当前位置: 仪器信息网 > 行业主题 > >

尼克酰胺杂质

仪器信息网尼克酰胺杂质专题为您提供2024年最新尼克酰胺杂质价格报价、厂家品牌的相关信息, 包括尼克酰胺杂质参数、型号等,不管是国产,还是进口品牌的尼克酰胺杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合尼克酰胺杂质相关的耗材配件、试剂标物,还有尼克酰胺杂质相关的最新资讯、资料,以及尼克酰胺杂质相关的解决方案。

尼克酰胺杂质相关的资讯

  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱 SRT® (5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性; ● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率; ● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命; ● 低盐浓度洗脱,适合LC-MS分析; ● 专利的表面修饰层,确保对样品的最大回收率; ● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。 &mdash &mdash 样品来源于某制药公司 良好的批间重现性 &mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m 孔径 (Å ) ~ 150 蛋白分子量范围 500 - 150,000 水溶性聚合物 分子量范围 500 - 25,000 pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5 反压 (7.8x300 mm) ~ 1,500 psi 最大耐受压力 (psi) ~ 4,500 盐浓度范围 20 mM - 2.0 M 最高使用温度 (oC) ~ 80 流动相的兼容性 常规水相及有机相溶剂应用实例 头孢地嗪钠 头孢西丁 头孢米诺钠 头孢拉定 头孢呋辛酯头孢地尼 头孢泊肟酯 美洛西林钠 磺苄西林钠 头孢尼西 头孢噻肟钠 头孢噻吩钠 比阿培南 阿莫西林 头孢噻利 头孢丙烯 泰比培南酯 磺苄西林钠破坏物 盐酸头孢替安 头孢硫脒 头孢特仑新戊酯 头孢哌酮钠 注:点击链接可见图谱。 优质服务 ● 提供免费的产品试用 ● 提供实际样品的色谱柱筛选和方法确认 促销公告 即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。 注:第二支体积排阻色谱柱市场价不得高于第一支。 订货信息 产品名称 粒度 孔径 规格 订货号 SRT SEC-100 5 &mu m 100 Å 7.8x300 mm 215100-7830 SRT SEC-1505 &mu m 150 Å 7.8x300 mm 215150-7830 Zenix SEC-100 3 &mu m 100 Å 7.8x300 mm 213100-7830 Zenix SEC-150 3 &mu m 150 Å 7.8x300 mm 213150-7830 Mono GPC-100 5 &mu m 100 Å 7.8x300 mm 230100-7830 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 西格列汀专利到期,仿制时需关注亚硝胺杂质NTTP
    GLP-1类似药带火了2型糖尿病治疗药物。除了多肽类药物之外,小分子化药也是常用药物,其中DPP-4(二肽基肽酶-4)抑制剂是治疗2型糖尿病的药物之一。GLP-1是响应食物摄入来增强葡萄糖依赖的胰岛素分泌和抑制胰高血糖素。但GLP-1的葡萄糖调节作用是短暂的(半衰期约2分钟),因为天然的GLP-1可以被DPP-4快速降解。DPP-4抑制剂的作用增加了在体内的GLP-1的循环水平,并保留了GLP-1的降血糖作用,从而改善了血糖控制。DPP-4抑制剂机理(图源:见图中所示)默沙东研发的西格列汀(Sitagliptin)是第一个DPP-4抑制剂,可单独应用,或与其他口服降糖药组成复方药物治疗2型糖尿病。其优点是安全性好,低血糖及体重增加的不良反应发生率低。磷酸西格列汀片是进口产品独霸市场的典型代表,数据显示,其在2023年国内公立医院的销售额为26.56亿元,默沙东占据了99.65%的市场份额。据了解,默沙东的磷酸西格列汀在国内的化合物专利CN1290848C已于2022年7月4日到期,但其晶型专利CN100430397C,即保护磷酸结晶单水合物的专利有效期至2024年6月18日。经查询,国内已有30多家药企有西格列汀或其复方制剂的仿制药上市。但是,美国FDA在部分西格列汀制剂中发现亚硝胺杂质(Nitro-STG-19,即NTTP)超标,加强了对西格列汀的监管。(图源:FDA官网,参考资料)NTTP的化学名为7-亚硝基-3-(三氟甲基)-5,6,7,8-四氢-三唑并吡嗪,属于NDSRI类亚硝胺杂质,源于西格列汀的部分结构。西格列汀和NTTP的结构如下图:A:西格列汀,B:NTTP岛津的应用工程师开发了一种基于三重四极杆型LC-MS/MS的NTTP检测方法,该方法同时测定西格列汀中多种常见亚硝胺杂质。01 LC条件仪器: Nexera XS LC-40色谱柱:Shim-pack ScepterC18-120(150mmx3.0mmI.D.,1.9μm)P/N:227-31013-04柱温:45℃流速:0.4mL/min进样体积:10μL流动相:A相:0.1 %甲酸的水溶液B相:0.1 %甲酸的甲醇溶液梯度程序:02 MS条件仪器: LCMS-8060NX离子源: APCI+MRM参数:NTTP和9种常见亚硝胺的MRM质量色谱图如下图所示,标品溶液浓度为1 ng/mL,相当于样品中NTTP含量为10 ppb(样品制备时,等效于100mg西格列汀API于1mL溶液)。NTTP的终生暴露可接受限度为每天37纳克(即AI=37ng/day),西格列汀的日服用剂量为100mg,则西格列汀中NTTP的限度为0.37ppm(370ppb)。(图源:FDA官网,参考资料)本实验中,NTTP的定量下限为0.1 ng/mL,如下图所示,相当于样品中NTTP含量为1ppb,满足监管检验检测要求。更多信息请参考岛津应用报告Determination of Nitrosamine Impurities and NDSRI in Anti-diabetic Drugs on Shimadzu LCMS-8060NXhttps://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/23956/an_04-ad-0301-en.pdf参考资料 FDA works to avoid shortage of sitagliptin following detection of nitrosamine impurityhttps://www.fda.gov/drugs/drug-safety-and-availability/fda-works-avoid-shortage-sitagliptin-following-detection-nitrosamine-impurity CDER Nitrosamine Impurity Acceptable Intake Limitshttps://www.fda.gov/regulatory-information/search-fda-guidance-documents/cder-nitrosamine-impurity-acceptable-intake-limits 本文内容非商业广告,仅供专业人士参考。
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 石化盛会,深度呈现!明尼克两篇论文入选全国石油化工分析测试技术大会(西安)论文集
    大会圆满闭幕2021年7月14-17日,“第二届全国石油化工分析测试技术暨第十二届全国石油化工色谱学术报告会”在西安隆重举行,本次大会云集业内专家及技术人士,是一届高质量高水准的学术交流大会。北京明尼克分析仪器设备中心派出精英团队盛装参展,本次大会明尼克公司两篇研究论文成功收录大会论文集并发表,引发与会人士广泛关注和热烈好评! 论文1:《闪蒸仪在液化石油气分析中的应用》 首篇论文《闪蒸仪在液化石油气分析中的应用》解读了闪蒸仪产品入列石化行业标准:NB/SH/T 0230-2019《液化石油气组成的测定 气相色谱法》的情况,阐述了明尼克MS系列闪蒸仪产品在液化石油气分析中具备的功能和优势,文章也通过与进口产品的数据对比进一步验证了明尼克闪蒸仪产品的准确性、可靠性。 论文2:《钝化产品在氢能源分析领域应用简况》 第二篇论文《钝化产品在氢能源分析领域应用简况》,介绍了目前氢能源分析检测研究及应用状况,系统分析了明尼克公司引进的SilcoTek钝化技术及产品的原理、功能及特点,文章从应用在北京石科院纯化气路系统建设和管阀件供应的实例分析了钝化技术在含硫、氨、有机物等杂质检测中所起的关键作用,展示出钝化技术在氢能源分析中具有的巨大应用价值。 明尼克参展团队 两篇论文从应用角度对明尼克闪蒸仪和钝化产品作了准确到位的分析,是明尼克精华产品的理论概括,文章的发表在大会中引发强烈关注,为明尼克公司本次成功参展增光添彩! 参展回顾 参展详情: 时间:2021年7月14-17日 地点:西安市高速神州酒店一楼大厅(陕西省西安市碑林区环城东路南段9号) 明尼克展位号:22
  • 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF轻松鉴定抗生素中聚合物杂质
    目前,在抗生素新药申报日益严格的大背景下,聚合物杂质的研究常常是药品审评中心(Center for Drug Evaluation, CDE)发补及退审的理由。抗生素中聚合物杂质是引起临床不良反应的主要过敏原,严格控制其含量具有重要的意义。传统的聚合物杂质检测通常采用排阻色谱法,该方法检测时间长、分离度和专属性不足,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。 为了解决这些难题,岛津公司与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF 参考2020年版《中国药典》头孢米诺和头孢地嗪有关物质Ⅱ检测方法,一维采用岛津Shimpack Bio Diol-60高效凝胶色谱柱进行分离,将聚合物杂质指针性地导入样品环;然后采用中心切割在线除盐进行二维反相色谱分离目标杂质,并通过LCMS-9030四极杆飞行时间高分辨质谱采集,获得准确的一级和二级质谱数据来达到鉴定杂质的目的。 SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台流路图 抗生素杂质数字化标准品数据库 创新中心开发的《抗生素杂质数字化标准品数据库》已收录《欧洲药典》β-内酰胺类抗生素相关杂质标准品基于岛津液相色谱-高分辨质谱仪LCMS-9030采集的ESI正/负双模式,7个不同碰撞能量下的二级质谱图,同时数据库已登录化合物信息、可能的结构式、分析方法的色谱条件和《中国药典》流动相条件对应的保留时间等。此外,为方便使用者从高分辨质谱方法向低分辨质谱方法的转化,本数据库还登录了14种抗生素品种相关杂质的MRM方法文件,适用于液相色谱-三重四极杆质谱产品的检测。 目前数据库包含头孢甲肟、拉氧头孢、氟氧头孢钠、头孢呋辛、头孢曲松、头孢他碇、头孢吡肟、头孢唑啉钠、阿莫西林、头孢呋辛酯、头孢哌酮钠舒巴坦钠、头孢克肟、头孢泊肟酯和头孢地尼等14种β-内酰胺类抗生素品种,153种杂质和主成分对照品,以及50余种高分子聚合物杂质的共计1483张二级质谱图。 应用案例:阿莫西林聚合物杂质的鉴定 采用SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台共检出阿莫西林热降解溶液中14种杂质成分,成功分离出阿莫西林二聚体,三聚体,四聚体及其异构体。下图为阿莫西林二聚体在数据库中的检索结果。 阿莫西林二聚体鉴定结果 详细信息请参考:《阿莫西林胶囊热降解聚合物杂质的2D-HPLC分析及质谱裂解机理探讨》《药物分析杂志》中图分类号:R917 文献标识码:A 文章编号:0254-1793(2021)07doi: 10.16155/j.0254-1793.2021.07。 总结 创新中心搭载的专属性中心切割二维反相色质谱联用分析平台SEC-RPLC-QTOF,采用中心切割技术,在线除盐分离出目标杂质,利用LCMS-QTOF配合自主开发的质谱库进行鉴定。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 星巴克咖啡竟含致癌物质?丙烯酰胺究竟何方妖孽...
    p   从3月31日起,星巴克霸屏了。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/4a1546f1-1e09-444b-b0d8-d0c2b6296a19.jpg" title=" 1.jpg" / /p p   缘于外媒报道,在3月28日的一项裁决中,因星巴克产品中含有高含量的丙烯酰胺,被美国法院要求在产品上加贴“致癌”警告标签。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a0f3ce6c-9ec1-483e-b810-c8c480fe25af.jpg" title=" 2.jpg" width=" 500" height=" 500" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 500px " / /p p   其实,此次裁决并不仅仅针对星巴克一家企业。根据法庭文件,在被告名单中还包括卡夫食品公司、Green Mountain Coffee Roasters Inc,J.M.Smucker Company,甚至麦当劳在内的薯片、薯条等不少食品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e15b80a3-914b-4ca6-a2da-0f7f341bccc2.jpg" title=" 3.jpg" width=" 500" height=" 368" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 368px " / /p p   其实,咖啡豆本身并不含丙烯酰胺,而且也不是星巴克添加的,而是在烘培过程中自然出现的。只是由于星巴克本身一直自带话题,才引起大多数媒体和公众都对其保有很高的关注度。尤其是面对“致癌”这样耸人听闻的标签,想不无动于衷都难。 /p p   span style=" color: rgb(255, 0, 0) "   strong 丙烯酰胺酷爱淀粉和高温 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2ff89b49-18f6-4b20-957c-977ac07dfbd2.jpg" title=" 4.jpg" width=" 500" height=" 331" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 331px " / /p p   什么?你还没搞清楚丙烯酰胺到底是何方妖孽? /p p   那好,咱就先来普及一下。此次被美国法院裁决的致癌“罪魁祸首” strong 丙烯酰胺,其实就是一种很常见的白色晶体化学物质,也是食物发生“美拉德反应”时的副产物。 /strong /p p   国家食品药品监督管理总局官网2014年的文章《关于薯条检出丙烯酰胺》(文章指导专家:吴永宁,国家食品安全风险评估中心首席专家 陈芳,中国农业大学食品科学与营养工程学院教授)一文中提到,食品中的丙烯酰胺主要是由还原糖(比如葡萄糖、果糖等)和某些氨基酸(主要是天冬氨酸)在油炸、烘培和烤制等高温加工过程中发生美拉德反应而生成的。 /p p   一般来说,丙烯酰胺的产量和美拉德反应的程度呈正相关,即同一种含淀粉食物,热烹调后颜色越深重,香味越浓郁,丙烯酰胺的产量就会越高。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/9d7a37e6-75b6-4e7e-b55d-879ad1fce2db.gif" title=" 5.gif" / /p p   这也不是什么最新发现,人们知道丙烯酰胺会在这些食物里出现已经快20年了。 /p p   中国农业大学食品科学与营养工程学院副教授范志红解释说: /p p   “丙烯酰胺这种物质其实很常见,不止咖啡里有,包括薯片、炸薯条、大麦茶、烧炒的菜肴等都有。只要一个食物里含有淀粉和有氨基酸,无论油炸还是非油炸,只要达到120度高温加热,都会产生微量丙烯酰胺,而且温度越高、加热时间越长,形成的丙烯酰胺越多。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c168a91c-8323-4786-84f0-feed6d821939.jpg" title=" 6.jpg" / /p p   你以为这就完了吗?远远不止!因为,所有的爆炒素菜,也都可能含有丙烯酰胺!这主要缘于爆炒的烹饪方式,比如爆炒西葫芦的丙烯酰胺含量可以达到每公斤360微克,比炸薯条还高。不过别害怕,下次再炒西葫芦时,最好切成大一点的块状。因为越薄受热越快,越容易释放出丙烯酰胺。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0c404b1b-4005-4c7a-a8dd-5d35f0b73e10.jpg" title=" 7.jpg" / /p p   认识到丙烯酰胺在食物中的危害,世界各国都在呼吁,尽可能减少来自高温加工的谷物类及根茎蔬菜类食品中丙烯酰胺的含量,也就是薯条、薯片、烘焙食品、饼干、蛋糕等。 /p p   2017年,原中国食品药品监督管理局也发布了关于食品加工过程中如何控制丙烯酰胺生成量的安全提示,特别提到了油条的消费安全问题。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a6b0fb6a-21fb-42c9-843b-386083f602ae.jpg" title=" 8.jpg" / /p p   所以,相比于咖啡,以国人的饮食习惯和进食量,我们更应该减少摄入、或者说控制加工温度并控制摄入量的,是各种油条油饼炸糕炸鸡薯片薯条烤鸡翅炸鸡块……而不是刷屏的咖啡焦虑! /p p    span style=" color: rgb(255, 0, 0) " strong 与具体肿瘤关联尚未发现 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/da0c6ac2-93f3-43a1-adb1-df815c1ac971.gif" title=" 9.gif" / /p p   丙烯酰胺的确是一种潜在致癌物质。大量动物实验表明,丙烯酰胺具有一定致癌性 并且能够造成神经系统损伤,影响婴儿早期发育,危害男性生殖健康。不过,这些致癌性也只是“疑似”。而且,目前的研究只停留在动物实验阶段,还没有充分证据表明在人类身上具有同样危害。 /p p   上海交通大学医学院附属瑞金医院临床营养科营养医师卞冬生虽然认同: /p p   “丙烯酰胺在体外细胞实验和动物实验证实其的确是一种致癌物,”但也表示,目前没有充足的人群流行病学证据可证明人类某种肿瘤的产生与由食物中摄取的丙烯酰胺有明显相关性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b2b4f5a0-ae7a-4cf3-8fed-ade5406aae95.jpg" title=" 10.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p   复旦大学附属肿瘤医院肿瘤预防部主任郑莹则认为,长期以来,咖啡和患癌风险之间的关系,是业界研究热点,结论总是无法确定。 /p p   现实生活中,能致癌的物质并不罕见。根据国际癌症研究机构发布的列表里,迄今致癌物质达502种,原国家食药监局总局公布的致癌物质也有499种,其中包括人们熟知的PM2.5、加工肉等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/58e23cb9-84f9-412b-82ee-af8b74705aa6.gif" title=" 11.gif" / /p p   “丙烯酰胺作为咖啡里新发现的致癌物质,应该被消费者所了解,但市民也不必为此过于恐慌。”郑莹补充解释,“还有来源于人群研究的证据表明,饮用咖啡多的人群,罹患子宫内膜癌、肝癌的风险均有所降低。” /p p   其实,任何一种致癌物质都需要达到一定浓度,并且需要持续暴露、接触一定时间以后,才能达到致癌后果。如果单纯讲某一种物质是致癌物,不考虑浓度、暴露时间,本身是不科学的。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/08098787-f871-4266-8692-2b265dc88176.jpg" title=" 12.jpg" width=" 500" height=" 313" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 313px " / /p p   解放军309医院营养科主任左小霞同意这一观点。“如果丙烯酰胺算是一种“可能对人类致癌”的物质,没有问题,问题在于首先含有丙烯酰胺的食物还有很多。” /p p   左小霞认为,在我们日常食物中,只要高温煎炸的有碳水化合物、蛋白质的东西都会产生丙烯酰胺。甚至是如果将白糖熬成了红糖、黑糖,那么也会产生丙烯酰胺。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5ffb23fd-5029-4e02-9cfe-2191184c9868.jpg" title=" 13.jpg" width=" 500" height=" 311" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 311px " / /p p   她进一步解释说,在最新版的美国膳食指南中,已经把每天喝3到5杯不加糖不加奶油的咖啡,作为了健康生活方式的一部分。如果想减少丙烯酰胺,还不如平时在家里做饭的时候,注意温度不要过高,比如像爆炒就是一个应当减少的烹调方法,再有炒菜前也可以稍微焯一下。另外做面包的时候可以考虑少放点糖,避免外皮颜色过深。“对了,记得还有少吃薯片、爆米花等食品呃!” /p p    span style=" color: rgb(255, 0, 0) " strong 想完全避开?别天真了,不可能的 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/fecc756f-78b7-4449-a186-b509780792ba.jpg" title=" 14.jpg" width=" 500" height=" 376" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 376px " / /p p   对中国人来说,咖啡对食物中丙烯酰胺的贡献度,最乐观的估计,大约也要排到50名开外。 /p p   左小霞解释说,如果是说咖啡里丙烯酰胺的事,可以看看中国国家食品安全风险评估中心给出的数据:一个50公斤体重的成年人,每天摄入2.6μg*50=130μg,也就是10kg咖啡,才会喝到致癌剂量(煮咖啡丙烯酰胺平均剂量 13μg/kg),而10kg咖啡,差不多相当于28杯星巴克中杯咖啡的量!“一天喝8杯水,估计大家都很难做到,更别说28杯咖啡了。所以正常喝咖啡吧,不要操这个心了。” /p p    span style=" color: rgb(255, 0, 0) " strong 教你几招,如何避免 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/cc53190a-1363-4687-a9c6-2f1e93f80652.gif" title=" 15.gif" / /p p   但左小霞还是幽默地提醒大家,在买咖啡的时候,尽量选择简单的煮咖啡,少选三合一咖啡。而且,喝咖啡不要过量,否则可能会干扰睡眠。还要注意,不要喝过烫的咖啡,“经常喝超过65℃的任何饮品都会增加食道癌的发生风险。” /p p   对于咖啡致癌这一说法,范志红则表示大可不必惊慌,而应理智对待,想要完全避开是不可能的,但是日常生活中的小细节还是可以注意一下的: /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   在保证做熟、杀灭微生物的前提下,尽量避免过度烹饪食品,比如温度过高、加热时间太长 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   做主食时,建议采用蒸、煮、炖的做法,少用煎、炸、烤 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   最好少吃油条、麻花等油炸食品,炸蔬菜丸子、裹面糊的炸鱼炸虾等也要少吃 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   少吃烤制、煎炸、膨化的薯类制品 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   如果要进行煎、炸、烤烹调,尽量把块切大,把片切厚,这样有利于减少丙烯酰胺 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   馒头片、面包片不要烤得太黄。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/10f7149c-500b-4c5f-9481-a952751f6a60.jpg" title=" 16.jpg" width=" 500" height=" 331" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 331px " / /p p   最后,范志红特别尤其提醒儿童、孕妇、哺乳期妈妈要注意。小孩子更喜欢吃各种零食和油炸食品,往往会摄入过多的丙烯酰胺。丙烯酰胺容易被人体吸收,还可能会通过乳汁传递给小宝宝而宝宝的解毒功能相对较弱,要特别注意控制丙烯酰胺的摄入量,妈妈注意少吃油炸高脂食物。 /p p   总而言之, /p p   星巴克: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/7a2cc08d-bbbc-44b4-8e19-5a5c5a8a1efb.jpg" title=" 17.jpg" width=" 500" height=" 327" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 327px " / /p p br/ /p
  • 石家庄四药有限公司-岛津“药物杂质研究技术合作实验室”签约揭牌仪式暨“药物杂质研究新技术 ”报告会圆满落幕
    2021年6月21日,石家庄四药有限公司-岛津“药物杂质研究技术合作实验室”签约揭牌仪式暨“药物杂质研究新技术”报告会在石家庄四药有限公司药物研究院一楼报告厅顺利召开。 石家庄四药历经73年风雨历程,近年来,企业以创新驱动为引领,依托雄厚的产业禀赋和人才优势,建立起国家五部委联合认定的国家企业技术中心,及国家地方联合工程实验室、院士工作站和博士后科研工作站等高层次创新平台,创新能力和水平加快提升,形成了以仿制药、创新药、原料药、医用包材、生物药等较为健全的产业链协同发展的新型产业格局,具备了高端制造和新技术、新产品、新材料研发、领先应用及产业化多重发展优势,行业影响力快速提升。近年来,随着产业规模的不断扩大,经营触角遍及全国并延展到90多个国家和地区,成为行业创新与发展的重要力量,跻身中国制药工业百强企业、全国技术创新型示范企业、中国化学制药优秀出口品牌行业。 (石家庄四药研发中心药物研究院 大门照片) 目前,石家庄四药拥有岛津液相色谱仪、气相色谱仪和气相色谱质谱联用仪等多款高端研究级设备60余套。为了推动进一步的合作发展与协作共赢,双方于2021年6月21日挂牌成立【石家庄四药有限公司-岛津“药物杂质研究技术合作实验室”】,并签署战略合作协议。 石家庄四药有限公司(以下简称“石四药”)执行总裁兼装备环保中心总经理崔永斌先生、执行总裁兼研发中心总经理孙立杰博士、总裁助理兼战略发展中心总经理田鹏美女士、研发中心常务副总经理王立江先生、研发中心副总经理夏国龙先生;岛津企业管理(中国)有限公司(以下简称“岛津”)分析计测事业部营业部马景辉副部长、市场部医药行业经理吴国华博士、市场部首席专家吕冬先生、河北区经理魏亮先生、河北区营业杜鑫先生、岛津中国创新中心冀峰女士、河北汇博云海科技发展有限公司刘新乐经理、张玉凤经理等人员出席了仪式。本次会议还特别邀请了河北省药品医疗器械检验研究院副院长高燕霞女士、河北省药品医疗器械检验研究院郭永辉博士。仪式由石家庄四药有限公司研发中心常务副总经理王立江先生主持。大会现场石家庄四药有限公司研发中心常务副总经理王立江先生 王立江总经理首先介绍了双方出席仪式的领导和工作人员,阐述了建立合作实验室的背景和协商历程,并邀请双方领导进行了热情洋溢的致辞。随后,孙立杰研发中心执行总裁发表致辞,他在致辞中说:本次合作对于双方深化合作,实现共赢共利,具有里程碑的作用。作为行业领军企业石家庄四药这几年有着突飞猛进的发展,通过建立岛津合作实验室可以起到行业示范作用。岛津提供的服务涵盖:药品上游到下游整个产业链的所有服务。药物研发是关系人类生命健康的伟大科学事业,每一项进步都离不开科研人员的不懈努力,同样也离不开岛津高效、精密、可靠的分析检测仪器,它们对药物研发起到了巨大的支撑作用。从我司购买了第一台岛津气相色谱仪,至今已有17年。现在我们已经有液相色谱仪、紫外可见分光光度计等,超过60台岛津的精密仪器,希望今后两方紧密合作,影响和带动药物研发和产品质量提升,不断提高对人民健康需求的幸福感! 石家庄四药有限公司执行总裁兼研发中心孙立杰博士 岛津分析计测事业部营业部副部长马景辉先生在致辞中指出,岛津作为业内知名的分析仪器专业厂商,在分析仪器领域不断创新的同时,在多个领域也推出了众多的实验室整体解决方案,为广大实验室工作人员提供了有力的支持。近期岛津有幸参与到四药集团新研究院建设,也正是因为四药集团对岛津的充分信任,在短短几年已经有几十台岛津的分析仪器顺利安装并投入使用,这也奠定为四药集团和岛津展开全方位的深入合作奠定了夯实基础。同时,马部长也对石四药一直以来的帮助表示感谢,并希望与石四药所有科研团队在今后有更多的合作与交流。 岛津企业管理(中国)有限公司 分析计测事业部营业部副部长 马景辉先生 随后,河北省药品医疗器械检验研究院副院长高燕霞女士进行了讲话:首先对本次石家庄四药与岛津签署合作实验室表示祝贺,四药集团历经70年的历史变迁,现已发展为大型、综合的制药集团,是国内重要的化学药生产研发和出口的龙头企业;岛津则是一家业内知名的仪器厂商,特别是在2002年岛津制作所的田中耕一先生荣获诺贝尔化学奖,这开创了企业研究人员获奖的先河,此次合作是强强联合,可以做到优势互补、资源共享、共同发展,相信本次合作可以成为双方研究课题的突破点与亮点,同时也为河北省的医药产业发展助力加油! 河北省药品医疗器械检验研究院副院长 高燕霞女士 在领导致辞后,崔永斌执行总裁与吴国华经理共同签署建立合作实验室的协议,并进行了隆重的合作实验室揭牌仪式,此举标志着双方的合作进入了实施性阶段。 在签约仪式之后,河北省药品医疗器械检验研究院郭永辉博士进行了题为《化学药品杂质谱研究及控制》的发表。 河北省药品医疗器械检验研究院郭永辉博士 岛津中国创新中心冀峰女士在会上做了题为《岛津高分辨质谱在抗生素聚合物杂质控制方面的应用》的报告。她在报告中介绍到,在β-内酰胺类抗生素引起的过敏反应中,药物中存在的高分子聚合物是引发速发型过敏反应的过敏原。除聚合物杂质外,β-内酰胺类抗生素由于生产工艺的原因,存在诸多工艺杂质和降解杂质。使用岛津Shimpack Diol凝胶色谱柱指针性分离聚合物,导入二维杂质鉴定系统在线脱盐与岛津四极杆串联飞行时间高分辨质谱仪LCMS-9030联用,成功鉴定出头孢哌酮钠和阿莫西林等品种中聚合物杂质的结构,并转化为反相方法对一般杂质和聚合物杂质同时进行质量控制。 岛津中国创新中心 冀峰女士 随后,各位来宾参观石家庄四药研究院实验室,石家庄四药崔永斌执行总裁详细介绍实验室整体情况及各类仪器使用情况。 研究室的众多岛津仪器 欢迎屏幕
  • 《自然》杂志公布科研机构排名
    《自然出版指数》(Nature Publishing Index)杂志公布的数据显示,美国在2013年全球科研机构排名中处于绝对领先地位,前100名中占据50个席位。在其公布的亚太地区科研机构排名中,中国科学院首次取代日本东京大学,排名亚太地区第一。哈佛大学、麻省理工学院、斯坦福大学以及美国国立卫生研究院领跑全球前200家科学研究机构。作为《自然》的增刊,《自然出版指数》是以国家和机构为单位,根据其2013年在18本《自然》和《自然》子刊上发表的研究型科研论文数量进行排名。   在《自然》编辑看来,许多亚太地区国家把提高科研产出量作为提升创新能力、国际竞争力和知识型经济的基础。报告显示,尽管日本多年来一直主导亚太地区的科研,但亚太地区高质量的研究正在转向中国、新加坡等国。《自然》出版集团大中华地区负责人尼克· 坎贝尔认为,中国政府在基础研究领域投入加大,使得中国在亚太地区科研机构中的排名不断上升。   澳大利亚凭借地球与环境科学领域的强大优势在亚太地区排行榜中列第3位。与2012年相比,2013年澳大利亚在每项指标上都有所提高,成为亚太地区第二大国际合作国,其科研机构对《自然》期刊的贡献率比2012年提高了50%。亚太地区排名前200位的科研机构中,澳大利亚占29个席位,其中墨尔本大学(University of Melbourne)排名第8位。
  • 8月22日 Nature 杂志精选
    癌症突变具有不同特征   尽管所有癌症都被认为是由体细胞突变(身体中除生殖细胞以外的任何细胞的突变)造成的,但我们对所涉及的突变过程相对来说却知之甚少。这项研究分析了来自超过7000例癌症的近500万种突变,发现了超过20个与癌症相关的不同突变特征。这些特征中有些存在于很多癌症中,其中一个特征属于APOBEC家族的胞苷脱氨酶,而其他特征则是个别肿瘤类型特有的。有些特征与年龄、已知诱变因素或DNA维护中的缺陷有关,但很多的来源却很神秘。这些发现对于了解癌症病因、预防和治疗有潜在意义。   研究证实植物能用电传递受伤信号   动物通过神经系统对受伤快速作出反应。本杂志1992年发表的一篇论文提出了当时有争议的观点:植物也利用远距离电信号对受伤作出反应。此后人们已经清楚有些植物用电信号来控制它们的运动,尽管这一现象背后的基因并不知道。现在有了可靠实验和遗传证据来支持早先关于伤口信号作用的发现,同时说明与介导脊椎动物突触传递的谷氨酸盐受体相关的蛋白也参与其中。Edward Farmer及同事发现,弄伤拟南芥的一片叶子,会导致刺激&ldquo 茉莉酮酸酯&rdquo (使拟南芥对食草动物和病原体产生抵抗力的植物激素)的电活动在与伤口有一定距离的未受损处传播。这一过程是由被GLR基因编码的阳离子通道介导的。   测量太阳类恒星表面引力新方法   太阳类恒星亮度的变化是由很多因素驱动的,包括&ldquo 颗粒化&rdquo ,它是由光球下的热对流造成的。而由于&ldquo 颗粒化&rdquo 与表面引力相关,所以亮度变化可被用作表面引力的一个度量。Fabienne Bastien等人分析了来自美国国家航空航天局&ldquo 开普勒&rdquo 探测任务的档案数据,发现在小于8小时的时间尺度上发生的亮度波动与处在各种不同演化阶段的太阳类恒星的表面引力相关。利用这种类型的直接测量,将有可能确定由&ldquo 开普勒&rdquo 观测到的很多恒星的表面引力。   嵌套生态网络中的结构   物种之间的合作倾向于导致形成具有一个嵌套结构的互助网络。虽然嵌套性可能会增加生物多样性和持久性,但理论工作表明,嵌套网络往往没有非结构化网络稳定。这篇论文通过分析表明,嵌套网络是由一个能使互助群落中物种丰富度最大化的机制形成的,嵌套物种的丰富度与群落的可塑性直接相关。这项工作为研究生态因素和演化历史怎样形成生态网络提供了一个模型。   &ldquo 蛭形轮虫&rdquo 无性生殖假说被证实   &ldquo 蛭形轮虫&rdquo 被认为已经以无性方式存在和分化了数百万年,这很奇怪,因为有性生殖的丧失对后生动物来说被普遍认为是走进了一条演化上的死胡同。此前人们仍怀疑它们也许偶尔会进行有性生殖。但在这项研究中,Olivier Jaillon及同事对一种名叫&ldquo Adineta vaga&rdquo 的&ldquo 蛭形轮虫&rdquo 的基因组进行了测序,发现其结构与传统减数分裂(与有性生殖相关的细胞分裂类型)不匹配。其基因组已经历了丰富的基因转换,这可能限制了在没有减数分裂时有害突变的积累。多达8%的基因可能来自非后生动物,可能是通过横向基因转移获得的。这些发现为无性演化提供了肯定证据,支持关于&ldquo 蛭形轮虫&rdquo 从古以来进行无性生殖的假说。   具有生物活性的信号作用脂质&ldquo 神经酰胺-1-磷酸盐&rdquo (C1P) 调控从生长和生存到&ldquo 促炎反应&rdquo 在内的各种不同过程。在这项研究中,Dinshaw Patel及同事研究了C1P是怎样被输送到细胞中的特定点的。他们识别出被称为&ldquo 神经酰胺-1-磷酸盐转移蛋白&rdquo (CPTP)的一种新颖的脂质转移蛋白,同时结构和功能研究也显示了C1P被从其在&ldquo 高尔基&rdquo 复合体中的合成点输送到胞质膜上的机制。   LITE杂合系统在光遗传学中的应用   Feng Zhang及同事将可定制的TALE DNA结合域与光敏&ldquo 隐花色素-2&rdquo 蛋白及其来自拟南芥的相互作用伙伴CIB1结合在了一起,从而生成了一个光遗传&ldquo 双杂合&rdquo 系统(他们将其称为LITEs,即&ldquo 光可诱导的转录效应物&rdquo )。LITEs不需要其他辅因子,容易被定制来以很多位点为目标,并且还能快速地、可逆地被激活。它们还可被打包到病毒载体内,定向输送到特定细胞类群中。作者将这一系统应用到了小鼠的原代神经元中和清醒小鼠的脑中,来调制内源基因表达和定位表观染色质修饰。这一LITE系统为内源细胞过程的光遗传控制建立了一个新颖模型。   (田天/编译 更多信息请访问www.naturechina.com/st)
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 明尼克致广大客户:关于外贸产品货期
    尊敬的明尼克广大客户朋友们:您好,感谢您长期以来对明尼克的厚爱、信赖与支持!自新冠肺炎疫情爆发以来,经过举国上下同心协力共抗疫情,目前已取得阶段性胜利,各地疫情数据不断清零,整个社会陆续转入全面复工复产阶段。然而在国际上疫情扩散不断加剧,截至3月26日全球累计确诊数量突破40万例,一些欧美发达国家如意大利、美国、西班牙、德国等正处于大爆发阶段,许多仪器厂商已开始居家办公模式,产品的制造周期不断延长,雪上加霜的是国际物流业也深受疫情影响,货运包机大幅缩减,运输周期也在同步延长,许多产品的货期预计在12周以上。在此特殊时期明尼克真诚的提示您及时作好外贸产品备货计划,尽早订货,避免国外疫情影响您的科研和生产计划导致不必要的损失,同时我们也将尽力与相应的国际合作厂商协调,尽一切努力减少发货的中断和延迟,我们愿与您密切沟通并及时通报到货情况。在此严峻的形势下我们也衷心希望得到您的理解与支持,明尼克也将一如既往在您身边为您的分析事业保驾护航,让我们携手同行在2020余下的岁月里一起努力扭转乾坤实现完美逆袭!谢谢大家! 北京明尼克分析仪器设备中心2020年3月26日
  • 祝贺明尼克科技顺利通过环评 取得环保设备制造资质
    明尼克科技办公大楼2020年6月28日,明尼克集团下属明尼克科技(北京)有限公司正式通过环保和工商审核,取得“环境保护专用设备制造”资质,标志着公司向着实体化迈进了一大步,也为明尼克 “高端分析仪器供应商”的发展定位打下重要基础。 明尼克科技新品“高压进样系统”通过专家评审明尼克集团创立于1994年。经过26年的发展,集团下辖北京明尼克分析仪器设备中心、北京盖斯化工气体中心、明尼克科技(北京)有限公司等多个经营实体。公司总经理薛海玲怀揣着推动民族仪器发展的梦想,重视人才培养,特别关心年轻人的发展,为了给员工提供更好的发展平台,薛海玲总经理集合公司年轻骨干于2017年成立了明尼克科技公司,位于北京市平谷区中关村科技园区平谷园联东U谷。“大鹏一日同风起,扶摇直上九万里”,薛总始终坚信,员工的个人发展与公司的兴盛一脉相承, 提高员工的幸福感和成就感始终是明尼克奋斗目标之一。 明尼克联手中国计量测试学会成功举办气相色谱实操培训班明尼克科技公司环保制造资质的取得是公司由贸易型转为实体型企业重要一步,公司传统的外贸产品和新兴的自主产品两者发展相得益彰、并驾齐驱。26年的专业底蕴,明尼克正沿着集研发生产、销售咨询、物流服务等一条龙的综合性现代化实体型企业道路快速发展。明尼克人将以此为起点,整合各方面资源在环保制造等领域深耕拓展,不断跨越新的高峰。 明尼克科技研发团队“金银铜级”获奖成员 明尼克科技团建活动公司的发展离不开每一个员工的努力奋斗。百川异源,而皆归于海,今天公司的蓬勃发展是团队凝心聚力团结一致的结果。明尼克也将一如既往重视人才、培养人才、爱惜人才,也欢迎更多的有识之士、合作伙伴来交流洽谈,共同合作,共创美好未来!
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 藏不住了,Welchrom® PA聚酰胺小柱新品上市
    Welchrom® PA聚酰胺小柱食品合成着色剂,也称为食品合成染料,是用人工合成方法所制得的有机着色剂,常见的合成着色剂有柠檬黄、苋菜红、胭脂红、日落黄、诱H红、亮蓝等。相较于食用天然色素,其优点不少,如色泽鲜艳,着色力强,色调多样,不易褪色、稳定性好、易溶解、易调色、成本低等,同时因这些优点而成为臻选。但它有一个大缺点,即具毒性(包括毒性、致泻性和致癌性)。这些毒性源于合成色素中的砷、铅、铜、苯酚、苯胺、乙M、氯化物和硫酸盐,它们对人体均可造成不同程度的危害。月旭科技采用特制的合成着色剂专用柱Welchrom® PA聚酰胺小柱,以HPLC法作为分析方法,对面包等食品进行加标回收实验,回收率均在标准要求内。该方法可简化样品的前处理过程,节省有机溶剂的使用,操作简便,可满足大部分客户测试需求。一、原理聚酰胺小柱能够特异性的纯化样品中的合成着色剂。试样中的着色剂经提取剂提取,提取液通过聚酰胺小柱净化,着色剂吸附在小柱上,用淋洗液去除天然色素等杂质,洗脱后浓缩复溶,最后注入HPLC进行测定。二、净化程序聚酰胺小柱活化→上样→淋洗→洗脱→浓缩→复溶三、色谱条件色谱柱:月旭Ultimate® XB-C18, 4.6×250mm,5μm。流动相:A-0.02mol/L乙酸铵溶液,B-甲醇(梯度见下表1);流速:1.0mL/min;柱温:30℃;进样量:20μL;检测波长:245nm。表1:液相色谱梯度洗脱条件四、色谱图及实际样品测试结果‍图1.合成着色剂混标2μg/mL 图谱图2.面包样品空白图谱 图3.面包样品加标溶液图谱Welchrom® PA在《GB 5009.35-2016 食品安全国家标准食品中合成着色剂的测定》标准下测试,样品加标回收率满足实验要求。回收率如下:五、客户选购指南
  • Green Chemistry 封面文章: 阮志雄教授 "电化学方法高效合成中环内酰胺类化合物"
    中环内酰胺(8-11元环)是重要的药物化学骨架,因其存在于很多天然产物和生物活性化合物中,如去熊果苷、鼠李嘧啶、巴拉苏胺和二苯西平等。通常,这些结构只能通过一些有限的方法获得,例如,分子内羰基化、环闭合复分(RCM)、Claisen型重排等。最近报道了一种以过渡金属钌为催化剂和当量的乙酰氧基苯碘酮(BI-OAc)为氧化剂的光催化合成中环内酰胺的方法。然而,这些方法大多局限于使用高稀释溶液、过渡金属催化剂或当量化学氧化剂,严重背离了绿色化学合成的理念。有机电化学利用质子和电子作为氧化还原试剂,已经成为一种环保、经济、功能日益强大的绿色化学合成方法。正如之前的报道,直接或间接电氧化N–H键被应用于各种C–N键的成环化反应中,以构建含N杂环。尽管取得了这些重大进展,但报道的方法仅限于通过典型的酰胺氮自由基环化反应,即电化学氧化C-N键的形成,生成5或6元环。事实证明,要形成8-11元环内酰胺还是很难的。近日,广州医科大学阮志雄教授课题组开发了一种无需催化剂和额外添加剂,以一种绿色可持续的直接电化学氧化的方法产生酰胺氮自由基,并通过C-C键断裂,氮自由基迁移,首次实现了8-11元中环内酰胺扩环的新突破 (Green Chem., 2020, 22, 1099)。与以往的典型的酰胺氮自由基环化方法相比,该研究利用石墨电极作为工作电极(阳极),铂电极作为阴极,在室温、不使用金属催化剂和外部氧化剂等更为温和、绿色经济的条件下,在8 mA恒定电流电解下,反应2.3 h,即成功得到8-11元环的扩环,如下图所示9元环内酰胺产率达到98%。文末,作者还通过循环伏安法进一步解开了反应机理的神秘面纱。阮教授课题组是借助了什么设备完成并优化中环内酰胺的扩环反应的呢?!又是借助了什么设备实现循环伏安法的呢?打开该文的Supporting information,就是这款“IKAElectraSyn pro”,既可完成循环伏安分析,还可以同时实现6位平行筛选,优化反应条件,并完成反应的神器。
  • 明尼克参加2020慕尼黑上海分析生化展快讯
    明尼克参展团队 2020年11月16日,备受瞩目的分析行业盛会--第十届慕尼黑上海分析生化展如期在上海新国际博览中心E2至E7馆盛大开幕。北京明尼克分析仪器设备中心精心准备,总经理薛海玲女士领衔派出高级团队盛装出席,在首日的展览中与现场专业观众深入交流互动。明尼克技术总监李高沪先生领衔技术团队与现场观众交流互动本届盛会明尼克展出自主MNK明星产品,部分新品系首次亮相大型展会,明尼克经典国际产品也全新亮相,新晋主打产品闪耀明尼克展台,现场咨询场面人气十足!明尼克参展技术团队 好戏刚刚开场!未来两天,明尼克展台将有更多精彩呈现!明尼克欢迎各位业界同仁莅临展台,共商合作,共创辉煌! 参展详情:展位:E5馆5737时间:2020.11.16-11.18地点:上海新国际博览中心(上海市浦东新区龙阳路2345号)
  • 南京瑞尼克发布瑞尼克MDS微波消解仪新品
    系统参数电源220V±10% 50/60Hz微波源2450MHz,双磁控管错位排列,0~1600W非脉冲连续微波输出,高频闭环反馈控制整机安装功率2000W输出功率1600W微波谐振腔56L大容积304不锈钢腔体,采用无缝焊接工艺,6层耐腐蚀特氟龙涂层喷涂防爆门多层防爆,微波屏蔽门软件系统7寸彩色触摸屏转盘360°旋转,转速10r/min40位转子,可同时放置40个55ml消解管测温、控温系统测温范围:0~300℃。测温精度±1℃(红外)控温稳定度±1℃炉腔排风系统耐腐蚀离心式排风机,排风量5m3/min整机外形尺寸520*640*590(宽*深*高)整机重量70KG创新点:1、本产品为瑞尼克微波消解仪最款 2、外观呈紫色装,整体外观新颖独特 3、添加了语音功能,多程序操作功能 瑞尼克MDS微波消解仪
  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 二维液相色谱丨含碘造影剂,你的微量手性杂质我来查
    导读最近看到一则新闻,某患者因为肺部感染、哮喘,到医院放射科做了CT平扫,发现有一肺部肿块,医生建议再做个增强CT来进一步确定疾病的性质。那么,新闻中所说的增强CT究竟是什么呢?其实,增强CT就是指在CT平扫基础上,对发现的可疑部位,在经静脉注入含碘造影剂后,进行有重点的检查。也许您有疑问,为什么要注入含碘造影剂呢?它的安全性又如何控制呢? 为什么要注入含碘造影剂呢?含碘造影剂具有密度大的特点,经静脉注射进入体内后,因为病变组织内或血管丰富或血流缓慢而在病理组织中停滞、积蓄,使病变组织与邻近正常组织间的密度对比增加(即影像上黑白对比增加),CT图像能够更加清楚地显示组织血流和病变情况,以帮助鉴别疾病的良、恶性,提高病灶的定性能力,从而提高诊断准确率。 含碘造影剂小科普l 含碘造影剂的变迁自20世纪50年代被发现后,含碘造影剂经历了第一代的离子型造影剂飞跃到非离子型单体造影剂,再次飞跃到非离子型二聚体造影剂的过程。 图1 4种碘化CT造影剂的化学结构:离子单体、离子二聚体、非离子单体和非离子二聚体 目前被广泛用于临床的非离子型造影剂,如碘帕醇、碘海醇、碘普罗胺、碘曲轮、碘克沙醇等,具有毒性低、性能稳定、低渗等渗、耐受性好等优点。 l 碘帕醇的手性构型碘帕醇是一种非离子型水溶性碘造影剂,具有良好的显影作用,对血管壁及神经组织毒性低,化学性质稳定,不良反应较少,适应范围广。 碘帕醇(CAS号:66166-93-0)有1个手性中心,两个异构体(S-构型、R-构型),结构式见图2。碘帕醇中的R-碘帕醇含量增加会使碘帕醇注射液黏度升高,进而导致碘帕醇注射液的不良反应增加。因此控制不良构型的含量是碘帕醇及其他含碘造影剂质量控制的关键步骤。 图2 碘帕醇的S构型(左)和R构型(右) l 碘帕醇的一维手性分离探索利用色谱柱中手性固定相对异构体的吸附速度不同实现的色谱分离是常用手段。以Chiralpak MA(+)色谱柱和硫酸铜溶液为流动相建立碘帕醇的分离,R/S-碘帕醇分离结果如图3所示。 图3 250 mg/L浓度的R-碘帕醇样品溶液 (1)和S-碘帕醇样品溶液(2) 的1stD LC色谱图 通过分离结果可以看到,该手性分离体系能在20 min内实现碘帕醇两种构型的手性分离,但和多数液相手性分离的色谱行为相似,存在柱效较低的问题,因此在定量分析中对于含量较低的待测物的检出存在不足。 岛津解决方案对于类似碘帕醇这样的分子结构提示其可在反相色谱上有良好保留,因此考虑构建手性色谱体系和反相色谱体系的二维液相色谱系统,对已获分离的异构体杂质再次进行反相色谱分离以提高检测的灵敏度。 l 手性构型的二维分离 l 分离结果解析R-碘帕醇溶液(0.5 mg/L)2D LC 分析色谱图 5-10min间为R碘帕醇在1维液相上的保留,可以看到该浓度下无明显色谱峰,无法进行定量分析。经过阀切换将R碘帕醇在1维液相上的组分切入二维后,通过反相色谱作用,可以在16.5min左右发现明显的色谱峰同手性分离的 1 stD LC 结果相比,经过二维液相色谱分离的 R-碘帕醇灵敏度较之有 10 倍的提升。 结语药物杂质的高灵敏检查是控制药物纯度,提高药品质量的一个非常重要的环节。为了让含碘造影剂更加安全的为患者服务,岛津的二维液相色谱系统可发挥作用,弥补手性色谱柱效不足的缺点,既获得两种异构体的有效分离,又在经过反相色谱分离中获得良好响应。 撰稿人:李月琪 本文内容非商业广告,仅供专业人士参考。
  • 明尼克——2017年春节放假通知
    明尼克——2017年春节放假通知尊敬的朋友! 金鸡报喜,大吉大利,北京明尼克总经理薛海玲女士携全体员工向广大新老客户和各界朋友恭贺新年!祝大家新春愉快、身体健康、万事如意、合家幸福、生意兴隆! 根据《国务院关于修改〈全国年节及纪念日放假办法〉的决定》精神,结合明尼克实际,现将2017年“春节”放假的有关事宜通知如下: 2017年01月27日至02月03日,共8天。01月22日(星期日),02月04日(星期六、正月初八)正常上班。 节日期间,公司内不安排人员值班。
  • CATO药物杂质微信公开课结束!错过的你还有机会,课程干货为你打包奉上!
    药物杂质标准品的选择是一致性评价工作中的重要环节,快速准确地选择合适的标准品可以为一致性评价工作节省很多时间,cato为了提高各大药企研究人员之间相互交流学习,12月21日晚,cato联合丁香园成功举办了一堂药物杂质谱和基因毒性杂质的微信公开课,共吸引了180多位药企人员参加。李雪明博士,cato技术总监,2011年获得中山大学药学院有机化学博士学位,至今已有5年药物研发相关经验,所负责的新药研发项目已成功找到有明确体内生物活性的化合物,正在进行临床前毒理研究。在加入cato之前,李博士曾任职成都先导药物开发有限公司和桂林南药股份有限公司等知名药企,深知药企工作的重点和难点。期间在oragnic letters, chemical communications等学术期刊上发表多篇研究论文,申请国内外专利6项;曾参与863、973、国家自然科学基金等重点项目的研究工作,作为主要参与人员,完成两项国家自然科学基金。 李雪明博士本次演讲主题是「药物杂质谱及基因毒性杂质介绍」,主要为各大在药物一致性评价工作任然处于迷茫的药企人员进行疑问解答。如果你错过了本次精彩的微信公开课,请不用担心,我们为你准备了完整的ppt讲义(关注“cato标准品”关注号直接下载课程讲义),现在就跟随李雪明博士一起开始观看学习吧。课后大家也结合自身情况提出了一些与药物杂质相关的问题。我们在课后选择了一些代表性的问题进行了整理,现分享给大家,相信可以为你带来一些收获。 问题一:毒性杂质问题:除常规的苯胺类,卤代烷烃类,甲磺酸酯类等,比较明显判断为毒性杂质或潜在毒性的结构,有没有其他比较直接(或者说成本较低)的方法确认物质结构是否有潜在毒性,避免遗漏。答:拿到一个结构很难一眼看出是很明确的有基因毒性的杂质,下面是两个查询方法:查询cpdb数据库,利用化合物毒性预测软件。做仿制药项目,最好的方法就是拿原研的产品制剂,原研产品中存在的杂质那一定是没有问题的。问题二:我们在申报药物时碰到的情况,中间体结构是基因毒性警示结构,而该中间体是最终产品结构的一部分,最终产品是通过了各种毒性评价,显示没有基因毒性!该中间体是否还是需要按照基因毒性杂质来控制还是直接按普通杂质来控制?答:问题中提到的杂质属于第四类:具有警示结构、与api有关、基因毒性(突变性)未知的杂质,而且api是明确没有基因毒性的,这类的杂质就按照普通杂质来控制。问题三:有一中间体,从结构看,含有羟基,后续步骤用到甲磺酰氯!因此,可能存在磺酰基类基因毒性问题!但是,该中间体的磺酸酯稳定性不好!在进行气相和质谱~质谱时分解了!因此,要说明很困难!是否能够通过该中间体磺酸酯的溶解性,反应性!(该离最后中间体还有十多步呢),说明该杂质底?还有,在该中间体前使用了甲醇,而我们控制多批次甲磺酸酯在限度以内,上述杂质是否进行这样说明就可以?还有其他办法吗?答:对于高活性物质,特别是在工艺早期引入的,后续的操作一定会把这些高活性物质给消耗掉的,一般通过对工艺的说明就可以了。问题四:大部分药物的起始原料及起始原料的中间体都含有苯胺类似物和硝基苯类似物,这些都是潜在基因毒性,该如何控制,都需要控制吗?答:硝基后面是需要转化的,氢化效率很高会转化为铵,铵后面会再进行缩合。如果是在起始物料中的基因毒性杂质,可以在其转化后一两步反应产物进行控制,并说明对该中间体进行控制可以确保api中不会超过ttc的限度。另外,潜在基因毒性这个说法是不对的,潜在基因毒性是指在潜在杂质。(mq)问题一:请问edc和其水解产物edu按照基因毒性杂质控制吗?以前申报是按基因毒性控制的。答:这个问题比较具体,需要去查一下资料。其实可以去查查有没有现在还在市场上试用的药物工艺里是用了edc的。如果有条件控制,那就不用纠结了。(叶子)问题二:所有根据工艺分析出的潜在杂质都需要合成出对照品并做全套结构确证吗?答:这样做当然是最保险的,但是成本很高。先用警示结构和文献的数据进行一个判断,再对杂质进行说明。有些拿不准的有条件就用对照品验证一下。(老豆芽)问题三:请问辅料与主成分发生反应反应生成的杂质,以及制剂中的辅料生成的杂质如何研究和控制?答:辅料与主成分发生反应生成的杂质是需要进行评估的。制剂中的辅料生成的杂质,这个是指降解杂质吗?对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要。(老豆芽)问题补充:这里是指辅料的降解杂质。您说的对于目前市面上的辅料是不需要进行研究的,只有对于新的化学合成的辅料才需要的。这个有法规方面的依据吗?答:ich m7有明确的规定,我的ppt里也有,其实你可以理解成为这些辅料已经被很多公司用过多年,已经证明里面没有基因毒性杂质。(立方研究所 汪泉)问题五:对于基因毒性杂质,有些品种在ep里面有着明确的控制方案,但其限度标准与我国现行标准不同,感觉自12版药典发布以后,我国现行标准很多都比ep8.0要高出不少,请问我们如何去应对现行的申报要求下的基因毒性杂质控制策略。答:对于仿药来说,先看看参比制剂里的杂质情况,如果参比制剂的杂质都高于15版药典,那评审老师那边应该也是没有问题的。(陶海波)问题六:有个问题,就是第三象限杂质问题。杂质未知,没有方法检测?用多少种柱子,多少种方法尝试才能说明问题?没有判断方法,不能用穷尽啊?答:当然不是穷尽的,有两种明显区分的互补方法会好很多。(陶海波):感谢李博士,用两种方法确实能够大大降低未检出的风险。答:杂质研究是一个风险评估的过程,首先要说服自己,对自己的产品有信心。(半日军拯救世界)问题七:原料药研发中所有的物料都需要进行杂质研究吗?还是只要研究关键物料的杂质即可?我一个项目中用了氯甲酸苄酯,该物料遇水分解,不够稳定,参与最后一步反应(除粗品精制外),合成人员没有将其定为关键物料,是否需要对其进行研究?答:如果是最后一步反应使用的,那肯定是要考虑的,你可以通过数据来说明现有的合成工艺条件下,该杂质的残留量是符合限度标准的,就可以不用制订在最终的质量标准里。(晴天娃娃summer)问题八:杂质谱分析究竟是分析工艺还是分析样品呢 ?我们现在按照药典方法检测的时候,我们的工业杂质小于0.05%,工艺杂基本是未检出,如果是分析样品的话,我们认为根本不需要进行工艺杂质的杂质谱的分析。答:我认为你的申报的申报文件里最好有对工艺杂质的说明,分析这些杂质里是没有高毒性的杂质,对于微量杂质来说,常规的检测方法不能保证。今后cato也会开展更多线上及线下杂质标准品讲座,为国内药物研究人员提供相关的标准品方面的讲座指导。欢迎大家关注cato,了解更多课程资讯。
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制