当前位置: 仪器信息网 > 行业主题 > >

四氢呋喃甲基

仪器信息网四氢呋喃甲基专题为您提供2024年最新四氢呋喃甲基价格报价、厂家品牌的相关信息, 包括四氢呋喃甲基参数、型号等,不管是国产,还是进口品牌的四氢呋喃甲基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四氢呋喃甲基相关的耗材配件、试剂标物,还有四氢呋喃甲基相关的最新资讯、资料,以及四氢呋喃甲基相关的解决方案。

四氢呋喃甲基相关的资讯

  • 岛津水产品中硝基呋喃类代谢物残留LCMSMS检测方案
    硝基呋喃类药物(Nitrofurans)是一类合成的抗菌药物,它们作用于微生物酶系统,抑制乙酰辅酶A,干扰微生物糖类的代谢,从而起抑菌作用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。 硝基呋喃类药物很不稳定,很容易生成代谢物。硝基呋喃类药物在动物体内迅速分解产生代谢物,代谢物在体内与细胞膜蛋白结合成结合态。由于代谢物比较稳定也有致癌作用,所以在食品安全的检测中检测硝基呋喃代谢物。常见的硝基呋喃代谢物的衍生物有如下四种,包括:3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用检测水产品中硝基呋喃类代谢物的残留量的测试方法。样品经处理后,用超高效液相色谱LC-30A在4.0 min内完成分离,三重四极杆质谱仪LCMS-8030进行定量分析。对四种硝基呋喃类代谢物残留的线性、精密度、检出限(LOD)、定量限(LOQ)进行了验证。3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)在1~200 &mu g/L内线性良好,相关系数均大于0.999;分别用浓度为1 µ g/L、10 µ g/L和50 µ g/L的混合标准溶液进行了精密度实验,实验结果表明连续6次进样保留时间和峰面积相对标准偏差分别在0.28 ~ 0.07%和4.76 ~ 1.68%间,仪器精密度良好。满足《GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检验方法 高效液相色谱串联质谱法》的检测要求。 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中硝基呋喃类代谢物残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 硝基呋喃及其代谢物检测三大利器!
    硝基呋喃类抗菌药物是一种广谱抗生素,包括了硝基呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林,曾广泛应用于水产养殖业,用来治疗由大肠杆菌或沙门氏菌所引起的肠炎、疥疮、赤鳍病、溃疡病等。这类化合物对光敏感,衰减快,其母体化合物在动物体内及其产品中代谢很快,但其代谢物以蛋白结合物的形式存在可残留较长时间,目前各国均将硝基呋喃代谢物作为指示硝基呋喃类药物残留的标示物。因硝基呋喃类药物及其代谢物具有相当大的毒副作用,世界上绝大部分国家规定在食用动物组织中不允许有硝基呋喃药物残留;美国21CFR530.41规定食源性动物禁止食用呋喃唑酮和呋喃妥因;欧盟EEC2377/90将硝基呋喃类药物及其代谢物列为A类禁用药物;我国也于2002年颁布了禁用硝基呋喃类抗生素的禁令。2017年3月9日,农业部办公厅发布关于开展2017年水产品质检机构检测能力验证工作的通知,提到硝基呋喃类代谢物的检测方法依据为《水产品中硝基呋喃类代谢物残留量的测定-液相色谱-串联质谱法》(农业部783号公告-1-2006),使用内标法定量。First Standard® 推出硝基呋喃及其代谢物检测三大利器,确保您的实验全程无忧!它们是:4种硝基呋喃混标帮助您节省实验前的准备时间,浓度100ppm,可配制多组工作液Cat.No中文名称规格/CAS#1ST9262-100M4种硝基呋喃混标100ppm1ST4207呋喃唑酮67-45-81ST4208呋喃它酮139-91-31ST4209呋喃妥因67-20-91ST4210呋喃西林59-87-04种硝基呋喃类内标溶液许多客户反馈内标难找,我们这里4种内标齐全,1支混标搞定!Cat.No中文名称规格/CAS#1ST9230-100M4种硝基呋喃类内标混标100ppm1ST4226氨基脲-13C,15N2盐酸盐1173020-16-01ST4203D53-氨基-5-吗啉甲基-2-噁唑烷酮-d51017793-94-01ST4201D43-氨基-2-噁唑烷酮-d41188331-23-81ST4204C31-氨基-2-乙内酰脲-13C3957509-31-84种硝基呋喃代谢物衍生化混标不用担心标品衍生不成功或衍生不完全影响实验,我们提供衍生好的混标!Cat.No中文名称规格/CAS#1ST9283-100ppm4种硝基呋喃代谢物衍生化混标(以代谢物计)100ppm1ST42152-NP-呋喃妥因代谢物623145-57-31ST42172-NP-呋喃它酮代谢物183193-59-11ST42192-NP-呋喃唑酮代谢物19687-73-11ST42212-NP-呋喃西林代谢物16004-43-6如需订购请联系天津阿尔塔科技有限公司或各地经销商。
  • 硝基呋喃检测,岛津LCMSMS带您乘风破浪!
    导 读 农业农村部、国家卫生健康委员会和国家市场监督管理总局公告2019年第114号《食品安全国家标准 食品中兽药最大残留限量》规定了267种(类)兽药在畜禽产品、水产品、蜂产品中的2191项残留限量及使用要求。对此,岛津公司发布了《GB 31650-2019食品中兽药最大残留限量及兽残检测标准应对解决方案》,方案包括了以下四个部分:标准解读、兽药残留限量技术要求、GB 31660.1~9-2019兽药残留检测前处理方法包和9项兽药残留检测的应用报告,期望能给相关行业的用户在兽药残留分析上带来便利。 虽然《食品中兽药最大残留限量》并没有收载禁用药物及化合物清单,这些化合物在2020年1月6日颁布的中华人民共和国农业农村部公告第250号有明确规定。大家熟悉的β-受体激动剂、氯霉素、类固醇激素及硝基呋喃类都属于禁止使用的药物,在动物性食品中不得检出。而硝基呋喃类药物(Nitrofurans)作为一类合成的抗菌药物,被广泛应用于畜禽水产品的养殖过程中。 什么是硝基呋喃类药物 硝基呋喃主要包括呋喃唑酮、呋喃西林、呋喃它酮和呋喃妥因,具有抗菌消炎作用。硝基呋喃类的原形药物在畜禽和动物体存留时间很短,很快就转化为分子量较小的代谢产物,硝基呋喃类药物及其代谢物对人体均有致癌、致畸的副作用。代谢产物与组织蛋白质紧密结合,以结合态形式在体内残留较长时间,所以在食品安全检测中检测硝基呋喃代谢物。呋喃唑酮、呋喃西林、呋喃它酮和呋喃妥因的代谢物分别为3-氨基-2-恶唑酮(AOZ)、氨基脲(SEM)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)和1-氨基-乙内酰脲(AHD)。结合态的样品经盐酸水解,邻硝基苯甲醛过夜衍生后采用高效液相色谱串联质谱检测。 岛津解决方案 根据GB/T 21311-2007《动物源性食品中硝基呋喃类药物代谢物残留量检测方法 高效液相色谱/串联质谱法》中规定的硝基呋喃测定低限0.5 μg/kg的要求,岛津多款三重四极杆液质联用仪均能轻便应对。 LCMS-8045LCMS-8050LCMS-8060 小龙虾中硝基呋喃检测 作为夏季必备的解暑神器,小龙虾可以称得上是最令人喜爱的美食。五香的、蒜蓉的、麻辣的… … 好吃到根本停!不!下!来!但是小龙虾也是一直充满争议,食品安全的新闻层出不穷。小龙虾真如传言般恐怖吗?小编参照GB/T 21311-2007中前处理方法,使用超高效液相色谱-三重四极杆质谱LCMS-8045分析了网红小龙虾中硝基呋喃代谢物的残留情况。 混合基质标准品的MRM色谱图(1 ng/mL) 在空白基质中加标,配制0.5,1,2,5和10 ng/mL的混合基质标准工作液,按上述条件进行测定。SEM、AHD、AOZ和AMOZ分别以13C15N-SEM、13C-AHD、D4-AOZ和D5-AMOZ为内标物,以浓度比为横坐标,峰面积比为纵坐标,内标法制作校准曲线,结果显示,各化合物在相应浓度范围内线性和准确度良好,痕量硝基呋喃代谢物无所遁形。 实际样品分析 在某小龙虾样品中检出氨基脲(SEM)残留,浓度为2.75 μg/kg。 小龙虾营养丰富,近年来在中国已经成为重要的经济养殖品种,其食品安全问题备受重视。采用岛津超高效液相色谱仪LC-40和三重四极杆质谱仪LCMS-8045联用,可以很好的对小龙虾中硝基呋喃代谢物进行检测,为您的大快朵颐把好第一关。 岛津长期以来一直密切关注国内外食品和药品安全,积极应对,及时提供全面、快速有效的整体解决方案。为了更好地帮助广大用户开展兽药残留分析检测,岛津推出了《GB 31650-2019食品中兽药最大残留限量及兽残检测标准应对解决方案》和《LC-MS/MS兽药分析方法包》,包含445种兽药化合物的中英文名称、分子式、质量数、CAS编号、MRM分析参数等化合物信息以及含类别划分的所有兽药化合物独立方法,用户可根据实际分析情况直接查找化合物相关参数或调用方法,灵活多变地快速实现多组分同时分析。 撰稿人:骆丹
  • 猪肉中四种硝基呋喃类代谢物残留量的测定 液相色谱串联质谱法
    一.实验目的 本文使用天津博纳艾杰尔科技有限公司的Cleanert PEP-2固相萃取柱、Venusil MP C18色谱柱和AB SCIEX公司的API 4000+质谱仪,遵照中华人民共和国国家标准《猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定(GB/T 20752-2006)》提供的方法,检测猪肉中的4种硝基呋喃类代谢物残留。 二.实验方法 2.1.样品信息 2.2.样品提取 称取猪肉样品2g(精确到0.01g),置于50m棕色离心管中,加入15ml甲醇-水混合溶液(v:v=2:1),均质1min,8000r/min离心5min 吸取上清液倒掉,残渣中加入2ppb的硝基呋喃类代谢物混合标准品各1ml,混合均匀。 2.3.水解和衍生(注意避光) 向棕色离心管中加入20ml 0.2mol/l的盐酸溶液,涡旋1min使之混合均匀,之后加入0.3ml浓度为0.05mol/L的2-硝基苯甲醛,混匀,于37℃温水中避光衍生16小时。 2.4.净化处理 将衍生后的样品冷却至室温,加入5ml 0.1mol/l的磷酸氢二钾,并用1 mol/l的氢氧化钠溶液调PH约为7.4,混合均匀。之后用8000r/min离心10min,以小于2ml/min的流速过PEP-2小柱(规格为60mg/3ml,用5ml甲醇、5ml水活化),并用10ml的水洗涤固相萃取小柱,然后负压抽干柱子15min。用5ml乙酸乙酯洗脱于20ml棕色瓶中,并在40℃下氮气吹干。 用样品定容溶液(10ml乙腈,0.3ml的乙酸用水稀释至100ml)定容至1ml,充分溶解,并用0.2um滤膜过滤。 2.5.检测方法 色谱柱:Vesusil® MP-C18(2.1× 150mm,5um,100Å ) 质谱仪:API 4000+ 流动相:A:0.1%甲酸的水溶液 B:0.1%甲酸的乙腈溶液 流速:0.2mL/min 表1 梯度洗脱条件 时间(min) A(%) B(%) 0 80 201 80 20 3 50 50 7 25 75 7.1 5 95 10 5 95 10.1 80 20 16 80 20 进样体积:5&mu L 离子源:电喷雾(ESI),正离子模式 扫描方式:多反应监测(MRM) 表2 质谱仪离子源参数 Source/Gas Collision Gas(CAD) 6 Curtain Gas(CUR) 15 Ion Source Gas 1(GS 1) 50 Ion Source Gas 2(GS 2) 50 Ion Spray Voltage(IS) 5500 Temperature(TEM) 600 Interface Heater(ihe) On表3 4种硝基呋喃待测物母离子和子离子参数表 物质名称 保留时间(min) 监测离子对 DP EP CE CXP SEM 8.10 209.1/166.1 51 10 17 10 209.1/192.1 51 10 17 10 AHD 8.30 249.2/134.1 61 10 20 10 249.2/104.1 66 10 31 10 AOZ 8.89 236.2/134.1 61 10 20 10 236.2/104.1 56 10 31 10 AMOZ 3.12 335.3/291.2 46 1019 10 335.5/128.1 46 10 19 10 图1 4种硝基呋喃代谢物总离子 图2 SEM(209/166)质谱图 图3 AOZ(236/134)质谱图 图4 AHD(249/134)质谱图 图5 AMOZ(335/291)质谱图 三.实验结果 0.5ppb猪肉基质加标回收实验结果: 表4 猪肉中0.5ppb加标回收实验结果 名称 1# 2# 3# 平均回收率 RSD AMOZ 109.43% 97.84% 109.75% 105.67% 6.42% SEM 91.81% 88.91% 88.22% 89.65% 2.12% AHD 80.68% 82.11% 77.25% 80.01% 3.12% AOZ 83.94% 80.70% 80.85% 81.83 0.02% 四.实验结论 Agela Cleanert PEP-2、Agela Venusil MP C18和AB SCIEX公司的API 4000+质谱仪用于猪肉中4种硝基呋喃代谢物的检测,性能良好,符合国标文件的要求。 订货信息 产品名称 规格/包装 订货号 定价(元) Cleanert® PEP-2 60mg/3mL,50支/包 PE0603-2 1035.00 Venusil® MP C18 2.1× 150mm,5um,100Å ;1支 VA951502-0 3200.00
  • 猪肉中四种硝基呋喃类代谢物残留量测定(SPE-LC/MS/MS)-依国标
    一.实验目的 本文使用天津博纳艾杰尔科技有限公司的Cleanert® PEP-2固相萃取柱、Venusil® MP C18色谱柱和Qdaura卓睿TM全自动固相萃取仪,遵照中华人民共和国国家标准《猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定(GB/T 20752-2006)》提供的方法,检测猪肉中的4种硝基呋喃类代谢物残留。 二.实验方法 2.1.样品信息 2.2.样品称取和脱脂 称取猪肉样品2g(精确到0.01g),置于50m棕色离心管中,加入15ml甲醇-水混合溶液(v:v=2:1),均质1min,再用5ml甲醇-水混合溶液洗涤刀头,二者合并8000r/min离心5min,吸取上清液倒掉。 注:为更好的消除基质效应对检测结果造成的影响,可加入同位素内标,采用内标法定量检测。 2.3.水解和衍生(注意避光) 向棕色离心管中加入20ml 0.2mol/l的盐酸溶液,涡旋1min使之混合均匀,之后加入0.3ml浓度为0.05mol/L的2-硝基苯甲醛,混匀,于37℃温水中避光衍生16小时。 2.4.净化处理 将衍生后的样品冷却至室温,加入5ml 0.1mol/l的磷酸氢二钾,并用1 mol/l的氢氧化钠溶液调PH约为7.4,混合均匀。之后用8000r/min离心10min,以小于2ml/min的流速过Cleanert® PEP-2小柱(规格为60mg/3ml,用5ml甲醇、5ml水活化),并用10ml的水洗涤固相萃取小柱,然后负压抽干柱子15min。用5ml乙酸乙酯洗脱于20ml棕色瓶中(此过程可在Qdaura卓睿TM全自动固相萃取仪上完成,仪器方法见附录B)。洗脱液于40℃下氮气吹干。 用样品定容溶液(10ml乙腈,0.3ml的乙酸用水稀释至100ml)定容至1ml,充分溶解,并用0.22µ m滤膜过滤。 2.5.检测方法 色谱柱:Venusil® MP C18(2.1× 150mm,5µ m,100Å ) 质谱仪:API 4000+ 流动相:A:0.1%甲酸的水溶液 B:0.1%甲酸的乙腈溶液 表1 梯度洗脱条件 时间(min) A(%) B(%) 0 80 20 1 80 20 3 50 50 7 25 75 7.1 5 95 10 5 95 10.1 80 20 16 80 20 流速:0.2mL/min 进样体积:5&mu L 离子源:电喷雾(ESI),正离子模式 扫描方式:多反应监测(MRM) 表2 质谱仪离子源参数 Source/Gas Collision Gas(CAD) 6 Curtain Gas(CUR) 15 Ion Source Gas 1(GS 1) 50 Ion Source Gas 2(GS 2) 50 Ion Spray Voltage(IS) 5500 Temperature(TEM) 600 Interface Heater(ihe) On 表3 4种硝基呋喃待测物母离子和子离子参数表 物质名称 保留时间(min) 监测离子对 DP EP CE CXP SEM 8.10 209.1/166.1 51 10 17 10 209.1/192.1 51 10 17 10 AHD 8.30 249.2/134.1 61 10 20 10 249.2/104.1 66 10 31 10 AOZ 8.89 236.2/134.1 61 10 20 10 236.2/104.1 56 10 31 10 AMOZ 3.12 335.3/291.2 46 10 19 10 335.5/128.1 46 10 19 10 三.实验结果 0.5ppb猪肉基质加标回收实验结果: 表4 猪肉中0.5ppb加标回收实验结果 名称 1(%) 2(%) 3(%) 平均回收率(%) RSD(%) AMOZ 109.43 97.84 109.75 105.67 6.42 SEM 91.81 88.91 88.22 89.65 2.12 AHD 80.68 82.11 77.2580.01 3.12 AOZ 83.94 80.70 80.85 81.83 0.02 四、实验结论 规格 订货信息 Qdaura 卓睿&trade 全自动固相萃取 4通道24位
  • Detelogy饲料中兽残抗生素检测前处理解决方案——以硝基咪唑类、硝基呋喃类、硝基喹啉类为例
    据报道“全球每年消耗的抗生素总量90%用在食源动物身上,致使细菌耐药性和药物残留等问题日益突出。”本文以硝基咪唑类、硝基呋喃类、硝基喹啉类为例,针对饲料中兽残抗生素检测提供了高效智能前处理解决方案。本方案适用于饲料中异丙硝唑、甲硝唑、替硝唑、塞克硝唑、卡硝唑、奥硝唑、地美硝唑、罗硝唑8种硝基咪唑类药物,呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林4种硝基呋喃类药物和卡巴氧、喹乙醇、乙酰甲喹、喹烯酮4种喹啉类药物的前处理方案。本方案适用于畜禽配合饲料、浓缩饲料、添加剂预混合饲料和精料补充料中硝基咪唑类、硝基呋喃类和喹啉类药物的前处理方案。本标准的检出限为0.05 mg/kg,定量限为0.10 mg/kg。实验步骤:一、提取称取试样2 g(精确至.01 g)于50 mL离心管中,准确加入200 mL提取液(甲醇V:乙腈V:超纯水V,3:3:4)用MultiVortex多样品涡旋混合器混合后,水浴超声提取10 min,振荡15 min。8000 rpm离心5 min,取1.00 mL上清液于40℃下用FV64全自动智能氮吹仪吹至近干,残余物用0.1 mol/L磷酸二氢钠溶液5.0 mL溶解,超声10 min,备用。二、净化将HLB固相萃取柱固定于iSPE-864全自动智能固相萃取仪上,固相萃取条件如下:将洗脱液用FV64全自动智能氮吹仪吹干。准确加入60%乙腈溶液1.00 mL溶解残余物,使用MultiVortex多样品涡旋混合器混匀后,超声10 min,过0.22 μm微孔滤膜,供液相色谱串联质谱仪测定。注:操作过程中注意避光,试样上机前酌情稀释,避免造成仪器污染。所用Detelogy智能前处理设备建议选型● 高转速搭载3mm圆周振幅,保证每个样品充分混合● 外观灵巧轻便,主机低重心设计,运行噪声低,进阶实现稳健高转速● 5寸高清触屏,支持手动自动双模式,中英文界面自由切换● 64位高通量,氮吹针自动下降● 支持全自动延时氮吹和延时增压● 10.1寸高清触屏控制,可存方法● 8通道,批量处理64位样品● 自动完成活化、上样、淋洗、氮吹、洗脱等固相萃取全流程
  • 美国撤销呋喃丹在食品的残留限量
    2009年10月30日,据美国环保署消息,美国环保署将继续执行2009年5月份实施的有关撤销杀虫剂呋喃丹残留限量的最终规定,因为有证据表明,摄入呋喃丹不安全,不符合当前的食品安全标准。   据了解,呋喃丹的短期健康影响包括头痛、出汗、恶心、腹泻、胸痛、视力模糊、焦虑和一般肌肉乏力。目前,美国环保署鼓励使用者选择更加健康的杀虫剂或其他更可取的环保有害生物控制方法。据悉,自从2009年5月份开始撤销呋喃丹的限量后,自2009年12月31起将不允许使用者将其应用于任何种植作物,在此日期后使用该杀虫剂将被认为产品受到污染,并将受到美国食品药物管理局的执法监督。
  • 【国抽应对】水产品中硝基呋喃代谢物的检测(GB 31656.13-2021)难点解析
    近期,2022版食品安全监督抽检实施细则发布,其中指定GB 31656.13-2021《水产品中硝基呋喃类代谢物多残留的测定 液相色谱-串联质谱法》,为淡水鱼、淡水虾、海水鱼等基质硝基呋喃代谢物的检测标准(表1)。 表1 2022版国抽细则水产品中硝基呋喃代谢物检测项目01标准亮点 ▶ 细化了适用范围。适用于鱼、海参、鳖等水产品可食组织中硝基呋喃类代谢物 AOZ、AMOZ、AHD 和 SEM 残留量的测定;虾和蟹等甲壳类可食组织中 AOZ、AMOZ和 AHD的测定,这里不包括SEM,因为此类基质中,可能存在SEM这种内源性物质,从而导致结果假阳性。▶ 提高了HCl溶液的浓度,为0.5mol/L,水解更彻底。▶ 提高了提取、净化步骤中的离心转速,分别为6000、14000r/min,简化了前处理步骤。▶ 采用1次提取即可,更高效。 众所周知,硝基呋喃代谢物检测在兽残检测中属于较难做的项目,下面我们也来梳理一下实际做样过程中应该注意哪些方面。 02注意事项 ▶ 部分标准品(如SEM)较难溶,可借助超声波助溶。▶ 2-硝基苯甲醛现配现用,标准品与样品同步衍生。▶ 衍生后的目标物不稳定,前处理过程注意避光。▶ 注意pH的调节,pH为7.0-7.5时,目标物提取效果好。▶ 注意SEM的假阳性问题。除了上述可能存在内源性物质干扰外,还有几个方面可能造成SEM的假阳性——塑料包装材料中使用的偶氮甲酰胺,在高温下受热可分解产生SEM;采用次氯酸钠对水产品进行消毒和漂白也可以产生SEM。 小编认为,注意了以上细节,硝基呋喃的检测应该不会有太大问题啦。接下来,再为大家介绍岛津的应对方案。 03鱼肉中硝基呋喃类代谢物的测定岛津LCMS-8045三重四极杆液质联用仪 ▶ 检测仪器:岛津LCMS-8045▶ 色谱柱:Shim-pack GISS C18 Column(2.1 mm I.D.×100 mm L., 1.9 μm)▶ 流动相:A相:(0.01%甲酸)水, B相:(0.01%甲酸)乙腈▶ 流速:0.50 mL/min▶ 柱温:40℃▶ 进样体积:10 µL▶ 洗脱方式:梯度洗脱,初始比例10%B 表2 通用梯度洗脱程序图1 标准样品的MRM色谱图(0.5 ng/mL) 表3 校准曲线参数图2 鱼肉加标样品色谱图(1.0ng/mL) 本文内容非商业广告,仅供专业人士参考。
  • 英国食品安全局公布第五次丙烯酰胺和呋喃调查报告
    英国食品安全局(FSA)近日在其第五次也是最近一次对英国一系列食品中的丙烯酰胺(acrylamide)、呋喃(furan)及加工污染水平的调查报告中公布了中期业绩。   基于2011年11月到2012年12月收集的约300种产品样本,调查给出了英国零售食品中丙烯酰胺和呋喃的范围水平。   报告中的丙烯酰胺和呋喃水平并不会增加人类健康的风险,因此机构没有必要修改针对消费者的建议。   与往年一样,此次丙烯酰胺和呋喃的调查结果也将被送至欧洲食品安全局(EFSA)用于收集、趋势分析,对于呋喃,将进行风险评估。   2012-2013年的调查报告将于2014年公布。如有可能,报告将包括该机构自2007年收集的所有英国的丙烯酰胺和呋喃水平调查数据的统计趋势分析。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之五:硝基呋喃及其代谢物类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技陆续推出了四期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的硝基呋喃及其代谢物类化合物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。部分硝基呋喃及其代谢物类化合物:了解更多产品或需要定制服务,请联系我们
  • 贵州大学池永贵团队Nat Commun | 国仪量子EPR助力合成苯并呋喃衍生物研究
    近日,贵州大学池永贵研究团队证明了杂原子阴离子可以用作超电子供体来引发自由基反应,从而轻松合成 3-取代苯并呋喃。所得产物在有机合成和农药开发方面具有广阔的应用前景。  相关成果以“Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors”为题,发表于著名学术期刊《自然-通讯》(Nature Communications)。研究中使用了国仪量子的X波段连续波电子顺磁共振波谱仪EPR200-Plus,证实了反应体系中自由基物种的生成。  苯并呋喃是广泛存在于人类临床药物中的100种主要环状结构之一。特别是,在许多已被证实具有生物活性的天然和非天然药物分子中, 3-取代苯并呋喃经常被发现为核心结构。为快速而选择性地获得具有多种功能的3-取代苯并呋喃衍生物,开发高效的合成新方法至关重要。单电子转移反应是构建功能化 3-取代苯并呋喃的最有效途径之一,而合适的电子供体对单电子转移过程的成功至关重要。然而迄今为止,还未有研究报道采用以杂原子为中心的阴离子作为单电子转移反应的直接超级电子供体。图片来源:摄图网  贵州大学池永贵研究团队在研究中利用杂原子阴离子作为 SED 来引发自由基反应,从而轻松合成了具有各种杂原子官能团的 3-取代苯并呋喃分子。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。  Fig. 1 | Bioactivities, syntheses of 3-substituted benzofurans and SEDs for radical reactions. a Commercial drugs containing 3-substituted benzofuran structures. b Typical methods for access to 3-substituted benzofurans. c Representative organic small molecular SEDs. d Heteroatom anions as SEDs for 3-heteroalkylbenzofuran synthesis.  研究中使用EPR技术(国仪量子EPR200-Plus)证实了反应体系中自由基物种的生成。在25℃ DME中,1a、HPPh2和LDA的混合物的EPR光谱在g = 2.0023处出现了类似于苯基g因子的信号。  Fig. 4 | EPR spectrum of the reaction mixtures and control experiments. a EPR spectrum of the reaction mixtures. b Feasibilities of the heteroatomic anions as SEDs for the radical reactions. c Cross-radical coupling reactions with mercaptans. d The X-band EPR spectrum of 1:2:2 stoichiometric reaction of 1a (0.1 mmol), HPPh2 (0.2 mmol), and LDA (0.2 mmol) was measured at 298 K with DME (2 mL) as solvent at a microwave frequency of 9.418333054 GHz (g = 2.0023).成果摘要  Nature Communications:通过与杂原子中心的超级电子供体的自由基反应轻松获得苯并呋喃衍生物  开发合适的电子供体对于单电子转移(SET)过程至关重要。使用杂原子中心阴离子作为直接 SET 反应的超电子供体 (SED) 的研究很少。在这里,我们证明杂原子阴离子可以用作 SED 来引发自由基反应,从而轻松合成 3-取代苯并呋喃。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。通过控制实验和计算方法阐明了反应机理。所提供的产品在有机合成和农药开发方面显示出有前景的应用。国仪量子电子顺磁共振波谱仪国仪量子目前已推出具有核心自主知识产权、商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。在化学、环境、材料物理、生物医疗、食品、工业领域有着重要而广泛的应用。国仪量子电子顺磁共振波谱仪全系列产品
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 气相顶空级二甲基亚砜,DMSO促销
    顶空气相色谱法(HS-GC)已经被制药企业的实验室采用了很多年,但是人们尚未找到过一种挥发性有机物杂质背景值含量极低的溶剂。最近几年,随着检测器的灵敏度不断的增加,残留溶剂最小量的控制要求也越来越严格,所以寻找一种高质量并且适用于HS-GC-FID/HS-GC-MS分析的溶剂成为大势所趋。 气相色谱顶空溶剂中如甲醇、乙腈、乙醇、异丙醇、正丙醇、正丁醇、环己烷、正己烷、正庚烷、二恶烷、二氯甲烷、吡啶、四氢呋喃、叔丁基甲醚、乙酸乙酯、乙酸丁酯、乙酸异丙酯、苯系物(甲苯、乙苯、二甲苯)等数十种有机挥发性化合物杂质背景值极低,均低于1ppm。 产品货号:4.109003.1000 产品名称:气相顶空级二甲基亚砜,DMSO 报价:520.00元/瓶 促销价:416.00元/瓶 促销日期截止2012.6.30日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • Sigma-Aldrich速成鸡解决方案
    肯德基与麦当劳的大供货商山西粟海集团于2012年11月底被爆出养殖的一只鸡从孵出到端上餐桌,只需要45天,是用饲料和药物喂养的。长期使用药物必然会残留在动物组织中,影响食用者的健康。Sigma-Aldrich提供速成鸡解决方案,采用液相色谱对违禁药物进行分析。 液相色谱Ascentis RP-Amide分析利巴韦林 液相色谱柱Ascentis C8分析地塞米松 色谱柱耗材列表 货号 描述 规格 目录价(元) 565324-U Ascentis RP-Amide液相色谱柱 15cmx4.6mm, 5um 3037.32 581424-U Ascentis C8液相色谱柱 15cmx4.6mm, 5um 3037.32 相关标准品列表 货号 中文名 英文名 CAS 包装 目录价46165-250MG 地塞米松 Dexamethasone 50-02-2 250mg 450.45 46297-250MG 呋喃唑酮 Furazolidone 67-45-8 250mg 404.82 32511-10MG 呋喃唑酮-d4 Furazolidone-d4 1217222-76-8 10mg 5167.89 46289-250MG 呋喃它酮 Furaltadone 139-91-3 250mg 299.52 34061-10MG-R 呋喃它酮-d5 Furaltadon-d5 1015855-64-7 10mg 2855.97 31706-2ML 呋喃西林溶液 (100ng/&mu l溶于乙腈) Nitrofurazone solution 59-87-0 2ml 360.36 32512-10MG 呋喃西林-13C,15N2 Nitrofurazon-13C,15N2 1217220-85-3 10mg 4555.98 46502-250MG 呋喃妥因 Nitrofurantoin 67-20-9 250mg 360.36 32513-10MG 呋喃妥因-13C3 Nitrofurantoin-13C3 1217226-46-4 10mg 8466.12 46494-100MG 硝呋齐特 Nifuroxazide 965-52-6 100mg 329.94 33347-50MG-R 呋喃唑酮代谢产物 AOZ AOZ 80-65-9 50mg 2549.43 33880-10MG-R 代谢产物 AOZ-d4 AOZ-d4 1188331-23-8 10mg 2736.63 33349-50MG-R 呋喃它酮代谢产物 AMOZ AMOZ 43056-63-9 50mg 2549.43 33881-10MG-R 代谢产物 AMOZ-d5 AMOZ-d5 1017793-94-0 10mg 1770.21 33655-100MG-R 呋喃妥因代谢产物 AHD AHD 2827-56-7 100mg 600.21 34006-10MG-R 代谢产物 AHD-13C3 AHD-13C3 957509-31-8 10mg 4368.78 33656-100MG-R 呋喃西林代谢产物 SEM/SCA SEM/SCA 563-41-7 100mg 525.33 33882-10MG-R 代谢产物 SCA-13C-15N2 SCA-13C-15N2 hydrochloride 1173020-16-0 10mg 2736.63 33868-10MG-R 代谢产物 2-NP-AOZ 2-NP-AOZ 19687-73-1 10mg 1409.85 34008-10MG-R 代谢产物 2-NP-AOZ-d4 2-NP-AOZ-d4 1007478-87-0 10mg 3093.48 33869-10MG-R 代谢产物 2-NP-AMOZ 2-NP-AMOZ 183193-59-1 10mg 1409.85 34009-10MG-R 代谢产物 2-NP-AMOZ-d5 2-NP-AMOZ-d5 1173097-59-0 10mg 2907.45 33870-10MG-R 代谢产物 2-NP-AHD 2-NP-AHD 623145-57-3 10mg 1499.94 34010-10MG-R 代谢产物 2-NP-AHD-13C3 2-NP-AHD-13C3 1007476-86-9 10mg 4912.83 33871-10MG-R 代谢产物 2-NP-SCA 2-NP-SCA 16004-43-6 10mg 262.08 34011-10MG-R 代谢产物 2-NP-SCA -13C,15N2 2-NP-SCA-13C,15N2 10mg 3824.73 46874-250MG 磺胺 Sulfanilamide 63-74-1 250mg 360.36 35033-100MG 磺胺嘧啶 Sulfadiazine 68-35-9 100mg 360.36 46826-250MG 磺胺甲嘧啶 Sulfamerazine 127-79-7 250mg 404.8246802-250MG 磺胺二甲嘧啶 Sulfamethazine 57-68-1 250mg 404.82 46794-250MG 磺胺地索辛 (磺胺二甲氧哒嗪) Sulfadimethoxine 122-11-2 250mg 404.82 31741-250MG 四环素盐酸盐 Tetracycline hydrochloride 64-75-5 250mg 329.94 46598-250MG 土霉素盐酸盐 Oxytetracycline hydrochloride 2058-46-0 250mg 404.8246133-250MG-R 金霉素盐酸盐 Chlortetracycline hydrochloride 64-72-2 250mg 404.82 33429-100MG-R 强力霉素盐酸盐 Doxycycline hyclate 24390-14-5 100mg 600.21 442513 氯霉素 Chloramphenicol 56-75-7 1g 1151.28 41724-1MG DL-氯霉素(苏式)-D5 Dl-Threo- Chloramphenicol-D5 202480-68-0 1mg 4010.76 33699-100MG-R 恩诺沙星 Enrofloxacin 93106-60-6 100mg 600.21 32983-10MG 恩诺沙星盐酸盐-d5 Enrofloxacin-d5 hydrochloride 10mg 3059.55 91033-1G 环丙沙星盐酸盐 Ciprofloxacin hydrochloride monohydrate 86393-32-0 1g 740.61 32982-10MG 环丙沙星盐酸盐-d8 Ciprofloxacine-d8- hydrochloride hydrate 1216659-54-9 10mg 3149.6433703-100MG-R 氧氟沙星 Ofloxacin 82419-36-1 100mg 600.21 32436-10MG 氧氟沙星-d3 Ofloxacin-d3 1173147-91-5 10mg 3300.57 33899-100MG-R 诺氟沙星 Norfloxacin 70458-96-7 100mg 1185.21 34058-10MG-R 诺氟沙星-d5 Norfloxacin-d5 1015856-57-1 10mg 3059.55 33984-100MG-R 二氟沙星盐酸盐 Difloxacin-HCl 91296-86-5 100mg 600.21 32987-10MG 二氟沙星盐酸盐-d3 Difloxacin-d3 hydrochloride 1173021-89-0 10mg 3059.55 33700-100MG-R 单诺沙星 Danofloxacin 112398-08-0 100mg 554.58 32862-50MG 3-甲基-2-喹喔啉酸 (MQCA) 3-Methyl-2-quinoxa -linecarboxylic acid 74003-63-7 50mg 3921.84 关于Supelco 美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco(上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001)正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • 欧洲食品安全局呼吁有关四氢大麻酚的数据
    2012年12月3日消息,欧洲食品安全局(EFSA)正在征集更多有关四氢大麻酚(tetrahydrocannabinol,THC)毒性和它在某些食品和动物饲料中含量的数据。此次征集是食品和饲料中的化学品污染物数据持续性收集项目的一部分。   EFSA鼓励任何相关方和利害关系方提交有关THC的信息。尚未在公共领域发表的THC毒性数据,可能有助于EFSA的研究的,也是可接受的,如国家风险评估或科学报告。   值得注意的是,两种类型的数据(含量和毒性)将用于EFSA将发表的《科学意见》中。   欧盟成员国食品当局、研究机构、食品和饲料商业经营者、学术界和其他任何利益相关方都受邀提交数据。   该持续性数据收集项目涵盖了一系列化学品污染物,包括一些已根据委员会建议开展含量监测的污染物,它们是:   针对麦角生物碱(ergot alkaloids)的2012/154/EU委员会建议   针对呋喃(furan)的2007/196/EC委员会建议   针对氨基甲酸乙酯(ethyl carbamate)的2010/133/EU委员会建议   针对全氟烷基物质(Perfluoroalkylated substances)的2010/161/EU委员会建议   针对丙烯酰胺(acrylamide)的2010/307/EU委员会建议   数据应在2013年10月1日之前提交,并符合EFSA标准样本描述(SSD)的要求。
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 山东省畜产品质量安全中心 、山东奔月生物科技股份有限公司 。附件:《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿.pdf《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》编制说明.pdf
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover® 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover® 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover® 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover® 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 第四批北京市新技术新产品名单公布,多家仪器检测公司上榜
    北京市科委对第四批北京市新技术新产品(服务)名单进行公示,本次公示共涉及855个新产品,涉及医疗、健康、大气污染防治、水处理、安全等多个应用领域,其中包括54项仪器、检测分析等新产品。  钢研纳克、维德维康、华科仪、连华永兴、北分麦哈克、博奥晶典、天根生化、凌天世纪等26家企业产品获公示,具体产品如下:序号 单位名称 产品(服务)名称 型号/规格 技术领域 应用领域 18北京华铁海兴科技有限公司烟气林格曼黑度分析系统V1.0新一代信息技术大气污染防治245北京华兴长泰物联网技术研究院有限责任公司华兴智能药柜Smart Supply Station-701新一代信息技术医疗323北京德中天地科技有限责任公司智能双系统无人机高光谱成像水环境监测系统蜘蛛雀新一代信息技术水处理513北京中关超微科技有限公司高频晶体超微量分析仪Q-analyzer 2CA型/Q-analyzer 2CB型生物、医药与医疗器械医疗514北京卓诚惠生生物科技股份有限公司十四种食源性致病菌多重聚合酶链式反应(PCR)检测试剂盒A226N生物、医药与医疗器械医疗563北京博奥晶典生物技术有限公司蛇类中药材真伪PCR鉴定试剂盒无生物、医药与医疗器械医疗564北京维德维康生物技术有限公司三聚氰胺快速检测卡STW004.01、STW004.L03、STW004.L02、STW004.03生物、医药与医疗器械医疗565北京维德维康生物技术有限公司磺胺类喹诺酮类酶联免疫试剂盒KITW006.03、KITW005.A2生物、医药与医疗器械医疗566北京维德维康生物技术有限公司呋喃西林代谢物酶联免疫试剂盒KITW032.04、KITW032.10生物、医药与医疗器械医疗567北京维德维康生物技术有限公司呋喃它酮代谢物酶联免疫试剂盒KITW009.01、KITW009.02、KITW009.10生物、医药与医疗器械医疗568北京维德维康生物技术有限公司金刚烷胺酶联免疫检测试剂盒KITW090.03生物、医药与医疗器械医疗569北京维德维康生物技术有限公司磺胺类快速检测卡STW005.01、STW005.L03、STW014.L01生物、医药与医疗器械医疗571北京维德维康生物技术有限公司链霉素快速检测卡STW003.L01生物、医药与医疗器械医疗572北京京蒙高科干细胞技术有限公司免疫调节细胞制备试剂盒JMMS2013生物、医药与医疗器械医疗573北京维德维康生物技术有限公司庆大霉素快速检测卡STW010.01、STW010.03.03生物、医药与医疗器械医疗574北京维德维康生物技术有限公司呋喃妥因代谢物酶联免疫试剂盒KITW008.04、KITW008.10生物、医药与医疗器械医疗575北京维德维康生物技术有限公司磺胺总量酶联免疫试剂盒KITW005.B1-B3、KITW005.B10生物、医药与医疗器械医疗576北京维德维康生物技术有限公司喹诺酮类快速检测卡STW006.01、STW006.L01.03、STW006.02.03生物、医药与医疗器械医疗577北京维德维康生物技术有限公司呋喃唑酮代谢物酶联免疫试剂盒KITW007.02、KITW047.01生物、医药与医疗器械医疗578北京博奥晶典生物技术有限公司川贝母真伪鉴定试剂盒(PCR联合限制性内切酶法)无生物、医药与医疗器械医疗598天根生化科技(北京)有限公司Quant一步法反转录-荧光定量试剂盒(探针法)FP304生物、医药与医疗器械医疗599天根生化科技(北京)有限公司中量血液基因组DNA提取试剂盒(离心柱型)DP332生物、医药与医疗器械医疗600天根生化科技(北京)有限公司RNAprep Pure多糖多酚植物总RNA提取试剂盒(离心柱型)DP441生物、医药与医疗器械医疗601北京哈特凯尔医疗科技有限公司透明管路中液体成分在线检测装置LX-01生物、医药与医疗器械其它669北京凌天世纪控股股份有限公司多气体检测仪YQ7高端装备制造安全691基康仪器股份有限公司多点位移计BGK4450-12.5mm、BGK4450-25mm、BGK4450-50mm、BGK4450-100mm、BGK4450-150mm、BGK4450-200mm高端装备制造其它700钢研纳克检测技术有限公司电感耦合等离子体质谱仪PlasmaMS 300高端装备制造其它705北京华科仪科技股份有限公司便携式溶解氧分析仪HK-258高端装备制造水处理715钢研纳克检测技术有限公司激光烧蚀原位进样系统LA 300高端装备制造其它724北京连华永兴科技发展有限公司智能型压感式BOD测定仪LH-BOD601高端装备制造水处理725北京北分麦哈克分析仪器有限公司QGS-08CN模块式气体分析器QGS-08CN高端装备制造大气污染防治726北京金大万翔环保科技有限公司模块化板式高级氧化发生装置JDWX-30BY/MG1高端装备制造大气污染防治727北京科技大学设计研究院有限公司基于机器视觉的金属表面缺陷检测及控制系统HXSI-C,HXSI-H高端装备制造其它773北京和润恺安科技发展股份有限公司基于云计算与大数据技术的生活饮用水水质监测分析系统全程服务 新一代信息技术水处理795北京奥德科汽车电子产品测试有限公司汽车电子电工产品综合检测服务 科技服务业民生消费796北京诺禾致源生物信息科技有限公司GBS简化基因组技术服务 科技服务业医疗797北京诺禾致源生物信息科技有限公司单细胞转录组测序服务 科技服务业医疗798北京诺禾致源生物信息科技有限公司全基因组甲基化测序服务 科技服务业医疗800北京诺禾致源生物信息科技有限公司疾病全基因组测序服务 科技服务业医疗801北京诺禾致源生物信息科技有限公司宏基因组测序服务 科技服务业医疗803北京诺禾致源生物信息科技有限公司全基因组关联分析技术服务 科技服务业医疗806北京博奥晶典生物技术有限公司大鼠circRNA表达谱芯片服务 科技服务业医疗807北京博奥晶典生物技术有限公司小鼠circRNA表达谱芯片服务 科技服务业医疗808北京博奥晶典生物技术有限公司10X GemCode长片段建库测序服务 科技服务业医疗818北京博奥晶典生物技术有限公司人类全RNA剪接体芯片服务 科技服务业医疗844北京奥维森基因科技有限公司大规模基因测序分析服务 生物、医药与医疗器械医疗845辉因科技(北京)有限公司高通量蛋白分析制备系统技术服务 生物、医药与医疗器械健康846北京亦庄国际蛋白药物技术有限公司重组蛋白药物工艺开发智能技术服务 生物、医药与医疗器械医疗847北京奥维森基因科技有限公司基于高通量测序的微生物多样性测序分析服务 生物、医药与医疗器械大气污染防治850北京京蒙高科干细胞技术有限公司高生物安全性细胞培养服务 生物、医药与医疗器械医疗851军科正源(北京)药物研究有限责任公司新药临床前/临床生物样品分析检测服务 生物、医药与医疗器械医疗852北京百迈客生物科技有限公司基于三代测序技术的基因组组装服务 生物、医药与医疗器械医疗853北京百迈客生物科技有限公司光学图谱测序技术服务 生物、医药与医疗器械医疗关于公示第四批北京市新技术新产品(服务)名单的通知  各有关单位:  根据《北京市新技术新产品(服务)认定管理办法》的规定,经专家评审及认定小组审核,提出新技术新产品(服务)拟认定名单,现予以公示。对公示无异议的产品(服务)将核发《北京市新技术新产品(服务)证书》。  单位和个人对名单中企业、产品或服务有异议的,请自本通知发布之日起10个工作日内以书面形式提出。提出异议应以事实为依据,内容具体详实,并提供相关证据材料。对于单位和个人反映的问题,我们将严格按照有关规定办理。异议材料请签署联系人真实姓名及联系方式。  联系电话:88828846。  特此通知。  附件:第四批北京市新技术新产品(服务)名单.docx  北京市科学技术委员会  北京市发展和改革委员会  北京市经济和信息化委员会  北京市住房和城乡建设委员会  北京市质量技术监督局  中关村科技园区管理委员会  2016年8月25日
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 新年伊始,这是一个有味道的推送:不负烤肉不负卿
    说到春节美食,肉类必不可少,而肉食的做法,烧烤可以说稳坐头把交椅。火的使用,照亮了人类文明的前进方向,也让人类饮食进入了全新的世界,加热后的食物不仅能消灭绝大部分病菌的而且也使得食物更有营养、更易消化;上帝给了人类火把,也给了一个最大的馈赠——美拉德反应,说它是最美味的化学反应一点都不为过。 美拉德反应在1912年就被法国化学家路易斯卡米拉美拉德发现,至此开启了美食解密之旅,美拉德反应也成为与现代食品工业密不可分的技术。 食物中的还原糖、氨基酸、蛋白质在加热时发生的一系列复杂反应,可以带来食物变幻万千的风味和诱人的色泽… 这些千奇百怪的味道,到底是何方神圣?为了最大限度还原烤肉的味道,我们将肉剪成薄片,用锡纸包裹,进行了模拟烤制,一时间香溢实验室。 近年来,顶空-固相微萃取(HS-SPME)在食品香气分析中被广泛应用,但用于肉味分析却受限于关键化合物浓度低。传统SPME-GCMS方法有两个先天不足:1. 检出挥发性化合物数量少;2. 关键香气活性化合物(如含硫化合物、吡嗪等)定性缺失;含硫化合物和吡嗪类物质(烘烤中美拉德反应产物)在肉制品中通常浓度极低(ppt-ppb级别),却因阈值极低,能够轻易被人的嗅觉细胞所感知,是贡献肉味、肉汤、烧烤香气的极其重要的化合物,也是赛默飞重点关注的化合物。 一向手握重器(静电场轨道阱质谱家族中的 GC-Orbitrap/MS)的赛默飞决定挑战业内难点,利用Orbitrap MS独有的高分辨、高灵敏度和谱图定性优势,弥补传统四极杆GCMS方法的不足,解密烤肉风味。 气味成分鉴定在亲朋好友的帮助下,赛默飞集齐了常见和不常见的猪牛羊肉,15个烤肉样本共鉴定出挥发性化合物,包括酸、醛、酮、酯、醇吡嗪、呋喃、含硫化合物、烯萜类等共99种。这些化合物就是烤肉的风味基因,反应了不同肉类的特性。相比于其他肉类,猪肉中醛类化合物含量最高,均在50%左右;而牛肉中含硫化合物含量相对较高,为58%,羊肉次之,为41%。 对于重点关注的含硫化合物和吡嗪类化合物,我们发现二硫化碳是含硫化合物中含量相对最高的化合物,最高达70%;牛肉、羊肉中含量最高;甲硫醇和二甲基二硫醚是含量仅次于二硫化碳的化合物,在羊肉和黑猪肉中含量最高。吡嗪类化合物的产生与生肉样品烤制过程密切相关,甲基吡嗪、2,6-二甲基吡嗪、2-乙基-6-甲基吡嗪、三甲基吡嗪、3-乙基-2,5-二甲基吡嗪是其中含量较高的。SPME-GC-Orbitrap/MS鉴定出样品中9种含硫化合物(点击查看大图) SPME-GC-Orbitrap/MS鉴定出样品中15种吡嗪类化合物(点击查看大图) 物质成分鉴定通过了解肉类气味成分的不同,我们是否可以通过这些特征物质来区分不同种类的肉,甚至是具有产地特色的肉呢? 进行了常规的PCA分析后,这个问题有了答案:3个土猪肉样品之间的差异较小,而牛肉、黑猪肉和普通猪肉的三个样本之间存在一定差异;牛肉和羊肉呈现出的挥发性化合物组成较为类似;猪肉的挥发性化合物组成明显异于牛肉和羊肉,尤其是普通猪肉。也就是说,猪肉,牛肉和羊肉均可以清晰分离,不同种类的猪肉也可以清晰分区。黑猪肉的香气介于牛羊肉和其他猪肉之间,比较有特色。赛默飞通过重器超高灵敏度高分辨气质结合利器HS-SPME,充分改善了普通SPME-GCMS的不足,以迅雷不及掩耳盗铃儿响叮当之势解密了猪牛羊肉的香气!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 未雨绸缪,ICH Q3C(R8)新增订残留溶剂的检测方案岛津已经准备好啦!
    导 语:2020年3月25日国际人用药品注册技术协调会(ICH)发布了新的残留溶剂的指导原则Q3C(R8)的修订版草案,该草案包含了2-甲基四氢呋喃、环戊基甲基醚和叔丁醇三种物质的每日允许暴露值(PDE)。按照ICH的进程,该指导原则将传达给ICH成员区域的监管机构,按照相应的国家或区域程序征求内部或外部意见。鉴于此,2020年4月29日国家药品监督管理局药品审评中心(CDE)在官网上发布了“关于公开征求ICH《Q3C(R8):杂质:残留溶剂的指导原则》指导原则草案意见的通知”。以上这些动向意味着前述三种残留溶剂物质将可能纳入药品的质量控制要求,制药相关的企业与机构需要未雨绸缪做好准备。 根据ICH的定义,药物中的残留溶剂系指在原料药或辅料的生产工艺中,以及在制剂制备过程中使用过或产生的,但未能在实际的生产工艺中完全去除的有机挥发物。由于残留溶剂没有疗效,故应控制其在药品中的含量水平,以使药品符合产品规范、GMP或其他基本的质量标准。本次ICH Q3C(R8)修订草案将这三种物质分别归类为第3类“低潜在毒性的溶剂”(2-甲基四氢呋喃)与第2类“应限制的溶剂”(环戊基甲基醚、叔丁醇),给出的每日允许暴露值(PDE值)分别为50、15、35mg/天。ICH Q3C(R8)新增订的三种残留溶剂信息 为助力制药相关的企业与机构及时应对形势变化,岛津推出了针对这三种残留溶剂的药品检测方案。 岛津检测方案 检测仪器:HS-10顶空自动进样器+ Nexis GC-2030气相色谱仪 控制软件:采用岛津LabSolutions软件控制,该软件可以提供全中文版本,并且可以将顶空控制软件嵌入该软件中避免了控制两个软件的麻烦,这使得初学者可以很快熟练掌握仪器的使用。 全中文工作环境和嵌入了顶空控制软件的LabSolutions软件界面 样品处理:准确称取0.2 g药品置于20 mL顶空瓶中,加入0.4 g 氯化钠,再加入2 mL去离子水,振摇使之溶解,待测。3种残留溶剂色谱图(1、2、3依次为叔丁醇、2-甲基四氢呋喃、环戊基甲基醚) 3种残留溶剂标准曲线(0.1~10 μg) 样品与样品加标谱图 采用外标法定量,在0.1~10 μg浓度范围内线性关系良好,3种物质的相关系数R2大于0.9999。以3倍信噪比计算,3种化合物的检出限分别在0.027~0.048 μg之间。平行检测七份0.2 μg标液,峰面积RSD%在2.73~3.34%之间。0.2 μg加标平均回收率在88.4%~97.4%之间。 该检测方案软件容易操作,前处理简单,对仪器污染小,检测效果好。 小 结 溶剂残留作为药品质量的重要监控项目,岛津公司已有多套气相或气质产品搭配顶空自动进样器的仪器组合检测方案可供用户参考选择,如《HS-20结合GC-2010Plus检测药品中18种溶剂残留》、《HS-20结合GCMS-QP2010 Ultra检测药品中19种溶剂残留》、《HS-10结合GC Smart检测药品中11种溶剂残留》等等系列方案。针对本次ICH新增的三种残留溶剂检测方法修订,岛津推出了Nexis GC-2030搭配HS-10的解决方案。作为岛津新一代的气相色谱,Nexis GC-2030采用了高精度流量控制技术和均一稳定的恒温室控温技术,该气相色谱与岛津的顶空自动进样器组合就成为了药品残留溶剂检测的利器,可以助力制药相关的企业与机构轻松应对此方面的检测任务。
  • 重庆市农业农村委员会办公室关于开展2023年重庆市农产品质量安全监督抽查工作的通知
    各区县(自治县)农业农村委、畜牧(兽医)发展中心、果业发展中心,西部科学城重庆高新区改革发展局,万盛经开区农林局,直属有关单位,机关有关处室:为进一步强化农产品质量安全执法监管,根据《中华人民共和国农产品质量安全法》、《农产品质量安全监测管理办法》等有关规定,2023年继续在全市范围内开展种植业产品(蔬菜、水果、食用菌)、畜禽产品和水产品等主要农产品质量安全监督抽查(以下简称监督抽查)。现将有关事宜通知如下。一、总体安排市、县两级农业农村行政主管部门依法履职,严格按照国家监督抽查工作的有关程序和要求,分别组织开展市、县两级农产品质量安全监督抽查。监督抽查对象覆盖全市所有农产品生产经营者。市级监督抽查问题发现率不低于1%。(一)抽查重点按照“三年行动”部署,聚焦部市两级农产品质量安全风险监测中发现的问题隐患、媒体报道和群众投诉举报的质量安全问题、有关部门日常监管中发现的问题,坚持以问题为导向,结合生产实际开展抽查工作。品种,以种植业产品、畜禽产品、水产品为重点;项目,以禁限用农药、禁用兽药和非法添加物为重点;地域,以问题突出的地区和主产区为重点。辖区内豇豆生产经营者必须全覆盖抽样。(二)抽查数量根据《中共中央国务院关于深化改革加强食品安全工作的意见》(中发〔2019〕17号)中“农产品和食品检测量达到4批次/千人”的要求,以及农业农村部“农产品质量安全定量监测达到1.5批次/千人”的工作安排,我市农业农村部门开展的农产品(不含农业投入品)质量安全定量监测(例行监测、风险评估和监督抽查)样品量需达到1.5个/千人。其中,市级监督抽查比例占市级风险监测样品量20%以上,市级监督抽查样品数应不少于2893个(含非涉农区县监督抽查任务216个)。县级监督抽查任务量按照上述规定计算,具体任务量详见附件1。(三)抽查种类以下农产品种类可作为市、县两级监督抽查样品种类参考。各地可结合当地实际,以发现问题为导向,实施精准抽样。1.种植业产品(1)蔬菜蔬菜产品种类包括叶菜类、白菜类、豆类、葱蒜类、薯芋类、茄果类、瓜类等。具体抽查品种及所属分类见表1。表1 蔬菜抽查品种及所属分类序号抽查蔬菜品种所属蔬菜分类取样量(kg或个)1芹菜叶菜类至少4个~12个个体,不少于3kg2叶用莴苣叶菜类至少4个~12个个体,不少于3kg3油麦菜叶菜类至少4个~12个个体,不少于3kg4菠菜叶菜类至少4个~12个个体,不少于3kg5芫荽叶菜类至少4个~12个个体,不少于3kg6蕹菜叶菜类至少4个~12个个体,不少于3kg7普通白菜白菜类至少4个~12个个体,不少于3kg8大白菜白菜类至少4个~12个个体,不少于3kg9菜薹白菜类至少4个~12个个体,不少于3kg10豇豆豆类不少于2kg11韭菜葱蒜类至少12个~24个个体,不少于3kg12葱葱蒜类至少12个~24个个体,不少于3kg13姜薯芋类至少6个~12个个体,不少于3kg14山药薯芋类至少6个~12个个体,不少于3kg15番茄茄果类6个~12个个体,不少于3kg16辣椒茄果类6个~12个个体,不少于3kg17茄子茄果类6个~12个个体,不少于3kg18黄瓜瓜类6个~12个个体,不少于3kg19其他其他按NY/T 789-2004规定执行(2)水果水果产品种类包括柑橘类、仁果类、核果类、浆果类等。具体抽查品种及所属分类见表2。表2 水果抽查品种及所属分类序号抽查水果品种所属水果分类取样量(kg或个)1柑橘(包括柑子、桔子、橙子)柑橘类至少6个~12个个体,不少于3kg2甜橙柑橘类至少6个~12个个体,不少于3kg3金柑(别名金橘)柑橘类至少6个~12个个体,不少于3kg4梨仁果类至少12个个体,不少于3kg5桃核果类至少24个个体,不少于2kg6葡萄浆果类不少于3kg7草莓浆果类不少于3kg2.畜禽产品(1)家畜类产品家畜肉及副产品包括牛肉、羊肉、猪肉、猪肝、牛奶、猪尿等。(2)家禽类产品家禽肉及副产品包括鸡蛋、鸭蛋、鹌鹑蛋、鸡肉、鸭肉、鸽肉等。3.水产品淡水鱼具体抽查品种及所属分类见表3。表3 鱼类产品抽查品种及所属分类序号抽查鱼类产品品种所属鱼类产品分类取样量(g或尾)1鲈鱼淡水鱼≥3尾,≥400g2鳜鱼淡水鱼≥3尾,≥400g3鳊鱼淡水鱼≥3尾,≥400g4鲤鱼淡水鱼≥3尾,≥400g5鲫鱼淡水鱼≥3尾,≥400g6鳙鱼淡水鱼≥3尾,≥400g7乌鳢淡水鱼≥3尾,≥400g8鲶鱼淡水鱼≥3尾,≥400g9草鱼淡水鱼≥3尾,≥400g(四)抽查任务市级监督抽查由市农业综合行政执法总队牵头,各区县农业综合行政执法机构具体组织实施。农业农村部农产品质量安全监督检验测试中心(重庆)负责种植业产品样品抽样技术指导、样品预处理及实验室检测等工作;农业农村部畜禽产品质量安全监督检验测试中心(重庆)负责畜禽产品样品抽样技术指导、样品预处理及实验室检测;重庆市水产品质量监督检验测试中心负责水产品样品抽样技术指导、样品预处理及实验室检测。2023年市级监督抽查任务表,详见附件2。(五)工作经费市级监督抽查:检验检测经费标准参照原农业部《农产品质量安全例行监测预算定额标准》执行。包括检测费、差旅费、租赁费、仪器设备维修(护)费、水电费、废液处理费、专用材料费、印刷费、邮电通讯费、小型仪器设备购置费、劳务费等,以及检测机构抽样技术指导所产生的所有交通费、租赁费、食宿费等相关费用。市级监督抽查任务及抽样、检测经费均已在2023年市级农发资金中下达,按下达计划执行。各单位在“2023年市级部门预算项目支出”列支,并按照相关要求,专款专用。县级监督抽查:工作经费由县级财政承担。2023年农业农村部农产品质量安全监督抽查工作要求如有调整,另行通知。二、抽样(一)主要程序与方法监督抽查抽样(制样、存样)、检测、复检、异议处理等工作的主要程序与方法严格按照《国家农产品质量安全监督抽查实施细则(2022版)》规定执行。抽样工作所需规范文书(抽样单、封签、样品移交确认单、样品标签、不合格产品核查处置情况表),详见附件3。(二)抽样要求1.抽检分离。严格遵循抽样机构与检测机构相分离的原则。市级监督抽查:抽样工作由市农业农村委负责组织,农业综合行政执法机构具体实施。市农业综合行政执法总队负责牵头,具体抽样工作由县级农业综合行政执法机构实施。抽样人员应具备执法证件,且不得少于2人。县级监督抽查:抽样工作由县级农业农村行政主管部门负责组织,当地农业综合行政执法机构具体实施。2.现场制备及封存样品。抽样人员应当现场制备和封存样品。试样量至少为400g,分为三份,一份用于检验检测、一份用于检验检测备用、一份留存备复检。样品应具有代表性,并保证检验样品、备份样品和复检样品的一致性。封签须由2名具有执法证件的抽样人员及被抽查单位签字、捺印。监督抽查不得向被抽查单位收取检验费和其他费用。检测样和备用样交承担检测任务的检测机构,并填写《重庆市农产品质量安全监督抽查样品移交确认单》。复检样品由负责组织实施监督抽查的农业农村部门保存,保存条件应在-20℃以下;不具备保存条件的,可以委托具备相应资质和条件的检测机构保存。鉴于监督抽查样品现场制样、封样及样品保存要求严格,根据抽样工作需要,市级监督抽查由市农业农村委委托具备相应资质的检测机构,现场指导当地农业综合行政执法机构实施抽样和样品预处理等工作及相应文书填写。县级监督抽查可参照执行。3.拒绝抽样的处理。被抽查单位无正当理由拒绝抽样的,抽样人员应当立即告知拒绝抽样的法律责任和处理措施。被抽查单位仍拒绝抽样的,抽样人员应当现场填写《重庆市农产品质量安全监督抽查拒检确认书》(附件4),由抽样人员和见证人共同签字,并及时向负责组织监督抽查的农业农村部门报告情况。依据《农产品质量安全监测管理办法》(农业部令2012年第7号)第二十三条规定,对被拒绝抽查的农产品以不合格论处。三、检验检测(一)检测机构资质检测工作应由有相应资质的农产品质量安全检测机构承担。即检测机构应同时持有农产品质量安全检测机构考核合格证(CATL)和检验检测机构资质认定证书(CMA),且两个证书均包含委托检测产品所有应检测参数及相应检测方法。(二)检测参数市级监督抽查,禁(限)用农药检测参数(参考)及相应检测方法详见表5—表8。原则上,按照农药禁限用范围,检测相应种类的农产品。例如:表5中,甲胺磷禁止在蔬菜、果树、茶叶、中草药材使用。因此,如监督抽查样品种类为蔬菜、水果、茶叶或中草药材,则均应检测甲胺磷残留。常规农兽药残留检测,均须确认被抽样农产品属于“待上市”农产品后,可根据产品种类,突出重点,精准检测。县级监督抽查农产品种类(种植业产品、畜禽产品和水产品)可根据当地实际情况自行选定。检测参数要求原则上应与市级监督抽查一致。1. 种植业产品(1)蔬菜蔬菜样品禁(限)用农药检测参数(参考)见表5。表5 蔬菜样品禁(限)用农药检测参数(参考)序号检验项目依据法律法规或标准禁/限用范围检验方法判定值1甲胺磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用GB/T 20769-2008不得检出2氧乐果农业部公告第194、1586号禁止在甘蓝、柑橘树上使用GB/T 20769-2008不得检出3甲拌磷农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用23200.113-2018不得检出4对硫磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出5甲基对硫磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出6甲基异柳磷农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用23200.113-2018不得检出7毒死蜱农业部公告第2032号禁止在蔬菜上使用GB/T 20769-2008不得检出8三唑磷农业部公告第2032号禁止在蔬菜上使用GB/T 20769-2008不得检出9六六六农业部公告第199号禁用农药23200.113-2018不得检出10涕灭威农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用GB/T 20769-2008不得检出11灭多威农业部公告第1586号禁止在柑橘树、苹果树、茶树、十字花科蔬菜上使用GB/T 20769-2008不得检出12克百威农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用GB/T 20769-2008不得检出13氟虫腈农业部公告第1157号除卫生用、玉米等部分旱田种子包衣剂外,其他均禁止使用23200.113-2018不得检出14乐果农业部公告第2552号禁止在蔬菜、瓜果、茶叶、菌类和中草药材作物上使用23200.113-2018不得检出15内吸磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用GB/T 20769-2008不得检出16久效磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出17水胺硫磷农业部公告第1586号禁止在柑橘树上使用23200.113-2018不得检出备注甲拌磷包括甲拌磷砜和甲拌磷亚砜,涕灭威包括涕灭威砜、涕灭威亚砜,克百威包括3-羟基克百威,氟虫腈包括氟甲腈、氟虫腈硫醚、氟虫腈砜。(2)水果水果样品禁(限)用农药检测参数(参考)见表6。表6 水果样品禁(限)用农药检测参数(参考)序号检验项目依据法律法规或标准禁/限用范围检验方法判定值1甲胺磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用GB/T 20769-2008不得检出2氧乐果农业部公告第194、1586号禁止在甘蓝、柑橘树上使用GB/T 20769-2008不得检出3甲拌磷农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用23200.113-2018不得检出4对硫磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出5甲基对硫磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出6甲基异柳磷农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用23200.113-2018不得检出7灭多威农业部公告第1586号禁止在柑橘树、苹果树、茶树、十字花科蔬菜上使用GB/T 20769-2008不得检出8克百威农业部公告第199、2445号禁止在蔬菜、果树、茶叶、中草药材使用;禁止在甘蔗作物使用GB/T 20769-2008不得检出9氟虫腈农业部公告第1157号除卫生用、玉米等部分旱田种子包衣剂外,其他均禁止使用23200.113-2018不得检出10内吸磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用GB/T 20769-2008不得检出11久效磷农业部公告第199号禁止在蔬菜、果树、茶叶、中草药材使用23200.113-2018不得检出12水胺硫磷农业部公告第1586号禁止在柑橘树上使用23200.113-2018不得检出备注1.甲拌磷包括甲拌磷砜和甲拌磷亚砜,涕灭威包括涕灭威砜、涕灭威亚砜,克百威包括3-羟基克百威,氟虫腈包括氟甲腈、氟虫腈硫醚、氟虫腈砜。2.草莓样品上述检验项目均按《食品安全国家标准食品中农药最大残留限量》(GB2763-2021)判定。2. 畜禽产品家畜肉(牛肉、羊肉、猪肉)、禽肉、副产品(猪肝、禽蛋、牛奶)及猪尿等畜禽产品样品禁(限)用兽药检测参数(参考)见表7。表7 家畜肉(牛肉、羊肉、猪肉)、禽肉、副产品(猪肝、禽蛋、牛奶)及猪尿等禁(限)用兽药检测参数(参考)序号产品名称检验项目依据法律法规或标准禁/限用范围推荐检验方法判定值1猪肝牛肉羊肉特布他林、西马特罗、沙丁胺醇、非诺特罗、氯丙那林、莱克多巴胺、克伦特罗、妥布特罗、喷布特罗、农业农村部公告第250号禁用药品及其他化合物农业部1025号公告-18-2008不得检出2猪尿西马特罗、沙丁胺醇、莱克多巴胺、克伦特罗农业农村部公告第250号禁用药品及其他化合物农业部1025号公告-11-2008不得检出3猪肉喹噁啉-2-羧酸(QCA)农业农村部公告第250号禁用药品及其他化合物GB/T 20746-2006不得检出金刚烷胺农业部公告第560号禁用药物GB 31660.5-2019不得检出4禽蛋氯霉素农业部250号公告禁用药品及其他化合物禽肉和禽蛋中酰胺醇类药物及代谢物残留量的测定液相色谱-串联质谱法(农质法〔2019〕1号)不得检出5禽肉洛美沙星、氧氟沙星、诺氟沙星、培氟沙星农业农村部公告第2292号禁用药品及其他化合物禽肉和禽蛋中氟喹诺酮类药物残留量的测定液相色谱-串联质谱法(农质法〔2019〕1号)动物源产品中喹诺酮类残留量的测定液相色谱-串联质谱法(GB/T 20366-2006)不得检出6牛奶头孢哌酮农业部公告第560号停用药物GB 31658.4-2021不得检出3. 水产品鱼类产品样品禁(限)用兽药检测参数(参考)见表8。表8 鱼类产品样品禁(限)用兽药检测参数(参考)序号检验项目依据法律法规或标准禁/限用范围检验方法判定值1氯霉素农业农村部第250号公告禁用药品及其他化合物GB/T 20756-2006GB/T 22338-2008不得检出2孔雀石绿农业农村部第250号公告禁用药品及其他化合物GB/T 20361-2006GB/T 19857-2005不得检出3硝基呋喃类农业农村部第250号公告禁用药品及其他化合物农业部783号公告-1-2006不得检出4氧氟沙星农业部第2292号公告停用兽药农业部1077号公告-1-2008GB/T 20366-2006 不得检出5培氟沙星农业部第2292号公告停用兽药农业部1077号公告-1-2008GB/T 20366-2006 不得检出6诺氟沙星农业部第2292号公告停用兽药农业部1077号公告-1-2008GB/T 20366-2006 不得检出7洛美沙星农业部第2292号公告停用兽药农业部1077号公告-1-2008GB/T 20366-2006 不得检出备注硝基呋喃类包括:呋喃唑酮、呋喃西林、呋喃它酮、呋喃妥因代谢物(AOZ、SEM、AMOZ、AHD)(三)检验依据各类产品检验依据均按照国家现行相关规定执行。(四)判定原则与结论原则上按照检验项目依据的法律法规或标准要求的最大残留限量判定,未制定最大残留限量的药物或添加物,按照实施细则中以标准方法检测限作为主要依据指定的判定值判定。出具检验报告时,检验结论按如下方式做出判定:(1)检验参数全部符合判定的法律法规或标准要求的,检验结论为:该批(次)产品经检验,依据XXX规定,判为合格品。(2)检验的参数中,只要有不符合判定的法律法规或标准要求的,检验结论为:该批(次)产品经检验,依据XXX规定,判为不合格品。四、结果处理(一)不合格检测结果确认承担任务的检测机构应在不合格样品结果确认后24小时内,将不合格样品信息及检验报告(原件,一式两份)上报市农业农村委。市农业农村委应自收到不合格样品检验报告24小时内,委托当地农业综合行政执法机构,按程序将《重庆市农产品质量安全监督抽查不合格结果通知单》(附件5)送达被抽查单位。注意留存被抽查单位接收证据,当面递交的应当留存签字书证,邮寄的应当及时打印并留存邮件签收证明。(二)异议处理被抽查单位对检测结果有异议的,可自收到《重庆市农产品质量安全监督抽查不合格结果通知单》之日起5日内,向负责组织监督抽查的农业农村部门(市农业农村委)书面申请复检。逾期未提出的,视为承认检测结果。(三)复检要求复检由市农业农村委指定具备相应资质的检测机构承担。承担复检任务的检测机构应自收到样品之日起7个工作日内出具检验报告。复检不得由原检测机构承担。复检结论与原检测结论一致的,复检费用由申请人承担;复检结论与原检测结论不一致的,复检费用由原检测机构承担。五、执法查处坚持问题导向,强化“检打联动”。如有不合格样品,立即启动执法程序,依法查处。推进农产品质量安全领域行政执法与刑事司法衔接,涉嫌犯罪的,有案必移。六、结果报送(一)各市级任务承担单位要坚持快抽、快检、快报。原则上检测机构应自收到监督抽查样品之日起7个工作日内完成检验检测工作,并按规定上报不合格样品情况。各区县承担任务的检测机构应参照上述要求报送至县级农业农村行政主管部门。(二)市、县两级监督抽查结果均采用重庆市农产品质量安全监测信息采集系统(以下简称监测系统)实时上报。2023年市、县两级监督抽查抽样、监测及数据上报工作应于11月20日前完成。承担市级任务的各检测机构应按月上报《重庆市农产品质量安全监督抽查结果汇总表》(附件6,以下简称汇总表);各区县农业农村行政主管部门应按月上报县级监督抽查(不包括市级监督抽查数据)结果汇总表,并于2023年11月20日前汇总上报全年监督抽查结果汇总表。上述所有汇总表上报市农业农村委,同时抄送市农业综合行政执法总队。七、有关要求(一)高度重视,落实属地责任。监督抽查工作将纳入市委、市政府对区县食品安全考核指标体系。各地农业农村行政主管部门要强化“发现问题是业绩,解决问题是政绩”的理念,以查找问题、治理问题、提升短板为导向,保质保量实施好农产品质量安全监督抽查工作。(二)遵规守纪,严格规范实施。承担农产品质量安全监督抽查工作的检测机构应当按照相关检测技术要求,科学、独立、客观、规范地开展工作,及时完成任务,对检测结果负责。农业综合行政执法机构应严格遵守农产品质量安全监督抽查和“双随机一公开”的有关要求和规定,严禁选择性抽样,杜绝地方保护主义,确保抽查客观、真实、科学。(三)加强执法,确保取得实效。对监督抽查中发现的不合格产品,立即启动执法程序,依法查处。切实做到有案必查、查必到底,绝不给违法违规者留有可乘之机。要严格按照《中华人民共和国食品安全法》、《中华人民共和国农产品质量安全法》和《最高人民法院、最高人民检察院关于办理危害食品安全刑事案件适用法律若干问题的解释》、《行政执法机关移送涉嫌犯罪案件的规定》等有关法律法规规定,推进农产品质量安全领域行政执法与刑事司法衔接,有案必移,绝不手软,依法从严查处,加大打击力度,切实发挥司法震慑作用。(四)强化协作,发挥监管效能。各地农业农村行政主管部门、承担农产品质量安全监督抽查任务的检测机构和执法机构要切实提高认识,密切配合,形成工作合力。要加强与市场监管、公安等相关部门的协作配合,注重信息交流共享和执法协作联动,切实提高监管执法效能。监督抽查工作中如有问题和建议,请及时反馈市农业农村委。联系方式:市农业农村委农产品质量安全监管处,李菁,89133703,cqnwaqc@163.com;市农业综合行政执法总队第五支队,舒念辉,13752963942,zdwzd2020@163.com;附件2:2023年市级农产品质量安全监督抽查任务表.pdf3. 附件3-5.pdf4. 附件6:重庆市农产品质量安全监督抽查结果汇总表.pdf
  • 毒品现场检测新技术 | 谱育科技EXPEC 3500 便携式GC-MS快速检测多种芬太尼类物质
    前言芬太尼作为一种强效麻醉性镇痛药,其药理作用与吗啡类似,镇痛效力约为吗啡的 80倍,呼吸抑制作用较吗啡弱,不良反应比吗啡小,因此广泛应用于各种疼痛及外科、妇科等手术过程中和手术后的镇痛。然而,由于芬太尼具有欣快感成瘾性、严重的呼吸抑制和心率严重下降等副作用,使其成为继传统毒品、合成毒品之后的第三代毒品——“实验室毒品”中的重要组成成分。为了提高对于芬太尼类实验室毒品的管制,2019年,我国首次通过定义化学骨架和取代基的方式,将芬太尼整类物质列入管制列表。作为新加入的精神药品类管制品,目前对于芬太尼类物质的检测标准还不够完善,因此有必要开发一系列针对芬太尼类物质的检测手段。EXPEC 3500 便携式气相色谱-质谱(GC-MS)联用仪具有体积小,重量轻,操作简便等优势,其内置的针进样系统配合微量进样针可以实现半挥发性有机物(Semi-Volatile Organic Compounds, SVOCs)的快速分析,可以提高系统对于低浓度组分的响应,满足痕量样品的高灵敏检测要求,在应急监测、环境监测、监督检查、职业卫生、公安刑侦等领域得到了广泛应用。基于以上,本研究将采用EXPEC 3500 便携式GC-MS对多种芬太尼类物质混标样品进行快速检测鉴定,建立一种应用于多种芬太尼类物质现场鉴定的新型快检方法。01仪器和材料+仪器EXPEC 3500 便携式GC-MS:气相色谱部分具备程序升温功能;质谱部分具有选择离子扫描(SIM)/全扫描(FullScan)/二级质谱(MS-MS)三种模式;内置NIST & AMDIS 标准谱库 、便携式 GC-MS 专用谱库、美国国立职业安全与健康研究所(NIOSH)数据库、化学品安全指导数据库(SIC)、环境标准参考数据库。色谱柱:DB-5MS (5 m × 0.1 mm × 0.4 μm)+材料高纯氦气:≥99.999%。甲醇:纯度为色谱纯。标准品:4组多种芬太尼类物质混标溶液(以甲醇为溶剂)第一组:5种芬太尼类物质混标溶液(分别为N-甲基芬太尼、4-氟-N-苄基芬太尼、N-苄基呋喃芬太尼、苯基芬太尼和4-甲氧基呋喃芬太尼)第二组:6种芬太尼类物质混标溶液(4-甲基环丙芬太尼、N-苄基芬太尼、2,2’-二氟芬太尼、2-甲基乙酰芬太尼、环丙芬太尼和噻吩芬太尼)第三组:7种芬太尼类物质混标溶液(乙酰芬太尼、芬太尼、丙烯酰芬太、丁酰芬太尼、卡芬太尼、戊酰芬太尼和呋喃芬太尼)第四组:18种芬太尼类物质混标溶液(前三组混标样品的混合溶液)02实验方案使用5μL微量进样针从四组混标样品溶液中分别抽取1μL样品,依次使用EXPEC 3500 便携式GC-MS进行色谱分离,质谱定性分析,鉴定样品中含有的芬太尼类物质种类。仪器条件设置为:03数据分析+18种芬太尼类物质的分离定性+部分芬太尼类物质的质谱定性各物质的定性主要通过与NIST质谱库和《新活性物质分析手册质谱分册》中各种芬太尼类物质的质谱图进行比对。部分物质的质谱图主要如下:04结论通过将各物质的质谱图与各芬太尼类物质的标准谱图比对可以发现, 混标样品检出的物质主要有N-甲基芬太尼、芬太尼、2,2’-二氟芬太尼、N-苄基芬太尼等。由实验结果可知,谱育科技EXPEC 3500 便携式GC-MS可以实现N-甲基芬太尼、4-氟-N-苄基芬太尼、4-甲基环丙芬太尼、芬太尼等18种芬太尼类物质的检出。本研究使用EXPEC 3500 便携式GC-MS对18种常见的芬太尼类物质完成了定性分析。与大型的实验室GC-MS和传统快检方法相比,本方法具有快速、便捷、定性准确以及操作简单方便等优点,可以广泛应用于缉毒、反恐、安检以及海关等方面的现场快速检测。远离毒品,珍爱生命!
  • 印度MERCK产品进入中国!
    尊敬的客户: 印度默克(MERCK)是默克在印度的全资子公司,严格按照默克质量体系生产,在同类产品中具有价格低、质量好等优势,且有质量分析报告(COA)备查,本公司推荐下列现货产品供广大客户选择使用,欢迎来电咨询订购。 电话:021-51693889  http:www.hq17.com 传真:021-61304216 地址:上海市长宁区金钟路658弄1号楼甲4层 印度MERCK 货号 *对应德国MERCK 货号 品名 包装 市场价 61836525001730 1.08107.1000 优级纯(GR)无水四氢呋喃 2.5L 320.00 61910825001730 1.00456.2500 65%硝酸 2.5L 120.00 61850005001730 1.10983.2500 农残级N,N-二甲基甲酰胺 500ml 75.00 61861510001730 1.01845.2500 HPLC(色谱级)叔丁基甲醚 1L 105.00 60086810001730 1.00868.4000 HPLC(色谱级)乙酸乙酯 1L 75.00 60104010001730 1.01040.4000 HPLC(色谱级)异丙醇 1L 70.00 60810110001730 1.08101.4000 HPLC(色谱级)四氢呋喃 1L 130.00 61860725001730 1.06007.4000 HPLC(色谱级)甲醇 2.5L 75.00
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制