异形丝干燥网 2011-09-15104GB/T 26457-2011造纸用圆丝干燥网 2011-09-15105GB/T 26458-2011脂肪烷基二甲基氧化胺 2011-09-15106GB/T 26459-2011纸、纸板和纸浆 返黄值的测定 2011-09-15107GB/T 26460-2011纸浆 零距抗张强度的测定(干法或湿法) 2011-09-15108GB/T 26461-2011纸张凹版油墨 2011-09-15109GB/T 26462-2011种子发芽纸 2011-09-15110GB/T 26463-2011羰基合成脂肪醇 2011-09-15111GB/T 26464-2011造纸无机颜料亮度(白度)的测定 2011-09-15112GB 26465-2011消防电梯制造与安装安全规范 2012-04-01113GB/T 26466-2011固定式高压储氢用钢带错绕式容器 2011-12-01114GB/T 26467-2011承压设备带压密封技术规范 2011-12-01115GB/T 26468-2011承压设备带压密封夹具设计规范 2011-12-01116GB 26469-2011架桥机安全规程 2012-04-01117GB/T 26470-2011架桥机通用技术条件 2012-04-01118GB/T 26471-2011塔式起重机 安装与拆卸规则 2011-12-01119GB/T 26472-2011流动式起重机 卷筒和滑轮尺寸 2011-12-01120GB/T 26473-2011起重机 随车起重机安全要求 2011-12-01121GB/T 26474-2011集装箱正面吊运起重机 技术条件 2011-12-01122GB/T 26475-2011桥式抓斗卸船机 2011-12-01123GB/T 26476-2011机械式停车设备 术语 2011-12-01124GB/T 26477.1-2011起重机 车轮和相关小车承轨结构的设计计算 第1部分:总则 2011-12-01125GB/T 26478-2011氨用截止阀和升降式止回阀 2011-10-01126GB/T 26479-2011弹性密封部分回转阀门 耐火试验 2011-10-01127GB/T 26480-2011阀门的检验和试验 2011-10-01128GB/T 26481-2011阀门的逸散性试验 2011-10-01129GB/T 26482-2011止回阀 耐火试验 2011-10-01130GB 26483-2011机械压力机 噪声限值 2012-01-01131GB 26484-2011液压机 噪声限值 2012-01-01132GB 26485-2011开卷矫平剪切生产线 安全要求 2012-01-01133GB/T 26486-2011数控开卷矫平剪切生产线 2012-01-01134GB/T 26487-2011壳体钣金成型设备 通用技术条件 2011-10-01135GB 26488-2011镁合金压铸安全生产规范 2012-05-01136GB/T 26489-2011纳米材料超双亲性能检测方法 2012-02-01137GB/T 26490-2011纳米材料超双疏性能检测方法 2012-02-01138GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法 质量损失法 2012-02-01139GB/T 26492.1-2011变形铝及铝合金铸锭及加工产品缺陷 第1部分:铸锭缺陷 2012-02-01140GB/T 26492.2-2011变形铝及铝合金铸锭及加工产品缺陷 第2部分:铸轧带材缺陷 2012-02-01141GB/T 26492.3-2011变形铝及铝合金铸锭及加工产品缺陷 第3部分:板、带缺陷 2012-02-01142GB/T 26492.4-2011变形铝及铝合金铸锭及加工产品缺陷 第4部分:铝箔缺陷 2012-02-01143GB/T 26492.5-2011, , , , DIV变形铝及铝合金铸锭及加工产品缺陷 第5部分:管材、棒材、型材、线材缺陷 2012-02-01144GB/T 26493-2011电池废料贮运规范 2012-02-01145GB/T 26494-2011轨道列车车辆结构用铝合金挤压型材 2012-02-01146GB/T 26495-2011镁合金压铸转向盘骨架坯料 2012-02-01147GB/T 26496-2011钨及钨合金废料 2012-02-01148GB/T 26497-2011电子天平 2011-10-01149GB/T 26498-2011工业自动化系统与集成 物理设备控制 尺寸测量接口标准(DMIS) 2011-10-01150GB/T 26499.1-2011机械 科学数据 第1部分:分级分类方法 2011-10-01151GB/T 26499.2-2011机械 科学数据 第2部分:数据元目录 2011-10-01152GB/T 26499.3-2011机械 科学数据 第3部分:元数据 2011-10-01153GB/T 26499.4-2011机械 科学数据 第4部分:交换格式 2011-10-01154GB/T 26500-2011氟塑料衬里钢管、管件通用技术要求 2011-10-01155GB/T 26501-2011氟塑料衬里压力容器 通用技术条件 2011-10-01156GB/T 26502.1-2011传动带胶片裁断拼接机 2011-10-01157GB/T 26502.2-2011传动带成型机 2011-10-01158GB/T 26502.3-2011多楔带磨削机 2011-10-01159GB/T 26502.4-2011同步带磨削机 2011-10-01160GB 26503-2011快速成形机床 安全防护技术要求 2012-04-01161GB 26504-2011移动式道路施工机械 通用安全要求 2012-04-01162GB 26505-2011移动式道路施工机械 摊铺机安全要求 2012-04-01163GB/T 26506-2011悬臂筛网振动筛 2011-10-01164GB/T 26507-2011石油天然气工业 钻井和采油设备 地面油气混输泵 2011-10-01165GB 26508-2011园林机械 坐骑式草坪割草机 安全技术要求和试验方法 2012-04-01166GB 26509-2011园林机械 以汽(柴)油机为动力的步进式草坪割草机 安全技术要求和试验方法 2012-04-01167GB/T 26510-2011防水用塑性体改性沥青 2011-09-01168GB 26511-2011商用车前下部防护要求 2013-01-01169GB 26512-2011商用车驾驶室乘员保护 2012-01-01170GB/T 26513-2011润唇膏 2011-12-01171GB/T 26514-2011互叶白千层(精)油,松油烯-4-醇型[茶树(精)油] 2011-11-01172GB/T 26515.1-2011精油 气相色谱图像通用指南 第1部分:标准中气相色谱图像的建立 2011-11-01173GB/T 26515.2-2011精油 气相色谱图像通用指南 第2部分:精油样品气相色谱图像的利用 2011-11-01174GB/T 26516-2011按摩精油 2011-10-01175GB/T 26517-2011化妆品中二十四种防腐剂的测定 高效液相色谱法 2011-10-01176GB/T 26518-2011高分子增强复合防水片材 2011-12-01177GB/T 26519.2-2011工业过硫酸盐 第2部分:工业过硫酸钾 2011-12-01178GB/T 26520-2011工业氯化钙 2011-12-01179GB/T 26521-2011工业碳酸镍 2011-12-01180GB/T 26522-2011精制氯化镍 2011-12-01181GB/T 26523-2011精制硫酸钴 2011-12-01182GB/T 26524-2011精制硫酸镍 2011-12-01183GB/T 26525-2011精制氯化钴 2011-12-01184GB/T 26526-2011热塑性弹性体 低烟无卤阻燃材料规范 2011-12-01185GB/T 26527-2011有机硅消泡剂 2011-12-01186GB/T 26528-2011防水用弹性体(SBS)改性沥青 2011-09-01187GB 26529-2011宗教活动场所和旅游场所燃香安全规范 2011-10-01188GB/T 26530-2011地理标志产品 崂山绿茶 2011-11-01189GB/T 26531-2011地理标志产品 永春老醋 2011-11-01190GB/T 26532-2011地理标志产品 慈溪杨梅 2011-11-01191GB/T 26533-2011俄歇电子能谱分析方法通则 2011-12-01192GB/T 26572-2011电子电气产品中限用物质的限量要求 2011-08-01   注: 1. GB 6249-2011《核动力厂环境辐射防护规定》、GB 14569.1-2011《低、中水平放射性废物固化体性能要求水泥固化体》、GB 14587-2011《核电厂放射性液态流出物排放技术要求》、GB 15580-2011《磷肥工业水污染物排放标准》、GB 26451-2011《稀土工业污染物排放标准》、GB 26452-2011《钒工业污染物排放标准》、GB 26453-2011《平板玻璃工业大气污染物排放标准》等7项国家标准由环境保护部、国家质量监督检验检疫总局发布。  2. 更正:2011年第2号《中华人民共和国国家标准公告》中,第512项GB/T 26326.2-2010《离线编程式机器人柔性加工系统第2部分:砂带磨削加工系统》的标准编号调整为:GB/T 26153.2-2010。
  • REACH限制名单草案再添7种物质
    日前,欧洲化学品管理署(ECHA)继2008年将15种物质被列入首批REACH高关注名单(SVHC)后,公布了首批需ECHA授权才能使用的物质名单草案。根据该草案,7种物质首先被列入了清单(附件XIV)。  被列入清单的7种物质分别为:5-叔丁基-2,4,6-三硝基间二甲苯(二甲苯麝香)、短链氯化石蜡(SCCPs,C10~C13)、六溴环十二烷(HBCDD)和所有有关联的主要非对应异构体、邻苯二甲酸双(2-乙基己)酯(DEHP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二丁酯(DBP)以及4,4'-二氨基二苯甲烷(MDA)。  根据REACH法规,企业如果要使用进入授权名单的物质,就必须申请许可。申请者必须论证物质使用风险可以充分控制,或是社会经济利益超过使用风险,且没有替代物和相应的替代技术。  ECHA表示,他们是根据产品的固有特性、用途和批准用量来评估是否将这些化学品列入REACH限制清单的。各利益相关方必须于2009年4月14日对磋商做出回应,ECHA将于2009年6月1日之前确定优先列表。ECHA还建议,授权申请应当在以上物质进入REACH附件XIV后24~30个月期间提交。这些物质进入名单之后,42~48个月后将不再继续使用。  ECHA还建议,76/769/EEC指令中特殊条件下允许使用的豁免类物质,也应加入评估当中。ECHA表示,将参考协商期间所收到的评论及成员国委员会的意见,可能会对草案进行修改,并将该提议提交到欧盟委员会审议。对于是否对蒽、氯化钴、五氧化二砷、三氧化二砷、重铬酸钠二水合物、氧化双三丁基锡、酸式砷酸铅、三乙基砷酸酯等8种物质进入SVHC名单的物质进行授权,ECHA表示将在晚些时候再做考虑。  ECHA建议下游企业应尽快排查是否正在使用被列入SVHC的原料,定期审核供应商(必要时向原料供应商提供安全数据表),并在规定期限内逐步替代SVHC原料。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 霍尼韦尔发布经双重认证的实验室仪器校准标准样品
    新一代Hydranal™ 产品系列经过ISO Guide 34认证,有助于简化研究实验室的仪器校准工作  芝加哥,2017年3月13日讯 – 霍尼韦尔(NYSE代号:HON)近日宣布推出首套Hydranal™ 双重认证标准样品 (CRM) 系列,满足卡尔?费休 (KF) 滴定应用要求。  迄今为止,卡尔?费休滴定的商业化标准水样大都采用ISO/IEC 17025标准进行测试,有些甚至没有任何测试标准。霍尼韦尔研究化学品部新一代标准水样的生产和认证符合ISO Guide 34和ISO/IEC 17025双重标准。这种双重认证意味着我们的产品能够兼容最严格的法规要求,研究人员可放心使用。  虽然纯净水亦可用于校验实验室仪器,但最终检测结果的精度受到所使用的天平、滴管体积、卡尔?费休滴定剂以及用户专业经验等诸多因素的影响。为此,研究人员都倾向于使用标准样品对仪器进行校准,以便大批量处理样本。  “自35年前发布Hydranal产品线之后,我们位于德国塞尔策 (Seelze) 的实验室始终在卡尔?费休试剂和标准水样产品线方面贯彻最高的生产和质量控制标准。”霍尼韦尔研究化学品部全球市场经理瑟伦霍格(Soeren Hoegh)表示,“客户的研究结果直接受到所用认证标准样品的影响,因此我们始终致力于不断改进工艺,确保我们的产品能帮助客户实现最佳研究结果。提供经过双重认证的标准样品正是这一承诺的又一体现。”  随着来自监管机构压力的不断增加以及用户对于更高质量测量结果的需求日益增强,越来越多的实验室都采用经认证的产品,以便更好地通过标准样品展示其测量性能和测量结果的可追溯性。  现在,客户可通过霍尼韦尔研究化学品部新上线的电子商务网站订购Hydranal标准样品系列。该网站由我们联合实验室和研究中心管理者共同开发,可确保满足霍尼韦尔客户对化学品采购的各类需求。霍尼韦尔Hydranal系列产品包括:   HYDRANAL-CRM标准水样10.0(液态,10.0 mg/g = 1.0%水含量)   HYDRANAL-CRM标准水样1.0(液态,1.0 mg/g = 0.1%水含量)   HYDRANAL-CRM二水合酒石酸纳(固态,~15.66%水含量)  霍尼韦尔研究化学品部的Hydranal卓越中心已成功通过德国国家认证机构DAkkS审核,被认定为符合ISO Guide 34的认证标准样品 (CRM) 制造商,成为全球范围内执行最高产品质量标准的少数机构和企业之一。  霍尼韦尔在无机物、溶剂和其他重要化学品领域的创新历史可以追溯到200多年前,当时化学家约翰雷德尔(Johann Daniel Riedel)在德国开始生产制药产品。霍尼韦尔研究化学品部总部位于德国塞尔策,靠近汉诺威,其致力于为实验室研究和分析检测应用提供高纯度解决方案。更多关于霍尼韦尔研究化学品信息,请访问www.lab-honeywell.com。  关于霍尼韦尔  霍尼韦尔是一家《财富》100强之一的多元化、高科技的先进制造企业,在全球,其业务涉及航空产品和服务,楼宇、家庭和工业控制技术,涡轮增压器以及特性材料。霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。霍尼韦尔在中国的员工人数现约12,000名。欲了解更多公司信息,请访问霍尼韦尔中国网站, 或关注霍尼韦尔官方微博和官方微信。
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style="text-align: center "strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="text-align: center "国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp  附件:批准建设的企业国家重点实验室名单/pp style="text-align: right "科 技 部/pp  附件/pp style="text-align: center "strong批准建设的企业国家重点实验室名单/strong/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg"//pp /p
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物Oxalic acid dihydrate6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物Bis[3-(triethoxysilyl)propyl] tetrasulfide40372-72-3D-薄荷醇D-Menthol15356-60-2L-薄荷醇L-Menthol2216-51-51-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-辛醇1-Octanol111-87-55-甲基呋喃醛5-Methylfurfural620-02-0N-环己基甲酰胺N-Cyclohexylformamide766-93-84-甲基-2-戊醇4-Methyl-2-pentanol108-11-2N,N-二甲基-对苯二胺N,N-Dimethyl-p-phenylenediamine99-98-95,6,7,8-四氢-1-萘胺5,6,7,8-Tetrahydro-1-naphthylamine2217-41-6肼二盐酸盐Hydrazine dihydrochloride5341-61-7硫氰酸钾Potassium thiocyanate333-20-0二甲基硫醚Dimethyl sulfide75-18-3聚苯醚Polyphenyl ether31533-76-3叔丁基甲基醚 气相色谱级Tert-Butyl methyl ether1634-04-4七氟丁酸Heptafluorobutyric acid375-22-4甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-53,4-二羟基苄胺氢溴酸盐3,4-Dihydroxybenzylamine hydrobromide16290-26-9N,N-二(羟基乙基)椰油酰胺Coconut diethanolamide(CDEA)68603-42-9/61791-31-9甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-5异冰片基丙烯酸酯Isobornyl acrylate5888-33-5N,N' -二苯基硫脲1,3-Diphenyl-2-thiourea102-08-9聚合氯化铝Aluminum chlorohydrate1327-41-9四丁基氢氧化铵10%溶液Tetrabutylammonium hydroxide solution2052-49-5四丁基氢氧化铵25%溶液Tetrabutylammonium hydroxide solution2052-49-5L-苯基丙氨酸L-Phenylalanine63-91-2无水硫酸铈Cerium(IV) sulfate13590-82-4硫酸铈铵四水合物Ammonium cerium(Ⅳ) sulfate tetrahydrate18923-36-9脂蛋白脂肪酶Lipoprotein Lipase9004/2/8乙二胺≥99.5%标准品Ethylenediamine107-15-3壬二酸Azelaic acid (Nonanedioic acid)123-99-9N,N-二甲基-1-萘胺N,N-Dimethyl-1-naphthylamine86-56-6双(三氟甲烷)磺酰亚胺锂盐Bis(trifluoromethane)sulfonimide lithium salt90076-65-6
  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。水溶液中硼酸的氟化路径示意图该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 由华爱色谱起草的《工业六氟化硫》等国家标准颁布
    根据中国国家标准化管理委员会发布的《中华人民共和国国家标准公告》(2014年第18号),由上海华爱色谱分析技术有限公司参与起草的两项国家标准GB/T 12022-2014《工业六氟化硫》和GB/T 17873-2014《纯氖和高纯氖》于2014年7月8日颁布,并将于2014年12月1日起正式实施。 注:上海华爱色谱分析技术有限公司是全国气体标准化技术委员会委员单位,全国气体标准化试验研究与验证色谱平台,先后参与了30余项国家标准的制修订工作,其中14项已经正式颁布实施,以下是由上海华爱色谱参与制修订的国家标准清单:序号标准编号标准名称颁布日期实施日期1GB/T 26249-2010《电子工业用气体硒化氢》2011-1-142011-05-012GB/T 17874-2010《电子工业用气体三氯化硼》2011-1-142011-05-013GB/T 26250-2010《电子工业用气体砷化氢》2011-1-142011-05-014GB/T 26251-2010《氟和氟氮混合气》2011-1-142011-05-015GB/T 28125.1-2011《空分工艺中危险物质的测定第1部分:碳氢化合物的测定》2011-12-302012-10-016GB/T 28123-2011《工业氦》2011-12-302012-10-017GB/T28124-2011《惰性气体中微量氢、氧、甲烷、一氧化碳的测定气相色谱法》2011-12-302012-10-018GB/T 4844-2011《纯氦、高纯氦和超纯氦》2011-12-302012-10-019GB/T3634.2-2011《氢气第2部分:纯氢、高纯氢和超纯氢》2011-12-302012-10-0110GB/T 28726-2012《气体分析 氦离子化气相色谱法》2012-09-032013-02-0111GB/T 28727-2012《气体分析 硫化物的测定火焰光度气相色谱法》2012-09-032013-02-0112GB/T 28729-2012《氧化亚氮》2012-09-032013-02-0113GB/T 12022-2014《工业六氟化硫》2014-07-082014-12-0114GB/T 17873-2014《纯氖和高纯氖》2014-07-082014-12-01
  • 自来水合格率危机呼唤水务行业市场化改革
    “自来水合格率仅有50%”的消息在网上迅速流传。这条消息源自《新世纪周刊》最新一期封面报道——《自来水真相》。据悉,2009年下半年,为了大致搞清全国城市饮用水的水质状况,住建部水质中心曾做了一次全国普查,数据却一直没有对外正式公布。多位接近权威部门的业内人士透露,他们所获知的该次检测结果,实际合格率也就是50%左右。(5月8日《新世纪周刊》)  自来水水质问题由来已久,即便没有统计数据作为佐证,人们从日常生活中也能发现一些端倪。有人说,自来水的漂白粉味儿比较重,连鱼都养不活,人怎么能喝?还有人发现自来水烧开后水垢很多,于是也怀疑自来水的水质。  这样的怀疑也有道理,在自来水出厂之后,要经过庞大的供水系统输送到各家各户,这中间自来水要经过管线和水箱等很多设施,由于城市很多的水箱等设施的清洁检测工作存在着不足,使得自来水受到铁锈、细菌等污染,我国自来水企业目前普遍采用的加氯消毒等传统工艺还存在着一定的缺陷,也会带来更多水质污染的隐患。  而2009年以来,大量的学者与专家开始宣传我国自来水行业亏损论,要求自来水涨价。《中国证券报》报道表明,截止到2011年9月,全国自来水生产企业的亏损比例还有36.35%,销售毛利率只有2.03% 全国污水处理企业的亏损比例还有23.37%,销售毛利率只有8.43%。  亏损问题、水质问题、涨价问题这两者之间是不是存在某种联系?笔者以为水务具有天然垄断性,垄断造成的管理低效和服务水平低下,以及对价格的非市场调控。这造成不少城市供水行业一直处于亏损状态,依靠国家财政补贴运营。由此自来水公司也没有必要采取新的技术和方法。  我国早已正式加入WTO,作为市政公用领域内的水务行业走向开放、走向市场化已经成为必然趋势,但是涨价不是解决之道。  不过,市场化不代表着涨价,由于公用事业单位一般在特定的地区范围内具有独家垄断经营权,不存在由多家企业的平均成本决定的社会成本,这样,企业的实际成本就成为“社会成本”。以此作为定价的基础,企业增加的成本可轻易转嫁出去,而政策性亏损掩盖经营性亏损,掩盖管理薄弱和经营不善,这样就不可能刺激企业努力降低成本,从而不能促使企业提高生产效率。  水务行业市场化改革不能只依靠行政手段,应该以法律手段和经济手段为主,汲取现代经济管理的最新理论和方法,实现科学管理,优化资源配置,提高生产效率,这样才能改变亏损,质量低下,一味求涨价,而又被低下管理消耗的怪现象。  当然,公众有权要求相关部门立即公布真实的普查结果,没有权威的可信的调查结果也难以使流言止于智者,反而倒逼公众依据常识而得出的猜测。
  • 材料科研∣ XPS助力锂离子电池研究,中科院化学所郭玉国团队连发Angew、AEM两篇顶刊!
    随着锂离子电池(LIBs)需求的迅速增长,废旧LIBs的数量随着规模的增加而增加,使用后的锂离子电池有价值的金属元素回收成为重要课题,但由于其中化合物的复杂性,导致回收多种具有相似物理化学特性的过渡金属具有很大的挑战。 3月19日和3月20日,中科院化学所郭玉国教授团队分别在Angew和AEM接连发表两篇文章,分别就三元正极材料和磷酸铁锂(LFP)材料的回收和再利用进行了充分的讨论和研究。第一次在LIBs回收过程中使用低共熔溶剂(DES)来实现镍、钴、锰的选择性分离,并验证了具体的回收机理。同时提出了一种绿色回收方法,通过具有功能化预锂化隔膜(FPS)的原位电化学过程直接再生老化的LFP电极。 中科院化学所郭玉国教授和孟庆海助理研究员等人基于过渡金属化合物在低共熔溶剂(DESs)中的不同行为,通过使用精心设计的基于配位环境调节的串联浸出和分离体系,从不同成分的废旧LiNixCoyMn1-x-yO2(NCM)正极中选择性和高效的回收了镍、钴、锰。 基于文章的方法中不同的固液比(HBD组分每质量的溶质质量、RS/L=mspent cathode:mHBD)和不同的温度,在RS/L=20的120℃的优化条件下,NCM811中的镍、钴和锰回收产物的纯度分别为99.1%、95.5%和94.5%。同时,对整个过程中的浸出动力学和工作过程机理进行了深入的分析,通过巧妙地引入DMSO和水作为稀释剂,揭示了配位化学的复杂过程。此外,进一步证实了不同的过渡金属与设计良好的配体的结合是实现优异选择性的关键,微调金属离子的协调环境在电池回收行业的可持续发展中具有广阔的前景。相关论文以“Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment”为题发表在Angew. Chem. Int. Ed.。 图1 基于用氯化胆碱(ChCl):草酸二水合物(OxA)DES回收镍 中科院化学所万立骏院士,郭玉国教授和孟庆海助理研究员等人,首先通过综合分析验证了老化LFP(D-LFP)电极电化学再生的可行性。在此基础上,提出了一种基于新的功能化预锂化隔膜(FPS)的原位再生策略,以实现D-LFP电极在新电池中的直接再利用。成功制备了分解电位降低的Li2C2O4/CMK-3复合材料,并将该复合材料作为制备FPS的牺牲剂。使用FPS取代了商业化隔膜,废旧的LFP电极用新鲜的石墨负极重新组装成一个新的电池,经过一个循环的活化后,实现再生电池在循环292次后的容量保留率高达90.7%,而未使用FPS的全电池仅为18.7%,表现出相当大的容量恢复和良好的长循环稳定性, 其具体的机理为:Li2C2O4在FPS上的不可逆电化学分解提供了额外的Li+来弥补初始循环中缺乏锂的LFP。从这个意义上说,废旧LFP电极可以通过原位电化学缓解过程直接再生。与目前的废旧LIBs回收方法,特别是低成本的LFP正极回收方法相比,本文基于FPS的策略将废旧LFP电极的再生与新电池的组装相结合,节省了将活性材料分离和再制造正极电极的步骤。这种新颖、简单、成本效益高的策略为直接再生废旧的LFP电池开辟了一条新的途径,并拓宽了整个LIBs回收的视野。相关论文以“In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator”为题发表在Adv. Energy Mater.。图2 D-LFP电极的形貌、组成和结构图3 再生电池性能测试 刻研究采用了岛津的XPS进行相关元素的化学态分析。 AXIS SUPRA+岛津全自动、多技术成像型X射线光电子能谱仪 ★ 高自动化技术★ 高能量分辨、高灵敏度、高空间分辨★ 智能化软件系统★ 丰富的附件和联用技术 本文内容非商业广告,仅供专业人士参考。
  • 综述|相变蓄冷材料及系统应用研究进展
    摘要:相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在 25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据。其次,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点。指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。关键词:相变蓄冷材料;相变蓄冷系统;复合相变材料;热物性;应用随着全球变暖和人们生活质量的提升,制冷需求快速增长,制冷空调系统带来的碳排放量与日俱增,预计到2050年,全球制冷能源消耗仍将增加十倍。面对制冷能耗急剧增长的发展趋势,大力开发太阳能、风能等新能源电力是解决未来制冷能耗缺口的技术关键。然而,新能源电力存在间歇性、波动大的缺点,易出现发电量与用电量不匹配的问题。因此发展高效储能技术,对新能源消纳与利用是适应可再生能源网络的有效途径。发展先进的蓄冷技术,调节制冷和用冷负荷使之匹配,是制冷系统技术发展的重要方向。蓄冷技术可以在峰谷电价时段或能量盈余的时候进行储能,实现能源移峰填谷,降低电网峰值用电负荷和成本。相对于电化学储能,蓄冷技术可以直接存储冷能,具有安全性高、循环稳定性好、成本低的优点。因此,将蓄冷技术与制冷系统耦合的储能技术一直是研究热点,在工商业及民用场景应用广泛。在冷链运输领域,我国每年因运输过程中低温环境不合格导致水产品腐烂损失率达25%,果蔬类损失率达25%~35%,全球有超过50%的疫苗被浪费。因而蓄冷技术在冷链运输领域能够通过减少运输过程中的温度波动来降低产品变质几率,有效减少产品损耗,实现食品和医疗用品的长距离运输。蓄冷技术也可应用于建筑节能,将蓄冷材料与建筑基体复合制得储能墙体,在白天吸收室外进入室内的热量,夜晚则释放热量给室内供暖,实现辅助控制室内温度,减小建筑采暖、制冷能耗,有助于提高室内环境舒适度。此外,通过蓄冷空调将晚上低谷电转化为冷能储存起来,在白天电网高负荷时释放,转移用电负荷,结合分时阶梯电价策略能降低建筑制冷成本与能耗。此外,蓄冷技术与纺织品结合制作成智能纺织品、应用于人体热管理,也是重要的应用领域之一。蓄冷材料是蓄冷技术的核心,开发适宜温度及高蓄冷密度的蓄冷材料是满足不同蓄冷需求的关键。目前常见的蓄冷材料主要有∶显热蓄能材料和潜热蓄能材料。显热蓄能材料包括水等,利用自身升降温过程中热能的变化进行能量储存和释放,技术成熟且成本便宜,适合大规模生产。但其蓄冷密度小,只适用于分钟、小时级的短时蓄冷场景。潜热蓄能材料利用相变材料固-液-气相态变化来储蓄或释放能量,其中应用最为广泛的固-液相变能在相变过程中吸收大量热能,同时温度保持不变(如图1)。潜热蓄能材料蓄冷密度远高于显热蓄能,适用于数小时至数周的蓄能场景,且成本适中,具备大规模应用的潜力。图 1 固液相变过程本文主要对应用于蓄冷领域的相变材料进行综述,探讨相变蓄冷材料物性调控和优化、相变蓄冷系统传热技术强化,总结当前相变蓄冷材料和蓄冷系统不足,展望相变蓄冷技术研究方向和应用前景。01常见相变蓄冷材料常见相变蓄冷材料主要指相变温度在25℃及以下的相变材料。其中,按材料成分可分为有机、无机和共晶相变材料。1.1 有机相变蓄冷材料有机相变材料主要包括石蜡、脂肪酸、酯和醇等,以碳链长度小于17的烷烃为主。有机相变材料相变焓优异、腐蚀性小,而且热稳定性好、经多次相变后物理和化学性质基本不变,可靠性好。但有机相变材料热导率低,如石蜡、酸或醇类有机物的热导率为0.3 W/(mK)、部分材料易燃、生产成本较高等。表1列举了一些相变温度在25℃及以下的常用有机相变材料热物性。其中十四烷相变温度为5~8℃,在冷库、冷链运输保温箱、空调蓄冷等多个场景中应用最为广泛。表 1 有机相变材料的热物性参数1.2 无机相变蓄冷材料无机相变材料主要有冰、水合盐类、熔融盐类、金属或合金类等,其中冰和水合盐因相变温度较低主要用于低温领域,如在空调和建筑蓄冷等领域应用广泛。无机相变材料相变焓大、热导率较高,常见水合盐热导率为0.5 W/(mK) ,而且来源广、成本低、商用化前景好。然而无机相变材料可靠性差,存在过冷度高和相分离严重的缺点,多次使用后性能衰减严重,而且腐蚀性强。表2列举了一些相变温度在25℃及以下的常用无机相变材料热物性。表 2 无机相变材料的热物性参数无机相变材料中冰的研究最多,因为冰相变焓为334 kJ/kg,为常见相变材料的2~3倍,而且成本低廉。冰与水混合所得冰浆具有良好流动性和高相变潜热,可通过离心泵和管道输送,在极高含冰量下不堵塞,且所需输送管道和储罐尺寸小,以其为基础的冰蓄冷技术是实际工程项目中使用最广泛的蓄冷技术。1.3 共晶相变蓄冷材料共晶相变材料是将两种或两种以上相变材料混合制备得到的共晶产物,其熔点低于任一组分。共晶相变材料按材料可分为有机-有机共晶、无机-无机共晶和有机-无机共晶相变材料。无机-无机共晶相变材料包括金属合金相变材料、水合盐及熔融盐共晶相变材料,有机-有机共晶相变材料包括有机酸共晶和石蜡,无机-有机共晶相变材料主要是有机酸和水合盐的共晶相变材料。其中无机-有机共晶相变材料能实现有机、无机材料优势互补,可获得兼具过冷度低、潜热较高、性能稳定的相变蓄冷材料,但目前应用研究较少,潜力巨大。共晶相变材料能通过调整各组分比例来控制相变温度,而且能一定程度上改善材料过冷度和相分离等问题,是调节相变材料热物性的一种重要方法,但共晶相变材料的制备工艺较为复杂,需要围绕共晶点按比例形成共晶物,且组分比例与相变温度不呈线性规律,应用前需要进行大量预实验,过程繁琐复杂。表3列举了一些相变温度在25及以下的常用共晶相变材料热物性。表 3 共晶相变材料的热物性参数1.4 相变蓄冷材料的选择研究并筛选出适用于蓄冷系统的相变蓄冷材料,是相变蓄冷技术的关键之一。一般来说,用于蓄冷领域的相变材料应具有以下特性∶①相变温度合适;②相变潜热大;③热导率高;④冻结和熔化率高;⑤热稳定性好;⑥固液相变体积变化小;⑦过冷度低;⑧循环稳定性好;⑨无毒和无腐蚀性;⑩成本低。目前相变蓄冷材料中有机相变材料和无机相变材料应用最为广泛,二者关键物性对比如图2所示,可作为实际选材的参考依据。无机相变材料具有低成本、毒性低和高热导率的优点,适合大规模生产,在蓄能水罐、冷库等大型建筑设备中应用较广,但其过冷度高、相分离严重和腐蚀性强的缺陷限制其在蓄冷领域的应用。有机相变材料具有过冷度低、循环稳定性好和腐蚀性小优点,主要适用于冷链运输和智能纺织品,但其低热导率、有毒、易燃和高成本的缺点阻碍其进一步应用。相比有机、无机相变材料,共晶相变材料可根据组分比例调控相变温度,实现精准控温,适用于要求温度变化范围小的场景,但目前研究较少,适用环境较少。图 2 无机相变材料与有机相变材料关键物性对比图在实际应用中,很难筛选出满足所有条件的相变蓄冷材料,因此要优先选择相变温度适宜且相变潜热高的蓄冷材料,最后采用合适的方法对其性能进行调控。02相变蓄冷技术的应用2.1 冷链运输冷链运输过程中环境温度波动易造成产品损耗,如果引入相变材料,发挥其相变控温功能,减少环境温度波动,能有效提高冷链运输产品质量。冷链运输根据保温方式分为被动式和主动式。被动式冷藏主要应用于冷藏箱,如图3所示,在箱体内加入相变蓄冷材料,吸收进入到箱体内部的热量、减缓温度上升速率,为冷藏物体长时间提供低温储存环境。Li等复合了膨胀石墨与辛酸-月桂酸共晶相变材料,二者质量比为71∶29,制得复合相变材料的相变温度和潜热分别为3.8℃和141.7 J/g,热导率提升了2.8倍,使材料释冷速率提高636.7%。Huang等基于石蜡OP5E开发了一种蓄冷保温箱,高低温测试表明,相变材料可以在至少80 h使保温箱内部温度保持在2~8℃。Liu等将KCl-NH4Cl共晶盐吸附于高吸水性聚合物SAP上,制得一种相变温度为-21℃和相变潜热为230.62 J/g的蓄冷材料。该材料在-15℃下冷藏生物样品时,冷藏时间能达到16.37 h,能有效保证生物样品质量。图 3 被动式冷藏箱及内部构造主动式冷藏是如图4所示在车内安装含相变材料的制冷机组,主动将车内温度控制在适合食品冷藏的低温状态。在主动冷藏系统内,加入相变材料可以辅助控温,减少车厢内的温度波动,降低主动制冷系统能耗。刘广海等设计了一款集隔热、相变蓄冷、制冷送风为一体的冷藏车,相比传统冷藏车,相变材料加入使车内平均温度波动下降48.7%,温度不均匀度系数下降50%。Zhang等考察了集成相变材料对制冷系统能耗影响情况,含相变材料的集装箱制冷能源成本和运营成本分别降低71.3%和85.6%。Michele等提出了一种结合相变材料并用于冷藏车的新型隔热墙,当相变材料厚度为1 cm时,能在10 h内使车内温度波动范围不超出相变温度2℃。图 4 主动式冷藏车及系统组成将相变材料与冷链运输相结合,能出色发挥相变材料高潜热和相变控温的特点,不仅大幅延长有效冷藏时间,还减少冷藏空间的温度波动,提升其温度均匀性,有效减少冷藏产品的损耗率。与传统制冷相比,将制冷系统与相变材料结合,能大大降低能源成本和运营成本,起到减少碳排放的作用。2.2 纺织品人体热管理与出汗散热类似,将相变材料如图5所示应用于纺织品中,通过引入温度调节作用以提升人体舒适度。这种纺织品被称为智能调温纺织品,能响应人体或环境的变化,实现保暖和降温双向温度调节功能,适应多变的环境。目前相变材料与纺织品结合方式主要有三种∶填充法、涂层法和纤维中空填充法。图 5 纺织品集成相变材料用于温度调节填充法是将相变材料填充于纤维或密封袋中,再集中放置在服装内部,特别是胸部和背部等发热量较大的部位,通过相变材料直接吸热或放热的方式控制体表温度。如图6所示,Saeid等将相变温度在24~35℃的石蜡用于降温背心,穿着降温背心在轻度活动和中度活动期间,温度仍维持在人体舒适温度范围内,出汗率分别降低了42%和52%,减少了脱水几率。Hou等开发了一种基于相变材料的液体冷却背心,背心重量为1.8 kg,能在炎热环境中为穿戴者提供至少2 h温度舒适环境。图 6 石蜡降温背心及其包装涂层法将相变微胶囊加入涂层液中,并用刮板将液体均匀涂抹在织物表面,使纤维表面粘附上相变微胶囊来改变纺织品的热性能。Xu等将相变微胶囊固定在棉质衣物上,所制衣物相变温度为16.5℃~36.8℃,符合人体热舒适温度,而且保温系数与不含相变材料的衣物相比从1.05%提高到32.2%。Yin等将相变温度为25.7℃的相变微胶囊嵌在纤维表面,使面料保温率达23.9%,控温能力良好。纤维中空填充法是如图7所示对含有中空结构的纤维进行加工,在内部填充相变材料来赋予纤维蓄能特性。Ke等制备了一种聚丙烯腈/月桂酸-硬脂酸/二氧化钛的复合纳米纤维,相变温度约为25℃,经30个循环后性质相对稳定,具有良好的控温性和稳定性。Song等采用真空浸渍法将月桂酸封装到木棉纤维微管中,制得样品中月桂酸质量分数达86.5%,焓值达153.5 J/g,经2000次循环后性能基本不变。图 7 纤维中空填充法相变材料对热能的吸收会延缓身体温度升高,并减少皮肤中水分散失,从而提高舒适度。同时相变材料具有相变控温特性,可以减缓穿着者的热失衡症状,如感冒、中暑和晕厥等,在医疗保健领域有着广阔的发展空间。Olson等制备了由NaCl、Na2SO4和水组成的复合相变材料,如图8所示,应用于婴儿出生后降温问题上,通过简单方式抑制了环境温度的变化。Prashantha等将相变材料制成冰袋用于低温治疗,不仅降低成本,而且延长了使用时间,提供更好的冷疗功能。图 8 相变床垫(蓝色)上为婴儿降温,床垫由相变材料和软垫组成Zhang等用浸渍法将OP10E和SEBS混合制备了可在10℃下保持1800 s的弹性相变油凝胶,并设计如图9所示的冷却帽用于发烧儿童的冷敷治疗,模拟了人体热调节过程,建立发烧儿童所需凝胶量的数据库,为相变头套设计提供参考标准。图 9 相变油凝胶冷却帽建模及数据库将相变材料与人体热管理相结合,可以实现个性化体温调节。这类智能被动体温调节纺织品体积小、使用便利,在高温作业和户外运动等场景中提升人体舒适度。将相变纺织品制备调节体温的医疗保健产品,能帮助婴儿或患有温度敏感性疾病的人群缓解热失衡和常见并发症,加快病情治愈速率。创新性的相变智能体温调节纺织品在技术上已有了较深积累,其商业化值得期待。2.3 建筑节能及数据中心应急冷却将相变材料用于建筑节能领域,能使室内温度维持在舒适范围内,提高人们居住和办公舒适度,实现节能和减少碳排放的目标。建筑节能领域所用蓄冷技术可根据蓄冷方式分为被动式蓄冷和主动式蓄冷。被动式蓄冷主要通过将相变材料与建筑墙体复合制得如图10所示的相变储能墙体,白天吸收热量给室内降温,夜晚释放热量维持室内温度,起到辅助调节室温、减小建筑采暖和制冷能耗的作用。聂瑞等将硅藻土、十八烷和过硫酸铵混合制备一种相变微胶囊/硅藻土复合材料,具有调节室温以及维持室内湿度平衡的功能。Wang等将石蜡、膨胀石墨和高密度聚乙烯掺入水泥砂浆中制备复合相变砖块,在15~30℃和18~24℃时,120 mm厚的相变墙体比240 mm厚普通墙体的蓄能能力分别提高了12.7%和61%,有效降低了室内温度波动。Fu等将膨胀珍珠岩和六水氯化钙复合制得相变温度在27.38℃的相变砖块,用其代替泡沫保温砖作为屋顶,使得室内峰值温度降低5℃,达到室内峰值温度的时间滞后约900 s。图 10 相变材料在建筑节能中的应用主动式蓄冷主要通过制冷装置将电能和太阳能等转化并储存到如图11、图12所示蓄冷装置中,常见于冷库、家用空调和数据中心应急冷却系统等,能在需要时将冷能释放出来,有助于缓解能源供需不匹配的问题。图 11 集成相变材料冷却系统的空调系统图 12 集成相变材料冷却系统的太阳能空调系统Solaimalai等将1-葵醇用于冰基蓄冷系统中,使制冷系统工作时间减少了81.85%,平均充冷放冷速率是原来的5倍以上。Dogan等研究了蓄冰系统对大型超市空调用电成本的影响,相变材料的引入使制冷系统性能提升4.4%,目前运营成本已降低60%。Zheng等基于相变温度为5℃的相变微胶囊材料构建了一种相变冷库空调系统,其蓄冷量为常见冷库的1.5倍,当冷藏容量为3000 kJ时,冰和相变微胶囊悬浮液分别需要3980 s和2200 s完全凝固,使用相变微胶囊悬浮液可节省1780 s。王芳等选择主要成分为甘氨酸的相变蓄冷材料用于小型移动保鲜库中,使冷藏区域温度保持在1.6℃~2.6℃间,在不同供冷方式下内部温度波动均小于1.5℃。周晓棠等将冰蓄冷技术运用到家用空调中,运行10 h后,蓄冰空调的制冷量平均增加34%,达到15.6 kW,性能系数COP平均提升0.7,起到降低能耗的作用。Batlles等在太阳能制冷系统中引入相变储能罐,结果表明每天可节约40%制冷能耗。Peter等将储能罐、太阳能板和热泵组合成蓄冷系统,经1616 h测试,相比常规系统,该系统的季节性性能系数为4.4,总效率提高了46.6%。随着数据中心服务器集成程度的提升,热负荷也在不断升高,为了防止服务器故障,需要配置空调系统以满足数据中心降温需求。而当空调系统因故障停止工作时,需要应急冷却系统及时为服务器提供合适的环境温度,降低故障率。将相变材料与数据中心应急冷却系统结合,发挥相变材料高相变焓和相变控温优势,起到减少运营成本和短时间大量释冷的作用。Huang等基于相变蓄冷装置设计了一种如图13所示的风冷紧急冷却系统,可以将温度保持在27℃以下至少300 s,在低运营成本的同时保证较长的冷却时间。Ma等将相变蓄冷装置和循环热虹吸管集成了一种新型冷却系统,可以维持服务器运行6 min,并且随着相变材料热导率的提升,能将有效紧急冷却时间延长到15 min。图 13 紧急冷却系统综上,在建筑节能领域中引入相变蓄冷材料,可减少室内温度波动并维持在舒适范围内。且相比传统制冷装置,相变材料具有的高相变焓优势能减少制冷机组装机容量,实现制冷、蓄冷装置的轻量化,降低安装、运行成本,提高能源利用效率。03蓄冷技术的发展现状及方向蓄冷材料的固有缺陷及其蓄冷系统的传热性能不足会影响系统整体传热效率。我们需要针对性改善这些不足,提升实际使用性能。蓄冷技术的提升主要包括∶①蓄冷相变材料物性调控和优化;②相变蓄冷系统传热技术强化。3.1 相变蓄冷材料性能的调控3.1.1 相变温度调控相变温度是筛选相变材料的重要参数。为了同时满足对潜热、相变温度等方面的要求。可以结合两种及以上组分开发共晶相变材料来扩大相变温度的选择范围,通过改变组分比例来调控相变温度,克服单一相变材料的缺点,使相变材料更贴合应用需求。Lin等以磷酸二氢钠二水合物、磷酸氢二钾三水合物和五水合硫代硫酸钠配置得三元共晶水合盐相变材料,相变温度从-14.8℃到-10.6℃,可根据需要更改相变温度。李夔宁等将相变温度分别为58℃、18.2℃和-1℃的乙酸钠、丙三醇和水,混合制得相变温度为-14℃的三元共晶相变材料,获得更低的相变温度。Vennapusa等将相变温度为23.01℃的脂肪酸共混物OM-21和相变温度为22.7℃的十二烷醇配置成共晶相变材料,其相变温度从8.6℃到17.5℃,实现调控相变温度的目标。共晶相变材料能根据需求调整相变温度,但材料配比与相变温度间的规律仍不清晰,需要对共晶盐相变机理和规律进一步研究,为大规模应用共晶相变材料提供科学依据。3.1.2 热导率调控不同应用场景对相变材料热导率要求不同。例如在换热器中要求高热导率,更快将近热源部位的热量传递给低温部位,强化系统整体换热效率。而在保温冷藏系统中要求低热导率,减少冷藏空间和外界环境热交换,延缓温度变化趋势,创造合适且长效的低温环境,实现保障产品质量的目标。不同相变材料传热机理不同,金属相变材料主要由电子进行热传递,非金属相变材料主要由声子传递热量。不相容材料之间的声子散射会增大界面热阻,而内部具有完整三维互联网络的材料可以为声子传播提供通道,进而提升材料热导率。因此调控相变材料热导率的方法主要是添加多孔载体材料或纳米粒子等制备复合相变材料,进而改变材料整体的热导率。常用的高热导率多孔载体有泡沫金属和膨胀石墨等,低热导率的载体有二氧化硅、膨胀珍珠岩等。高热导率的纳米粒子有碳基纳米粒子,如碳纤维、碳纳米管和石墨烯等,以及金属纳米粒子如纳米二氧化钛、纳米氧化铝等。Lin等制备了相变温度为5.92℃的膨胀石墨基复合相变材料,将热导率提高到0.43 W/(mK),为原来的1.75倍,显著改善材料的传热性能。Soroush等考察泡沫铜对不同石蜡热导率的改善效果,在质量流量为0.02 kg/s和使用石蜡C22的前提下,系统最高热效率高达83%。He等将二氧化钛纳米颗粒悬浮于氯化钡水溶液中,制得相变温度为-5℃、热导率为0.565 W/(mK)的悬浊液,二氧化钛的加入使热导率提高12.76%。Chen等将相变温度为-9.6℃的十二烷吸附到疏水气相二氧化硅中,与纯十二烷相比热导率降低45%,低热导率有利于抑制内外环境之间热传递,使十二烷更好用于保温领域。这两种调控热导率的方法仍有不足,纳米粒子存在分散不均匀和团聚的问题,在循环使用中性能衰减严重,热导率提升幅度小,性价比低。加入多孔载体会减少相变材料含量,影响整体蓄能量。目前对纳米粒子和多孔载体孔隙的尺寸对热导率的影响规律仍有空缺,以及降低界面热阻和提高相变材料相容性的机理还需进一步探究。3.1.3 过冷度调控过冷是指相变材料在一定压力条件下,温度低于理论凝固温度时仍不发生凝固或结晶,需要冷却到凝固点以下才开始凝固的现象。过冷度被定义为熔化起始温度和结晶开始温度之间的差值,过冷度越大越难结晶。无机相变材料的过冷度普遍偏高,其中水合盐相变材料成核性能较差,容易发生过冷,使相变材料无法在要求温度范围内工作。而且过冷度越大,意味着制冷温度越低,对制冷机负荷要求更高。影响过冷度的因素主要包括∶冷却速率、壁面效应和尺寸效应。一般冷却速率越大,过冷度也越大。过冷度也受封装容器材料种类、表面粗糙度和壁面晶体结构影响,粗糙壁面能提供更多成核位点,粗糙度越大,过冷度越低。储存相变材料的容器体积越小,过冷度越大,因为相变材料中存在灰尘或其他杂质颗粒,能在结晶过程中作为成核位点,促进结晶。但随着容器尺寸减少,缺少足够杂质颗粒提供成核位点,只能以均匀成核的方式结晶,增大相变材料结晶难度。目前解决相变材料过冷的方法主要有添加成核剂和壁面改性。添加成核剂主要是选择晶格参数接近目标材料的成核剂,当成核剂结构与无机盐类结晶物相似时,能起到诱导结晶作用,实现减小过冷度的目的。这种方法经济成本低、适用范围广且制备过程无需特定设备,在调控过冷度方法中应用最广泛。Wu等在氯化镁溶液中加入氯化钙和氢氧化钙作为成核剂,相变材料的过冷度由16.56℃降低到7.73℃,有效抑制过冷。Tang等在相变材料中加入成核剂九水偏硅酸钠将过冷度降低至1.9℃。Zou等以相变温度为11.81℃的四正丁基溴化铵溶液作为蓄冷材料,加入成核剂十二水合磷酸氢二钠使材料的过冷度由4.5℃降低到2.01℃,成核剂的加入有助于降低过冷度。壁面改性法通过增加壁面粗糙度或加入多孔材料和纳米粒子,为相变材料结晶提供更多成核位点,降低材料过冷度。Matthieu等考察金属表面粗糙度对乙醇水溶液过冷度的影响,当铝管表面粗糙度从0.63 μm变13.3 μm时,乙醇水溶液过冷度从4.20℃降低到3.97℃。Zhang等制备了一种以泡沫铜为骨架的水基复合相变材料,过冷度从20.6℃抑制到6.8℃,有效降低了材料过冷度。Liu等将去离子水和氧化石墨烯纳米片超声混合,使水过冷度至少降低74%。成核剂用量需要合理配比,少量成核剂就能有效降低过冷度,过多成核剂反而会降低抑制过冷的能力,性价比不高。后续应使用分子模型对成核机理进行研究,加大对复合型成核剂的开发和机理解释,构建成核剂数据库为大规模商业化提供参考依据。目前对于壁面改性降低过冷度的机理研究不够深入,仅为定性分析,后续应建立多维模型来模拟真实场景,从成核能角度解释机理,用普适性规律指导过冷度的调控。3.1.4 循环稳定性调控固-液相变材料在吸热后,相态会从固态熔化为易于流动的液态,容易出现泄漏,在长期使用中性能衰减严重。对于水合盐类相变材料,在循环使用中可能会发生部分水合盐晶体因沉底而无法重新结晶的情况,即发生相分离,降低相变材料蓄冷能力。在实际使用中相变材料需要具有良好的循环稳定性,能够克服泄漏和相分离的缺点。提升循环稳定性主要途径包括∶制备定形复合相变材料法、微胶囊法和添加增稠剂法。制备定形复合相变材料法主要采用熔融吸附法,在膨胀石墨、泡沫金属等多孔基材内吸收液态相变材料,借助毛细作用和范德华力将液态相变材料吸附在内部孔隙中,减轻相变材料的泄漏。多孔基材内部孔径决定对相变材料的限制能力,根据孔径大小可分为微孔(2 nm)、中孔(2~50 nm)和大孔(50 nm)。较小的微孔可能会限制相变材料的相变,而较大的大孔不足以将相变材料吸附住。因此中孔和较小的大孔更适合制备防泄漏的复合相变材料。Fei等基于癸酸、棕榈酸和膨胀石墨制备了一种相变温度为23.05℃的复合相变材料,经1000次熔化和凝固循环,几乎没有液态相变材料泄漏,可靠性优秀。Shahbaz等采用气相二氧化硅吸附相变温度为20.65℃的六水氯化钙,经100次相变循环后,相变潜热仅变化了7.8%,性能较纯相变材料更为稳定。Zhang等将六水氯化镁和六水氯化钙混合制得相变温度为23.9℃的低温共晶物,经熔融吸附到膨胀珍珠岩中,经500次相变循环后,材料性质未出现明显变化,未出现相分离现象。微胶囊法常用高分子材料包覆相变材料,在其表面形成一层外壳,将液态相变材料锁在壳中,从而减少相变材料泄漏。Charles等使用相变温度为6.2℃的相变材料与外壳材料聚甲基丙烯酸甲酯进行交联制备微胶囊,使用30天后,质量损失仅为0.6%,而无外壳的纯相变材料质量损失高达6.6%,微胶囊壳使泄漏情况较轻。Zheng等以石蜡和三聚氰胺树脂分别为核材和壳材,制备了一种相变温度为5℃的相变微胶囊,经72 h后未出现分层,稳定时间长。Eszter等用海藻酸钙包裹月桂酸辛酯,经过250次高低温循环后,相变焓从128.27 J/g降至127.67 J/g,没有明显变化,循环稳定性良好。添加增稠剂法通过增加溶液粘度,使相变材料稳定保持悬浮态或乳液态,减少相分离。常见的增稠剂有羧甲基纤维素、琼胶、聚丙烯酰胺、聚乙烯醇、海藻酸钠和活性白土等,添加增稠剂法已广泛用于食品、涂料、化妆品、洗涤剂和医药等领域。He等在六水氯化钙与六水氯化镁二元共晶水合盐中加入增稠剂羧甲基纤维素,在100次循环内保持优异的循环稳定性,焓值从123.13 J/g降至117.88 J/g,为原来的95.7%。杨超等选取羧甲基纤维素作为增稠剂对六水氯化钙进行改性,获得的改性六水氯化钙在300次循环中实现了相分离的控制。杨晋等考察聚丙烯酸钠、聚丙烯酰胺、羧甲基纤维素、聚阴离子纤维素、黄原胶等增稠剂对十水硫酸钠相分离的调控规律,其中加入聚丙烯酸钠和聚丙烯酰胺后静置72 h后未出现明显相分离。目前多孔基材吸附机理解释不足,针对不同材料间相容性问题提出改善方法和相应机理解释。微胶囊使用时容易出现团聚问题,多次使用后因团聚前后密度差出现分层,不利于循环稳定。后续应探究使用表面活性剂来改善团聚问题,考察与不同添加剂的作用规律。增稠剂的使用会增加成本和降低焓值,需开发复配型增稠剂,降低生产成本。而且当相变材料作为浆料使用时,材料粘度的增大会加大传质阻力,增加泵功耗,应通过流体力学仿真来优化增稠剂配比。3.2 相变蓄冷系统性能的调控根据应用需求不同,可将相变蓄能系统分为相变蓄热系统和相变蓄冷系统,其中相变蓄冷系统如图14所示。而相变蓄能系统性能主要受两个因素影响∶相变材料和系统传热结构。相变材料可通过选材和改性等方法将性能调整至预期所需,系统传热结构可以通过改变换热器内外部形状和排布,获得具有换热面积大、结构稳定、操作简单、抗压性好、抗腐蚀性好和热稳定性好等优点的换热器。根据相变蓄冷系统换热方式的不同,可以分为间壁换热式相变蓄冷系统和直接接触式相变蓄冷系统。图 14 相变蓄冷系统示意图3.2.1 间壁换热式相变蓄冷系统蓄冷技术中间壁换热式相变蓄冷系统主要包括∶內融盘管式、堆积床式和管翅式,通过将制冷剂与传热流体隔开来防止二者直接接触,在一定程度上维持二者性质不变,目前应用最为广泛。內融盘管式蓄冷系统属于静态制冰,装置如图15所示,以冰作为相变材料,由浸没在水槽中的盘管构成结冰载体。蓄冷时,制冷剂在管内流动,将管外的水冻结成冰;释冷时,传热流体在管内流动,管外的冰熔化吸收管内流体的热量。盘管式蓄冰系统形状多变,应用范围广泛,使用简单,可靠性好,价格较低,本身既可制冰又可蓄冰。而且间壁换热的方式能隔开冷源和外界,提升系统的循环稳定性。但冰与传热流体间存在较大的接触热阻,对传热性能不利。且盘管式内部管路长、多弯折,制冷剂流动阻力大,泵功耗大,运营成本较高。图 15 内融式盘管式冰蓄冷系统的蓄冷和放冷过程堆积床式蓄冷系统通过将水、低温石蜡和水合盐等相变材料封装在如图16所示的球形或板形容器内,并将这种蓄冷单元如图17所示放置在水罐内。蓄冷时,制冷剂在蓄冰单元外流动,其中相变材料通过凝固来实现蓄冷。放冷时,传热流体流过蓄冷单元间隙实现热交换。这种蓄冷装置运行可靠,但存在蓄冷量不易计量、传质阻力大等缺点。图 16 封装式蓄冷单位图 17 堆积床式蓄冷系统管翅式蓄冷装置如图18所示,在列管上增加翅片来增大传热面积,常在翅片空隙中填充水合盐和石蜡等相变材料用于蓄冷。蓄冷时,制冷剂在管内流动,管外相变材料凝固蓄冷。放冷时,管外相变材料熔化释冷,降低管内传热流体温度。这种装置结构紧凑、传热面积大,但制备工艺复杂而且难检修保养,运行成本较高。图 18 管翅式换热器3.2.2 直接接触式相变蓄冷系统直接接触式相变蓄冷系统方法包括外融盘管式和直接接触式,通过制冷剂与传热流体直接接触换热,减少换热器热损失并提高热交换效率。外融盘管式蓄冷装置如图19所示,与內融盘管式蓄冷装置结构相似,同以冰作为相变材料。蓄冷时,制冷剂在管内流动,将管外水冻结成冰;但在释冷时,传热流体在管外流动,直接与冰接触换热。这种直接接触式传热能有效减低接触热阻,提升换热速率。但相变材料会直接接触传热流体,存在物性被影响的可能,可靠性有待提高。图 19 外融式盘管式冰蓄冷系统的蓄冷和放冷过程直接接触式冰浆制备装置如图20所示,制冷剂和水溶液直接接触,水溶液降温结晶形成冰晶颗粒,这种方法在动态制备冰浆过程中具有较高的换热效率,改进静态冰蓄冷中冰层厚度增长和热阻增加的缺点。但是制冷剂喷嘴处易发生冰堵,难连续制冰,传统低温冷媒难与水分离,消耗量大,且容易腐蚀管壁,实际应用成本高。图 20 直接接触式冰浆制备装置3.2.3 相变蓄冷系统的性能优化相变蓄冷材料的低热导率意味着相变蓄冷系统蓄冷和放冷时间长,增加制冷系统功耗,提高运行成本,因此需要对材料和换热器的热性能进行优化。相变蓄冷系统传热主要有两种强化方向∶添加高导热填料和增大换热器表面积,实际应用中常将这两种方法结合起来,共同优化相变蓄冷系统性能。添加高导热填料的方法是通过添加具有高热导率、大比表面积的纳米颗粒或多孔基材来提升整体热导率,提升系统释冷、蓄冷速率,提高整体融冰率。Lou等研究了泡沫金属对蓄冰球的传热强化,分析金属泡沫和金属泡沫复合翅片下温度场、冰锋演化、凝固分数、总凝固时间和蓄冷能力的变化,最后对泡沫金属蓄冰球的无量纲参数进行分析,为泡沫金属在蓄冷系统中的应用提供参考。Rajan等将活性生物炭纳米粉末分散在水中,将材料热导率从0.62 W/(mK)提升至1.05 W/(mK)。连续运行337 h,相比不含相变材料的冷库,含相变材料的冷库消耗电量从304.58 kWh降至278.03 kWh,相变材料降低了冷库9%的能耗。Refat等为提高水的热导率,将水封装在高热导率石墨球中并用于堆积床系统,石墨的加入使水的热导率从0.6 W/(mK)提升至7.2 W/(mK),系统完全蓄冷时间减少了53.7%。增大换热器表面积,进而增大系统传热面积来提升热导率。常见方法是在换热器内引入翅片和增加槽口,管翅式换热器由此而来,翅片和槽口越多,热导率提升幅度越大。Shao等研究了相变乳液PCE-10在管翅式换热器中的热性能,其相变温度在4~11℃间,热导率为0.4 W/(mK),翅片的存在强化了传热,使整体传热速率提升了1.1~1.3倍。Vahid等研究了管壳几何形状和传热管向下偏心对管壳式换热器中石蜡熔化行为的综合影响,得出增加偏心系数可以延长以对流为主的熔化时间,缩短以传导为主的熔化时间结论,为容器设计提供思路。Merve等为改善板式换热器的性能,在板表面上增设鱼鳃槽,传热速率提高了17.5%,鱼鳃槽起到增大传热面积作用。结合高导热填料及增大换热器表面积可进一步提高蓄冷系统传热性能,已广泛用于蓄冷系统中。黄江常使用膨胀石墨与水复合制备出相变焓值280.6 kJ/kg、相变温度0℃、过冷度为2.6℃和热导率为4.72W/(mK)的水/改性膨胀石墨复合相变材料。Feng等将这种水/膨胀石墨复合相变材料与管翅式换热器通过如图21所示方式耦合,将复合相变材料填充入换热器翅片间。图 21 水/改性膨胀石墨复合相变材料填充管翅式换热器相比纯水蓄冷器,该蓄冷器的蓄冷功率提升了15.9%,而且完成蓄冷时间仅为纯水蓄冷器的69.7%,成功搭建了一个具有较高蓄冷功率和较快蓄冷速率的蓄冷装置。Nóbrega等在水中加入纳米氧化铝颗粒,当纳米氧化铝质量分数为5 wt%时,相变焓为275.9 kJ/kg,结冰前热导率为0.67 W/(mK),结冰后热导率为2.65 W/(mK)。再将其和图22所示四翅片管耦合,氧化铝和翅片管的加入分别使水完全凝固时间减少了25%和9.1%,成功缩短了系统蓄冷时间。图 22 相变材料与四翅片管耦合模型Ahmed等采用十四烷为相变材料,膨胀石墨作为高导热封装基材,制得相变温度为4.5℃、相变焓为168 kJ/kg、热导率为10 W/(mK)的复合相变材料。并如图23所示在空调系统中设计双流体回路,通过结构上的优化空调组成,空调压缩机在高峰时期的功耗从2.18 kW降至1.82 kW,降低约16%。图 23 使用膨胀石墨/十四烷复合相变材料的蓄热式集成空调加入纳米颗粒和多孔材料虽能提升系统热导率,但会对相变材料的相变潜热、相变温度和循环稳定性等性质有影响。增大蓄冷器传热面积,会因内部结构的复杂化提高成本和压降,对生产和应用提出更高要求。目前相变蓄冷材料和蓄冷器的量产工艺尚不成熟,大规模应用难度高,后续应继续开发新型蓄冷材料和蓄冷容器,寻找相变材料与蓄冷器之间更多种耦合方式,提出与工况相匹配的释冷、蓄冷控制策略,降低运行成本,实现相变蓄冷技术的大规模应用。而且要探究材料与容器间相容性,部分材料有金属腐蚀性,会减少系统使用寿命和增加维护成本,如何对装置进行防腐蚀处理也是未来的研究重点。04总结与展望本文回顾了面向低温相变蓄能领域的相变材料和相变蓄冷系统,并介绍了目前相变蓄冷系统的主要应用场景,最后针对相变蓄冷系统的关键性能介绍了调控方法和方向。尽管相变蓄冷材料和系统的研究已经取得了较大进展,但由于相变材料自身缺陷和使用条件限制,目前应用范围较窄,离大规模商业化还有一定距离。根据国内外现有研究,本综述认为可以从以下三个方面继续发展∶(1)进一步研究相变材料的性能调控方法和规律,单一相变材料通常存在如热导率低、过冷度高、循环稳定性差和腐蚀性强等缺陷,这可以通过制备复合相变材料和加入添加剂来调控相变材料性能。后续需要建立和完善相变材料的物性数据库,提供一种有利于解决多数问题的方案,同时开发兼具低成本和低制造难度的工业化路线,为相变材料大规模商业化提供技术支撑。(2)开发和研究新型相变蓄冷系统,使用数值模拟指导设备开发,设计结构简单和制造难度低的蓄冷系统,特别是对于冷链运输、纺织品和数据中心冷却等领域,要求有限的体积和重量,需要提高相变蓄冷系统的集成程度。应结合实验来验证模拟设备的实际使用性能,最后对相变蓄冷系统进行经济评估和环境评估,开发低能耗、低碳排放的相变蓄冷系统。(3)拓宽相变蓄冷系统在各领域中的应用,目前已在数据中心应急冷却和医疗保健等新领域有了较深的技术积累。后续还要完善在冷链运输、纺织品和建筑节能等领域的应用,寻找高蓄冷需求的行业,实现在各行各业的大规模商业化。总之,相变蓄冷技术作为储能技术中的技术分支,具有高安全性、性能稳定、充放寿命长、成本低、结构系统简单等优点,是未来实现分布式储能和清洁能源利用的重要方向。
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • POPs2016上的“明星”—全氟化合物
    仪器信息网讯 谈起POPs,人们首先想到的就是垃圾焚烧厂排放的二噁英,然而最近在西安举办的第十一届持久性有机污染物国际学术研讨会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。会议现场  全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。  除了大会报告和各分会场中有多个涉及全氟化合物的报告外,为了集中讨论全氟化合物的问题,本次研讨会特设了“PFOS履约与安全替代”专场,邀请国内外专家共同探讨全氟化合物的危害和替代品。“PFOS履约与安全替代”专场  各位专家主要围绕全氟化合物的分布、危害和替代品三方面进行了报告。  POPs Environmental Consulting 的Roland Weber博士讲解了PFOS引起的水污染问题以及针对此问题的管理策略和成本。中科院生态环境研究中心王亚韡研究员以我国最大的全氟磺酸盐生产工厂为例,研究了周边地下水、表层土壤、职业工人、周边居民和周边母鸡中全氟化合物的分布、迁移、暴露以及消除规律,并根据研究成果提出了相应的安全防护措施。南开大学祝凌燕教授介绍了其团队在环境中全氟化合物的研究,主要结论包括河流输入是太湖水体中PFAFs的主要来源 直接排放是城市大气中PFOS和PFOA的主要来源 PFASs可以通过与气溶胶或颗粒物结合的形式在大气中传输 我国人体血清中以PFOS为主,短链化合物如PFHxS等有升高的趋势。  农业部环境保护科研监测所耿岳博士以“母亲全血中全氟化合物水平同胎儿先心病发生的相关性”为题,讲解了其在母亲全血中检出的全氟化合物浓度及种类,频率最高的是PFOS和PFOA,并且病例组和对照组之间没有显著性的差异。  中国民用航空飞行学院贾旭宏博士的团队成员为大家讲解了其团队开发的一种PFOS替代品——以短氟碳链(≤ C4)为基础的阴阳碳氟-碳氟表面活性剂复配体系, 并详细介绍了其在水成膜泡沫灭火剂中替代C8基氟表面活性剂的潜力。科慕化学(上海)有限公司Kai-Volker Schuber 博士介绍了其公司产品短链Capstone 含氟表面活性剂作为灭火剂原材料的风险,分别从原材料、产品以及降解产品三个方面,进行了环境、毒理、生态等方面的评估,论证了此种产品的环境友好性。中科院动物研究所戴家银研究员从分布特征和迁移转化规律、内分泌干扰与生殖毒性、复合毒性效应的表征、毒性效应的分子机制等四方面对全氟化合物进行研究,此次报告主要讲解了F-53B的研究成果,认为其各种效应仅次于PFOS和PFOA,不能作为PFASs的替代品。  在会议的茶歇期间,“PFOS履约与安全替代”专场主持人清华大学黄俊副教授接受了仪器信息网的采访,为我们系统介绍了全氟化合物的使用和研究情况。  仪器信息网:我国PFOS的应用情况如何?  黄俊:根据公约和我国的批准,总体来说,用于电镀、农药等特定豁免用途的PFOS将在五年之后全部淘汰,用于消防和全封闭体系电镀等可接受用途的PFOS将可继续使用。与无意产生的二噁英不同,PFOS是一种化工品。在消防领域,PFOS被认为是一种很好的灭火剂生产原料,由于我国石化基地比较多,可以说火灾防不胜防,如果不能找到效果良好的替代品,将对我国消防安全产生较大的影响。”  仪器信息网:PFOS是斯德哥尔摩公约新增列物质,这是否意味着PFOS的毒性小于二噁英等第一批列入公约的物质?  黄俊:这不一定,是否列入公约主要取决于科学认知和国家提名。一种物质如果产量较小,没有引起关注,但因为偶然原因发生危害并被证明毒性较大,可能就会被马上列入公约。再有一个是国家提名,不管一种物质的危害性如何,如果没有任何国家提名的话,也是不会列入公约的。  目前全氟化合物的很多毒理学性质还不清楚,虽然目前公约主要考虑PFOS和PFOA,但是研究者普遍认为应该有更多种类的全氟化合物属于POPs。现在的问题在于,研究众多,但是还没有一个公认的结论。就像阻燃剂一样,刚开始的时候,五溴二苯醚和八溴二苯醚被列入公约,对于十溴二苯醚大家经过了很长时间的争论,最终也列入了公约,这是一个科学证据完善的过程。  仪器信息网:全氟化合物的分析技术是否成熟?  黄俊:全氟化合物是表面活性剂,有阴离子型和阳离子型两种,种类非常复杂,且带有电性,有疏水性的,也有亲水性的,并且物质性质比较特别,所以在用液质联用同时分析多种全氟化合物时,就需要找到一个兼顾所有分析需求的方法。总之,多种全氟化合物的同时分析并不容易。  另外一个就是排除干扰。仪器中的很多密封件是采样特氟龙材质,这种材质会溶出全氟化合物从而形成干扰,目前的解决方法包括更换材质、增加预柱消除干扰、采用同位素稀释方法消除干扰。还有就是实验室的本底控制也很重要,像冲锋衣、地毯、涂料之类的,都会释放出干扰物质。编辑:李学雷
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。序号物质名称ECCAS可能用途1氯化钴231-589-47646-79-9干燥剂、例如硅胶2重铬酸钠二水合物234-190-37789-12-0金属表面精整、皮革制作、纺织品染色、木材防腐剂3五氧化砷215-116-91303-28-2杀菌剂、除草剂4三氧化二砷215-481-41327-53-3除草剂、杀虫剂5酸式砷酸铅232-064-27784-40-9杀虫剂6三乙基砷酸酯427-700-215606-95-8木材防腐剂7邻苯二甲酸二丁基酯(DBP)201-557-484-74-2增塑剂、粘合剂和印刷油墨的添加剂8邻苯二甲酸二(2-乙基己)204-211-0 117-81-7PVC 增塑剂、液压液体和电容器里的绝缘体酯(DEHP)9邻苯二甲酸丁苄酯(BBP)201-622-7 85-68-7乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂10蒽(Anthracene)204-371-1120-12-7染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。11三丁基氧化锡(TBTO)200-268-056-35-9木材防腐剂12二甲苯麝香201-329-481-15-2香水、化妆品13六溴环十二烷(HBCDD)206-33-9294-62-2阻燃剂14C10-13氯代烃(短链氯化石蜡)(SCCP)287-476-585535-84-8金属加工过程的润滑剂、橡胶和皮革衣料、胶水154,4'-二氨基二苯甲烷(MDA)202-974-4101-77-9偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体16蒽油292-602-790640-80-5主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。17蒽油、蒽糊、轻油295-278-591995-17-418蒽油、蒽糊、蒽馏分295-275-991995-15-219蒽油、少蒽292-604-890640-82-720蒽油、蒽糊292-603-290640-81-621高温煤沥青266-028-265996-93-2主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作22硅酸铝耐火陶瓷纤维 工业绝缘隔热材料23氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料242,4-二硝基甲苯204-450-0121-14-2用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。25邻苯二甲酸二异丁酯(DIBP)201-553-284-69-5增塑剂26铬酸铅231-846-07758-97-6色素,用于塑料、油漆着色27钼铬酸铅红(CI颜料红104)235-759-912656-85-828铬酸铅黄(CI颜料黄34)215-693-71344-37-229三(2-氯乙基)磷酸盐(TCEP)204-118-5115-96-8阻燃剂30丙烯酰胺201-173-71976-6-1丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。31三氯乙烯201-167-41979-1-6金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体32硼酸233-139-210043-35-3具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。33四硼酸钠,无水215-540-41330-43-4具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等34四硼酸钠,水合物235-541-312267-73-135铬酸钠231-889-57775-11-3实验用分析试剂;生产其他含铬化合物36铬酸钾232-140-57789-00-6金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造37重铬酸铵232-143-17789-9-5氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理38重铬酸钾231-906-67778-50-9生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂39硫酸钴233-334-210124-43-3用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。40硝酸钴233-402-110141-05-6用于表面处理、电池、陶瓷颜料、催化剂。41碳酸钴208-169-4513-79-1陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料42醋酸钴(乙酸钴)200-755-871-48-7用于表面处理、合金、颜料、染料和饲料添加剂。43乙二醇单甲醚2-203-713-7109-86-4用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂44乙二醇单乙醚2-203-804-1110-80-5常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。45三氧化铬215-607-81333-82-0用于金属处理和木材防腐剂中的稳定剂。46三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等231-801-5236-881-57738-94-513530-68-2用于金属处理和木材防腐剂中的稳定剂。47乙二醇乙醚醋酸酯203-839-2111-15-9用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程48铬酸锶232-142-67789-6-2用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层49邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP)271-084-668515-42-4用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂50肼206-114-97803-57-8302-01-2防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体511-甲基-2-吡咯烷酮212-828-1872-50-4用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料521,2,3-三氯丙烷202-486-196-18-4用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水53邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP)276-158-171888-89-6用于聚氯乙烯(PVC)塑料增塑剂、密封剂和印刷油墨
  • 氟化氢冷凝回流装置的构成
    氟化氢(hydrogen fluoride),化学式HF,是由氟元素与氢元素组成的二元化合物。它是无色有刺激性气味的气体。氟化氢是一种一元弱酸。氟化氢及其水溶液均有毒性,容易使骨骼、牙齿畸形,且可以透过皮肤被黏膜、呼吸道及肠胃道吸收,中毒后应立即应急处理,并送至就医。 ---以上摘自网络 尽管如此,氟化氢在工业上用途极为广泛,所有含氟的塑料、橡胶、药物、制剂、农药等等,都需要氟化氢。此外,氟化氢作为腐蚀剂,在玻璃工业、钢铁产品、原子能工业还有半导体工业上,都可用于酸洗、腐蚀、灰分处理等用途。 由于氢氟酸会与玻璃中的二氧化硅发生反应,因此在选择盛放器皿时,要求本底值低且耐温性好,不会与器皿发生反应。 那么,重点来了!!!我司特氟龙耗材均采用高纯实验级的聚四氟乙烯和PFA加工而成,未添加回料,具有低的本底,金属元素铅、铀含量小于0.01ppb,无溶出与析出,满足了用户对氟化氢反应的所有条件。关键是可以根据用户具体的实验和图纸,可定制!可定制!可定制!01PFA/四氟反应烧瓶 我司烧瓶有两种材质:PFA烧瓶和PTFE(四氟)烧瓶PFA烧瓶:半透明材质,可观察反应状态,最高耐温260℃PTFE烧瓶:纯白不透明,可定制任意形状,最高耐温250℃02四氟恒压分液漏斗四氟恒压分液漏斗可以进行分液、萃取等操作,它主要用于反应时滴加强腐蚀性反应物料。与其他分液漏斗不同的是,恒压分液漏斗可以保证内部压强不变,一是可以防止倒吸,二是可以使漏斗内液体顺利流下,三是减小增加的液体对气体压强的影响,从而在测量气体体积时更加准确。03四氟冷凝管冷凝管通常使用在回流状态下做实验的烧瓶上,或是收集冷凝后的液体时的蒸馏瓶上,一般“下进上出”。四氟冷凝管可用于冷凝腐蚀性气体,无析出溶出。04其他配件四氟搅拌桨特氟龙温度计套管PFA吸收瓶如果以上耗材您都有,恭喜您解锁新装置 蒸发冷凝装置
  • 赫施曼助力萤石中氟化钙含量的测定
    萤石的主要成分是氟化钙,萤石中还含有二氧化硅、碳酸钙、碳酸镁、磷、硫等杂质,萤石作为一种重要的冶金熔剂在钢铁工业中大量使用。根据GB/T 5195.1-2017,测定萤石中氟化钙含量的方法有EDTA滴定法,其原理是:试料以含钙的稀乙酸浸取,过滤,通过下列两种方法之一进行分解:1.经含钙乙酸浸取试料分离碳酸钙后的不溶物灼烧后以碳酸钠-硼酸混合熔剂熔融,以盐酸-硼酸混合酸浸取分解,定容。2.经含钙乙酸浸取试料分离碳酸钙后的不溶物以盐酸-硼酸-硫酸混合酸加热分解,定容,过滤除去不溶物。 分取部分滤液于pH大于12.5的条件下,用EDTA标准滴定溶液滴定钙,计算氟化钙的质量分数。滴定内容如下:分取25.00mL试液于250mL锥形瓶中,用瓶口分液器加25mL水,用Miragen电动移液器加2滴硫酸镁溶液(5g/L),用瓶口分液器加5mL三乙醇胺(1+2),加0.1g盐酸羟胺,用瓶口分液器加20mL氢氧化钾溶液(5g/L),加0.1~0.2g混合指示剂,用EDTA标准滴定溶液(0.015moL/L)经过赫施曼光能滴定器或opus电子滴定器滴定至试液绿色荧光消失(在黑色背景的衬垫上观察)为终点。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;opus电子滴定器可通过触屏来进行灌液、预滴定(先加入一定体积后再滴定)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。赫施曼助力萤石中氟化钙含量的测定
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制