当前位置: 仪器信息网 > 行业主题 > >

阿卡他定中间体

仪器信息网阿卡他定中间体专题为您提供2024年最新阿卡他定中间体价格报价、厂家品牌的相关信息, 包括阿卡他定中间体参数、型号等,不管是国产,还是进口品牌的阿卡他定中间体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阿卡他定中间体相关的耗材配件、试剂标物,还有阿卡他定中间体相关的最新资讯、资料,以及阿卡他定中间体相关的解决方案。

阿卡他定中间体相关的资讯

  • 注射剂中间体质量标准制定策略
    药物成品之前的都是中间体。根据产品特点及工艺情况,综合确定关键中间体,关键中间体需要制定质量标准,并检验控制。对于注射剂而言,关键中间体一般是指在配液罐中完成调配的药液。对于注射剂产品,一般会将性状、含量、pH值列为中间体检查项,参考成品的质量标准,将含量和pH值的限度收一收。但光是这样做就有些粗糙了,我们应该根据剂型的特点,产品的特点,有目的地设定中间体检查项,更好地做好产品的质量控制。一、性状对于无色溶液,一般简单地规定“无色澄明液体”即可。但对于有色溶液,特别是灭菌后颜色会加深的产品,建议中间体增加溶液颜色检查项。这样一旦成品颜色比正常情况要深,便于分析是配液工序还是灭菌工序发生的异常。有些冻干产品,随着药液储存时间的延长,溶液颜色也逐渐加深,而一旦冻干开始,颜色即不再变化。这类产品更应建立溶液颜色检查项,并以此检查项确定配液灌装工序的储存时限。基于中间体检查需要简单、快速的特点,一般对比色号即可,不建议使用溶液颜色测定仪。二、含量可以认为,制剂成品的含量控制限度即是药物可以在人体内起效的限度,低于这个限度,药效降低。而制定中间体含量标准的目的就是要保证含量在药品有效期内符合其质量标准。对于非常稳定的品种而言,假如成品的含量限度是90.0%-110.0%,那么中间体含量限度定在95.0%-105.0%即可;假如成品的含量限度是95.0%-105.0%,中间体含量限度可定在97.0%-103.0%。由于含量在效期内基本不会发生变化,中控范围只需能够包容检测方法产生的系统误差。对于储存期间含量逐渐下降的品种,中控含量限度除了要包容方法的误差外,还要包容含量降低的幅度。假如成品的含量限度是90.0%-110.0%,含量在效期内预期降低6%,检测误差不会超过2%,则中控限度应定为98.0%-102.0%。对于冻干产品,由于其标示量和水针不同,影响产品含量的还包括装量。灌装机总是有精度误差的,因此在制定中控含量标准时,还应考虑这一因素。下面用一张图表示某冻干产品制定中控含量限度的思路。 对于其他特殊情况,如采用半透性包材包装的注射剂,也应根据其特点制定做相应的调整。此外,由于尚未灌装的药液不存在标示量这一概念,注射剂的中控含量采用浓度表示(如4.8-5.2mg/ml)较为规范。为了方便理解,企业可以在内部文件中注明浓度对应的百分比。如4.8-5.2mg/ml(96.0-104.0%)。三、pH值大多数的注射剂都对pH值非常敏感,一般不能将成品的pH值标准简单收紧作为中控pH值范围。如硫酸阿托品注射液,中国药典规定pH3.5-5.5,但pH低于4时水解速度明显下降;又如氨茶碱注射液,USP规定pH8.0-9.0,但事实上pH低于8.5原料根本无法溶解。因此,一般以药物最适的pH值范围作为中控范围,同时注意不要触及成品pH值的上下限。四、渗透压摩尔浓度因为渗透压的检测方法非常简单快捷,所以建议成品有渗透压检测项的也在中间体制定,有时投料出现偏差能及时发现。所有的输液产品都会规定渗透压检查项,水针品种用法中包含有静脉推注给药方式的要进行渗透压检测。需要注意的是,有的产品,虽然给药方式是静脉推注,但并不等渗。如地西泮注射液和托拉塞米注射液,限于API溶解性或稳定性的原因,处方中加入了较大量的有机溶剂,形成高渗溶液。这类产品建议也增加渗透压检查项,对产品质量形成更有效的控制。五、有关物质一般终端灭菌的注射剂不需在中间体进行有关物质检测。对于极不稳定的某些产品,如易水解的冻干制剂,可在中控中加有关物质项。并以此验证配液和灌装的试产。六、抗氧剂按照要求,制剂产品放行标准应包括所含的抗氧剂的含量测试,以保证有足够的抗氧剂保留在制剂中,能在整个货架期和所拟的使用期间一直对制剂起到保护作用。 依据上述理念,亚硫酸盐这类属于还原剂的抗氧剂的含量还是非常有必要定在中控标准中的,因为配液及药液在配液罐放置过程中,亚硫酸盐即在被消耗。而依地酸二钠的含量不会发生变化,因此无需进行控制。EMA在《药品注册上市许可申请材料中对辅料的要求》(Guideline on Excipients in the dossier for application for marketing authorisation of a medicinal product)中也指出抗氧剂应提供药品生产过程中的控制方法,但不适用于增效剂,如依地酸二钠。七、微生物负载对于注射剂的微生物负载,国内的GMP有很明确的规定,即:对于除菌过滤前非最终灭菌产品微生物的限度标准一般为:10CFU/100ml对于最终灭菌的无菌产品微生物的限度标准一般为:100CFU/100ml但对于微生物负载的取样位置,各企业却有不同的做法。有的企业会在配液罐中取,有的企业会在药液过0.45μm滤芯后取。后一种做法的依据是:GMP中规定最后一步除菌过滤前,料液的微生物含量应不大于 10CFU/100ml。但其实这样做是有些违背GMP理念的。在欧盟《药品、活性物质、辅料和内包材灭菌指南》中,有如下描述:In most situations, a limit of NMT 10 CFU/100 ml (TAMC) would be acceptable for bioburden testing. If a pre-filter is added as a precaution only and not because the unfiltered bulk solution has a higher bioburden, this limit is applicable also before the pre-filter and is strongly recommended from a GMP point of view. A bioburden limit of higher than 10CFU/100 ml before pre-filtration may be acceptable if this is due to starting material known to have inherent microbial contamination. In such cases, it should be demonstrated that the first filter is capable of achieving a bioburden of NMT 10 CFU/100 ml prior to the last filtration. Bioburden should be tested in a bulk sample of 100 ml in order to ensure the sensitivity of the method. Other testing regimes to control bioburden at the defined level should be justified.翻译如下:大多数情况下不超过10 CFU/100 ml(TAMC)的限度对于生物负载测试是可接受的。如果仅作为预防措施添加预过滤器而不是因为未过滤溶液具有更高的生物负载,则此限度也适用于预过滤器,并且从GMP的角度强烈推荐。如果由于已知具有固有微生物污染的起始物料,则预过滤前的生物负载限度高10CFU/ 100ml是可接受的。在这种情况下,应该证明第一个过滤器能够在最后一次过滤之前达到不超过10CFU/100ml的生物负载。生物负载应在100ml的样品中进行测试,以确保该方法的灵敏度。其他在特定浓度控制生物负载的测试方案应该是合理的。 显然,欧盟是建议在配液罐中取样进行微生物负载检测的。GMP的一个核心理念即是“可控”。要知道即使药液微生物负载很大了,经过预过滤滤芯后也会有几个数量级的下降。数据虽然好看了,但焉知预过滤前未知的微生物负载会不会导致细菌内毒素的失控?有的营养性药物,浓度大,确实适合微生物生长,但如果确知微生物的种类,在可控的前提下进行预过滤,是可以接受的。八、细菌内毒素建议在配液罐中取药液进行检测,与中控含量检测同步进行。九、可见异物、不溶性微粒这两个检查项可以取药液过滤后的样品,取滤芯后或灌装初始样品,各企业可以按照自己的习惯进行管理。不溶性微粒的中控标准制定必然是1ml药液含有多少微粒,而制剂成品的标准是每支样品中含有多少微粒。应注意换算关系,确保中控标准严于成品标准。
  • 拉曼光谱新应用:原位光谱观测多种关键反应中间体
    在 BBC 纪录片《蓝色星球》第二季中,担任解说员的“世界自然纪录片之父”大卫爱登堡(David Attenborough)为了探究二氧化碳对海洋的危害,拜访了一位科学家。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)后者把稀释的酸倒向水中,结果贝壳开始“消失”。贝壳由碳酸钙构成,而酸会溶解它们。构成珊瑚礁的材质,和贝壳是一样的。科学家认为,在 21 世纪之前,珊瑚礁有可能会消失。背后的“罪魁祸首”便是二氧化碳,它们溶解在海水中会变成碳酸。空气中的二氧化碳越多,海水酸性就越强,“死去”的珊瑚礁就越多。有证据显示,燃烧矿物燃料是造成二氧化碳浓度上升的主要原因。因此,全球许多国家都在致力于碳中和。实现“双碳”目标(2030 年前碳达峰、2060 年前碳中和)是中国为应对全球气候变化做出的重大战略决策和庄严承诺,也是构建人类命运共同体和促进人与自然和谐共生的必然选择。其中的战略路径选择之一,是实现碳化工与碳利用产业结构重构,比如利用风能、水能、太阳能等可再生能源,将CO2电催化成为高附加值的化工产品和化学燃料。目前,在用于CO2还原反应的各类催化剂中,铜(Cu)基材料是最具潜力的催化剂,因为其能直接将CO2电催化还原为多种高碳氧和碳氢化合物。此外,人们还可通过调整铜催化剂的形貌、晶面、孔径、颗粒间距离、次表面原子和晶界等参数,来实现特定的催化反应活性和选择性。因此,在实际的电化学反应条件下,原位研究铜表面上CO2的电催化反应、及其反应中间体是非常重要的,这有助于我们更深入地了解 CO2电催化反应机理,并借此设计出更合理、高效的催化剂。尽管目前许多原位表征测试技术,比如表面增强拉曼光谱(SERS,Surface-Enhanced Raman Scattering)、表面增强红外吸收光谱(SEIRAS,Surface-enhanced infrared absorption spectroscopy)、衰减全反射傅里叶变换红外光谱(ATR-FTIR,Attenuated total reflectance-Fourier transform infrared)、X射线吸收光谱、和X射线光电子光谱等,在研究CO2电催化还原反应中取得了快速的发展。但是,如何全面识别其众多表面反应中间体、理解其表面吸附物种之间的相互作用,仍然是一个巨大的挑战。基于此,南京工业大学材料化学工程国家重点实验室邵锋团队及其合作者针对上述挑战,结合运用电化学-壳层隔绝纳米粒子增强拉曼光谱 (EC-SHINERS,electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy)技术、以及从头算分子动力学(ab initio molecular dynamics,AIMD)模拟,对铜表面的一氧化碳电催化反应过程进行系统而深入的研究,首次用全光谱(40-4000cm-1)观测了多种关键反应中间体,指认了中间体的特征拉曼峰,提出了表面吸附物种相互作用机理,并通过同位素标记实验进一步获得证实。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)概括来说,本研究主要关注CO2电催化还原反应中间体和机理的基础研究,以期指导新型高效铜催化剂的设计与制备。▲图 | EC-SHINERS 技术示意图、(FDTD,Finite-difference Time-domain)以及 AIMD 模拟示意图(来源:PNAS)近日,相关论文以《原位光谱电化学探测铜单晶表面一氧化碳氧化还原过程》(In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces)为题,发表在 PNAS 上[1]。邵锋教授(南京工业大学)担任第一兼通讯作者,李景国博士(瑞典乌普萨拉大学)和兰晶岗博士(瑞士洛桑联邦理工大学)担任共同通讯作者。▲图 | 相关论文(来源:PNAS)邵锋表示:“(投稿期间)印象最深的一个插曲,是在我们的返回第一轮审稿意见大概两个月后,编辑给我发来邮件说其中的一个审稿人失去联系了,准备再重新找一个新的审稿人开启新一轮的审稿。”而当时正是俄乌冲突发生最激烈的时候,并且欧美也开始了各类制裁和限制俄国和俄裔人士的风潮。课题组担心其中之一的审稿人可能是俄国或俄裔科学家,因此,或多或少会受到了一点影响,也耽误了审稿的进程。“因此我们的论文从投稿到接收,确实经历耗时很久。虽然虚惊一场,好在最后还是得到了编辑的肯定,最终论文被接收了!”邵锋说。同时审稿人表示,论文的光谱实验部分非常令人兴奋,包含大量有价值的信息,对研究反应机理非常有帮助。此外,理论计算部分质量也很高,预测了各种可能中间体的特征振动图谱,并能与实验结果很好地吻合。其还称,这是一项非常扎实的工作,进行了大量的控制实验和对比实验,同时结合了 AIMD 计算,故论文的论证路线和数据分析令人信服。此外,审稿人也提出了非常重要的建议:即对于特征拉曼峰的归属指认,如何排除其他接近的拉曼峰的重叠与干扰?例如,课题组首次观测并指认了 1220 和 1370cm-1 处的拉曼峰,为 CO-CO 耦合后迅速夺取表面水分子的质子而形成的*HOCCOH 中间体的特征峰。然而,这些峰的位置与反应过程中共存的 *HCO3–/*COOH /*CO32–/*CO2– 等表面中间体的拉曼峰十分接近。因此,该团队需要进行严格的对比实验,来排除可能的重叠与干扰。通过控制实验和理论计算相结合,课题组对这些中间体的特征拉曼峰进行了明确归属,并由此提出了相应的电催化反应机理和路径。研究中的第一步是对原位检测技术的选择。鉴于其具有明确的表面状态以及光电性质,铜单晶表面被用作电催化反应基底。常用的 SERS 技术很难应用于单晶界面研究,而基于红外的光谱技术又难以提供低波数范围(至-0.8 V);2. 不同反应氛围(CO 与 Ar 饱和溶液);3. 不同反应阳离子(CsOH、KOH 与 LiOH);4. 不同反应晶面(Cu(100)、(111)与(110)晶面5. 不同反应 pH 值(CsOH、CsHCO3 与 CsCl 溶液);6. 不同同位素标记(13CO 与 D2O 溶液);7. 不同中间体的稳定性(*OCCO、 *HOCCO, 和*HOCCOH物种)。8. 不同特征峰的重叠(*HCO3–/*COOH /*CO32–/*CO2– )等。值得注意的是,课题组的 AIMD 的计算还表明,溶剂水分子不太可能与铜表面吸附的一氧化碳形成氢键,这意味着 *CO 在较低的过电位下,难以直接从溶剂水分子里得到质子进而形成 *COH/*CHO。与此同时,之前文献报道的 *OCCO 和 *HOCCO 作为 C-C 耦合的关键中间体,它们在铜表面依旧拥有较高的反应活性而发生进一步的反应,最终形成 *HOCCOH 中间体。其中,吸附于铜表面的水分子可以作为质子源参与反应,同时还能留下 Cu-OHad 这一表面吸附物种。下一步,该团队计划开展基于新材料的 CO2捕获富集、催化转化与产物分离耦合的过程研究,以提高传统反应过程的资源和能源利用率为目标,助力“双碳”目标的高质量实现。参考资料:1.Shao, F., Wong, J. K., Low, Q. H., Iannuzzi, M., Li, J., & Lan, J. (2022). In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences, 119(29), e2118166119.
  • 重要科研用试剂核心中间体研发 申报指南
    关于发布“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南的通知 各有关单位:   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,满足我国科学研究对试剂需求日益增长的需要,科技部在认真总结前期工作的经验、成果并广泛征求各有关部门(单位)、地方对科研用试剂提出的需求的基础上,决定启动“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”。通过本项目的实施,将进一步完善产学研相结合的机制,在政府的引导下构建更加完善的科研用试剂产学研用联盟 发挥和提升我国科研用试剂的自主创新及产业化的能力,进一步推动我国科研用试剂行业的稳步发展,为科研提供更有力的支撑。   为充分调动各方的积极性,促进科技资源优化配置,公平、公开、公正地选择课题承担单位,科技部对本项目的课题采取公开申报,择优委托的方式选择课题承担单位,现将项目课题申报指南发给你们,请按照指南要求,做好组织申报工作。   联系人:王建伦 010-58881698       wangjl@most.cn   附件:“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南   科技部科研条件与财务司   二〇〇九年六月二十三日
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 【瑞士步琦】近红外快速检测药物原料与中间体
    近红外快速检测药物原料与中间体近红外应用”1简介维生素 C 也被称为抗坏血酸,是一种对人体至关重要的营养物质,不仅支持免疫系统的正常运作,还帮助伤口愈合并促进铁的吸收。虽然许多水果和蔬菜,如柑橘类果实、草莓和西兰花,都是维生素 C 的天然来源,但目前已经开发出了将这种重要维生素在实验室中大规模生产的方法。本文将介绍两种主要的维生素 C 工业制备方法——传统的雷施勒法和改良的双阶段发酵法。2雷施勒法:经典方法的现代应用1930 年代,瑞士化学家 Tadeus Reichstein 开发了一种结合有机化学合成和微生物工程的方法来生产维生素 C。这个过程始于一种称为山梨醇的糖醇,通过以下步骤转化为维生素 C:首先在微生物的帮助下,山梨醇被转化为山梨酸,然后山梨酸经过一系列化学反应,最终转化为2-酮-L-古龙酸(2-KLG),最后通过催化加氢,2-KLG 被还原成为抗坏血酸。这种方法不仅高效,而且能够以相对低成本在全球范围内生产和供应维生素 C,满足各种商业和健康需求。3双阶段发酵法:生物技术的力量随着科技进步,双阶段发酵法应运而生,这是一种更环保且依赖生物过程的生产方法。这种技术利用两种不同的微生物,将山梨醇转化为维生素 C:山梨醇通过特定的细菌转化为山梨酸,再利用另一种微生物通过发酵过程将山梨酸转化为 2-KLG,最后 2-KLG 经由化学或生物催化剂还原成维生素 C。这种方法强调了生物转化的效率和环保性,减少了对传统化学试剂的依赖,同时保持了高产率和产品质量。无论哪种制备方式,山梨醇和古龙酸都是重要的原料及中间产物,因此对其含量的准确测定关系到最终产品的收率和质量。原料山梨醇因体系简单,仅需测定其水分就能推断出山梨醇的含量,而中间体古龙酸就需要对水分和有效成分含量同步检测。常规测定中间产物中古龙酸含量的方法有高效液相色谱、紫外可见分光、比色法以及酶联免疫吸附测定等方法,但以上常规方法均需要对样品进行处理且需消耗一定试剂或耗材,同时伴随长短不一的等待时间。近红外光谱法能够对同一种样品的多个指标同时进行快速测定,既不需要复杂的前处理步骤,又不用漫长的等待流程。下面就介绍使用步琦近红外光谱仪测定山梨醇和古龙酸的案例。4实验内容分别准备山梨醇样品 60 个和古龙酸样品 59 个,已知山梨醇样品水分和古龙酸样品中水分和古龙酸含量,并用 BUCHI ProxiMate 测量上述样品的近红外光谱,随后使用软件 AutoCal 自动建模,所得模型如下:▲ 图1 山梨醇水分模型▲ 图2 古龙酸水分模型▲ 图3 古龙酸含量模型上述模型评价指标如下表:_山梨醇古龙酸属性水分水分古龙酸范围25.6-27.71.66-6.3685.65-94.17SEC0.3600.0900.441SECV0.4480.1170.5874结论▲ BUCHI ProxiMate 近红外光谱仪上述案例中使用的是BUCHI 的 ProxiMate 近红外光谱仪,具有 IP69 的高防护等级及 FDA 认证的外壳设计,能够胜任各种复杂条件下的测量工作,固定阵列光栅也无惧振动环境的干扰,上下两种照射方式及各式检测附件能够满足多种样品状态的测量需求。如果您对 BUCHI 近红外产品及应用或是其它仪器感兴趣,欢迎通过下面联系方式咨询。
  • 德祥顺利参展第10届中国(长春)国际医药原料、中间体、包装设备展览会
    2017年3月23日到25日,第10届中国(长春)国际医药原料、中间体、包装设备展览会在长春国际会展中心顺利举办,德祥携手众多进口实验室仪器供应商在展会上亮相。 作为制药行业的展会,我司代理的德国Hettich离心机,德国Heidoph旋蒸、美国SP scientific、冻干机、德国Pharmatest等仪器作为代表参展,在展会期间,我们产品的质量和性能受到客户的高度认可,客户也对他们目前遇到的技术问题与我们工作人员进行沟通,我们的技术人员也一一给予了满意的答复。 德祥,作为进口实验室仪器的代理商,将一如既往为广大新老客户提供*的产品和完善的服务,欢迎来电咨询,了解更多资讯和产品详情! 电话:4009-000-900
  • 创新通恒参展2012中国国际医药原料药、中间体、包装、设备交易会
    第69届中国国际医药原料药、中间体、包装、设备交易会于2012年11月7日至9日在厦门国际会展中心隆重举行。本届展览交易会的主题是“药品安全之源,品牌优质之选”,旨在关注药品安全,打造创新制药品牌,引领中国制药工业发展大势。 本次交易会吸引了大批国内外众多知名厂商参与。 北京创新通恒科技有限公司作为国内能提供工业化核酸药物合成仪及大型工业级制备纯化系统的企业,组织了公司精干技术人员和市场人员参加了本次交易会。创新通恒十多年来一直专注色谱产品领域的研发及生产,不断攻坚克难,满足客户不同需求。本届展览交易会上我公司展出的产品受到了广大参观者的关注和好评。 “因为专注,所以专业”创新通恒一定能为广大客户提供优质的产品和服务,为用户创造价值。 交易会开幕式 客商正在参观创新通恒展品 创新通恒市场人员与客商进行交流 创新通恒技术人员解答客商的问题
  • 德国新帕泰克将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会!
    德国新帕泰克公司将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会(62nd API)! 德国新帕泰克公司将参加于2009年05月12-14日在西安曲江国际会展中心(西安市雁展路1号)举办的&ldquo 第62届中国国际医药原料药、中间体、包装、设备春季交易会&rdquo ,The 62nd API China 2009 Xi&rsquo an。 公司展位号B1309,届时公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS 和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展!期待与大家进行专业的现场技术交流,并可以在现场提供样品粒度检测。 热忱欢迎各界人士光临公司展位!
  • 德国新帕泰克公司将参加第61届中国国际医药原料药、中间体、包装、设备秋季交易会!
    公司将参加于2008年11月05-07日在苏州国际博览中心(苏州工业园区现代大道博览广场.) 举办的“第61届中国国际医药原料药、中间体、包装、设备秋季交易会 The 61st API CHINA&INTERPHEX CHINA”。 公司展位号3A522,公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS和世界上 第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展! 随着对原料药出口要求的不断提高,粒径分布已经成为原料药出口过程中一个很关键的参数指标。 德国新帕泰克专注于医药行业的粒度检测需要,在全球尤其欧美拥有大量的医药客户,专利的干 法激光粒度仪HELOS/RODOS能为您提供快速、方便的原料药粒度检测技术,功能强大,完全符 合FDA的各项要求! 届时中国区首席代表耿建芳博士等将与大家进行专业的现场技术交流,并可以在现场测试样品。 热忱欢迎各界人士光临公司展位!
  • 丹东百特精密仪器亮相第86届中国国际医药原料药中间体包装设备交易会
    在初夏的美丽羊城-广州,丹东百特携百特激光粒度仪Bettersizer 2600,纳米粒度电位仪BeNano 90 Zeta,智能粉体特性仪 BT-1001,图像颗粒分析仪BT-1600参加了为期三天的第86届中国国际医药原料药中间体包装设备交易会。此次展会吸引了生物制药行业上下游众多企业,同时丹东百特也为制药行业提供了全方位的颗粒检测解决方案。会议开展于广交会展馆,拥有9.2、9.3、10.2、10.3、11.2五个展区,分别展示了制药设备、干燥设备、包装设备、检测设备及原料药和辅药材料,吸引了数以万计的观众前来交流学习。期间,到访百特展位的观众络绎不绝,对于粒度检测比较陌生的观众,百特销售经理从激光粒度仪的原理、测试方法、报告解读以及售后保养等方面为每位观众进行详细全面的介绍。对于前来交流的的老客户,百特销售经理更是细心的询问仪器目前的使用状态是否良好,若出现疑问,销售经理和工程师在现场立刻解决问题,保证每位客户在百特展台的交流都有所收获。耐心的仪器讲解、一丝不苟的做事态度赢得了每一位观众的好评。针对生物制药行业,丹东百特深入研究行业标准,产品均符合ISO13320-2016,21CFR Part 11等制药标准及审计追踪。对于药物颗粒检测,Bettersizer 2600 同时可以具备干湿法分散器及微量耐腐蚀样品池进样方式。正反傅里叶光路设计使得粒度检测范围达到0.02μm-2600μm,重复性和准确性都能达到国际水平。对于纳米颗粒检测,例如蛋白质、脂质体、纳米悬浮液,丹东百特研发的第四代纳米粒度电位仪BeNano 90 Zeta,采用高性能APD和准确的温控系统能够准确测量颗粒的粒度和电位变化。BT-1600图像颗粒分析仪是颗粒检测的眼睛,它能够拍摄到清晰的颗粒照片并通过百特自主研发的高速率分析软件进行颗粒的多项指标分析,例如:长径比、圆形度、单体颗粒和颗粒群等。智能粉体特性仪能够测量粉末的14项粉体特性指标,能够充分表征粉末的物理特性。丹东百特仪器有限公司秉着“诚信经营,以客户为本”的经营方针,为广大制药用户提供全方位的颗粒检测方案,展会还在进行中,百特团队在广交会展馆9.2A06展位期待着您的光临。
  • 定位中国制药新未来——第82届中国国际医药原料药/中间体/包装/设备交易会在杭州召开
    p    strong 仪器信息网讯 /strong & nbsp 2019年5月8-10日,制药及制药设备行业盛会——第82届中国国际医药原料药/中间体/包装/设备交易会(以下简称“API China”)在杭州国际博览中心盛大召开。1200余家医药原料、辅料配料、医药包装、制药设备及检测仪器企业参展,超过5万名全球药品、保健品与化妆品领域专注研发与生产的精英人士汇聚于此,共同分享大健康产业蓬勃发展带来的巨大市场机遇,探讨中国制药行业未来的发展,为观众打造一场规模盛大、产业链齐全的制药工业展会。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/698835a3-34ce-4bb4-8460-709d2db1275e.jpg" title=" 观众入场.JPG" alt=" 观众入场.JPG" / /p p style=" text-align: center " 观众入场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/2c545a59-36c3-426c-b0df-73dbb1c52986.jpg" title=" 现场.JPG" alt=" 现场.JPG" / /p p style=" text-align: center " 展馆内景 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9decb2af-c7d2-4017-af58-cef6551293c9.jpg" title=" 现场3.JPG" alt=" 现场3.JPG" / /p p style=" text-align: center " 展馆外景 /p p   API China是中国制药领域规模较大、历史悠久的展会,也是海内外数万家药品与保健品生产企业采购原料药、中间体、药用辅料、医药包材、制药设备的“一站式”的平台。展会当天,穿梭于各展馆之中,可以看到现场人头攒动,展商和参展观众热情高涨,气氛十分热烈。 /p p   除了展览之外,本次展会还给展商以及参展观众提供了一个与前沿技术接触、和专家学者交流的机会。当一致性评价、两票制、智能化、信息化、自动化等政策和趋势向制药工业袭来时,很多企业或许无法采取及时有效的应对措施。本次展会特针对于国内各种制药“新政”举办了三十余场高质量会议论坛,邀请了来自NMPA、CDE、核查中心、中检院、药典委、省市药检所等相关政府部门领导及国内外优秀的制药企业、CRO公司、原辅料企业的百余位嘉宾,为制药行业同仁带来最务实的分析、指导和建议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/0578332c-f636-4dea-9904-fa05e4eea44c.jpg" title=" 高峰论坛.JPG" alt=" 高峰论坛.JPG" / /p p style=" text-align: center " 2019中欧医药产业发展论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/1d8d1384-9206-4814-933b-a12bdf29abec.jpg" title=" 仪器论坛.JPG" alt=" 仪器论坛.JPG" / /p p style=" text-align: center " “工欲善其事,必先利其器——论现代仪器技术在药品研发与质控中的应用”论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9d0fe1b5-8f42-471c-b061-58bc2cb1a55e.jpg" title=" 一致性.JPG" alt=" 一致性.JPG" / /p p style=" text-align: center " API China 巡回交流会(杭州)注射剂一致性评价技术和法规研讨会 /p p    span style=" color: rgb(0, 112, 192) " strong 部分实验室仪器设备参展商: /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/909e4ccd-dc69-4316-8f16-ecff5fd194b3.jpg" title=" 永合创新.JPG" alt=" 永合创新.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永合创信 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/5699fd34-8a39-4c8e-81af-46217216bedf.jpg" title=" 永岐实验.JPG" alt=" 永岐实验.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永生仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/3a5e374c-939a-438e-a34e-dd221ea99dbe.jpg" title=" 苏盈仪器.JPG" alt=" 苏盈仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 苏盈仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/d1685a44-34c3-4c55-ae7f-ce4241547797.jpg" title=" 真理光学.JPG" alt=" 真理光学.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 真理光学 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/799f973d-70ba-472e-a4b9-dc1404612bc7.jpg" title=" 长城.JPG" alt=" 长城.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 郑州长城 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/83938542-3488-4bf2-a322-ed06e4bf6966.jpg" title=" 岩征仪器.JPG" alt=" 岩征仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 岩征仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/26c575da-30bd-4fde-8bb4-c9015961288f.jpg" title=" 马尔文.JPG" alt=" 马尔文.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 马尔文帕纳科 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/586bb406-01bb-4eb8-bbe5-e22b1d368003.jpg" title=" 庚yu .JPG" alt=" 庚yu .JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 庚雨仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/aa61d815-7eea-43ce-a924-b7253669736f.jpg" title=" 欧世盛.JPG" alt=" 欧世盛.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 欧世盛 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/9a4de8d0-be36-4822-8d7b-65df63b0dea2.jpg" title=" 上海雅称.JPG" alt=" 上海雅称.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 上海雅程 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/7c223040-8f13-45a6-8af4-f80178701006.jpg" title=" 仪器信息网.JPG" alt=" 仪器信息网.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 仪器信息网 /strong /span /p p br/ /p
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 微反应、固定床、釜式反应器杂化,实现硝化、加氢、环化、还原全连续
    个前言在化学合成中,每一步反应都有其独特性。对应于其独特性,化学化工研究者需要寻找合适的反应器来研究其工艺参数,实现放大生产。今天给大家介绍一篇多步反应全连续的文章。作者应用微反应器、固定床反应器以及釜式反应器杂化,实现硝化、加氢、环化、还原全连续操作,实现了Afizagabar (S44819)关键中间体的连续生产。研究背景Afizagabar (S44819) 是一种首创的、有竞争性和选择性的 α5-GABAAR 拮抗剂。由于临床研究需要相对较高的剂量,在产品的开发阶段需要生产约150kg的Afizagabar。然而,在釜式工艺放大的过程中,特别是在硝化和氢化的步骤中,安全及放大问题阻碍了产品生产的进程。图1. Afizagabar方程式研究过程Afizagabar(S44819)的合成,涉及了两个关键中间体INT15和INT23 ,如图2所示,两者经过一系列反应最终合成产品S44819。图2. Afizagabar(S44819)合成路线INT15的合成过程:原料STM1先硝化后得到中间体11,中间体11经过Dakin−West反应、还原得到中间体13,中间体13关环、再经过硼氢化钠还原得到关键中间体INT15。本文主要介绍INT15的多步串联合成研究过程。一. 硝化工艺过程研究1. 釜式硝化工艺研究合成INT15的第一步硝化,釜式工艺是以硝酸-硫酸混酸为硝化剂,反应时间50−90分钟。但当温度升高,会生成危险的二硝基衍生物而安全风险大。硝化反应放热量大,步骤本身的反应热存在安全风险。而且后续步骤的反应热也存在安全风险。从DSC数据可知(图3),中间体11和中间体12的分解能量非常的高, (ΔHINT11 = −745 J/g, onset: 205 °C ΔHINT12 = −1394 J/g, onset: 187 °C),如果发生分解那么后果将会变得非常严重。图3. 中间体11和中间体12的DSC谱图2. 微反应连续硝化工艺研究作者对传统的硝化工艺进行了重新设计,使用微反应器代替间歇釜来实现硝化过程。图4.连续流硝化反应作者选用硝酸(HNO3)和冰醋酸(AcOH)作为硝化剂,对连续反应条件做了优化。通过实验得到硝化步骤的操作参数范围为:温度为35~45℃,停留时间30S,流速范围为1-6mL/min,反应转化率接近100%。该连续流工艺与传统釜式工艺相比:连续流微反应反应时间大大缩短(由釜式50−90分钟缩短到30秒);连续流无低温操作,节省能耗(微反应可以在35~45℃下进行,釜式在-65°C下进行);反应可控性好,易于放大;消除了二硝的产生,生产的安全性大大提升。二. 固定床加氢过程研究图5. 氢化步骤反应方程式针对INT12加氢的过程,作者采用了固定床工艺。作者选用Pd/Al2O3做为催化剂,在固定化床式加氢反应器中进行反应,通过加入HCL将INT13分批成盐的方式解决其不稳定的问题。并且,作者打通了微反应器硝化和固定床反应器氢化的两步连续过程。同时,为了减少单元操作和溶剂置换工序,作者对氢化、关环以及还原步骤的溶剂进行了优化。表1.不同溶剂对氢化和环化反应的影响研究发现,使用四氢呋喃/二氯甲烷/乙腈体系不仅有很高的氢化以及环化的转化率,而且可以将硝化、氢化、环合以及还原工序串联,实现连续化生产。多步反应全连续,溶剂的选择往往是成败的关键。三. 多步串联合成中间体INT15图6. 连续串联合成中间体INT5工艺流程图作者选用微通道反应器、固定化床加氢反应器、釜式反应器杂化的方式,经过溶剂筛选、工艺条件优化,将硝化、氢化、环化、还原反应步骤串联,中间不经过分离,实现了多步反应的全连续(图6)。多步全连续工艺不仅可以减少操作步骤,而且生产效率大幅度提高。串联后,实验室规模稳定运行5小时,并以11.95g/h的通量得到97.1%纯度的INT15。实验小结连续流技术改变了药物研究的时空产率,有了更广的参数窗口。与在线分析仪器的良好的兼容性,可以更好地实现自动化和智能化,有助于提高研发效率和快速转化,从而获得更好的技术优势;微通道连续流技术,由于其较低的持液量、强大的传质和换热能力,对于在传统间歇生产模式下具有安全风险的反应,例如涉及剧毒试剂、不稳定中间体的反应,具有较好的优势;此外,连续流生产是降低API合成工艺放大的有效工具,可以更快地应对市场变化,节省中试放大成本,提升企业的竞争力。参考文献:Org. Process Res. Dev. 2022, 26, 1223−1235编者语康宁反应器模块化的组装方式和开放的接口,非常适合与其他类型的反应器、在线检测设备以及后处理装置联用。康宁反应器无缝放大的技术,可以帮助客户实现更高效的工业化生产,尤其是硝化、加氢、重氮化、卤化等危险反应工艺。在过去的几年中,康宁已实施了多套杂化的多步连续工艺,帮助客户实现了传统间歇反应釜工艺向连续流技术的升级和改造,取得了非常好的社会效应和经济效应。
  • 雷尼替丁啊,雷尼替丁,都是NDMA惹得祸
    Breaking News美国FDA继2019年9月13日发出警示在雷尼替丁样品中检出NDMA后,于2020年4月1日发布公告要求制药商立即从市场上撤回所有处方和非处方(OTC)雷尼替丁产品。这是正在进行对雷尼替丁(商品名 Zantac,善胃得)中N-亚硝基二甲胺(NDMA)污染物管控的最新举措。FDA已经确定,某些雷尼替丁产品中的杂质会随着时间的推移以及在高于室温条件下存储而增加,并可能导致消费者暴露于不可接受的杂质水平中。NDMA是个什么鬼?NDMA全名N-二甲基亚硝胺又称二甲基亚硝基胺,分子式C2H6N2O,分子量74.08,黄色液体,可溶于水、乙醇、乙醚、二氯甲烷,属于亚硝胺类化合物。NDMA的合成通常由二甲胺与亚硝酸盐在酸性条件下反应生成。根据ICH M7通则对基因毒性杂质的分类原则,NDMA应属于第一类已知诱变性和致癌性的物质。在世界卫生组织国际癌症研究机构公布的致癌物清单中NDMA被列为2A类致癌物。 NDMA大事记12018年7月5日欧盟医药管理局(EMA)公告宣布,中国某药企原料药缬沙坦含有杂质NDMA。 22018年7月13日FDA发布通告,提醒医生和患者关于几种含有缬沙坦活性成分的高血压和心力衰竭治疗药的自愿召回。召回原因是缬沙坦原料药中含有基因毒性杂质NDMA。 32018年9月28日FDA对中国某药企部分产品发布进口禁令,意大利官方要求欧盟国家停止进口该公司缬沙坦原料药及中间体。欧盟官方也在其官方网站发布类似公告。42019年9月13日FDA警示在雷尼替丁样品中检出亚硝基二甲胺(NDMA)。 52019年12月5日美国FDA宣布开始检测一线降糖药二甲双胍的样品是否含有超过限度的致癌物NDMA,如果发现二甲双胍药品中存在高含量的NDMA,将酌情建议召回。 NDMA从哪来?遗传毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。此外,药物在合成、储存或者制剂生产过程中也可能会降解产生遗传毒性杂质。药物中NDMA的可能来源包含以下方面: 1. 硝酸环境下与体系中的二甲胺发生反应得到 2. 药物本身发生降解产生二甲胺,然后继续与硝酸盐反应得到 3. 生产工艺过程中使用了二甲胺前体试剂,由其发生降解得到 4. 药物含有二甲胺或者类似结构,通过氯胺化或者氧化等途径降解产生NDMA,如雷尼替丁、二甲双胍等 5. 药物合成过程中使用了叠氮试剂或亚硝酸盐,在有二甲胺供体的情况下反应生成NDMA,如四氮唑类药物缬沙坦、厄贝沙坦、氯沙坦等 6. 其他途径引入,如制药用水、辅料等 NDMA限度值?根据WHO的数据,NDMA的可接受限度AI值为0.005~0.016 μg/kg,换算后为0.375~1.2 μg/天。根据不同药物的用药特点,对NDMA的限度做了不同要求。2018年12月FDA发布了血管紧张素II受体拮抗剂(ARB)药物中NDMA的可接受摄入量为96 ng/天。NMPA对缬沙坦的生产要求中规定了NDMA的限度不得过千万分之三(相当于EMA的暂定参考限定值0.3 ppm)。此外,在FDA的公告信中也提到二甲双胍中NDMA的可接受日摄入水平为96 ng/天,根据该值及最大日剂量则可计算出二甲双胍药品中NDMA的限度控制水平。如盐酸二甲双胍片最大日剂量为2 g,则该产品中NDMA的可接受摄入水平是0.048 ppm。 对于雷尼替丁,FDA在公告信中提到,建议制药公司如检测发现NDMA超出可接受日摄入水平(雷尼替丁96 ng/天或0.32 ppm)则因召回其产品。此次全面撤回是发现杂质NDMA会随着时间的推移以及在高于室温条件下存储而增加,从而导致严重的用药安全问题。 NDMA如何测?药品中遗传毒性杂质NDMA的含量极微,控制限度比较低,对检测方法灵敏度提出了很高的要求。目前中国NMPA、美国FDA、欧洲药典委员会EDQM及加拿大卫生部等机构公布的NDMA检测方法主要有GCMS、GC-MS/MS、LC、LC-HRMS、LC-MS/MS法等。随着美国雷尼替丁的退市,今后雷尼替丁中的NDMA测定需求尚未可知,但其他药品如沙坦类药物、替丁类药物、二甲双胍等这些药物中的基因毒性杂质地测定仍将继续。LCMS-8050同时测定沙坦类药物中NDMA、NDEA和NMBA5.0 ng/mL标准样品MRM色谱图 岛津版完整解决方案在经历全球范围内对基因毒性杂质致癌的恐慌之后,药品监管机构越来越警惕其他药物可能受到污染的风险。从缬沙坦到雷尼替丁,再到二甲双胍,由遗传毒性杂质NDMA引起的风波接连不断,NDMA控制的重要性不言而喻。为规范和指导化学药物中亚硝胺类杂质研究和审评,2020年1月6日国家药品监督管理局组织起草了《化学药物中亚硝胺类杂质研究技术指导原则(征求意见稿)》,面向社会公开征求意见。为了更好地对该类药物中的遗传毒性杂质进行质量控制,岛津公司开发了基于GCMS、GCMS/MS、LC、LCMS/MS以及Q-TOF平台的相关药物中NDMA检测方法,精心汇编了《化学药中遗传毒性杂质NDMA的检测方案》。此外,为了应对制药行业相关用户的需求,岛津分析中心还编写了《药品中基因毒性杂质检测整体解决方案》,收入了药品中磺酸酯类、亚硝胺类、残留溶剂等基因毒性杂质的应用方案。希望我们的工作能够为您带来帮助。
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • 日本ATAGO(爱拓)折光仪在制药行业中成功应用
    折射率(又称折光率、折光系数RI)是物质的物理常数,固体、液体和气体的纯物质都有一定的折射率。如果其中含有杂质则折射率将发生变化,杂质越多,偏差越大。因此折射率常作为检测原料、溶剂、中间体和最终产物的浓度、纯度及鉴定未知样品的依据。 ATAGO(爱拓)全自动旋光仪 (型号:AP-300)用于原料药、 中间体、 以及成品药的比旋度的检验 制糖业主要是用旋光仪检测糖的纯度。 产品的特性概况: &bull 国际糖度(温补)标度在测量过程中检测旋光度 &bull 与温度就进行温度补正, &bull 没有恒温样品管也自动显出准确的国际糖度 &bull 可存储10种旋光管信息,自动计算。 &bull 丰富的配件选择 折光系数是原料药的一个非常重要的参数,用折光方法能方便快捷的检测检测某些药品的纯杂程度或者测定其含量,此外折光率也常被用来用来检测中药汤剂的浓度和控制中草药的汤剂质量。&ldquo 药典&rdquo 是当今全世界所有医药公司在药用物质的研究、开发、生产及测定过程中都必须遵循的质量标准。药用物质不仅仅包括药品和静脉注射类药物,还包括化妆品和保健产品。药典中包含了许多参考值,如原材料的折光系数和旋光度/比旋光度,因此折光仪、旋光仪在制药行业的有重要的作用。 《中国药典》规定折光率测定方法,采用钠光谱的D线(589.3 nm)测定供试品相对于空气的折光率(如用阿贝折光计,可用白光光源)。除另有规定外,供试品温度为20℃。测量后再重复读数2次,3次读数的平均值即为供试品的折光率。测定用的折光计需能读数至0.0001。 日本ATAGO(爱拓)专业生产制造折光仪70多年,是折光仪和旋光仪的领导者。其折光仪产品包括NAR-1T阿贝折光仪、NAR-3T精密型阿贝折光仪、DR-A1数字式阿贝折光仪和RX-5000&alpha 、RX-5000&alpha -plus、RX-7000&alpha 、RX-9000&alpha 等全自动台式数显折光仪等。此外,还开发出来PAL-RI、PAL-BX/RI手持数显折射仪、MARSTER-RI手持刻度式折射仪。这些仪器可方便的用于实验室及检测机构做精密检测和快速检测。 尽管阿贝折光仪可以满足药典的最低要求,但需要外接水浴装置,测量结果往往因操作者而异,并且实验结果不能传输或自动记录,但因为价格相对便宜,这种型号的折光仪在制药行业中也有很多的用户。某些特殊型号的阿贝折光仪例如ATAGO(爱拓)的NAR-1T LO有一些特殊应用,可用于测量低RI值的样品,如液体麻醉剂(约1.27 RI)。全自动台式数显折光仪具有精度高、能精确控温、测量方便快捷等优点,因此得到越来越多的制药企业选用。ATAGO(爱拓) RX系列全自动台式数显折光仪带Peltier控温装置,不再需要水浴,能实现精确控温;而且具有极高的精确度,测量精度可达小数点后五位(± 0.00002 RI)。 附:药典中常用的原料药折射率指数 维生素E 1.494~1.499 苯甲醇 1.538~1.541 丙酸酐 1.403~1.405 苯丙醇 1.517~1.522 薄荷素油 1.456~1.466 大豆油 1.472~1.476 日本ATAGO(爱拓)自动旋光仪在制糖、制药行业的应用 快拿起电话 拨打020-38106065/38108256 或者登陆http://www.atago-china.com:咨询订购吧 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 &hellip 如果想了解RX台式折光仪、在线折光仪,在线浓度计,旋光仪系列产品的更多信息, 请访问: http://www.atago-china.com/
  • “折光、旋光一键搞定”——ATAGO(爱拓)首创折旋光一体机
    近日,ATAGO(爱拓)宣布推出新品“旋光仪”产品——RePo-1折旋光一体机,旨在帮助中小企业以更经济的成本,轻松享有更为专业的仪器体验。 ATAGO(爱拓)中国区域总经理表示:“ATAGO(爱拓) RePo-1折旋光一体机致力于为中小企业提供经济型、便捷性、环境适应性、无需耗材损耗,生产线上的中间体监测设备的应用解决方案。 RePo-1折旋光一体机可同时测量旋光度和Brix值,以及国际标准糖度,其原理是根据旋光和折射率的检测原理样品。用户只需在样品槽内放置3ML的样品,按下START按钮,即可测量旋光性和折射率。自动计算折射率、国际标准糖度、比旋光度、浓度。如果预先设定了上限和下限值,当样品超过设定范围,仪器也可以灯光警报。便携式,功能强大,适合制糖、制药、食品等多行业既需要检测旋光度又需要检测Brix值的客户。 详细产品参数: 详细产品资料请登录ATAGO(爱拓)官方中文网站。
  • 川宁生物:合成生物学管线稳定推进
    川宁生物(301301) 2023 上半年实现营收24.2 亿元(+21.8%,括号内为同比数据,下同);归母净利润3.91 亿元(+64.8%);扣非归母净利润3.93 亿元(+65.5%),经营性现金流净额10.4 亿元(+1636%),业绩略超预期。Q2 业绩环比再加速,盈利能力加强:单季度看,公司Q2 实现营收11.5亿元(+16.3%),归母净利润2.15 亿元(+57.8%),归母净利润环比+22.8%。业绩快速增长主要因为疫情放开后需求端的快速恢复。盈利能力方面,由于规模效应的体现叠加原材料成本下降,公司Q2 毛利率环比提升4.7pct 至30.9%。期间费用率随着收入增长而下滑,其中管理费用率同比下滑4.3pct 至3.0%,财务费用率同比下滑2.0pct 至1.2%。综合来看,2023 上半年销售净利率同比提升4.2pct 至16.2%,盈利能力不断加强。抗生素中间体疫后恢复良好:分品种看,公司2023 上半年硫红收入7.3亿元(-2.4%);头孢中间体收入5.3 亿元(+16.3%),青霉素类中间体9.8亿元(+54.7%);疫情放开后,头孢和青霉素类中间体需求恢复良好;其中,6-APA 平均价格同比涨价6.7%,销售量同比增加50.8%,青霉素G 钾盐平均价格同比涨价3.4%,销售量同比增加16.4%。合成生物学研发管线丰富,产能丰富,项目落地在即:公司在上海建立合成生物学研究院,依托强大的研发团队、4 大底盘菌研发平台等,已有十数个项目管线,且部分管线有望短期落地。川宁生物首个合成生物学产品红没药醇预计在下半年形成收入。随着下半年公司全资子公司疆宁生物绿色循环经济产业园一期投产,公司将完成合成生物学从选品—研发—大生产的全产业链布局。红没药醇、5-羟色氨酸、依克多因、红景天苷等合成生物学系列产品的商业化生产将标志着公司从资源要素驱动向技术创新驱动的成功转变,从而实现公司效益的稳步提升。合成生物学巩留新基地一期有望在2023 年年底前建成,新基地设计产能包括红没药醇 300吨、5-羟基色氨酸 300 吨、麦角硫因 0.5 吨、依克多因 10 吨、红景天苷 5 吨、诺卡酮 10 吨、褪黑素 50 吨、植物鞘氨醇 500 吨及其他原料的柔性生产车间;其中红没药醇已进入动销;5-羟基色氨酸通过合成生物学技术来生产,其工艺达到业内最高的发酵水平和提取收率,该产品通过微生物发酵法生产,故产品天然度为100%,且生产成本低于植物提取,目前该产品仍在中试验证;麦角硫因公司利用合成生物学技术来进行生产,该技术和用蘑菇菌丝体发酵相比具有工艺简单、发酵周期短、产物浓度和糖转化率高等特点,具有显著的竞争优势,目前该产品也在中试验证。两项产品均在中试阶段,即将为公司提供业绩。
  • 【热点文章】“标准物质与标准品”专题文章推介
    【编者按】本专题由编委天津阿尔塔科技有限公司张磊博士进行组稿,共收录了3篇文章,分别涉及稳定同位素氘标记盐酸曲托喹酚的制备、氘标记克伦丙罗新的合成方法研究与结构表征,以及盐酸莱克多巴胺-D6新的合成方法研究与结构表征。借助内标试剂的同位素稀释质谱法,只需对样品进行简单的前处理即可利用高分辨质谱进行检测,既便捷高效、降本降耗,又大大提高检测的准确性和灵敏度。因此,对天然丰度的检测用标准品进行稳定同位素标记,高效地合成出相应的内标物,对于食品检测领域具有重要意义。一、稳定同位素氘标记盐酸曲托喹酚的制备1、背景介绍盐酸曲托喹酚又名喘速宁,是β2受体激动剂。目前世界范围内均采用传统的外标法进行测定,但存在着物质浓度低、样品基质复杂、干扰物质多、代谢物多样等问题。而同位素稀释质谱法(IDMS)很好的解决了这一问题。因此,合成稳定同位素标记的盐酸曲托喹酚对于准确检测食品和人体代谢物中曲托喹酚的含量具有重要意义。当前,天然丰度的盐酸曲托喹酚的合成已经有了成熟报道,但关于稳定同位素标记的盐酸曲托喹酚的合成文献还未见报道。本文以廉价的2-(3,4,5-三甲氧基苯基)乙酸为起始原料,将其具有天然丰度的三个甲基通过化学手段置换为具有氘标记的甲基,进而在曲托喹酚分子中引入9个氘原子,使其具有 “内标试剂”的特性。具有较高化学纯度与同位素丰度的盐酸曲托喹酚-D9可以作为药品质检领域、运动员药检以及盐酸曲托喹酚代谢机理研究的内标物,具有重要的实际应用价值。2、文章亮点1)本文参考天然丰度曲托喹酚的合成方法,并在此基础上做进一步地改进,最终合成了稳定性同位素标记的盐酸曲托喹酚(盐酸曲托喹酚-D9)。2)将文中碘甲烷-D3替换为其他标记试剂,如13C标记或者13C和D双标记的碘甲烷,可方便地合成相对应的多种标记化合物,如曲托喹酚-13C3等,均可以作为内标试剂满足曲托喹酚的定性与定量分析。引用本文:秦爽,韩世磊,邵文哲,等. 稳定同位素氘标记盐酸曲托喹酚的制备[J]. 化学试剂, 2022, 44(4): 599-603.二、氘标记克伦丙罗新的合成方法研究与结构表征1、背景介绍克伦丙罗属于一种β2-受体激动剂,我们国家严格禁止将该类药物给动物使用,并要求动物性食品中不得检出。目前国内关于食品中克伦丙罗残留检测方法主要有高效液相色谱法、气质联用法、液质联用法、放射免疫法、酶联免疫吸附测定法等,但是这些方法存在各种各样的问题,对测定结果影响较大。采用同位素稀释质谱法(IDMS),可有效地解决上述问题,能够有效校正方法中出现的误差,显著提高检测方法的稳定性。目前,对于稳定同位素氘标记的克伦丙罗的合成已有文献报道但是存在路线反应步骤较长,且合成过程中的中间体分离纯化难度高,胺化过程中副产物较多等问题,无法从根本上解决制约我国食品安全检测领域严重依赖进口产品的问题。为解决当前合成方法中的不足,本文设计了一条全新的合成路线,以4-氨基-3,5-二氯-α-溴代苯乙酮原料,通过改良的Gabriel方法合成了氨基醇中间体,然后直接与廉价的丙酮-D6缩合得到克伦丙罗-D7。2、文章亮点1)本文以4-氨基-3,5-二氯-α-溴代苯乙酮为起始原料,经4步常规化学反应合成了克伦丙罗-D7,产物经1HNMR和ESI-MS表征确证结构正确,同位素丰度达到了98.3 atom%D,工艺稳定、操作简便,总产率可达40.9%,可实现规模化生产。2)本文设计的新合成路线,以廉价的丙酮-D6作为标记源在最后一步反应中引入,极大地提高了工艺的可操作性和原子经济性,降低了克伦丙罗标记产品的合成成本。此外,若将文中丙酮-D6替换为其他标记原子,如13C或者13C和D双标记试剂,或将第4步还原胺化反应中硼氘化钠替换为硼氢化钠,可方便地合成相对应的多种类标记化合物。引用本文:曹炜东,韩世磊,马秀婷,等. 氘标记克伦丙罗新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4):604-607.三、盐酸莱克多巴胺-D6新的合成方法研究与结构表征1、背景介绍日前,关于盐酸莱克多巴胺的检测方法主要有高效液相色谱-质谱联用法(LC-MS)、酶联免疫法检测、荧光免疫分析法等,但这些方法具有一定的局限性。而同位素稀释质谱法(IDMS)很好的解决了这一问题,是唯一一种可用于微量、痕量和超痕量元素权威的测量方法。当前,关于稳定同位素标记的莱克多巴胺的合成方法已有报道。但存在路线较长、操作复杂,且烷基化这步反应收率较低,副产物较多等缺点。本文针对现有合成方法存在的不足,设计了一条全新的合成路线,以廉价易得的4-(4-甲氧苯基)-2-丁酮(1)作为原料,进行氢-氘交换反应,高效的合成了关键的氘标记中间体,进而经过还原胺化、脱保护基等反应得到氘代莱克多巴胺-D6。与文献方法相比,此方法路线简短、条件温和、操作简便,收率较高,可以制备较高同位素丰度的产物,具有大批量制备生产的前景。2、文章亮点1)首次以4-(4-甲氧苯基)-2-丁酮为起始原料,以廉价易得的重水为稳定同位素标记源,经氢-氘交换反应得到关键中间体4-(4-甲氧苯基)-2-丁酮-D5,再经还原胺化、脱保护基反应合成目标产物。2)所设计的合成路线短、原料廉价、反应条件温和、操作简单、工艺易控,总产率以4-(4-甲氧苯基)-2-丁酮来计达到了44%,以关键标记中间体4-(4-甲氧苯基)-2-丁酮-D5计产率为47%,该合成路线较为方便地引入6个标记原子,为食品安全检测领域的内标研发提供新的合成思路。引用本文:刘晓佳,韩世磊,孔香玲,等. 盐酸莱克多巴胺-D6新的合成方法研究与结构表征[J]. 化学试剂, 2022, 44(4) :608-612.以上文章转载自“ 全国化学试剂信息总站”。
  • 华荣公司与华东理工签订亿元合作项目
    华荣公司与华东理工大学签订1亿元产学研合作项目   “目前化学加工业面临着两个巨大挑战:一是所需能源和原材料大部分来源于化石资源不可再生资源,而这些化石资源正逐步走向枯竭 二是传统的化学加工过程的污染和低效问题突出。”这是华东理工大学教授鲍杰5月19日在江苏华荣生物科技有限公司举行的生物技术前景展望和成果推介会上的开场白。他介绍,生物技术是可持续发展最有希望的技术,除了在农业、医药、食品等方面的应用外,生物技术已拓展到资源、能源、环保等领域,在国民经济中起着重要作用。生物制造将是人类社会的一次重大技术革命,其长远影响可以与工业革命相提并论。   据在场的金坛市科技局局长王洪祥介绍,江苏华荣生物科技有限公司已与华东理工大学生物反应器国家重点实验室合作7年多。学校提供技术,公司负责放大、生产,成果共享,产学研合作中最引人注目的成果是双方研发的国家863计划项目——生物催化还原制备手性芳基醇,这项被国家作为新一代工业生物技术主体而予以重点支持的项目,是华东理工大学与江苏华荣生物科技有限公司精诚合作、优势互补的生物科研成果。   5月18日,江苏华荣与华东理工双方签约1亿元的“酶法生产地尔硫卓中间体”项目。华荣生物公司总经理陆帮荣这样展望:引进实验室技术后,公司与学校合作进行了技术攻关,从目前情况看,技术已完全满足产业化要求,试验样品得到用户认可。项目预计10月建成,届时,作为制备抗高血压药物地尔硫卓的重要手性中间体——左旋甘油酸甲酯不仅在国内市场销售,还将以民族品牌进入国际市场。
  • 生物药行业快速发展,设备耗材国产替代正当时
    1. 生物制品行业蓬勃发展,上游制造产业链迎来黄金发展机遇1.1. 单抗药物快速增长,基因/细胞疗法蓄势待发根据沙利文的统计,2020 年,全球生物药的市场规模达到 2979 亿美元, 2019年的增速为 9.7%,2020年受到疫情的影响,增速有所下降,预计疫情之后 将恢复 9-10%左右的增长。中国 2020 年的规模达到 3457 亿元,2016-2019 年 维持在 19-20%的高速增长,国内生物药市场维持大幅高于全球市场的增速。2010 年以来,全球处于研发阶段的生物制品数量急剧增加。2010-2021 年, 处于 3 期的数量从 115 个提升至 398 个,CAGR 为 11.95%,处于 2 期/2-3 期的 数量从 98 个增加至 802 个,CAGR 为 21.06%,处于临床 1 期/1-2 期的数量从 59 个增加至 926 个,CAGR 为 28.44%。中国来看,2010-2021 年,处于 3 期的 数量从 6 个增加至 78 个,CAGR 为 26.26%,处于 2 期/2-3 期的数量从 8 个增加 至 220个,CAGR为 35.16%,处于 1期/1-2期阶段的产品数量从 5个增加至 237 个,CAGR 为 42.02%。无论从全球还是中国来看,处于临床更早期的项目数量 增速更快,项目储备充足,随着临床阶段的推进,将有更多的项目从临床阶段走 向商业化阶段。从细分领域来看,国内 3 期前的生物药中,抗体占比 58.6%,细胞疗法占比 25.4%,疫苗占比 13.1%,在 3 期及商业化的项目中,抗体类占比 71.3%、疫苗类占比 21.7%。3 期至上市状态的药品中,抗体药物占比超过 70%,疫苗占比超过 20%。从临床进程推演产业发展趋势,抗体是商业化生产中规模最大的种类, 其次是疫苗,细胞治疗项目大多处于较早期,随着时间的推进,预计后续细胞治 疗商业化的需求将增加。1.1.1. 抗体类药物千亿市场,国内企业积极布局2018 年以来,中国抗体类药物进入蓬勃发展阶段,市场规模快速扩大,根 据沙利文的预测,2018 年市场规模仅为 160 亿元,2021 年达到 735 亿元, CAGR 为 66.24%,2026 年之前仍将保持 20%以上的高速增长,预计到 2030 年 能够达到 3678 亿元。2018 年以后,获批药品数量在快速增加,2021 年一年获批的抗体药物数量 达到 18个。在研数量来看,2018年以后,在研管线数量快速增加,2021年,处 于临床 3 期的抗体类数量达到 54 个,2 期/2+3 期数量 168 个,临床 1 期/1-2 期 的为 169 个,随着在研项目的推进,更多抗体类项目将获批上市,预计未来 2-3 年国内上市的抗体类项目将迎来快速增长期。药物处于不同的开发阶段,对药品的需求量差异较大,药物发现阶段,需求 量在毫克级别,临床前研究阶段,需求量在克级别,临床研究阶段,需求量在千 克级别,上市后销售后,随着药品销售量的增加,需求量有望在吨级。从生产方 式看,药品在上市之前,药品在实验室合成,进入商业化阶段后,药品需求通过 工厂合成,在新建工厂的过程中,需要进行厂房设施建设的同时,对生产用的设 备和耗材的需求量也会大量增加。随着抗体类药物临床及上市进程的推进,更多生物药企业开始了大规模的产 能建设,以百济神州为例,已建成产能 2.4 万升,在建产能 4 万升,规划产能最 高可达 13.6 万升,在建和规划产能量远远大于现有产能。随着药品临床及上市 进程的推进,我们预计,中国抗体类药物大规模的产能建设刚刚开始,后续将有 更多的产能进入在建阶段,从而拉动产业链设备及耗材的需求增加。1.1.2. 细胞/基因治疗蓄势待发,国内企业占据重要地位国内目前共 2 款细胞治疗药物获批,分别是复星凯特的阿基仑赛注射液 (2021 年 6 月获批),药明巨诺的瑞基奥仑赛注射液(2021 年 9 月获批)。2 款 基因治疗药物获批, 腺病毒注射液(商品名:今又生)和重组人 5 型腺病毒注射液(商品名:安柯瑞)。从在研数量来看,2021 年,国内细胞治疗药物共 2 款处于临床 3 期,8 款处 于临床 2 期/2+3 期,30 款处于 1 期/1-2 期,基因治疗领域有 5 款药物处于临床 3 期,2 款处于 1 期/1-2 期。国内细胞和基因治疗药物实现了从无到有,2018 年以来,在研产品数量也快速增加,预计随着在研产品进度的推进,国内将迎来更多 的细胞及基因治疗产品的上市,商业化产能的建设也将随之增加。根据沙利文的数据,2020 年全球CAR-T 细胞疗法市场规模为 11亿美元,预 计中国2021年CAR-T细胞疗法市场规模为2亿元。预计未来全球及中国的CART 细胞疗法市场规模将快速增加,2030 年全球预计达到 218 亿美元,2021-2030 年 CAGR 为 31.14%,2030 年预计中国市场规模为 289 亿元,2021-2030 年 CAGR 为 73.77%,中国 CAR-T 细胞治疗市场规模增速远远高于全球。基因治疗来看,2020 年全球基因治疗市场规模为 20.8 亿美元,中国为 0.2 亿元,预计到 2025 年,全球基因治疗市场规模达到 305.4 亿美元,中国达到 178.9 亿元,2021-2025 年全球 CAGR 为 71.14%,中国 CAGR 为 289.33%。预 计未来几年,全球及中国的基因治疗产业均飞速发展,中国的景气程度高于全球。1.1.3. 在研疫苗品种数量丰富,商业化产业链需求稳步增加全球来看,已经批准上市的疫苗数量为 235 个,申请上市 13 个,处于临床 3 期 120 个,2 期 250 个。中国来看,已经批准上市的疫苗品种数量是 50 个,申 请上市 3 个,临床 3 期 27 个,2 期 30 个。全球及中国疫苗在研管线数量丰富, 获批上市数量稳步提升。与药品不同,疫苗研发的品种选择性难度较高,但单个 品种的销售金额及销售时间均长于一般的药品,故某个疫苗品种一旦获批,对整 个产业链的带动作用高于一般的药品,国内处于 3 期的疫苗不乏大品种,一旦获 批,对生产设备及耗材的带动作用也将非常明显。2018 年以后,国内陆续获批多个抗体类药物,百济神州、君实生物等公司 开始大规模建设抗体产能,在全球产业转移的背景下,以药明生物为代表的生物 药 CDMO 企业产能规划也迅速扩大,带动抗体类生物药生产制备所需的设备及 耗材产业链需求的快速增加,随着临床阶段的推进,更多药物完成临床并获批上 市,设备和耗材需求量将进一步扩容。在细胞和基因治疗领域,国内药品已经完 成了从无到有的阶段,在研管线丰富,未来几年内潜力巨大,将为生物药生产和 制备产业链带来增量市场。多个重磅疫苗品种已经处于 3 期阶段,未来几年将陆 续批复,非新冠领域的疫苗产业链需求也在增加。整体看,抗体类、细胞/基因 治疗、疫苗等生物药的持续扩容,将带动生产用设备及耗材产业链需求增加。1.2. 中国贡献全球生物药产能主要增量,成为产业转移主要承接地根据 BPI 的数据,2017 年,全球生物药的产能为 1671.94 万升,2020 年达 到 1738.09 万升,产能增加了 3.96%。分地区来看,北美、欧洲、中东生物药产 能下降,其中,北美是产能减少最多的地区,占 2017-2020 年全球生物药减少产 能的 87%。日本及亚洲其他国家、中国、印度、俄罗斯及东欧、南美/中美、非 洲产能增加,中国生物药产能增加了 97.5 万升,是全球产能增加最多的地区, 占 2017-2020 年全球生物药新增产能的 77%。从产能分布看,2017 年,北美、欧洲产能合计占比超过 69%,日本及亚洲 其他国家占比 12.53%,中国、印度分别占比 5.19%、5.63%。2020 年,北美、 欧洲产能合计占比为 63.07%,中国产能占比已经达到 10.60%。从产能建设来看, 2017-2020 年,中国是全球生物药产能建设量最大的国家,贡献了全球新增产能 的绝大部分。从产业趋势上看,生物药产能从欧美发达国家地区向中国、印度等 制造能力较强的国家和地区转移的趋势明显。同时,欧美、中东外的其他地区生 物药产能也在逐渐增加。产业转移的趋势下,国内 CDMO 企业产能也在快速增加,以药明生物为例, 现在产能 15 万升,在建产能达到 28 万升,国内其他 CDMO 企业也在陆续新建 或者扩建产能。CDMO企业承接的国外订单数量在增加,中国化的生产进一步增 加了产业链设备和耗材的需求。1.3. 生物制品生产与传统小分子差异巨大,对应设备及耗材不同1.3.1. 小分子生产工艺以化学合成为主,可拆解成多个中间体典型的小分子生产工艺繁琐,有多步中间体生成,多个中间体合成原料药, 再加以辅料最后合成制剂,中间步骤可拆解,中间体与原料药合成多以化学合成 为主。以近期热门的瑞德西韦为例: 根据吉利德公司公布的第二代瑞德西韦合成方法,共六步反应,得率分别为 40%,85%,86%,90%,70%,69%,其中合成所需的原料和关键中间体基本 是化工原料通过化学合成,具体种类如下:化合物 1,CAS:55094-52-5,原料中间体可购买。化合物2,使用原料(CAS:159326-68-8)合成 6。中间体 6,经过两步合成,得率分别为 80%和 39%,所需原料化合物 8 (CAS:946511-97-3),4-硝基苯酚(CAS:100-02-7),二氯化磷酸 苯酯(CAS:770-12-7)。得到化合物 GS-5734(即瑞德西韦原料药)后,需要进行制剂化:注射用瑞 德西韦冻干制剂是一种不含防腐剂的白色至灰白色或黄色冻干固体,除药物活性 成分外,冻干制剂还包含注射用水、磺丁基倍他环糊精(SBECD)和盐酸和氢氧 化钠等非活性成分。1.3.2. 生物药生产以发酵为主,整个过程连续生物药生产过程以发酵为主,整个过程连续,生产用的设施和设备与小分子 药物完全不同。从生物药的生产流程来看,主要包括上游发酵、下游纯化和制剂灌装三个主 要流程。上游一般从细胞株的培养到大规模生物反应器生产,主要包括摇瓶培养 -波浪式生物反应器-生逐级放大培养-生物反应器发酵几个环节,得到细胞及其产 物。下游纯化是将生物反应器出来的细胞及产物进行分离了纯化,得到制剂原液 的过程,主要环节包括收获-层析捕获 -低 PH 病毒灭活及深层过滤-两步层析-除 病毒过滤-浓缩超滤-无菌过滤等环节,得到药品原液。制剂灌装主要是将纯化获 得的原液进行制剂化处理,经过配置-除菌过滤及灌装-冻干-轧盖-灯检-贴签与包 装后,最终获得产品。整个生产过程连续,中间环节较少,生产过程中所使用的 设备、耗材与小分子药物有很大的不同。2. 生物制品生产工艺拆解2.1. 上游发酵:从细胞株到大规模生物反应器生产的一系列细胞放大培养过程以抗体生产为例,对生物药生产流程进行拆解,上游发酵需要经过细胞复苏、 常规传代、摇瓶放大培养等逐步放大培养阶段,最后接种到生物反应器中进行大规模细胞培养等一系列过程。发酵过程需要控制温度、溶氧等参数指标,由于细胞发酵过程中会产生较多 的气泡,需要加入消泡剂,整个过程需要 3-4 周的时间,进入生物反应器后,细 胞进行大规模的生产和繁殖,经过大约 13-14 天的培养后,细胞可以进行收获。 该过程需要控制的参数有 CO2、温度、空气、氧气、搅拌、PH、消泡剂,同时 还需要进行培养基补料。上游发酵主要用到的耗材包括细胞冻存管、培养基、不同规格的摇瓶,一次性细胞培养袋、培养基进入反应器前需要进行除菌过滤,需要用到除菌滤器;主 要用到的设备及系统包括细胞冻存阶段用到的细胞液氮罐、二氧化碳培养箱、摇 床、波浪式生物反应器、生物反应系统、培养基配置系统、生物反应器等。上游发酵过程中,价值量较大的耗材是培养基及一次性反应袋。2.1.1. 上游发酵主要耗材之培养基:为细胞生长提供营养物质培养基是为细胞生长提供所需营养成分的物质,其进化历程是配方不断改进和优化的过程。1950-1960s 年代,培养基通常添加10-20%血清,血清含有上千种不同成分, 为细胞体外培养提供广泛而丰富的营养和各种因子,但动物血清的使用存在引进 外源病毒的风险,因此减少血清浓度甚至完全去除血清在培养基前期培养基改进 的主要方向。19 世纪 80 年代,科学家通过在培养基里面添加蛋白(如胰岛素、转铁蛋白 和白蛋白等),可以很大程度上替代血清,无血清培养基逐渐发展起来。 1997 年,第一个完全化学成分的培养基推出,培养基开发从此进入了一个 全新的时代,2000 年后,无动物源 CDM 持续优化,支持高密度培养和高产物表 达。生物制品的制备和生产均需要依赖细胞培养基,培养基是生物制品生产的关 键耗材。细胞培养基通常包含培养细胞的能量来源和调节细胞周期的化合物。培 养基的基本组分包括缓冲系统、无机盐、氨基酸、糖类、脂肪酸/脂质、维生素、 微量元素。补料培养基还包括补充氨基酸、维生素、无机盐、葡萄糖和血清等。培养不同类型的细胞,对培养基的成分需求均有较大的不同,CHO 细胞、 HEK293、杂交瘤细胞在无动物来源成分、化学合成、无蛋白成分、重组蛋白、 生长因子等方面的需求都不一样。培养基技术难度在于培养基的配方保密且培养 基需要根据细胞种类进行优化以获得较高的产物表达量。培养基主要的国外生产企业主要有 Cytiva、赛默飞、赛多利斯、默克等企业, 国内的生产企业主要有健顺生物、奥浦迈、澳斯康、多宁生物等,同时,由于培 养基在使用过程中需要调节较多,不同的细胞株对培养基适用情况也不一样,国 内也有较多的企业存在自配培养基的情况。2.1.2. 上游发酵主要耗材之生物反应器:细胞大规模繁殖的场所生物反应器是指利用生物反应机能的系统或场所,主要作用是为生物体代谢 提供一个优化的物理、化学环境,使生物体能更快更好的生长,以获得更多所需 要的生物量或代谢产物。传统的搅拌式生物反应器以不锈钢罐子为主,经过多年, 发展,一次性技术的应用领域不断扩充。一次性生物反应器的最初起源是因 Hyclone(目前为 Cytiva 旗下品牌)需要 大量供应血清,因此购买了一条大规模的食品袋生产线,用塑料袋包装血清并进 行运输,后逐渐发展为在储液、生物反应器领域应用。第一台一次性生物反应器 袋子被称为“波浪袋”,至今还在被广泛使用,而这个袋子的限制在于体积,为 了做得更大,人们回归到传统的搅拌槽设计,里面放置袋子作为衬垫,于是第一 代大型搅拌槽一次性生物反应器诞生了。与不锈钢设备相比,一次性生物技术可以提供更高的速度、效率和经济性。 一次性设备每批的生产成本可能更高,但批量吞吐量也更大。根据 Cytiva 对 50L 设备的经济模拟数据得出,由于不锈钢设备每次发酵完成后需要 CIP、SIP 的清 洁和验证环节,该过程所需时间大约 7 天左右,一次性不存在产品转结的清洗和 验证工作,故生产批次增加。基于 300 天的发酵,不锈钢每三天可以收获一批, 每年最多生产 100批,一次性发酵批次完成时间减少 33%,可以每隔一天收获一 次,每年最多收获 150 批。无论在单产品设备还是多产品设备生产中,一次性的 生产批次均高于不锈钢。在成本方面,一次性生物反应器消耗的成本更高,单一产品设施中每批一次 性使用的成本比不锈钢高出 29%,在多产品设施中高出 25%。但是,不锈钢的 资本投入,认证周期和年度维护成本更高,无论设备利用率如何,维护成本基本 不变,在设备利用率不高的情况下,不锈钢的综合性价比不高。不锈钢设备更多用于 2000L 以上大规模生产,广谱抗体药物(如 PD-1 等) 生产量大,生产集中,商业化阶段使用不锈钢设备生产具有较高的性价比。在临 床阶段及小规模生物药的生产过程中,由于无菌 GMP 环境的构建成本高,不锈 钢设备需要进行 SIP、CIP 清洗,造成清洗成本的同时停留时间较长,提高生产 效率带来的成本降低效应显著。在药品治疗的精准化趋势下,单个药品生产规模逐步降低。此外,基因细胞治疗与mRNA等新技术的发展,对于非标准环境下的洁净区提出要求,一次性反 应器在小批量生产中更具优势。一次性生物反应器在灵活性、便利性、快捷性等方面具有优势,在小规模生产中将被广泛使用,大规模生产中不锈钢的成本优势比较明显,更倾向于使用不锈钢设备,所以,在较长的时间周期内,一次性生物 反应器仍将与不锈钢罐共存。2.2. 下游纯化:从发酵液中获得制剂原液的一系列纯化行为上游发酵经过大规模细胞发酵后,获得细胞及其代谢产物,其中含有制剂原 液所需要的目标蛋白。细胞及代谢产物从生物反应器出来后,进入下游分离纯化环节,主要涉及收获、层析捕获、低 PH 病毒灭活及深层过滤、层析、除病毒过 滤、浓缩超滤、无菌过滤等环节。主要目的是从复杂的本体基质中分离、纯化和浓缩先前合成过的产物,从中分离出目标产物,得到制剂原液。下游分离纯化的第一步是离心,是实现液体与固体颗粒或液体与液体混合物 分离的主要方式。离心机通常分为过滤式离心机和沉降式离心机,主要使用进口 品牌阿法拉伐。整个过程中需要使用多种过滤器、膜包、亲和填料、离子交换填 料、一次性储液袋等多种耗材,需要使用超滤系统、除病毒过滤系统等多种过滤 系统及层析系统。下游纯化的两个核心环节分别为过滤及层析。2.2.1. 下游纯化核心环节之过滤:实现多种物质的分离和去除在生物药生产过程中,培养基过滤、深层过滤、澄清、细菌过滤、病毒过滤 等多个环节会使用到不同的孔径大小的过滤膜或者过滤器来实现不同尺寸颗粒的过滤,来实现分离和纯化。由于整个生产过程均需要在无菌的环境中进行,因此 培养基、缓冲液、进入生物反应器的空气等任何进入生产流程的物质均需要进行减菌过滤,发酵液从生物反应器出来后需要进行澄清过滤,层析之后需要进行除 病毒过滤、除菌过滤,浓缩置换过程中也需要通过 TFF 过滤完成。多项过滤中涉及不同的过滤原理。发酵液从生物反应器出来,经过离心后, 需要进行深层过滤,实现初步的固液分离。深层过滤的基本原理是通过筛分、拦 截、吸附的方式去除细胞、碎片以及其他颗粒。深层过滤是细胞固液分离后进行 的第一步过滤,需要将离心后的含有众多杂质的液体进行分离,在这个过程中可以去除颗粒、亚微颗粒、胶质物以及可溶物质,理论上,粒径大于过滤器孔径的 污染物可以很容易地通过机械过滤去除。在除菌、除病毒过滤中使用的是超滤。超滤是一种加压膜分离技术,即在一 定压力下,使小分子溶质和溶剂穿过一定孔径的膜,是对溶质中极小颗粒及可溶性分子进行分离的方法。这种分离主要基于分子的大小,滤膜介质的通透性也会受到样品的化学、分子及电荷特性的影响。超滤通常只能分离大小相差 3-5 倍以上的分子,而不适合分离大小相似的分子。通常,糖类、氨基酸、盐、抗生素、寡核苷酸等分子量较小的介质用反渗透 /纳滤的方式进行分离,蛋白质、部分疫苗、哺乳类病毒等用超滤的方式进行分离,细菌、大肠杆菌等用微滤的方式进行分离。超滤过程用到的过滤耗材主要有中空纤维膜和超滤膜包。 中空纤维采用切向流过滤的方式,把一定孔径的膜(如 0.45μm)制成纤维状的膜管结构,细胞培养液在膜管内部流过形成切向流,目标抗体透过膜孔,而细胞和细胞碎片被截留,收集透过端即得到澄清的培养液。超滤膜包是一种使用亲水性聚醚砜超滤膜的半透膜,它既保持了传统的纤维素材料蛋白非特异性吸附的优点,又克服了纤维素材料化学兼容性差的缺点,可 在 PH2-14 的范围内使用,非常适合用于单克隆抗体和治疗用蛋白药物的分离。超滤膜包具有较高的技术壁垒,默克旗下的密理博、Pall、赛多利斯是全球知名的厂商,产品质量和性能受到广泛认可,也是现有生产中使用最多的品牌。 国产企业中,科百特在滤膜、过滤器等方面具有技术优势,有微电子事业部、生 命科学事业部、工业过滤事业部、医疗事业部、实验室应用五大部门,产品在各 个领域有较为广泛的应用。2.2.2. 下游纯化核心环节之层析:实现蛋白捕获的重要环节深层过滤后的液体经过澄清后进入亲和层析环节。亲和层析是整个下游纯化 工艺的核心环节,目标蛋白在该环节中被捕获。 根据物质性质的不同,层析填料的分离原理也不相同。亲和层析是通过配基 特异性识别来实现分离,主要在抗体领域应用。离子交换层析是利用分子所带电 荷的不同,通过正负电荷相互吸引来实现分离,在抗体、蛋白等领域有应用。体 积排阻层析主要利用分子大小的不同,在填料中滞留时间的长短来实现分离,在 胰岛素及小分子分离中应用较多。疏水层析利用分子表面极性的不同,来实现分 离,在抗体和蛋白中应用较多。常用的大分子分离纯化技术有凝胶过滤层析、疏水层析、离子交换层析、亲和层析等,小分子常用分离方法为反相层析。抗体生产过程中使用量最大的是亲和层析,也是填料中价值量最大的种类。亲和层析:一种通过分子间的特异性识别并相互作用来分离纯化物质的层析 方式,主要利用的是抗体的 Fc 片段与 Protein A 配基具有天然的特异性结合的特 点,来实现蛋白捕获。Protein A 是金黄色葡萄球菌的一个株系细胞壁蛋白,它通过 Fc 区与哺乳动物的 IgG 结合,含有四个 Ig Fc 结合位点,重组的 protein A 含 有 5 个 Ig Fc 区域结合位点,故带有 protein A 配基的亲和层析是用于特异性捕获 抗体蛋白的理想方法。体积排阻过滤层析:利用复杂的孔径结构,对应不同大小的分子或离子在填 料内的停留时间长短来达到分离的目的。 疏水层析:高度有序的水壳围绕着配体和蛋白质的疏水表面,疏水物质被迫 合并,达到分离的效果。在实际生产过程中,通常需要经过多步层析,一般有一步纯化、两步纯化、 三步纯化,达到捕获、中度纯化、精细纯化等不同的目的。 一步纯化:亲和层析;两步纯化:亲和+凝胶过滤;亲和+离子交换;三步纯 化:离子交换层析+疏水层析+凝胶过滤层析;疏水层析+离子交换层析+凝胶过 滤层析。填料选择规则:粒径越小,分辨率越高,反压越高,流速越低。第一步追求 流速的载量的时候通常选择高流速的填料作为捕获的第一步。通常,在捕获阶段, 填料粒径大小在 75-90 微米,较多的使用亲和层析和离子交换层析;中度纯化粒 径大小 34-75 微米,使用离子交换层析、疏水层析、亲和层析和反相层析填料; 精度纯化粒径大小 3-34 微米,常用的纯化方式有体积排阻、离子交换等。
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 面向新污染物、医药和大健康等领域 安捷伦与阿尔塔共建创新合作实验室
    仪器信息网讯 3月14日,安捷伦科技公司和阿尔塔科技有限公司在天津举行共建“创新合作实验室”签约仪式。双方将优势互补,针对食品、环境、临床、医药领域不断发展而衍生出的快速支持需求,尤其需要应对突发的食品安全危机时,联合开发并提供全面的分析测试解决方案,以及时响应用户的分析检测需求。双方高层与天津科技局领导及行业专家为创新合作实验室揭牌(牌匾左一为:安捷伦北大区整机销售总经理 潘霞,牌匾右一为:阿尔塔科技首席技术官 张磊博士)活动现场,仪器信息网作为特邀媒体就此次合作采访了安捷伦北大区整机销售总经理潘霞、阿尔塔科技首席技术官张磊、安捷伦中国解决方案开发中心总监王春晓和农业部环境保护科研监测所环境监测研究室主任刘潇威研究员。行业契合+目标一致让合作水到渠成仪器信息网:最后请谈一下本次合作的背景,为什么选择对方开展本次合作?潘霞:安捷伦和阿尔塔无论是面向的行业还是发展目标和愿景都十分契合。安捷伦期望我们的天更蓝、水更清、人类更健康以及以客户为中心的服务理念与阿尔塔不断追求卓越,不断为行业客户提供高标准、高品质的标准品的体系是不谋而合的。在未来双方发展的道路上,我们彼此将是优势互补的状态。安捷伦提供相应的仪器硬件和解决方案,阿尔塔的标准品则能够更好地补充我们的解决方案。在我们的过往合作中,有很多安捷伦开发的应用方法正是和阿尔塔的产品搭配,形成整体的方案。因此我认为,本次合作的意义非常深远。潘霞 安捷伦北大区整机销售总经理张磊:阿尔塔和安捷伦有共同的目标,都是为客户提供最优的产品和服务。事实上,我们的合作早就开始了,在食品安全、环境领域的混标研究等方面已经有了很好的合作基础,此次共建实验室属于水到渠成。我们互相信任,未来在共建实验室中将联合做更多的事情,包括在食品、环境、医药、大健康等多个领域开发解决方案,相信我们的合作可以为客户提供更好的解决方案。张磊 阿尔塔科技首席技术官安捷伦将引入高分辨质谱帮助标准物质研究仪器信息网:安捷伦有哪些仪器和解决方案来帮助企业进行标准物质研究和生产?王春晓:安捷伦可以帮助企业在标准品的研发和生产过程鉴定未知物质、进行产品的质量控制等。阿尔塔实验室里有很多安捷伦的高端仪器,包括气相色谱(GC)、气质联用仪(GC-MS)、液相色谱(LC)、液质谱联用仪(LC-MS)等,未来可能引入高分辨和串接质谱等更高端的仪器来做未知物的鉴定。我们和阿尔塔的合作关系比较紧密——我们彼此是用户、也是合作伙伴,面对共同的客户,有共同的目标。作为阿尔塔的用户,他们要给我们提供准确的、可靠的标准品用于开发解决方案,方案开发好后,又要有对应的标准品去支撑混标开发,最后进行整合把混标方案提供给我们共同的客户,客户就有了一个完整的方案。王春晓 安捷伦中国解决方案开发中心总监张磊:我们采购的第一台仪器就是安捷伦的LC/MS,当时国内做标准品的企业用的比较多的是GC和LC。目前我们实验室主力仪器配置多数都是安捷伦质谱,对我们的研发起到了很大的作用。一个标准品从合成、到中间体的监测、再到标准品成品的准确定值,全过程需要高端、稳定、可靠的仪器支撑。另外,在与安捷伦合作方法包混标方案过程中,双方要不断地沟通,相互验证,直至达到最优结果。双方相互支持借鉴,取长补短,相得益彰。潘霞:张磊先生还在国外时就用安捷伦的仪器方案,回国采购的第一台质谱就是安捷伦6120单四级杆液质联用系统,这款仪器在标准品合成路线优化及单标质控方面是非常重要的技术手段。随着新的国家标准出台,对各种多农残、多兽残、多毒素等多种混标的需求及检测灵敏度要求越来越高,双方的合作转向液质串接技术,用于混标的研制、解决方案的开发及最终产品的质控,为用户提供高质量的多混标完整解决方案。未来,随着检测技术的发展及市场需求的变化,双方会加强高分辨质谱技术的应用推广,合作方向关注新型有毒有害物质的鉴定、代谢途径研究、杂质分析、高通量筛查方法开发以及高分辨数据库的建立等,期待未来在解决这些检测难题中,我们会有更多更好的产出。以共建实验室为纽带 更多开展前瞻性和数据库建设工作媒体:请问双方对共建实验室的安排和发展有哪些战略规划?张磊:相关标准品应用范围非常广泛,共建实验室是连接我们的一条纽带,除了加深我们原来在传统领域的合作,未来在一些新的方向也会开展合作,比如新污染物、医药和大健康领域。在某些国家标准和行业标准确立之前我们就已经开始共同来为客户提供定制的解决方案了。王春晓:之前在农残、兽残等方面与阿尔塔打下了良好的合作基础。未来,我们可能进一步在新污染物,比如短链氯化石蜡的标准品、标准物质等方面合作,此外还有生物制药/制药领域和代谢组学研究领域的合作。基质标准物质是当前市场需求趋势仪器信息网:当前实验室对标准物质的需求呈现怎样的特点和趋势?应该从哪些方面来提高标准物质研发效率和质量以更好地满足用户需求?刘潇威:实验室工作离不开标准物质,无论是样品检测还是科学研究,标准物质都是必不可少的。比如在做检测工作时,必须要依据标准物质来进行定性和定量;进行方法验证和全程质量控制时标准物质也是必需的。整体而言,实验室对标准物质的需求,无论从种类还是数量上都在不断增加。从种类上来说,方法验证时,目前多数方法是针对多残留或者多种物质的方法,因此混标溶液是比较急缺的;此外,现在十分强调实验室数据的全程质量控制,这其中基质标准物质也是现在市场需求的一个趋势;再者,方法研制或者方案开发过程中纯度标准物质非常有需要。以上就是实验室对标准物质需求的特点和趋势。关于提高标准物质研发效率和质量这个问题,首先现在标准物质的需求量和市场规模都非常大,涉及的面也很广,而由于它属于计量或溯源的基准,对于其质量要求非常高,因此需要像阿尔塔这样强大的研发团队和专业的生产企业。目前药物残留相关的标准物质需求量比较大,这一方向的研发团队和生产企业比较多,但随着国家对数据和检测实验室的服务质量要求越来越高,未来基质标准物质的市场需求量会更大,所以希望研究团队和生产厂家对于基质标准物质给予更多的关注。此外,国家应加快标准物质定级审批的速度。因为大家需要不仅是具有能溯源功能的标准物质,也需要在过程控制、仪器比对或方法比对中的对照品,因此市场审批应该更切实际,加快标准物质的审批程序,来满足各方需求。刘潇威 农业部环境保护科研监测所环境监测研究室主任 研究员从化学分析到全流程方案 安捷伦紧跟代谢组学、生物制药等市场热点仪器信息网:刚才讲到未来会在生物制药、代谢组学等领域有进一步的合作计划。请介绍安捷伦过去三年在相关领域的工作和取得的成果,未来还将有哪些市场计划?潘霞:不仅仅是代谢组学,三大组学都是生命科学领域非常重视的方向。生物制药在过往三、五年里也非常火热,无论是从市场的认知,老百姓的需求,还是投资方追捧,都可以看出这一领域的重要性。过去几年,安捷伦一直在相关领域与行业领先的战略科研客户共同进行深入研究。研究不仅局限在仪器硬件性能的提升上,更重要地,还包括如何通过创新应用方案开发来面对分析挑战,比如对mRNA样品加帽加尾、寡核苷酸的分析需求,针对于此安捷伦都有独特的方案。在提高效率层面,安捷伦有相应整合的方案和方法来面对客户,包括提升软件方面的性能,让我们软件的使用更加地高效和便捷。此外,还有一些新的色谱柱的研制,使一些小颗粒填料的色谱柱能够更好地应对这部分客户对高效分析的需求。大家知道,安捷伦如今不再只是化学分析设备的供应商,我们在生命科学领域也在不断地收购、合并,积极布局,所以,我们从化学分析拓展到跟基因分析、细胞分析相关的整体的解决方案。当实验室用户面临生命科学分析挑战的时候,我们希望能够为用户提供包括细胞分析、基因组学分析,以及代谢组学等基于理化测试分析的一体化技术平台,以助力用户面对复杂的生命科学挑战。未来,在上述领域,公司对内部的组织结构也在做着相应调整,我们会成立专门的业务扩展团队来契合市场热点。我们有专门负责组学研究的业务团队,也有负责生物制药的业务团队,最终的目的就是充分了解客户需求,从而盘活我们内部的资源,最终达到满足用户需求的目标。王春晓:这里我还想补充的是,我们一直追求卓越,不断创新,将安捷伦高端科技最大化地融入到用户实际应用当中,让用户享受到解决方案为他们带来的价值。在食品安全分析、食品风味分析、环境中新污染物分析等方面,我们开发了多平台的综合解决方案覆盖客户的整个工作流,并将自动化样品前处理平台与气质和液质平台联用,实现了全自动化样品前处理。在此基础上,我们还将通过AL/ML(人工智能和机器学习)的技术实现自动化数据分析和处理,最后自动出报告。这种全流程的全自动化分析技术也将拓展到更宽的领域,例如生命科学、制药、新材料等。后记:签约活动结束后,跟随合作双方我们参观了阿尔塔的标准品研发和生产实验室,“整洁”、“规范”、“井然有序”是我参观后最直接的感受,也看到了过程中的严谨和专业。参观的时候还印证了采访中张磊博士笑谈的一句话:“放眼望去到处都是安捷伦的仪器,仔细一看还是安捷伦的仪器”。阿尔塔标准品研发实验室一角
  • 大连化物所在碳氢键活化合成复杂多环体系研究中取得新进展
    p   从简单易得的分子尤其是几乎无处不在的烃类化合物出发,简便高效地合成复杂的多环化物是有机合成工作中的一大挑战。近十年来,由于茂基三价钴、铑催化剂对碳氢键活化有着独特的活性、选择性以及官能团兼容性而被广泛研究。近期,中科院大连化物所金属络合物与分子活化研究组(209组)在这一领域取得了一系列进展,相关工作在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 15351)和(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上先后发表。 /p p   硝酮化合物通常作为经典的1,3-偶极子参与各类环加成反应。该团队在2013年首次实现了硝酮定位碳氢键的活化。但是将其作为芳烃底物实现碳氢键活化和偶极加成相结合之前尚无报道。最近,该团队利用硝酮作为偶极子定位基,首先经碳氢键活化和环丙烯酮实现酰基化,在原位条件下,活化的C=C双键和硝酮发生分子内的1,3-偶极加成,得到桥环化合物。反应对于邻位含有较大位阻的N-叔丁基以及N-芳基硝酮均可适用,对于N-叔丁基硝酮,碳氢活化发生在唯一的苯环邻位 而对于N-芳基硝酮,反应则发生在N-芳环上,因此得到的产物的结构有所不同。值得一提的是,对于N-叔丁基硝酮,反应呈现出硝酮底物位阻控制的选择性。当N-叔丁基硝酮的邻位取代基位阻较小时,反应虽然也经历C-H活化和对三元环的插入开环,但是产生的烯基铑碳键并没有被质子解,而是发生了对亲电的亚胺片段的插入,之后经历了β-碳原子消除和质子解,得到最终的1-萘酚产物。反应中硝酮起到了亲电性无痕导向基的作用。此部分工作发表在Angew. Chem. Int. Ed. 2016, 55, 15351上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/471915f3-bd4d-4007-9bab-375252f8942e.jpg" title=" W020170525567525355764.jpg" / /p p   含炔烃片段的环己二烯酮由于同时具有活泼的末端炔烃和α,β-不饱和酮结构,所以有多种的反应可能性,一直以来是研究的热点之一,但是大部分研究都是围绕着底物的亲核性展开。将其与天然产物中广泛存在的吲哚结合,发生分子内的狄尔斯-阿尔德(Diels-Alder)反应尚属首次报道。该反应首先经过碳氢键活化形成金属碳键, 之后发生炔烃的插入原位形成二烯中间体,随后与亲二烯体(环己二烯酮)发生分子内的Diel-Alder反应,反应过程中金属始终参与。反应能得到结构截然不同的桥环和并环化合物。当利用铑作为催化剂时,铑碳键对炔烃发生常见的2,1-插入随后和第一类D-A环化串联得到并环,用半径更小的三价钴催化剂时发生罕见的1,2-插入并和第二类D-A环化串联得到结构罕见的桥环。这一工作近期发表在《德国应用化学》(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/6e10e342-1381-4c91-9df1-b6b7ebb774f1.jpg" title=" W020170525567525358639.jpg" / /p p   该系列工作得到了国家杰出青年基金和中科院先导专项的支持。 /p
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。   该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 石药集团下属公司订购沃特世ACQUITY UPLCH-Class
    中国,上海—— 2010年3月1日,沃特世(WAT:NYSE)公司今天宣布石药集团河北中润制药有限公司在2010年农历新年前成功订购沃特世公司ACQUITY UPLC® H-Class系统,成为在沃特世公司在中国地区第一个订购该系统的用户。而该系统是沃特世公司于2010年1月25日全球同步推出的最新系统。   石药集团公司河北中润制药有限公司是世界主要的抗生素原料药供应商,主要生产头孢类、青霉素类、及碳青霉烯类抗生素原料药集药用中间体。本次采购的ACQUITY UPLC H-Class主要用于药用中间体的质量控制。   抗生素生产过程中,中间产品成份复杂,性质不稳定,分析时间长则会影响分析结果的准确性,进而影响过程指标的调控。而UPLC® 可在极短的时间内得到高分离度的分离,因此可以有效避免分析误差,更好的指导过程调控。此次中润制药有限公司质量技术中心正是基于这类分析的需求,而购买了沃特世公司最新的ACQUITY UPLC H-Class系统。   相信未来会有更多的制药行业、生物制药、食品安全、环境科学等行业的用户接受和订购沃特世公司的ACQUITY UPLC H-Class系统,并通过该系统达到其研发和检测的要求。   关于沃特世ACQUITY UPLC H-Class系统 (www.waters.com/hclass)   ACQUITY UPLC H-Class系统,该系统在拥有耐用性、可靠性的同时,又具有与传统高效液相色谱技术相似的操作方法。结合了高性能、简易性与灵活性,旨在帮助更多的实验室实现亚2-μm(微米)颗粒色谱柱技术所带来的科学与商业效益,从而使其适用于更宽的行业领域、更广的应用范围和更多的用户。   关于沃特世公司 (www.waters.com)   沃特世公司(NYSE:WAT)为实验室型组织提供实用、可持续的创新技术,帮助他们在全球范围内的保健服务、环境管理、食品安全以及水质等领域保持领先水平。   沃特世技术创新和实验室解决方案在一系列分离科学、实验室信息管理、质谱和热分析等相关领域均处于领先地位,为客户的成功提供了长远持久的平台。   2008 年,沃特世公司年收入达 15.8亿美元,拥有 5000 名员工,为推动全球客户的科学发现和卓越运营不懈努力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制