当前位置: 仪器信息网 > 行业主题 > >

鞣花酸水合物

仪器信息网鞣花酸水合物专题为您提供2024年最新鞣花酸水合物价格报价、厂家品牌的相关信息, 包括鞣花酸水合物参数、型号等,不管是国产,还是进口品牌的鞣花酸水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鞣花酸水合物相关的耗材配件、试剂标物,还有鞣花酸水合物相关的最新资讯、资料,以及鞣花酸水合物相关的解决方案。

鞣花酸水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 百灵威提供瘦肉精检测完美解决方案
    央视在3· 15消费者权益日播出了《&ldquo 健美猪&rdquo 真相》的特别节目后,健美猪、瘦肉精事件,又y次挑战了中g人的饮食承受j限。g家相关部门已紧急出台y系列应对措施,而检测部门技术人员则急需快速、可靠的检测手段。 百灵威得知该事件后,即召开了分析检测小组专项讨论会,根据《动物源性食品中多种&beta &mdash 受体激动剂残留量的测定 液相色谱串联质谱法》(GB/T 22286-2008)要求,建立瘦肉精检测解决方案,为全g瘦肉精检测保驾护航! 检测方法基本操作步骤: 1.提取: 称取2 g(精确到0.01 g)的均匀样品于50 mL离心管中,加入8 mL乙酸钠缓冲液,充分混匀,再加入50 &mu L&beta -葡萄糖醛苷酶/芳基硫酸酯酶,混匀后于37℃水域水解12 h。添加100 &mu L 10 ng/mL的内标液于待测样品中,加盖置于水平振荡器中振荡15 min,5000 r/min离心10 min。取4 mL上清液加入0.1 moL/L高氯酸溶液5 mL,混合均匀。用高氯酸调节pH到1± 0.3。5000 r/min离心10 min后,将全部上清液(约10 mL)转移到50 mL离心管,用10 moL/L的氢氧化钠调节pH到11。加入10 mL饱和氯化钠溶液和10 mL异丙醇/乙酸乙酯(6:4)混合溶液,充分提取,在5000 r/min离心10 min。转移全部有机相,在40℃水浴下用氮气吹干。加入5 mL乙酸钠,c声混均溶解备用。 2.净化: 将阳离子交换小柱连接到真空过柱装置,将溶液上柱,依次用2 mL去离子水、2 mL 2%甲酸水溶液和2 mL甲醇洗涤柱子并彻底抽干。z后用2 mL的5%氨水甲醇溶液洗脱柱子上的待测成分。流速控制在0.5 mL/min,洗脱液在40℃水浴下氮气吹干。准确加入200 &mu L 0.1%甲酸/水-甲醇溶液(95:5),c声混均,15000 r/min离心10 min。 ■ 标准品及相关试剂 产品编号 英文名称 中文名称 CAS 包装 目录价 C 17295000 Terbutalin sulfate 硫酸叔丁宁按 23031-32-5 0.1 g ¥540 C 11668550 Clenbuterol hydrochloride 盐酸克仑特罗 21898-19-1 0.1 g ¥1,512 XA11668561AC (± )-Clenbuterol D9 (trimethyl D9) 克伦特罗- D9 129138-58-5 1 mL ¥2,664 C 16903000 Salbutamol free base 沙丁胺醇 18559-94-9 0.1 g ¥3,960 XA16903001AC Salbutamol D3 (3-hydroxymethyl-D2,a D1) 沙丁胺醇-D3 N/A 1 mL ¥2,664 C 16805000 Ractopamine hydrochloride 莱克多巴胺盐酸盐 90274-24-1 0.1 g ¥846 R071402 Ractopamine-d6 Hydrochloride 莱克多巴胺-d6 N/A 1 mg ¥1,960G0751 &beta -Glucuronidase from Helix pomatia,&beta -D-Glucuronide glucuronosohydrolase BETA-葡萄糖醛酸甙酶 9001-45-0 1 MU ¥4,217 T897250 Tulobuterol 妥布特罗 41570-61-0 100 mg ¥1,680 XA13497000AL Fenoterol hydrobromide 氢溴酸非诺特罗/酚丙喘宁芬忒醇 1944-12-3 1 mL ¥576 F693400Formoterol Fumarate Dihydrate 福莫特罗富马酸盐二水合物 183814-30-4 25 mg ¥1,330 I0900000 Isoxsuprine hydrochloride N/A N/A 1 EA ¥1,266 BA016-50 Cimaterol N/A N/A 50 mg ¥4,100 BA008-25 Clenbuterol-D9 hydrochloride N/A N/A 25 mg¥7,543 XA16903000AL Salbutamol free base 沙丁胺醇 18559-94-9 1 mL ¥756 T109752 Terbutaline-d9 5-(1-羟基-2-叔丁基氨基乙基)苯-1,3-二酚 N/A 1 mg ¥1,750 BA003-50 Cimbuterol N/A N/A 50 mg ¥3,871 BA001-50 Brombuterol hydrochloride N/AN/A 50 mg ¥3,871 C 14660000 Mabuterol hydrochloride 马布特洛盐酸盐 54240-36-7 50 mg ¥5,580 BA006-50 Mapenterol hydrochloride N/A 54238-51-6 50 mg ¥4,848 BA002-50 Bromchlorbuterol hydrochloride N/A N/A 50 mg ¥3,871116481 Methanol, 99.9% [HPLC/ACS] 甲醇 67-56-1 4 L ¥145 938219 2-Propanol, 99.8%[HPLC/ACS] 异丙醇 67-63-0 4 L ¥360 300999 Ethyl acetate, 99.9% [HPLC/ACS] 乙酸乙酯 141-78-6 4 L ¥440 27048 Formic acid, for analysis, 99+% 甲酸 64-18-6 1 L ¥1,155 20584 Ammonium hydroxide, 28-30 wt% solution of NH3 in water, for analysis 氨水 1336-21-6 1 L ¥269 22089 Acetic acid, sodium salt, anhydrous, for analysis, 99+% 乙酸钠 127-09-3 250 g ¥349 ■ 配套仪器耗材 产品编号 产品名称 包装 目录价 3581025 加热磁力搅拌器 1台 ¥2,310 3810025 RCT 基本型磁力搅拌器 1台 ¥4,990 1572500 磁力搅拌子 1PK ¥95 E03935569 手动单道可调式移液枪,1000-5000 µ L 1支 ¥645 E02901275 瓶口分液器,5-50 mL 1个 ¥2,000 WX-7009-0020-1 8247 R95 有机蒸气异味防护口罩,120个/箱 1箱 ¥2,282 5982-3236 SCX Polymer - Box, 50 x 3 mL tubes, 60 mg 50支/盒 ¥1,239959741-902 Eclipse Plus C18, 2.1 x 50 mm,1.8 µ m, 600 bar 1支 ¥4,591 BR36849 100 mL, DURAN, NS 14/23, -stoer 1套 ¥314 5182-0714 Screw cap vials, clear 100/PK 透明螺口2 mL样品瓶 1盒 ¥204 WKLM-2.1 微孔滤膜Ф50 0.2 &mu (水)混合纤维素 100片/包¥130 WKLM-4.1 微孔滤膜Ф50 0.2 &mu (有机)尼龙6 100片/包 ¥210 RJGL1L-C 溶剂过滤器(1 L) 杯300 mL 瓶1000 mL,PTFE滤板 1套 ¥600 5982-9110 12 Port Vacuum Extraction Manifold Assy 1套 ¥7,746 J&K-Abel气相色谱柱 百灵威凭借着良好的g际化运作能力,与世界y流气相色谱柱供应商密切合作,隆重推出J&K-Abel 气相色谱柱产品。此系列毛细柱不仅拥有品种齐全的固定相,包括聚硅氧烷、交联聚二乙醇(PEG)和PLOTs等;同时每根色谱柱均按照严格的流程生产,经过标准的性能检测,确保柱子卓越的性能。百灵威还可以根据用户需求专门定制特殊规格的柱子。 ●高性能AB色谱柱:低流失、独特去活技术;高惰性、高选择性和高柱效 ●成熟的技术生产,确保柱性能,可放心选用 ●资深丰富的分离经验和专业知识供强有力的技术支持 ●强劲的价格竞争力,更多实惠 聚硅氧烷色谱柱 非j性和中j性固定相两种类型,例如AB-1、AB-5是非j性柱,AB-35、AB-1701、AB-1301是中j性柱。 聚合乙二醇(PEG)色谱柱 三种类型的PEG色谱柱,如AB-INOWAX、AB-FFAP、AB-CarBoWax 20M,基于PEG固定相的特征,该系列色谱柱具有广泛的应用。 PLOT色谱柱 AB-PLOT、AB-PLOT Al2O3、AB-PLOT MoleSieve、AB-PLOT Q、AB-PLOT U等型号,广泛应用于石化工业、环境、药学等l域。 熔融石英管 未去活管与去活熔融石英管两种类型。 产品编号 英文名称 描述 S010125-3002 AB-1, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091Z-433 S010125-6002 AB-1, 60 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091Z-436 S010132-3002 AB-1, 30 m × 0.32 mm × 0.25 &mu m -60 to 325/350 19091Z-413 S011125-3002 AB-1MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-933 S011132-3002 AB-1MS, 30 m × 0.32 mm × 0.25 &mu m -60 to 325/350 19091S-913 S010525-3002 AB-5, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091J-433 S010525-6002 AB-5, 60 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091J-436 S010532-3002 AB-5, 30 m × 0.32 mm × 0.25 &mu m -60 to 325/350 19091J-413 S010532-6002 AB-5, 60 m × 0.32 mm × 0.25 &mu m -60 to 325/350 19091J-416 S011525-3002 AB-5MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-433 S011525-6002 AB-5MS, 60 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-436 S011532-3002 AB-5MS, 30 m × 0.32 mm × 0.25 &mu m -60 to 325/350 19091S-413 S016125-3002 AB-1701, 30 m × 0.25 mm × 0.25 &mu m -20 to 280/300 122-0732 S016132-3002 AB-1701, 30 m × 0.32 mm × 0.25 &mu m -20 to 280/300 123-0732 S016225-3014 AB-624, 30 m × 0.25 mm × 1.40 &mu m -20 to 260 122-1334 S016232-3018 AB-624, 30 m × 0.32 mm × 1.80 &mu m -20 to 260 123-1334 S016232-6018 AB-624, 60 m × 0.32 mm × 1.80 &mu m -20 to 260 123-1364 S016253-3030 AB-624, 30 m × 0.53 mm × 3.00 &mu m -20 to 260 125-1334 S012025-3002 AB-INOWAX, 30 m × 0.25 mm × 0.25 &mu m40 to 260/280 19091N-133 S012032-3002 AB-INOWAX, 30 m × 0.32 mm × 0.25 &mu m 40 to 260/280 19091N-113 S018653-3030 AB-PLOT Q, 30 m × 0.53 mm × 30.0 &mu m -80 to 280/29019095P-QO4 S011125-3002-G5 AB-1MS Builtin-Guard 30 m,0.25 mm,0.25 &mu m with 5 m Guard Column -60 to 325/350
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 海洋科技“划重点”:未来五年可燃冰开采、深海探测“大有可为”
    p   时隔两年,参与《“十三五”海洋领域科技创新专项规划》(以下简称《规划》)制定的上海交通大学任平研究员终于盼来了“十三五”海洋科技发展顶层设计正式面世。日前,《规划》由科技部、国土资源部、国家海洋局联合印发。 /p p   “海洋科技创新是提高海洋实力的战略支撑,是海洋强国建设的核心任务。”任平告诉科技日报记者,“十三五”是落实建设海洋强国重大部署,实施创新驱动发展战略的关键时期,《规划》在深入分析世界海洋科技发展新趋势的基础上,查找制约我国海洋科技创新的主要因素,在若干领域布局基础研究和应用技术研究,进一步建设完善国家海洋科技创新体系,提升我国海洋科技创新能力。 /p p    strong “十三五”有望实现万米下潜 /strong /p p   海洋强国战略的实现依赖于深海关键技术与装备能力的提升,而由于高压、低温、高温等极端环境条件的限制,深海技术与装备一直是国际海洋工程技术研究的难点和最前沿,也是制约我国实施深海战略的关键技术瓶颈。 /p p   任平告诉记者,深海潜水器是发展深海技术的引擎和集成平台,也是开展深海科学研究、资源开发的重要支撑,相关技术的进步将促进深海装备配套技术和新兴产业发展。 /p p   开展潜水器谱系化工程,这是《规划》提出的重要目标。“十三五”,我国将通过《深海技术与装备》专项的实施,形成3—5个国际前沿优势技术方向、10个以上核心装备系列产品,满足我国在深海领域的重大需求、为形成我国自主的深海产业提供技术和人才支撑。 /p p   具体来说,包括开展深海空间站研制 全海深(最大工作深度11000米)潜水器研制及深海前沿关键技术研究,争取在“十三五”实现万米下潜 深海通用配套技术及1000—7000米级潜水器作业及应用能力示范 深远海核动力平台关键技术研发。 /p p   科技部相关负责人介绍,“十三五”我国将形成深海运载、探测装备谱系化和配套能力,提升深海作业支持能力以及深水油气和矿产资源开发方面的自主技术能力,最终目的是希望通过技术装备研发,带动整个国家装备制造能力的进步。 /p p    strong 形成可燃冰开采试验能力 /strong /p p   “海洋高技术已成为国家竞争力的重要标志。”任平说,本世纪以来,在国家连续3个五年计划的支持下,我国的海洋科学和技术取得了巨大的进步,然而,在日趋激烈的海洋资源的争夺中,我国海洋资源开发能力亟待提高,特别是深海资源开发能力。 /p p   比如,在海洋油气开发方面,我国仍以300米以浅的海洋油气开发为主,尚未系统掌握深水油气勘探开发技术,大量深水油气勘探开发核心技术与设备不得不依赖进口,核心技术不足已成为我国进军海外深水油气的重要瓶颈。在南极磷虾资源调查、捕捞、深度加工等诸多技术方面,我国与挪威、日本等国仍有至少20—30年的差距。目前国际海底矿产资源活动重点逐步由资源勘探向开发过渡,而我国尚不具备海底资源规模化开采技术。此外,生物基因资源利用、生物多样性保护、公海保护区建设等与资源有关的热点问题都需要有力的科技支撑。 /p p   为此,《规划》提出实施深水能源、矿产资源精细勘探与试采技术工程示范,实现核心技术和装备国产化,全面提升海洋资源自主开发能力,为海洋强国建设提供支撑。 /p p   比如,开展海洋油气工程新概念、新技术研究,开发深水油气勘探核心技术和工程装备,结合“大型油气田及煤层气开发”重大专项,形成1500米到3000米深水油气资源自主开发能力 开展海洋天然气水合物成藏、成矿机理以及安全开采等基础问题研究,开发精确勘探和钻采试验技术与装备,形成海底天然气水合物(又称可燃冰)开采试验能力 开展大洋矿产成矿机理与分布规律等科学问题研究,开发高效勘探核心技术研究及深海采矿系统设计,研制集矿与输送装备,完成1000米海深集矿、输送等技术海上试验。 /p p    strong 实现大型深海探测装备共享 /strong /p p   该人士认为,《规划》一大亮点是,提出重点建设国家重大基础设施和海洋技术创新平台,优化海洋科技创新基地布局。 /p p   如今我国深海探测与作业技术实现重大进展,在深海耐压舱、深海浮力材料、深海推进器、深海液压控制、深海通信与定位技术、深海机械手等方面均取得了突破,取得了“蛟龙”号载人潜水器、“海马”号4500米级遥控潜水器、“海燕”号深海滑翔机等一批重大成果。预计到“十三五”末,我国将是国际上拥有最多大深度载人潜水器的国家。 /p p   在上述人士看来,这给管理者提出的新命题是如何通过共享机制实现资源最优化及高效应用,实现大型深海探测装备共享。 /p p   《规划》同时提出,要建立资源共享的机制,建立海洋科学观测数据、海洋微生物菌种/基因等资源的共享制度,推动科学观测、技术研发、产业培育、海洋管理等环节的相互融合,建立强有力海洋科技任务的一体化实施体系,建立与中央财政科技计划管理改革方案相适应、与海洋事业发展的重大工程紧密结合的协同创新机制,提高科研产出效率。 /p p   该人士表示,与陆地相比,海洋相关数据获取更难、成本更高,正因为如此,共享才显得更为必要。“比如美国的海洋科技创新之所以领先,其中很重要的一点是建立了有效的共享机制。” /p
  • 从大国可燃冰的开发博弈到可燃冰的开采技术
    p    strong 仪器信息网讯 /strong 2017年5月,几个大国都发出了有关可燃冰的消息。中国18日宣布在南海试采可燃冰成功。此前,美国于12日宣布正在墨西哥湾开展可燃冰钻探研究,日本也于4日宣布从近海可燃冰中提取出了甲烷。此前包括俄罗斯、加拿大、印度等国家已经加入了这个开采行列。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/noimg/d7e78e9a-ab48-497d-af9c-7a47147be596.jpg" title=" 1.jpg" style=" width: 606px height: 82px " width=" 606" vspace=" 0" hspace=" 0" border=" 0" height=" 82" / /p p    span style=" color: rgb(0, 176, 240) " strong 可燃冰的优点 /strong /span /p p   什么是可燃冰?中国科学技术大学合肥微尺度物质科学国家实验室副研究员袁岚峰介绍,可燃冰的结构是甲烷为主的有机分子被包在水分子组成的“笼子”里,由于甲烷是天然气的主要成分,所以其学名是天然气水合物。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/d6819cd3-6d4f-44db-b5b5-e27a4d9b3142.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 可燃冰的结构 /strong br/ /p p   它之所以被称作“可燃冰”,一方面是因为既含水又呈固体,看来像冰,另一方面,甲烷与水分子结合很弱,外界稍加扰动就可以让其分离出来,很容易点燃。 /p p   甲烷是清洁燃料,燃烧后只生成二氧化碳和水,如果替代煤炭,将有助于解决空气污染问题。 /p p   可燃冰储量巨大,广泛分布于全球大洋海底、陆地冻土层和极地之下。有专家估计,其资源量相当于全球已探明传统化石燃料碳总量的两倍。因此,可燃冰是一种有重大战略意义的未来能源。 /p p   “目前全球生产模式主要依靠的传统化石能源总会耗尽,而可燃冰可能大大延长这个时间,为人类开发新能源提供缓冲。”袁岚峰说。 /p p    strong span style=" color: rgb(0, 176, 240) " 大国竞相探索 /span /strong /p p   可燃冰的优点吸引了全球大国竞相研究开采手段。 /p p   美国能源部下属的国家能源技术实验室12日宣布,正与得克萨斯大学奥斯汀分校等机构合作,于5月在墨西哥湾深水区开展可燃冰开采研究,11日已经开始了一次钻探。 /p p   美国十分重视可燃冰研究,2000年曾通过《天然气水合物研究与开发法案》。此后美国能源部多次拨款支持可燃冰研究,最近一次是在2016年9月,宣布投入380万美元支持6个新的可燃冰研究项目。开展本次钻探的得克萨斯大学奥斯汀分校就是受支持的项目方之一。 /p p   日本经济产业省资源能源厅4日宣布,日本石油天然气金属矿物资源机构成功从日本近海海底埋藏的可燃冰中提取出甲烷。此次试验开采海域位于爱知县和三重县附近的太平洋近海,估计该海域拥有的可燃冰储量达1.1万亿立方米,是日本天然气年消费量的约10倍。 /p p   这是日本第二次开采可燃冰。2013年,日本尝试过开采海底可燃冰并提取了甲烷,但由于海底砂流入开采井,试验仅6天就被迫中断。本次试验持续12天后也因出砂问题中断,未能完成原计划连续三四周稳定生产的目标,12天产气量只有3.5万立方米。 /p p   《日本经济新闻》19日说,日本希望在21世纪20年代开始可燃冰商业化项目,但现在看来还需要时间研发相应技术。日本资源能源厅石油天然气课长定光裕树表示,由于日本开采试验没有达到目标,可能不得不调整商业化的时间。 /p p    span style=" color: rgb(0, 176, 240) " strong 特殊国情加大开采难度 /strong /span /p p span style=" color: rgb(0, 176, 240) " strong    /strong span style=" color: rgb(0, 0, 0) " 我国可燃冰主要分布在南海海域、东海海域、青藏高原冻土带以及被冻土带,根据粗略估算,其资源量分别为64.97*10 sup 12 /sup m sup 3 /sup 、3.38*10 sup 12 /sup m sup 3 /sup 、12.5*10 sup 12 /sup m sup 3 /sup 、2.8*10 sup 12 /sup m sup 3 /sup 。其中南海北部陆破的可燃冰资源量达185亿吨油当量,相当于南海深水勘探已探明的油气地质储备的6倍,达到我国陆上石油总量的50%。此外,在西沙海槽已初步圈出可燃冰分布面积5242平方千米,其资源估算达到4.1万亿立方米。而且在我国东海和台湾省海域也存在大量可燃冰。经过海内外专家学者多年探测研究证实中国台湾省西南面积约77000平方千米的海域蕴藏着极为丰富的可燃冰球。据科学家估算,远景资源至少有350亿吨油当量。并且已在南海北部神狐海域和青海省祁连山永久冻土带取得了可燃冰实物样品。 /span /span /p p   中国此次试采可燃冰成功,也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。截至18日,本次试采连续产气超过一周,最日高产量3.5万立方米,累计产气12万立方米。 /p p   但是可燃冰要商业化还有许多障碍,比如降低开采成本、降低环境影响等。 /p p    span style=" color: rgb(0, 176, 240) " strong 现阶段的开采技术 /strong /span /p p span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/5b267c40-309e-4c34-945f-fd962351f0ab.jpg" title=" 2.jpg" style=" width: 496px height: 433px " width=" 496" vspace=" 0" hspace=" 0" border=" 0" height=" 433" / /p p style=" text-align: center " strong 降压法开采原理 /strong br/ /p p span style=" color: rgb(0, 176, 240) "    span style=" color: rgb(0, 0, 0) " 降压法是通过降低压力而使天然气水合物稳定的相平衡曲线移动,从而达到促使水合物分解的目的。一般是在水合物层之下的游离气聚集层中降低天然气压力或形成一个天然气空腔(可由热激发或化学试剂作用人为形成),使与天然气接触的水合物变得不稳定并且分解为天然气和水。在该方法中,由于没有额外的热量注人水合物开采层,分解所吸收的热量必须由周围物质提供,但是当水合物分解吸收的热量达到一定程度,水合物周围环境温度降低会抑制水合物的进一步分解研究表明,这种方法在气体全面分解过程中有利于控制开采气体的流量,适合于那些储藏中存在大量自由气体的水合物储层,是现有水合物开采技术中经济前景比较好的开采技术。 br/ /span /span /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/8c1160ce-86a8-4c95-b3eb-4b67c33ba6f1.jpg" title=" 3.jpg" style=" width: 493px height: 330px " width=" 493" vspace=" 0" hspace=" 0" border=" 0" height=" 330" / /p p style=" text-align: center " strong 综合法开采原理 /strong /p p   综合法是综合利用降压法和热开采技术的优点对天然气水合物进行有效开采。其具体方法是先用热激法分解天然气水合物,后用降压法提取游离气体。目前,这种方法已得到了人们的广泛推祟,已投产的俄罗斯Messoyakha气田和加拿大Mackensie气田均以该法为主要开采技术,其技术在国内具有良好的应用前景。 br/ /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201705/ueattachment/af556450-90e6-48f0-93cf-1eeee0ed2983.pdf" 新型洁净能源可燃冰的研究发展.pdf /a /p
  • 2017年第一展:纽迈分析即将首次亮相中国石油展(cippe)
    2017年第一展:纽迈分析即将首次亮相中国石油展(cippe) 导读: 春风十里帝都路,精彩展会看不停! 伴着2017年暖暖的春风,纽迈分析又开启了忙碌的展会生活,第一站当然选择我们的大帝都了,纽迈首次亮相全球最大石油展——第十七届中国国际石油石化技术装备展览会(cippe)。时间: 2017年3月20-22日地点: 北京?中国国际展览中心展位号: W3馆3720展位 纽迈有礼本次展会,纽迈设有展台,将悉数带来诸如:高温高压核磁共振在线驱替、核磁共振页岩分析以及核磁共振纳米孔隙分析等仪器的相关资料,为石油、岩土领域的应用带来全面的应用解决方案,并将由专业产品工程师在3月20日13:30-14:30,一层西段W-101会议室做“低场核磁共振设备在石油石化领域的应用”的技术报告。 此外,新年第一展,纽迈当然有礼相送,光临纽迈展位即可免费获得精美礼品!应用解决方案一览无遗岩心分析孔隙度、孔径分布渗透率估算、含油/水饱和度岩心内部核磁共振成像页岩油气致密岩心核磁共振成像纳米孔径大小测试及分布岩石、水泥等的固化过程(分层含水率)岩心内部裂缝生成演化可视化力学损伤规律及机理研究三轴压缩损伤规律研究油气勘探开发T2分布、T2截止值自由流体及束缚水孔隙流体识别油气成藏研究提高采收率实验研究煤层气煤粉吸附解吸气/水润湿性、驱替研究煤储层岩石的孔隙结构、渗流测试煤中多态甲烷识别及甲烷吸附能力测试天然气水合物天然气水合物形成与分解机理研究形成过程的快慢、颗粒大小及分布情况外界条件对水合物形成过程的影响研究水合物稳定分解技术研究还应用在岩土工程及海绵城市的建设中低场核磁共振技术作为一门新兴起的先进技术,在海绵城市研究中能发挥巨大的作用,可以进行水分状态研究、含水定量测试、水分迁徙研究、孔隙结构探究等研究测试,包括南京农业大学、浙江大学等一些高校已经采用了这项技术。为此,纽迈分析联合多个高校和科研单位成立了“海绵城市实验室低场核磁技术应用中心” 推荐仪器纽迈客户分布地图国内装机量近300台,遍布全国高校、科研院所以及企业单位等。 春风十里好时节,赶紧和纽迈约起来~~~ 小编按:低场核磁共振技术的应用远远大于以上所列,如果您对以上应用或产品感兴趣或想要了解更多,您可以直接给小编留言,小编期待您的参与
  • XRDynamic 500 | 让止痛药的药剂更精确,更安全!
    固定剂量复方止痛药X 射线衍射法固定剂量复合剂 (FDC) 描述的是在单一剂型种包含一种以上活性药物成分(API)的药物。结合不同的 APIs 可以提高药物的效力或帮助抵消副作用。在质量控制和生产研发中,精确确认FDC中不同 APIs 的比例至关重要;XRD 被证明是这种测试的最理想工具。简介据世界卫生组织统计,头痛是最常见的神经系统疾病之一,估计有 50% 的成年人每年至少头痛一次。止痛药是专门为缓解头痛症状而配制的,通常作为非处方药和处方药提供。由于头痛可能是由不同的,并且有时是多种因素引起的,因此以不同方式影响身体的多种 APIs 的复合剂可以提高镇痛的效果。在此类固定剂量复合剂 (FDCs) 中,产品中不同镇痛药的比例至关重要。因此,物相组成的确定和确认是研发和质量控制过程中的重要步骤,这通常使用 X 射线衍射(XRD)进行表征。在本应用报告中,确定了市售的抗头痛药物的物相组成,即三种不同成分(乙酰水杨酸、对乙酰氨基酚和咖啡因)的FDC。研究了不同结晶和无定型辅料的存在,并通过 Rietveld 方法定量拟合最终确定了三种组分的比例。实验样品制备FDC 以片剂形式购买,并在玛瑙研钵中手工研磨成细粉。将粉末填充在直径为 1 mm 的毛细管中用于 XRD 测试。X 射线衍射测试衍射测试是在安东帕的自动化多用途粉末 X 射线衍射仪 XRDynamic 500 上进行的,衍射仪配有毛细管旋转台和 Primux 3000 密封管 Cu靶 X 射线源。入射光路使用椭球 Ni/C 多层膜反射镜聚焦 X 射线束的水平透射几何,毛细管在其中旋转时进行测试。结果定性分析本报告中检测的样品包含三种主要成分:乙酰水杨酸(ASA)、对乙酰氨基酚(扑热息痛)和咖啡因。FDC 的衍射图案显示出几个尖锐的布拉格峰,清楚地表明存在结晶相。与文献数据模拟的所有三种 APIs 的粉末图样直接比较表明,测试数据的大多数反射都与模拟非常吻合,无论是在峰值位置还是强度(图1)。 数个反射峰 (见于12.5°, 16.5°, 19.2°, 19.6°, 20°, 21.3° 和 23.8° 2θ) 无法与 API 相关,因此需要进一步分析。图 1:将 FDC 样品的测试衍射图与从所有三种已知 APIs 模拟的图谱进行比较。无法解释的反射标有 *。三个最强的无法解释的反射的放大视图显示为镶嵌。比较从文献数据模拟的 α-乳糖水合物的衍射图与 FDC 衍射图清楚地表明,乳糖的最强反射与迄今为止 API 未解释的峰位置一致(图 2)。图 2: 测试的 FDC 衍射图谱与 α-乳糖水合物的模拟图谱比较。对数坐标绘制 FDC 图谱清楚地揭示了广泛的特征,表明除了已经确定的晶相之外,还有其他非晶成分(图3)。图 3: 对数坐标绘制测试FDC衍射谱图和由所有结晶组分和背景拟合模拟的谱图。定量分析图4 显示了基于 Rietveld 精修的 FDC 的定量评估结果。图 4: 测试的FDC 衍射谱和定量拟合后的拟合谱图的比较。还绘制了拟合和测试谱图之间的差异以及拟合的背景。在拟合程序后,模拟数据的所有反射位置和强度都与测试数据吻合良好。通过安东帕的 XRDanalysis PRO 软件中的自动 Rietveld 拟合顺序进行拟合,使用具有 12 个系数的 Chebyshev 多项式来描述背景。选定的拟合 R 值在表 1 中给出。表1: FDC 样品定量拟合的选定的 R 值。表2:不考虑无定形组分,从定量拟合结果计算的相对和绝对质量。以所有结晶组分值为M(all)=600 mg 和用于APIs 的值为M(all)=500 mg 进行计算。绝对质量是由从Rietveld 精修获得的相对质量和用作样品片剂的质量计算出。这种近似是有缺陷的,因为无定形成分的相对数量是未知的,因此尚不清楚药片的总质量中有多少是由四个结晶相组成的。为了给出更真实的近似值,在计算成分的相对重量时忽略了乳糖,将三种APIs 的总和看成100。由于结构中存在可见的非晶峰,因此也可以对非晶进行量化(图5)。为此,假定线性背景代表理想化的预期背景。背景上方的区域被分配为一个无定形的驼峰,在21.3° 2θ 处 FWHM 约为8°。图 5: FDC 测试的谱图和基于 Rietveld 精修的定量分析后模拟谱图的比较。还绘制了理想化的线性背景和非晶物相的贡献。计算出无定形相的相对质量为 19%,再次假定片剂为 600 mg,其绝对质量为 114 mg。表 3 中给出了结晶和无定形组分的相对和绝对质量。表3:对 M(all)=600 mg,所有结晶和无定形组分的定量拟合计算的相对和绝对质量根据制造商的说法,一粒 600 mg 的药片应含有 500 mg 的 API,这意味着计算出的 114 mg 的无定形比预期的要大。因此,API 物相的绝对质量都比预期的少约 10 mg。然而,由于绝对质量的这些差异仅转化为相对质量高达 3% 的偏差,因此它们完全在这种定量拟合的误差范围内。此外,与表 2 中的值相比,考虑到无定形相的定量分析提供了更合理的值,并且还允许在相对质量中包含乳糖-水合物。还应该提到的是,用于量化无定形成分的理想化背景只是一个近似值,选择不同的背景参数可以改变结果。在这种情况下,当量化无定形成分时,这会导致固有的不准确性。解决此问题的一种可能解决方案是测量仅包含结晶 APIs 而没有任何无定形材料的样品,并将这种图样的背景与 FDC 样品衍射谱图进行比较。结论实验清楚地表明,粉末 X 射线衍射是确定研发和质量控制药物材料中物相组成的强有力工具。即使在非常低的浓度下,也可以确定结晶辅料和无定形组分的存在和数量。由于物相确定和定量拟合可能很困难,特别是对于包含不同浓度的多相体系,因此必须使用具有高分辨和良好信噪比的衍射仪,XRDynamic 500 已被证明是完美用于此类应用的仪器。
  • 国家能源局、科学技术部联合印发《“十四五”能源领域科技创新规划》
    4月2日,国家能源局、科学技术部发布关于印发《“十四五”能源领域科技创新规划》(以下简称《规划》)的通知。《规划》提出,“十四五”时期要引领新能源占比逐渐提高的新型电力系统建设;支撑在确保安全的前提下积极有序发展核电;推动化石能源清洁低碳高效开发利用;促进能源产业数字化智能化升级;适应高质量发展要求的能源科技创新体系进一步健全。《规划》围绕先进可再生能源、新型电力系统、安全高效核能、绿色高效化石能源开发利用、能源数字化智能化等方面,明确了以下五项重点任务 :(一)先进可再生能源发电及综合利用技术聚焦大规模高比例可再生能源开发利用,研发更高效、更经济、更可靠的水能、风能、太阳能、生物质能、地热能以及海洋能等可再生能源先进发电及综合利用技术,支撑可再生能源产业高质量开发利用;攻克高效氢气制备、储运、加注和燃料电池关键技术,推动氢能与可再生能源融合发展。1. 水能发电技术(1)水电基地可再生能源协同开发运行关键技术(2)水电工程健康诊断、升级改造和灾害防控技术2. 风力发电技术(3)深远海域海上风电开发及超大型海上风机技术(4)退役风电机组回收与再利用技术3. 太阳能发电及利用技术(5)新型光伏系统及关键部件技术(6)高效钙钛矿电池制备与产业化生产技术(7)高效低成本光伏电池技术(8)光伏组件回收处理与再利用技术(9)太阳能热发电与综合利用技术4. 其他可再生能源发电及利用技术(10)生物质能转化与利用技术(11)地热能开发与利用技术(12)海洋能发电及综合利用技术5. 氢能和燃料电池技术(13)氢气制备关键技术(14)氢气储运关键技术(15)氢气加注关键技术(16)燃料电池设备及系统集成关键技术(17)氢安全防控及氢气品质保障技术(二)新型电力系统及其支撑技术加快战略性、前瞻性电网核心技术攻关,支撑建设适应大规模可再生能源和分布式电源友好并网、源网荷双向互动、智能高效的先进电网;突破能量型、功率型等储能本体及系统集成关键技术和核心装备,满足能源系统不同应用场景储能发展需要。1. 适应大规模高比例新能源友好并网的先进电网技术(1)新能源发电并网及主动支撑技术(2)电力系统仿真分析及安全高效运行技术(3)交直流混合配电网灵活规划运行技术(4)新型直流输电装备技术(5)新型柔性输配电装备技术(6)源网荷储一体化和多能互补集成设计及运行技术(7)大容量远海风电友好送出技术2. 储能技术(8)能量型/容量型储能技术装备及系统集成技术(9)功率型/备用型储能技术装备与系统集成技术(10)储能电池共性关键技术(11)大型变速抽水蓄能及海水抽水蓄能关键技术(12)分布式储能与分布式电源协同聚合技术(三)安全高效核能技术围绕提升核电技术装备水平及项目经济性,开展三代核电关键技术优化研究,支撑建立标准化型号和型号谱系;加强战略性、前瞻性核能技术创新,开展小型模块化反应堆、(超)高温气冷堆、熔盐堆等新一代先进核能系统关键核心技术攻关;开展放射性废物处理处置、核电站长期运行、延寿等关键技术研究,推进核能全产业链上下游可持续发展。1. 核电优化升级技术(1)三代核电技术型号优化升级(2)核能综合利用技术2. 小型模块化反应堆技术(3)小型智能模块化反应堆技术(4)小型供热堆技术(5)浮动堆技术(6)移动式反应堆技术3. 新一代核电技术(7)(超)高温气冷堆技术(8)钍基熔盐堆技术4. 全产业链上下游可持续支撑技术(9)放射性废物处理处置关键技术(10)核电机组长期运行及延寿技术(11)核电科技创新重大基础设施支撑技术(四)绿色高效化石能源开发利用技术聚焦增强油气安全保障能力,有效支撑油气勘探开发和天然气产供销体系建设,开展纳米驱油、CO2驱油、精细化勘探、智能化注采等关键核心技术攻关,提升低渗透老油田、高含水油田以及深层油气等陆上常规油气的采收率和储量动用率;推动深层页岩气、非海相非常规天然气、页岩油和油页岩勘探开发技术攻关,研发天然气水合物试采及脱水净化技术装备;突破输运、炼化领域关键瓶颈技术,提升油气高效输运技术能力,完善下游炼 化高端产品研发体系。聚焦煤炭绿色智能开采、重大灾害防控、分质分级转化、污染物控制等重大需求,形成煤炭绿色智能高效开发利用技术体系。研发一批更高效率、更加灵活、更低排放的煤基发电技术,巩固煤电技术领先地位。突破燃气轮机设计、试验、制造、运维检修等瓶颈技术,提升燃气发电技术水平。1. 油气安全保障供应技术——陆上常规油气勘探开发技术(1)低渗透老油田大幅提高采收率技术(2)高含水油田精细化/智能化分层注采技术(3)深层油气勘探目标精准描述和评价技术——非常规油气勘探开发技术(4)深层页岩气开发技术(5)非海相非常规天然气开发技术(6)陆相中高成熟度页岩油勘探开发技术(7)中低成熟度页岩油和油页岩地下原位转化技术(8)地下原位煤气化技术(9)海域天然气水合物试采技术及装备——油气工程技术(10)地震探测智能化节点采集技术与装备(11)超高温高压测井与远探测测井技术与装备(12)抗高温抗盐环保型井筒工作液与智能化复杂地层窄安全密度窗口承压堵漏技术 (13)高效压裂改造技术与大功率电动压裂装备(14)地下储气库建库工程技术——管输技术(15)新一代大输量天然气管道工程建设关键技术与装备——炼化技术(16)特种专用橡胶技术(17)高端润滑油脂技术(18)分子炼油与分子转化平台技术2. 煤炭清洁低碳高效开发利用技术——煤炭绿色智能开采技术(19)煤矿智能开采关键技术与装备(20)煤炭绿色开采和废弃物资源化利用技术(21)煤矿重大灾害及粉尘智能监控预警与防控技术(22)煤炭及共伴生资源综合开发技术——煤炭清洁高效转化技术(23)煤炭精准智能化洗选加工技术(24)新型柔性气化和煤与有机废弃物协同气化技术(25)煤制油工艺升级及产品高端化技术(26)低阶煤分质利用关键技术(27)煤转化过程中多种污染物协同控制技术——先进燃煤发电技术(28)先进高参数超超临界燃煤发电技术(29)高效超低排放循环流化床锅炉发电技术(30)超临界CO2(S-CO2)发电技术(31)整体煤气化蒸汽燃气联合循环发电(IGCC)及燃料电池发电(IGFC)系统集成优化技术(32)高效低成本的CO2捕集、利用与封存(CCUS)技术(33)老旧煤电机组延寿及灵活高效改造技术(34)燃煤电厂节能环保、灵活性提升及耦合生物质发电等改造技术3. 燃气发电技术(35)燃气轮机非常规燃料燃烧技术(36)中小型燃气轮机关键技术(37)重型燃气轮机关键技术(五)能源系统数字化智能化技术聚焦新一代信息技术和能源融合发展,开展能源领域用智能传感和智能量测、特种机器人、数字孪生,以及能源大数据、人工智能、云计算、区块链、物联网等数字化、智能化共性关键技术研究,推动煤炭、油气、电厂、电网等传统行业与数字化、智能化技术深度融合,开展各种能源厂站和区域智慧能源系统集成试点示范,引领能源产业转型升级。1. 基础共性技术(1)智能传感与智能量测技术(2)特种智能机器人技术(3)能源装备数字孪生技术(4)人工智能与区块链技术(5)能源大数据与云计算技术(6)能源物联网技2. 行业智能升级技术(7)油气田与炼化企业数字化智能化技术(8)水电数字化智能化技术(9)风电机组与风电场数字化智能化技(10)光伏发电数字化智能化技(11)电网智能调度运行控制与智能运维技术(12)核电数字化智能化技术(13)煤矿数字化智能化技术(14)火电厂数字化智能化技3. 智慧系统集成与综合能源服务技术(15)区域综合智慧能源系统关键技术(16)多元用户友好智能供需互动技术附件:“十四五”能源领域科技创新规划.pdf
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • ISCO泵-探索新能源概念
    01 概述全球经济严重依赖于能源,能源供应我们的食物生产、建造我们的家园并驱动我们的交通工具。没有能源,我们所熟悉的许多事物将会停止运转。随着中国和印度等国家经历快速经济增长,能源需求以及化石燃料的成本持续上升。为了满足这一增长的需求,开发替代能源来源变得越来越重要。研究与开发对于此过程至关重要,需要最高等级的设备来获得准确可靠的结果。Teledyne ISCO 注塞泵是开发替代燃料的绝佳工具,从实验室规模到试验工厂都能派上用场。能源来源或用于燃料和化学品的原材料可以分为两类:传统的和非传统的。传统能源来源是通过现有技术获得的,例如石油(原油)、煤炭和天然气,而非传统来源则需要更新和/或更复杂的技术,通常需要更大的投资。非传统能源过去在成本上不具备竞争力,但随着能源价格的上涨,现在可能成为一种可行的替代品。非传统能源来源包括:&bull 页岩油(美国)&bull 油砂/重油(委内瑞拉-加拿大)&bull 生物质(任何植物或动物材料)&bull 甲烷水合物替代性或非传统燃料可以从任何传统来源中提取,例如煤炭,而不是石油。然而,这一术语通常更多地用于指代来自可再生能源的可再生燃料,如生物质。可再生燃料包括:&bull 乙醇&bull 生物柴油&bull 非化石甲烷&bull 氢气02 石油(原油)自 1858 年在加拿大安大略省的石油泉首次钻探油井以来,石油的使用已大大扩展。如今,90% 的车辆使用的燃料都源自石油,全球的需求预计还将上升,这将给石油生产带来更大的压力。油井的生产寿命在达到某个高点后会开始下降。在这一点上,可以采用如增强型石油回收(EOR)等技术来维持石油生产水平。评估可能的技术需要复制油藏条件(如温度和压力)进行测试。这种称为岩心驱替的测试,能确定岩石对各种流体的渗透性,并需要使用高性能注射泵等精密设备。 我们每天使用的物品都来自常规和非常规石油。世界对原油的依赖远远超出汽油和其他燃料等更明显的需求。来自石油的其他产品包括许多药物和软膏、塑料、化妆品和洗涤剂。橡胶制品、防腐剂、密封剂和铺路材料也来自石油。世界的石油供应以及我们获取石油的能力,对这些以及其他许多日常产品的成本和可用性产生了深远的影响。03 油页岩油页岩含有干酪根,一种沉积岩中发现的复杂有机化合物混合物,从中可以提取液态烃。干酪根不是原油,但可以被加工成原油替代品,或称为合成原油(syncrude),然后进一步加工成常用的石油产品。这一过程本身需要能源投入,这影响了其与原油的成本竞争力。油页岩矿床遍布全球,但世界上已知储量的 64% 集中在美国。随着世界能源价格上涨,油页岩将受到更多关注。04 细砂油砂主要位于加拿大和委内瑞拉,由类似糖浆的石油(沥青)组成,其开采和加工难度远大于传统石油。因此,需要采用非常规技术进行提取,如露天开采和原位开采。最常见的原位过程涉及用蒸汽加热沥青,降低粘度,使其能以更传统的方式被泵送出来。提取后,必须将沥青升级为较轻的合成原油,以便通过标准管道运输并进一步精炼。由于技术上更具挑战性、能源密集度更高,因此成本也更高,使得油砂成为一种非常规石油来源。05 煤炭煤炭满足了全球 25% 的能源需求,尤其是电力生成方面。不幸的是,它也是最大的二氧化碳排放源。按照目前的消耗率,世界的煤炭储量可以持续超过预计的 150 年。世界上超过 50% 的煤炭储量位于美国、俄罗斯、中国和印度。拥有超过 25% 的可开采煤炭,美国拥有世界上最大的煤炭储备。除了作为主要的热能和发电能源外,煤炭还有许多其他潜在用途。例如,煤炭是替代原油产品如化学品、汽油和柴油燃料的一种可行原料。将煤炭转化为其他产品使用的最常见过程是煤制液体(CTL)和气化(合成气)。CTL 创造了一种合成原油,可以通过传统方式进一步加工。合成气,也称为水煤气,可以直接替代天然气,或通过费托合成过程进一步加工成其他燃料、化学品或塑料。尽管煤炭目前是二氧化碳排放的主要来源,但目前正在进行研究,通过从发电厂或转化过程中捕获二氧化碳,并将其封存在地质构造中来减少这些排放。由于在转化过程中二氧化碳始终被包含,因此移除相对容易,从而成本效率高。全球范围内,采用减排/封存技术的公司可以通过税收节省和/或减排积分来抵消其成本。然后,二氧化碳可以被封存或用作提高石油或天然气采收率的技术,这具有双重好处,即提高采收率和进一步减少二氧化碳排放。煤制液体煤制液体(CTL)可以是一种直接技术,使用溶剂在热量和压力下溶解粉状煤炭,从而创造出一种合成原油,这种原油可以进一步加工成燃料和化学品。合成原油具有使用现有炼油厂和分配系统的潜力优势。06 天然气天然气主要由 70-90% 的甲烷组成,用于发电厂、家庭供暖、运输和塑料制造。天然气通常位于油田中,提供了部分石油位移压力。非常规天然气典型情况下,非常规天然气包括那些不使用先进技术难以开采的沉积物。非常规天然气包括:&bull 深层气(深度在15,000英尺或以下的沉积物)&bull 致密气(被限制在不透水的地质构造中,如非多孔岩石)&bull 含气页岩&bull 煤层甲烷&bull 甲烷水合物煤层煤层通常包含被困的天然气,这些气体曾经通过焚烧处理,但现在有许多用途。甲烷水合物甲烷水合物由被困在冰冻水晶体中的甲烷(天然气)组成。它们存在于海底沉积物中,以及加拿大和俄罗斯的永久冻土区域。也被称为“燃烧的冰”,如果能够开发出恢复这种能源的方法,这个潜在的燃料来源可能为世界提供大量的能源。07 合成气气化是一种将含碳原料(如煤或生物质)转化为合成气的过程,合成气由一氧化碳和氢气组成。合成气,曾被称为“水煤气”,在 20 世纪 50 年代前的美国和 70 年代的英国常被用于烹饪和供暖。与天然气相似,合成气可以直接用作相对清洁的燃料,或通过费托催化转化过程进一步加工成液体形式。煤或生物质的气化是通过以下吸热“水煤气”反应实现的:C + H2O → H2 + CO合成气的形成也可能是天然气转化为氢气的中间步骤:CH4 + H2O → CO + 3H2除了 CO 和 H2,合成气还可能含有二氧化碳和氮气,因此必须进一步净化才能用于生产化学品和燃料。一氧化碳和 H2 可以加工成甲醇和其他化学品。液态气化的一个缺点是,净化和转化过程能源密集,因此涉及额外的成本,以转化为燃料。费托合成过程费托合成过程涉及一氧化碳的氢还原反应,通过催化化学反应将气化得到的合成气转化为各种液态烃:(2n+1)H2 + nCO → CnH(2n+2) + nH2O(其中n是正整数)这些液态烃随后可以进一步加工成合成油或燃料。生物质气化(BG)与费托合成(FT)过程的结合因其在生产可再生生物燃料方面的巨大潜力而备受关注。08 乙醇乙醇,或称谷物酒精,主要用作燃料或燃料添加剂。乙醇通过特定类型的酵母发酵生产,这些酵母将糖代谢为乙醇和二氧化碳,反应如下:C6H12O6 → 2 CH3CH2OH + 2 CO2在巴西,大多数乙醇由甘蔗制成,而在美国,乙醇由玉米制成,玉米也是一种相对供应不足的食品。目前,正在研究从木质纤维素生产乙醇,木质纤维素由纤维素、半纤维素和木质素组成。这种类型的乙醇,称为纤维素乙醇,可以由非食品来源生产,如柳枝稷和木屑。09 甲醇甲醇可以是各种化学和燃料产品的原料。它也可以直接用作燃料或作为汽油添加剂,类似于乙醇。目前,大多数甲醇是由化石燃料(如煤和天然气)衍生的合成气生产的。它也可以很容易地扩展到非常规来源,如油砂、油页岩、煤层甲烷、致密气、甲烷水合物和生物质。通过以下反应,生物质替代方案将使甲醇成为一种可再生资源:生物质 → 合成气(CO,H2)→ CH3OH10 生物柴油生物柴油是一种通过将植物油或动物脂肪化学转化为脂肪酸甲酯(酯交换)制成的生物燃料,可以单独使用或与传统柴油混合使用。虽然生产生物柴油有几种方法,但最常见的是涉及甲醇和氢氧化钠的间歇过程:特别是在美国和加拿大,生物柴油最常见的标准是ASTM D6751。符合性测试通常需要气相色谱仪。11 甘油生物柴油的广泛使用导致了全球甘油过剩,甘油是植物油酯交换反应的一种副产品。甘油有许多常见用途,包括化妆品、药品、食品和饮料、溶剂、肥皂、润滑剂和纺织品。然而,正在进行研究以确定其他用途,如氢气和乙醇生产以及燃料添加剂。甘油的其他转化方法包括:氧化、氢化、氢解、醚化和缩合。12 热解/加氢作用在生物燃料行业,脂肪酸甲酯必须转化为碳氢化合物,以便更好地与现有炼油厂基础设施相兼容。热解是在没有氧气的情况下加热和分解有机材料的过程。快速热解,涉及非常快速的加热,是这个过程的更高效版本。碳氧键分解成更热力学稳定的二氧化碳,从而产生碳氢化合物。热解相比气化的一个优势是它需要较少的热量,因此能量消耗更少。一个缺点是高水分含量,必须在进一步处理前去除。加氢是指分子氢的催化反应,以去除氧键,从而产生碳氢化合物。这两个过程都产生了最终结果为更简单的化合物,然后可以进一步精炼成可再生的生物燃料,以及精细化学品和脂肪。引用1) U.S. Department of Energy. 2008.2) OilSands Discovery Centre. “The Oil Sands Story.” Feb.20083) Hagenbaugh, Barbara. June 2006 “High Cost of Oil CouldPut Many Jobs at Risk.” USA Today. June 2008.
  • 梅特勒托利多自动化化学在线研讨会将举办
    2009年梅特勒托利多自动化化学 中文在线研讨会系列:在线跟踪沥青质、石蜡、乳液及油类悬浮液 诚邀您参加免费在线研讨会——在线跟踪沥青质、石蜡、乳液及油类悬浮液—— 我们将定在2009年10月14日(星期三),时间上午10点和下午3点于网络同步举行。 在线研讨会日期/时间 在线跟踪沥青质、石蜡、乳液及油类悬浮液,2009年10月14日,北京时间上午10点 在线跟踪沥青质、石蜡、乳液及油类悬浮液,2009年10月14日,北京时间下午3点 注册参与在线研讨会 在黑色原油或浓稠的钻井流体中测量颗粒及液滴的分布 通常情况下,气、液、固烃类物质在管路中的流体是由石蜡、沥青质、气体水合物、乳液、无机颗粒、气泡等颗粒和液滴组成的复杂多相体系。安全可靠、成本有效的运输及分离过程在石油开发、钻井、生产过程中起到至关重要的作用。 在极端温度及压力条件下,多相管路中的流体常使离线取样和分析难以处理,更会使有代表性的取样变得既困难又费时。通过稀释或分散等手工方式来取样时,往往会改变或破坏多相体系的组分。因此,离线测量的方式往往不能进行工艺过程的实时优化和控制。 本期在线研讨会涉及针对下列主要颗粒及液滴的工艺过程,如何进行在线研究而不需要取样分析: • 了解原油中沥青质沉淀及沉积作用 • 通过在线液滴表征技术提高油-水及水-油的分离作用 • 在钻井流体中监测颗粒分布以尽量缩短停工期并优化分离效率 • 观测气体水合物的形成并确保相同的流动速率 • 研究无机物沉淀从而预防放大生产中的问题 您是否对该在线研讨会感兴趣呢?您也许会对另外两场在黑色原油或钻井流体中在线测量颗粒及液滴以及在石化行业中优化流动保障及分离作用的历届在线研讨会感兴趣。 本活动解释权归梅特勒托利多所有
  • 自来水合格率危机呼唤水务行业市场化改革
    “自来水合格率仅有50%”的消息在网上迅速流传。这条消息源自《新世纪周刊》最新一期封面报道——《自来水真相》。据悉,2009年下半年,为了大致搞清全国城市饮用水的水质状况,住建部水质中心曾做了一次全国普查,数据却一直没有对外正式公布。多位接近权威部门的业内人士透露,他们所获知的该次检测结果,实际合格率也就是50%左右。(5月8日《新世纪周刊》)   自来水水质问题由来已久,即便没有统计数据作为佐证,人们从日常生活中也能发现一些端倪。有人说,自来水的漂白粉味儿比较重,连鱼都养不活,人怎么能喝?还有人发现自来水烧开后水垢很多,于是也怀疑自来水的水质。   这样的怀疑也有道理,在自来水出厂之后,要经过庞大的供水系统输送到各家各户,这中间自来水要经过管线和水箱等很多设施,由于城市很多的水箱等设施的清洁检测工作存在着不足,使得自来水受到铁锈、细菌等污染,我国自来水企业目前普遍采用的加氯消毒等传统工艺还存在着一定的缺陷,也会带来更多水质污染的隐患。   而2009年以来,大量的学者与专家开始宣传我国自来水行业亏损论,要求自来水涨价。《中国证券报》报道表明,截止到2011年9月,全国自来水生产企业的亏损比例还有36.35%,销售毛利率只有2.03% 全国污水处理企业的亏损比例还有23.37%,销售毛利率只有8.43%。   亏损问题、水质问题、涨价问题这两者之间是不是存在某种联系?笔者以为水务具有天然垄断性,垄断造成的管理低效和服务水平低下,以及对价格的非市场调控。这造成不少城市供水行业一直处于亏损状态,依靠国家财政补贴运营。由此自来水公司也没有必要采取新的技术和方法。   我国早已正式加入WTO,作为市政公用领域内的水务行业走向开放、走向市场化已经成为必然趋势,但是涨价不是解决之道。   不过,市场化不代表着涨价,由于公用事业单位一般在特定的地区范围内具有独家垄断经营权,不存在由多家企业的平均成本决定的社会成本,这样,企业的实际成本就成为“社会成本”。以此作为定价的基础,企业增加的成本可轻易转嫁出去,而政策性亏损掩盖经营性亏损,掩盖管理薄弱和经营不善,这样就不可能刺激企业努力降低成本,从而不能促使企业提高生产效率。   水务行业市场化改革不能只依靠行政手段,应该以法律手段和经济手段为主,汲取现代经济管理的最新理论和方法,实现科学管理,优化资源配置,提高生产效率,这样才能改变亏损,质量低下,一味求涨价,而又被低下管理消耗的怪现象。   当然,公众有权要求相关部门立即公布真实的普查结果,没有权威的可信的调查结果也难以使流言止于智者,反而倒逼公众依据常识而得出的猜测。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 上海甄准生物进口品牌贵金属催化剂现货促销了!
    上海甄准生物进口品牌贵金属催化剂现货促销了! 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为&ldquo 指定供应商&rdquo ,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:美国AccuStandard、APSC、MPBio、Sigma-Aldrich、NIST,爱尔兰Reagecon、Megazyme,英国LGC、Ultra,Iduron、日本和光(WAKO)、Shodex,德国Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EDQM、加拿大TRC标准物质等。 现货产品: 品名 Item CAS # Purity 规格 产地 (1,5-环辛二烯)氯铑(I)二聚体 Chloro(1,5-cyclooctadiene)rhodium(I), dimer 12092-47-6 98% 500mg USA氯化铑(III) 水合物 Rhodium(III) chloride hydrate 20765-98-4 38% Rh 1g GB窗体顶端 窗体底端 三氯化钌 水合物 Ruthenium(III) chloride hydrate 14898-67-0 Reagent Plus 5g USA 1,3,5-三氮杂-7-磷杂金刚烷 1,3,5-Triaza-7-phosphaadamantane 53597-69-6 97% 2g USA 三苯基膦氯化铑 Wilkinson' s catalyst14694-95-2 Metal Content 11.10% 5g Germany 更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 五院士支招破解我国能源困境
    “‘我国石油还能开采40年’的说法不科学,该数据是拿探明的存储量除以每年的消费量简单得出的,而实际上每年都有新的石油、天然气等资源被勘探出来。”   近日,五位中科院院士——地质学家李德生、物理化学家田昭武、无机化学家徐如人、真菌学家庄文颖、电工学家严陆光,与20位青年科学家在天津大学畅谈能源和资源的可持续发展。   李德生等在会上建议,解决我国未来能源安全问题,应在开源节流的基础上,从加强科学研究和人才培养等方面入手。   开源节流 突围困局   李德生介绍说,我国实际石油的存储量为332亿吨,目前已探明84亿吨 天然气资源量为22万亿立方米,2010年年底探明5.71万亿立方米,尚有五分之四未被探明 煤层气资源量为11万亿立方米,目前探明量仅占1%。   研究结果表明,照目前的开采速度,常规矿物能源可以一直持续到22世纪。   尽管如此,李德生表示,我国能源发展仍面临着不小的压力,未来除保证一定的化石能源产量外,我国也应重视发展如页岩气、页岩油等非常规油气资源。   虽然页岩气与页岩油开发存在高成本、高消耗、高污染以及低产出的问题,但李德生表示,“这些非常规资源一定会为我国的能源资源发展作出贡献” 。   田昭武、严陆光也指出,未来能源资源“开源”仍须在太阳能、风能、生物质能等新能源技术领域多做功课。   而要使能源资源实现可持续发展,要“开源”,更须“节流”。   李德生指出,我国已提前10年打破了2020年能源消耗量的红线——去年,国内原油消费量已达4.5亿吨,超过2020年消耗量达4.2亿吨的红线 目前汽车保有量也远超预计,达2亿多辆,远超2020年达到1亿辆的红线。   “这么多的汽车等于是把化工厂搬到城市里,这对于城市环境的损害非常大。因此,解决这个问题是我们降低交通能耗、减少环境污染的重点。”田昭武表示。   技术为基 加强应用   “在能源科学研究方面,产学研一体化是研究的前提。”田昭武表示。   他认为,我国当前在太阳能等能源开发技术方面已掌握较高技术,但科研与应用之间还存在很多隔阂,难以缓解能源紧缺的现状。   以电动汽车为例,由于未能很好地解决电池在能量、成本、寿命等方面的问题,电动车尚不能被广大用户接受。   在可再生能源开发方面,我国的风能、太阳能虽然产能较强,但由于与电网的输电能力不匹配,很多时候,生产出来的电力无法进入电网,被白白浪费。   严陆光指出,除新能源以外,核聚变能、天然气水合物、深层地热能、海洋能等4类能源的未来可利用空间也十分巨大。   然而,按照目前相关研究的进展情况,核聚变能预计下个世纪才能使用 位于海洋深处的天然气水合物,属于新型化石能源,存储量比化石能源还高,但当前面临的最大难题是如何开采。   以人为本 重在创新   “我国生物质能源研究和其他国家处于同一起步阶段,因此,科研人员不应一味地跟风作研究,要结合当前的国家重大需求独立创新。”庄文颖表示,青年科学家应尽力寻找有较大研究潜力和良好应用前景的研究方向。   她同时指出,优秀的人才是关系到实现能源资源开发利用与促进可持续发展的重要因素。她希望青年科学家和高校教师提高对青少年科普教育的重视程度。   徐如人指出,当前的很多基础问题在我国学术界没有得到充分的重视,这将严重制约我国今后的科研创新工作。   他举例说,我国稀土资源虽然很丰富,但主要用于出口,很少被科研单位利用。   他建议相关领域的青年学者要对诸如稀土材料功能与结构关系等基础问题进行更加深入的研究。   “这些问题都是制约能源研究进一步发展的障碍,希望年轻人仔细研究需求与市场,通过技术创新解决我国能源资源发展的困境。”徐如人说。
  • 中国自主研发首个深海原位拉曼光谱实验室在南海实现常态化运行
    工作人员为仪器设备的吊装做准备工作。 吴涛 摄中国科学院海洋研究所(简称“中科院海洋所”)7日发布消息称,经过近三年的试验验证,依托自主研发的世界首套深海多通道拉曼光谱探测系统搭载深海坐底长期观测系统,该所研究团队在南海构建了中国首个深海原位拉曼光谱实验室,并实现了对冷泉(海底天然气渗漏)喷口流体、天然气水合物(可燃冰)动力学过程、冷泉生物群落的长期原位观测与现场实验。研究团队负责人、中科院海洋所研究员张鑫表示,其团队自2008年开始使用拉曼光谱系统对深海热液、冷泉活动的理化环境进行相关研究。此次构建的深海原位光谱实验室实现了深海热液冷泉探测从“看一看”到“测一测”的跨越。科考船回收仪器设备。中科院海洋所供图张鑫介绍说,受成本限制,此前使用的基于ROV(遥控无人潜水器)等深潜器的单通道拉曼光谱探测系统,存在单点、间断探测等不足,无法适应深海热液冷泉不同喷口流体成分各异、非稳态的热液冷泉流体连续喷发等实际应用情景,因此需要一个针对深海热液冷泉活动理化环境开展坐底式的长时、连续、多点原位探测系统,实现对深海的长期原位观测与可控实验。张鑫说,作为深海原位光谱实验室的核心部件,由该团队自主研发的世界首套深海多通道拉曼光谱探测系统,创新采用光学系统分时复用技术设计,通过光路切换开关,切换4个通道的拉曼探头与激光器、光谱仪等光学器件的光学通路,实现4个通道的拉曼探头对舱内关键光学器件的分时复用,进而实现对深海热液、冷泉系统中流体、固体、气体等不同相态目标物的长期原位监测。同时,该系统具备在线调试、离线自容模式,可根据深海目标物及探测环境的实际情况决定光谱探测参数、制作模板文件,且可实现自动开关机,并按照模板文件采集光谱,完成光谱采集后自动保存光谱,适应深海长期布放。据介绍,深海原位光谱实验室的搭建是在深海ROV的辅助下完成的,深海多通道拉曼光谱探测系统上4个通道的拉曼探头会被深海ROV放置在不同的探测区域,实现对深海热液冷泉物理化学环境进行长期原位观测。探测完毕后,将再次借助深海ROV收回探头,等待科考船对其完成回收。张鑫说:“深海热液喷口流体对海洋环境的影响范围可达四千余公里。深海探测可辅助研究热液冷泉等极端环境对于海洋生态与全球气候变化的影响,并可探究生命是否起源于海洋等科学假说。”据悉,该研究得到国家自然科学基金、山东省自然科学基金、中国科学院战略性先导专项等项目联合资助。目前,该深海原位拉曼光谱实验室已在中国南海实现了冷泉喷口流体中主要成分、天然气水合物与深海环境的耦合变化过程、冷泉生物群落内部甲烷氧化过程的长期原位探测与现场实验,并在深海冷泉、热液等区域常态化运行。
  • REACH限制名单草案再添7种物质
    日前,欧洲化学品管理署(ECHA)继2008年将15种物质被列入首批REACH高关注名单(SVHC)后,公布了首批需ECHA授权才能使用的物质名单草案。根据该草案,7种物质首先被列入了清单(附件XIV)。   被列入清单的7种物质分别为:5-叔丁基-2,4,6-三硝基间二甲苯(二甲苯麝香)、短链氯化石蜡(SCCPs,C10~C13)、六溴环十二烷(HBCDD)和所有有关联的主要非对应异构体、邻苯二甲酸双(2-乙基己)酯(DEHP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二丁酯(DBP)以及4,4'-二氨基二苯甲烷(MDA)。   根据REACH法规,企业如果要使用进入授权名单的物质,就必须申请许可。申请者必须论证物质使用风险可以充分控制,或是社会经济利益超过使用风险,且没有替代物和相应的替代技术。   ECHA表示,他们是根据产品的固有特性、用途和批准用量来评估是否将这些化学品列入REACH限制清单的。各利益相关方必须于2009年4月14日对磋商做出回应,ECHA将于2009年6月1日之前确定优先列表。ECHA还建议,授权申请应当在以上物质进入REACH附件XIV后24~30个月期间提交。这些物质进入名单之后,42~48个月后将不再继续使用。   ECHA还建议,76/769/EEC指令中特殊条件下允许使用的豁免类物质,也应加入评估当中。ECHA表示,将参考协商期间所收到的评论及成员国委员会的意见,可能会对草案进行修改,并将该提议提交到欧盟委员会审议。对于是否对蒽、氯化钴、五氧化二砷、三氧化二砷、重铬酸钠二水合物、氧化双三丁基锡、酸式砷酸铅、三乙基砷酸酯等8种物质进入SVHC名单的物质进行授权,ECHA表示将在晚些时候再做考虑。   ECHA建议下游企业应尽快排查是否正在使用被列入SVHC的原料,定期审核供应商(必要时向原料供应商提供安全数据表),并在规定期限内逐步替代SVHC原料。
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。 序号 物质名称 EC CAS 可能用途 1 氯化钴 231-589-4 7646-79-9 干燥剂、例如硅胶 2 重铬酸钠二水合物 234-190-3 7789-12-0 金属表面精整、皮革制作、纺织品染色、木材防腐剂 3 五氧化砷 215-116-9 1303-28-2 杀菌剂、除草剂 4 三氧化二砷 215-481-4 1327-53-3 除草剂、杀虫剂 5 酸式砷酸铅 232-064-2 7784-40-9 杀虫剂 6 三乙基砷酸酯 427-700-2 15606-95-8 木材防腐剂 7 邻苯二甲酸二丁基酯(DBP) 201-557-4 84-74-2 增塑剂、粘合剂和印刷油墨的添加剂 8 邻苯二甲酸二(2-乙基己) 204-211-0 117-81-7 PVC 增塑剂、液压液体和电容器里的绝缘体 酯(DEHP) 9 邻苯二甲酸丁苄酯(BBP) 201-622-7 85-68-7 乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂 10 蒽(Anthracene) 204-371-1 120-12-7 染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。 11 三丁基氧化锡(TBTO) 200-268-0 56-35-9 木材防腐剂 12 二甲苯麝香 201-329-4 81-15-2 香水、化妆品 13 六溴环十二烷(HBCDD) 206-33-9 294-62-2 阻燃剂 14 C10-13氯代烃(短链氯化石蜡)(SCCP) 287-476-5 85535-84-8 金属加工过程的润滑剂、橡胶和皮革衣料、胶水 15 4,4'-二氨基二苯甲烷(MDA) 202-974-4 101-77-9 偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体 16 蒽油 292-602-7 90640-80-5 主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。 17 蒽油、蒽糊、轻油 295-278-5 91995-17-4 18 蒽油、蒽糊、蒽馏分 295-275-9 91995-15-2 19 蒽油、少蒽 292-604-8 90640-82-7 20 蒽油、蒽糊 292-603-2 90640-81-6 21 高温煤沥青 266-028-2 65996-93-2 主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作 22 硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 23 氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 24 2,4-二硝基甲苯 204-450-0 121-14-2 用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。 25 邻苯二甲酸二异丁酯(DIBP) 201-553-2 84-69-5 增塑剂 26 铬酸铅 231-846-0 7758-97-6 色素,用于塑料、油漆着色 27 钼铬酸铅红(CI颜料红104) 235-759-9 12656-85-8 28 铬酸铅黄(CI颜料黄34) 215-693-7 1344-37-2 29 三(2-氯乙基)磷酸盐(TCEP) 204-118-5 115-96-8 阻燃剂 30 丙烯酰胺 201-173-7 1976-6-1 丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。 31 三氯乙烯 201-167-4 1979-1-6 金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体 32 硼酸 233-139-2 10043-35-3 具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。 33 四硼酸钠,无水 215-540-4 1330-43-4 具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等 34 四硼酸钠,水合物 235-541-3 12267-73-1 35 铬酸钠 231-889-5 7775-11-3 实验用分析试剂;生产其他含铬化合物 36 铬酸钾 232-140-5 7789-00-6 金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造 37 重铬酸铵 232-143-1 7789-9-5 氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理 38 重铬酸钾 231-906-6 7778-50-9 生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂 39 硫酸钴 233-334-2 10124-43-3 用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。 40 硝酸钴 233-402-1 10141-05-6 用于表面处理、电池、陶瓷颜料、催化剂。 41 碳酸钴 208-169-4 513-79-1 陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料 42 醋酸钴(乙酸钴) 200-755-8 71-48-7 用于表面处理、合金、颜料、染料和饲料添加剂。43 乙二醇单甲醚2- 203-713-7 109-86-4 用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂 44 乙二醇单乙醚2- 203-804-1 110-80-5 常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。 45 三氧化铬 215-607-8 1333-82-0 用于金属处理和木材防腐剂中的稳定剂。 46 三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等 231-801-5236-881-5 7738-94-513530-68-2 用于金属处理和木材防腐剂中的稳定剂。 47 乙二醇乙醚醋酸酯 203-839-2 111-15-9 用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程 48 铬酸锶 232-142-6 7789-6-2 用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层 49 邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP) 271-084-6 68515-42-4 用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂 50 肼 206-114-9 7803-57-8302-01-2 防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体 51 1-甲基-2-吡咯烷酮 212-828-1 872-50-4 用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料 52 1,2,3-三氯丙烷 202-486-1 96-18-4 用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水 53 邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP) 276-158-1 71888-89-6用于聚氯乙烯 (PVC)塑料增塑剂、密封剂和印刷油墨
  • 清洁能源利用重大突破 科学家实现甲烷选择性转化
    我国科研人员领衔的国际科研团队攻克了甲烷的选择性氧化这一催化研究中的世界性难题。利用新开发的催化剂,该团队实现了氧气条件下将甲烷选择性氧化为甲醇和乙酸。这一研究对于甲烷的转化利用有着十分重要的价值。  记者21日从中国科学院精密测量科学与技术创新研究院获悉,该院徐君研究员、邓风研究员、齐国栋副研究员等科研团队成员联合英国卡迪夫大学格雷厄姆哈钦斯教授等合作者,开发了金(Au)负载的ZSM-5沸石分子筛(Au/ZSM-5)催化剂,并利用该催化剂实现了甲烷在温和条件下的选择性氧化。  据齐国栋介绍,甲烷广泛分布于天然气、页岩气、煤层气、甲烷水合物等之中,是最清洁、最丰富的天然碳资源。由于甲烷的储藏地区往往十分偏远,因此在开采现场将甲烷转化为可运输的含氧化合物对甲烷的高效利用具有重大意义。因甲烷的化学键能较大,通常需要高温高压的苛刻条件才能将其转化。工业上采用的办法是先将甲烷转化为一氧化碳和氢气组成的合成气,再转化为高附加值的产物。这一过程不仅能耗极高,而且容易出现二氧化碳等副产品。如何在温和条件下直接将甲烷催化氧化为高附加值的化学品,是化学界一道备受关注的世界性难题。  据悉,利用Au/ZSM-5催化剂,可在120摄氏度至240摄氏度的温度范围内,通过氧气将甲烷选择性氧化生成高附加值化学品甲醇和乙酸。该团队对催化反应过程进行了深入研究,阐明了甲烷的转化反应机制。相关研究成果近日已在线发表于国际学术期刊《自然催化》。
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 国产低场核磁不简单,“北京波谱年会”等你到来
    低场核磁共振技术具有快速无损测量的特点,在多孔介质孔隙结构表征与基础物性研究方面具有很大优势,应用于天然气水合物研究已有近20年历史,核磁测井也成为天然气水合物钻探测井的常用手段,是测定天然气水合物储层原位渗透率的有效方法。天然气水合物是一种国际公认的潜在替代能源,也是我国第173号矿种,在南海有着广泛的分布和可观的储量。在水合物的检测方法中,NMR以其快速、无损、绿色、在线、数据形式丰富等特点受到诸多青睐。2017年和2020年,我国先后在南海北部成功实施两轮天然气水合物试采,产气效率远超预期,但是要达到商业开采水平仍需要克服多重挑战。其中,含天然气水合物土的渗透率测定及其演化过程预测是面临的重多挑战之一,迄今为止也并未得到很好的解决。近日,中国地质调查局青岛海洋地质研究所吴能友所长团队,通过测定不同天然气水合物含量条件下含天然气水合物土的横向弛豫率,揭示了不同孔隙赋存形式天然气水合物对横向弛豫率的影响规律,基于此对渗透率预测及孔隙结构表征提出了修正建议,为含天然气水合物土低场核磁共振技术定量分析提供了重要的科学依据,对解决含天然气水合物土的渗透率测定问题有重要的指导意义。文章《Nuclear Magnetic Resonance Transverse Surface Relaxivity in Quartzitic Sands Containing Gas Hydrate》发表在《Energy & Fuels》上,感兴趣的读者可自行查看。该研究采用的低场核磁共振系统由青岛海洋地质研究所与苏州纽迈分析仪器股份有限公司联合研发,型号为MesoMR23-060H,该中尺寸核磁共振成像分析仪,搭配低温高压系统,主要用于天然气水合物、冻土冻融等过程的研究。近两年来,液体、固体、低场以及成像核磁,连续波和脉冲顺磁共振波谱均取得明显进步。为了进一步促进波谱学的健康发展,加强学术交流与合作,了解波谱新技术和交叉学科的最新进展,由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2021年度北京波谱年会”将于2021年5月14日-16日在北京世纪金源香山商旅酒店召开。本次会议以“不断进步的磁共振波谱”为主题,在液体、固体、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告。会议交流形式包括大会报告、分会报告和墙报等。会议特别邀请了活跃在我国的青年专家知名专家作波谱前沿技术与应用新进展报告,期间组织波谱厂家进行新产品技术报告及仪器展示。旨在提高波谱学开发和应用水平,推动波谱技术交流与推广。大会报告报告最新的磁共振方法和应用,技术报告以应用和技术支持为主,青年论坛以在读和刚刚毕业学生为主,墙报展示最新进展。会议将评选优秀青年报告和墙报,并给予适当物质和精神奖励。会期两天,诚邀波谱工作者和相关专业的学者积极参与!2021年度波谱年会日程安排.pdf
  • 青海“可燃冰”如何发现?意义媲美大庆油田
    可燃冰   近日,青藏高原发现“可燃冰”的消息备受各方关注。这种“冰与火”奇妙结合的新型能源,是如何被发现的?为何在海拔高、自然环境严酷的青藏高原得以发现?它的发现经历了怎样的艰辛和曲折?又将带给人们怎样的希望和梦想?记者对此进行了深入的采访。   能源危机下的“新希望”   2009年6月,在海拔4000多米的祁连山南缘,一簇火苗的燃烧,成为一个足以令亿万国人为之沸腾的消息:地质工作者在此成功钻获“可燃冰”样品,我国成为世界上第一个在中低纬度冻土区发现“可燃冰”的国家。   “可燃冰”,又叫“可燃水”、“气冰”、“固体瓦斯”,学名叫天然气水合物。它外表像冰,却遇火即燃,比人们平时使用的天然气更为纯净,使用方便、清洁无污染,是一种名副其实的绿色能源,全球公认的尚未开发的最大新型能源。   “可燃冰”在世界范围内分布广,资源量大。据科学家预测,“可燃冰”储量是现有天然气、煤炭、石油全球储量的两倍,是常规天然气的50倍。有科学家估计,海底“可燃冰”的储量够人类使用1000年。   据推算,目前已经发现的石油储备量还可用40年,天然气还可用70年,煤炭还可用190年,也正是如此,“后石油时代”用什么作为能源成了各国致力研究和勘探的问题。“可燃冰”的发现让陷入能源危机的人类看到了希望。   早在19世纪30年代,“可燃冰”即进入人类视野。1965年,苏联首次在西西伯利亚永久冻土带发现“可燃冰”矿藏,并引起多国科学家关注。率先开始勘测研究的是日本,如今,已拥有7口钻井,属于领先水平。美国则从2000年起将“可燃冰”作为政府项目,与各大学和私营公司合作,进行勘测和实地研究。据称到目前为止,美国政府已花费超过1500万美元。另外,加拿大、印度、韩国、挪威等国也纷纷开始投入勘探项目。   目前,世界上已经有30多个国家和地区开展“可燃冰”的研究勘探。我国于2002年同时启动海域和陆域“可燃冰”的研究和勘探,于2007年在南海发现了“可燃冰”。   据介绍,我国“可燃冰”的资源潜力为803.44亿吨油当量,仅占全球资源量的0.4%。接近于我国常规石油资源量,约是我国常规天然气的2倍。   “不放过任何一个地质信息”   事实上,“可燃冰”在我国陆域的“现身”可以追溯到40多年前,但由于种种原因,这种神奇能源在过去很长时间里与人们擦肩而过。   青海省木里地区地势高耸,群山连绵。这里海拔4100米左右,高寒缺氧、气候恶劣,然而却蕴藏着丰富的煤炭资源。据了解,有多家地勘单位自上世纪60年代以来在这一带冻土区从事勘查时,就多次发现不明气体,但均未做进一步研究。   据“可燃冰”项目负责人之一——中国煤炭地质总局青海煤炭地质105队队长、总工程师、教授级高工文怀军介绍,这一带“可燃冰”的发现最早可以追溯到2004年。这年11月,105队在这里进行煤炭勘查时,钻孔内开始涌出不明气体,点火燃烧,由于气体涌出量很大,影响到钻探施工,迫使这个钻孔因未见到可采煤层而报废。   但是地质人员并没有放过这一现象,那一瞬间,“可燃冰”这一名词在他们脑海中如灵光闪过。他们采集了这种气体进行分析,对涌气的孔段做了详实的记录,积累了可靠的原始地质资料。   地质工作者思考的是:这种气体和过去多次遇到的煤层气是否一样?抑或,它是一种新的尚不了解的物质?或者,它就是传说中的“可燃冰”?!他们期待着再次与这种神秘气体的相遇。   2006年5月,105队再次在这一地区进行煤炭勘查,又发现类似不明气体。地质人员细心观察发现,这种气体的涌出孔段不在煤层中,可以确定不是煤层气。那么它是什么呢?他们采样化验发现,这次发现气体的成分与前次大致接近。   之后,105队请中国地质科学院勘探技术研究所张永勤、中国科学院矿产资源研究所祝有海等权威专家就上述情况进行了交流、探讨,大家一致认为,该地区可能存在“可燃冰”。   2008年开始,105队与中国地质科学院资源所、勘探所共同合作开展《青藏高原冻土带天然气水合物调查评价》项目。11月5日,首次发现含天然气水合物岩心段,这一成果得到了国内外专家的学术认定。   在此基础上,国土资源部2009年又部署了一批钻探实验井,6月再次钻获“可燃冰”实物样品,经当今世界上最先进的激光拉曼光谱仪检测,显示出标准的“可燃冰”特征光谱曲线。此后施工中均发现“可燃冰”。   从2004年发现疑似“可燃冰”,到2006年基本确定“可燃冰”的存在,再通过2008—2009年的工作,经钻探取得样品,通过测试证实了在高海拔冻土区存在“可燃冰”的事实。   文怀军分析说:木里地区“可燃冰”是煤层气的水合物。其成矿机理大致是:煤层气向上溢散,而上面有冻土层的覆盖,在高压、低温的条件下二者形成“可燃冰”。它的成分除了甲烷,还有少量乙烷、丙烷等气体,是一种“新型可燃冰”,非常值得研究。   “可燃冰”在青海的发现,为我国增加了一个重要的新矿种,对我国战略能源意义重大。更有专家认为,“可燃冰”的发现可媲美当年发现大庆油田。   国土资源部总工程师张洪涛初略估算,我国陆域“可燃冰”远景资源量至少有350亿吨油当量,可供中国使用近90年,而青海省的储量约占其中的1/4。   克服高原极端天气条件   “在一定意义上,正是每一个地质工作人员在每一次的勘查中都坚持了‘对任何地质信息不放过’的认真工作态度,为‘可燃冰’发现奠定了基础。这一点来说,‘105队’木里项目组全体地质工作人员功不可没。”   文怀军感慨地说:“‘可燃冰’项目之所以能取得重大突破,不仅是各级领导、各个部门关心支持的结果,更是项目组成员及各协作单位团结拼搏、共同努力的结果,是集体智慧的结晶。”   自2003年以来,105队一直奋战在木里地区,克服了高寒缺氧、气候条件极端恶劣且装备落后、缺少后勤保障、生产条件差的不利因素。白天在风雪交加中紧张的卸车、立塔,晚间围着火炉卧雪观天,苦等黎明,头痛、胸闷、气短、腿肿各种高山反应对他们已成家常便饭……   凭着战胜一切困难的信心和勇气,这些高原地勘人不仅战胜了自然,也战胜了自我,被誉为“特别能吃苦、特别能战斗,特别能团结、特别能忍耐、特别能奉献”的“高原铁军”。   说起这个,105队的当家人——队长文怀军有一肚子的苦水:“七八月都下雪,把帐篷都压塌了。”但就是在这样艰苦的生产、生活条件下,来自各地的科学家、专业技术人员和施工人员,齐心协力、不辱使命,用“小米加步枪”的干法,仅用较少的资金投入,成功实现了我国陆域“可燃冰”的重大发现,是一个典型的投入少、产出大的项目。   据了解,105队1950年建队,1965年从吉林省成建制调入青海。他们提交的各类煤炭资源储量高达38亿吨,占青海已探明储量的74%。长期的地质工作,使他们积累了大量的基础地质资料,掌握了该地区的地层沉积和构造规律,同时培养了一批具有专业水平的各类技术人员,为“可燃冰”的重大发现提供了技术资料和队伍等多方面的保障。   青藏高原蕴藏神奇宝藏   青海之所以成为我国陆域“可燃冰”的首个“现身地”,与这里独特的地理地貌环境有密切关系。   首先,青海有着面积广、厚度较大的冻土带资源,为“可燃冰”的存在提供了地质条件。   其次,青海木里有着丰富的煤炭资源,为“可燃冰”的形成提供了可能的资源条件。   第三,青海木里的交通条件和后勤保障措施是我国大面积冻土带地区中条件较好的,这为“可燃冰”发现提供了有力支持。   文怀军说,青海木里煤田含“可燃冰”岩层段埋藏浅,只有130-300多米,这为“可燃冰”开采带来很大有利条件。并且这里的冻土层较薄,只有80-120米,也为将来的工程和科研带来极大便利。“‘可燃冰’的开发有望在这里取得突破。”   “不过,这将是一个比较漫长的过程。”文怀军说,因为“可燃冰”开采面临的环保问题较为严峻,需要研究探索如何既能开发利用,又不伤害环境。特别是在生态脆弱的青藏高原。   神奇的大自然,蕴藏着奥秘无限,等待着人类的科学探索。探索无限,人类的希望也无限。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制