当前位置: 仪器信息网 > 行业主题 > >

腺嘌呤磷酸盐

仪器信息网腺嘌呤磷酸盐专题为您提供2024年最新腺嘌呤磷酸盐价格报价、厂家品牌的相关信息, 包括腺嘌呤磷酸盐参数、型号等,不管是国产,还是进口品牌的腺嘌呤磷酸盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合腺嘌呤磷酸盐相关的耗材配件、试剂标物,还有腺嘌呤磷酸盐相关的最新资讯、资料,以及腺嘌呤磷酸盐相关的解决方案。

腺嘌呤磷酸盐相关的资讯

  • 我国科学家研发新型传感器实现土壤磷酸盐现场连续监测
    中国科学院合肥物质科学研究院、中科合肥智慧农业协同创新研究院与安徽理工大学团队合作,研发了用于土壤磷酸盐现场连续监测的电化学微流体系统。相关研究成果日前发表于《IEEE传感器杂志》。磷是影响农作物生长和代谢的最重要营养物质之一。土壤中磷酸盐含量低会导致土壤肥力下降、作物生长缓慢且产量下降。磷酸盐含量过多时,未被吸收的磷元素会通过地表径流进入水体,导致水体富营养化。因此,对土壤中磷酸盐含量现场连续监测是农业生产中实时获取养分必不可少的一个环节,对调整当地施肥策略、提高农作物产量和质量具有现实意义。目前,土壤磷酸盐的传统实验室检测设备不仅操作复杂,而且因体积过大不易用于现场监测,难以实现连续监测。电化学分析因其高灵敏度、高特异性、快速响应、低成本和可集成性等优点,在磷酸盐测定中得到了广泛应用。但是传统电化学传感器仅能进行单次磷酸盐测定,难以满足现场连续土壤磷酸盐监测的要求。为实现土壤磷酸盐的现场监测,研究团队将电化学传感技术和微流控系统有机结合,成功研发出一种新型高灵敏、高稳定性、便携式及易于操作的土壤磷酸盐连续监测系统。该系统集成试剂现场流动反应,用于土壤磷酸盐的现场连续监测,具有成本低、操作简便、实时性强的优势。团队采用新型土壤磷酸盐传感系统进行了一系列检测验证实验,发现该传感系统具有良好的便携性、抗干扰性、可重复性,使用寿命长,磷酸盐回收率高达91.1%至110.48%,可成功应用于实际土壤环境中的磷酸盐连续测定,在田间精细化养分管理方面具有很大潜力。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 大连化物所开发出10kWh磷酸盐基钠离子电池储能系统
    近日,大连化学物理研究所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队自主开发出10kWh磷酸焦磷酸铁钠基钠离子电池系统,并实现了用电负载的稳定供电。经测试,系统输出能量为9.7kWh,直流侧能量转换效率为91%。   该系统由5个独立的电池模组和与其配套的逆变器、控制模块共同组成。其中,每个模组(50V/40Ah)由34个20Ah级钠离子软包电池、采用2并17串方式构成。该钠离子电池体系具有低成本、长寿命、高安全等优势,在大规模储能领域具有很好的应用前景。大连化学物理研究所储能技术研究部在2015年开始布局钠离子电池技术,特别是聚焦具有高稳定性、长寿命、高安全性等优势的磷酸盐基钠离子电池技术。团队坚持基础研究与应用研究并重,实现了钠离子电池从基础研究探索跨越到关键材料中试制备、大容量电芯及系统集成。   团队先后攻克了磷酸盐正极材料电导率低、稳定性差,碳基负极储钠动力学慢,电解液—电极界面成膜机理不明确等系列关键科学问题;打通了磷酸盐正极的百公斤级制备工艺,开发了多种生物质基硬碳负极制备工艺和高兼容电解液体系;基于自主研制的电极、电解液和电芯技术,集成出5至20Ah级钒系和铁系磷酸盐基软包电芯,比能量达到100至143Wh/kg;在电芯研发的基础上,团队先后集成了48V/10Ah、72V/20Ah磷酸盐基钠离子电池系统并开展示范。   此外,团队先后申报发明专利60余件,获授权发明专利20余件,形成了较为完整的自主知识产权体系;参与制定5项钠离子电池技术标准;推进了与企业间产业化合作,加速了磷酸盐基钠离子电池的产业化进程。   近日,团队开发的钠离子电池电芯通过了由国家工信部锂离子电池及类似产品标准工作组、中关村储能产业技术联盟组织开展的全国首批钠离子电池产品测评,验证了团队钠离子电池技术的可靠性。该系统的成功研制,对于推动钠离子电池在储能领域的应用具有重要意义。   以上工作得到榆林学院—中国科学院洁净能源创新研究院联合基金、大连化学物理研究所创新基金等项目的支持。
  • PHOSPHAX SC 正磷酸盐分析仪在电子厂中水回用的应用
    PHOSPHAX SC 正磷酸盐分析仪在电子厂中水回用的应用哈希公司 01背景介绍中水回用是大型电子厂水处理工艺的重要环节之一,电子厂对中水回用的水质要求比较高, 尤其是对水中的杂质和含盐量都有较高的要求。中水回用的目的是将中水作为水源进行进一步 的处理,生产出合格的回用水,既可以缓解厂内装置用水紧张问题,也避免了废水外排对环境 造成的影响。电子厂的生产工艺工程中,会产生大量的磷酸根,需要对磷酸根进行处理。含磷废水前期通过一定的处理后,在凝结池中加入PAM、PAC药剂,通过监测含磷流放池的磷酸根含量,指导药剂的投加量。02 应用情况武汉某电子厂中水回用车间含磷流放池需要监测磷酸根含量,业主将水引至分析小屋的监测槽中,在分析小屋内安装了一台哈希中量程PHOSPHAX SC正磷酸盐分析仪,并与SC1000相连接,实时监测槽内水样中磷酸根的含量,用以反馈控制药剂投加量。经现场业主反映,哈希公司PHOSPHAX SC正磷酸盐分析仪运行稳定,监测数据准确,维护量低。经与化验室DR3900比对,数据误差小于5%,赢得了客户的一致好评。03 总结通过PHOSPHAX SC测量的磷酸盐含量,准确的监测含磷流放池中磷酸根的含量,指导除磷药剂的投加,确保工艺稳定运行的同时降低了运行成本。该款仪表在使用过程中的稳定性及测量准确性得到了业主的好评,业主认为这是一款值得信赖的仪器。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 上新 | 实验人必看,逗点生物新品磷酸盐缓冲液清新面世~
    PBS新品上市,欢迎关注!在生物实验中,磷酸盐缓冲液(Phosphate-Buffered Sline,PBS)的主要用途是漂洗、稀释或作为基础溶液配置其他溶液,用途非常广泛,属于生物实验室必不可少的一种试剂。逗点生物最 新研发推出新品PBS,产品经0.1μm 过滤除菌,可直接使用,且质量稳定、规格多样、货源充足,有效应对各种细胞培养需求,帮助提供相对稳定的离子环境和pH缓冲能力,为您实验保驾护航。新品上市,实验必购PBS核心优势,持续加固!厂家直销逗点生物具备厂家直销优势,货源稳定,供应充足,配送及时,想要囤货的老师们可放心购买~多种规格新品推出,有1X(即用型)、5X、10X、20等多种规格可供选择,随需定制,满足您多种实验需求~透亮无沉淀通过ISO13485:2016医疗器械质量管理体系认证,无菌车间生产,批次间稳定,液体透亮不含沉淀~PBS数据亮眼,品质保障!表1:无菌情况逗点生物产品无菌情况与某国际知名品牌效果相当 表2:pH、渗透压逗点生物产品数值稳定,与某国际知名品牌效果相当表3:内毒素逗点生物产品内毒素<0.1EU/mL,符合行业水平表4:微粒检测逗点生物产品的不溶性微粒数低于某国际知名品牌作为生物实验室的常用试剂,PBS磷酸盐缓冲液的品质必须有保障。为此,我们选取了国际国内四家知名品牌的同类产品,分别从四个维度进行数据比对。结果显示,逗点生物所研发生产的PBS在无菌情况、pH/渗透压、内毒素、微粒检测等重要指标上均有亮眼表现。PBS认准货号,购买无忧!想要了解更多产品信息请拨打逗点生物客服热线咨询订购电话:400-860-5168转3309
  • 新品发布|微流路系列再添猛将:HQ-6200正磷酸盐在线分析仪震撼发布!
    新品发布泽铭明星系列HQ-6000微流路分析平台喜迎新成员:HQ-6200正磷酸盐在线分析仪在近日震撼发布!产品介绍泽铭HQ-6200正磷酸盐在线分析仪,依托于泽铭微流路平台,采用高性能比色技术,同时集:宽量程、高灵敏度、超低检出限、快速响应为一体。能做到试剂消耗量少,高效节约所需成本。和6000系列的产品相同,泽铭HQ-6200支持连续、周期、定点方式测定正磷酸盐的浓度,更灵活地满足不同测量需求。同时配备智能清洁系统,让仪器更易于保养,进一步降低运维成本的同时,更能减少仪器的学习成本,让仪器用起来更简单、便捷。应用领域- 电厂、化工、钢铁等行业的冷却水、锅炉系统等监测;- 污水处理厂脱磷工艺等监测;- 环境中的磷酸盐等监测;- 农业灌溉水排放监测/水产品养殖水体等监测;- 湖泊、河流等水体营养盐的科研监测等。产品特色- 泽铭HQ-6200正磷酸盐在线分析仪的测量周期极短:仅需短短5分钟即可完成从样品处理到结果输出的全过程。同时试剂消耗量极少,单次测量为微升级别,可显著减少整体运维成本,为用户带来更加经济高效的监测体验;- 宽量程(0.05-5mg/L PO4-P)(0.5-50mg/L PO4-P)及低检出限(0.02mg/L),可匹配应用于更多使用场景,无论是严格的水体环境监测、精细的工业工程控制、要求严苛的科研等领域都能轻松胜任;- 单次、连续、周期、定点四种测量模式,灵活可设(可编程设计);- 仪器结构合理,模块化设计理念,便于操作、维护和集成。产品参数结语泽铭科技将秉持“科技净化地球”的崇高使命,深耕于水质监测领域的科研阵地,为环保、水务、生态修复、工业、农业等多元领域注入科技力量。我们坚信,技术的力量能够引领未来,通过不断创新的技术解决方案,我们为守护绿水青山、构建美好生态环境筑起坚实的屏障,为地球的可持续未来贡献力量。
  • Phosphax sc LR 低量程磷酸盐分析仪在市政污水处理工艺过程中的应用
    背景介绍欧盟水框架指令(WFD)规定了欧盟国家的污水厂的污染物浓度排放标准,降低排入到地表水的有机物和营养盐浓度是其关键部分。在德国,根据污水厂不同的处理规模,其排放的总磷浓度通常被要求在 0.5mg/l~2mg/l 范围内,在部分区域需降低至 0.2mg/l 以下。其它欧盟国家也已执行或即将执行严格的总磷排放浓度标准,如小于 0.3mg/l。鉴于污水厂排口总磷浓度的日益降低,过程磷酸盐的浓度也随之降低。为更好的指导化学除磷药剂的投加和控制,确保排口总磷浓度稳定达标排放的基础上,实现药剂投加量的合理控制,Phosphax sc LR 低量程在线磷酸盐分析仪被应用于德国某污水厂处理过程的实时监测,以便于运行人员根据实时浓度反馈调节药剂投加量。 应用情况主要仪器:Phosphax sc LR 分析仪,Filtrax 水样预处理器。如图 1 所示。 在该应用现场,配备了 Filtrax 连续超滤水样预处理器,并同时在现场安装了 Phosphax sc 中量程在线磷酸盐分析仪(0.05mg/l~15mg/l)进行数据比对。在测试比对期间,两款在线分析仪的连续测量数据均表现稳定,在一定范围内波动,数据趋势反映也相同。但在低浓度情况下(0.01mg/l~0.06mg/l), Phosphax sc LR 低量程分析仪测试数据波动更小,且与实验室测试数据比对效果更好。总结Phosphax sc LR 低量程在线分析仪在原有的 Phosphax sc 基础上进行来了改进,其采用了全新的比色单元,且分析方法也改进到钼黄 2.0 版本,可以更好地消除水样自身色度的影响,在低浓度情况下获得更好的性能表现,指导污水厂化学加药除磷药剂的投加。 Phosphax sc LR 低量程在线分析仪,在磷酸盐低浓度情况,可以获得更好的测量结果,其测量重复性和准确性均有了很大的提升,相比采用钼蓝比色法的在线磷酸盐分析仪,采用钼黄 2.0 版本的 Phosphax sc LR 低量程在线分析仪的试剂无需冷却即可在现场使用保存 6个月。且仪器具备自动校准和自动清洗功能,维护量低,对指导污水厂加药除磷控制非常有价值。
  • 上海光机所在研究铝磷酸盐玻璃的结构和性质方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究员团队采用了一种将实验、分子动力学模拟和定量结构性质关系分析(QSPR)相结合的方法研究磷酸铝玻璃,相关研究成果发表于《美国陶瓷》(Journal of the American Ceramic Society)。目前,磷酸铝玻璃在许多领域都有广泛的应用,包括生物医学材料、光学元件、密封材料和核废料固化等。通过实验技术手段对磷酸铝玻璃的短程结构已有较多的研究,但其性质与中程结构之间的关系尚不清楚。而分子动力学模拟已成为了研究的有效工具,在揭示玻璃性质的结构起源方面发挥着越来越重要的作用。   在本项研究中,研究人员结合了实验、分子动力学模拟方法研究Al2O3对磷酸铝玻璃的短程及中程结构的影响,并通过QSPR方法建立其结构性质模型。通过拉曼、同步辐射等实验结果验证了模拟的准确性。模拟结果表明,玻璃网络中存在的P-O-P键随Al2O3含量变化逐渐被P-O-Al键替代,对玻璃的性能变化起着重要的作用。同时,磷酸铝玻璃中的长链易形成环状结构,并集中在4~20元环。此外,利用三个不同的结构描述符来建立QSPR模型,并成功地将实验数据与模拟结果相关联,表现出良好的模型预测性。这一方法为预测玻璃性质及设计玻璃组分提供新思路。图1以磷酸铝玻璃的(a)配位数(CN)、(b) Qn、(c)环尺寸作为结构输入所建立的定量结构-性能关系模型。从左到右列为结构描述符Fnet分别与实验密度、硬度、玻璃化转变温度和热膨胀系数的关系。
  • 嫩肉粉含有亚硝酸盐 暗藏食品安全风险
    ●不少嫩肉粉的亚硝酸盐含量严重超标   ●使用嫩肉粉要适量,不能随心所欲   你有没有这样一种感觉,餐馆里的肉越来越嫩了?不仅口感软嫩无比,连肉的纤维都感觉不到,而且颜色嫣红美丽。   是温顺的牛羊们为了人们的需求,主动改变了肉质的结构?还是饲养时使用了新技术,让肉质突然大幅度改善?其实,奥妙不在原料当中,而在于烹调前处理当中———嫩肉粉这种产品已经大行其道,从宾馆到食堂,再到各种熟食作坊,都有它的踪迹。问题是,这里面都是什么东西呢?   嫩肉粉的基本配料,是木瓜蛋白酶等能够分解蛋白质的酶类以及用来稀释和填充的淀粉。动物的肉类都是肌肉组织,其中的主要成分是蛋白质。蛋白酶的作用,就是把长长的肌肉纤维蛋白质“切成”片段,这样肌肉就变得松嫩,而不会让嚼不动的肉丝卡在牙齿缝里。从消费者来说,柔嫩的肉更好嚼,也比较容易消化 从餐馆来说,把低档的肉处理之后变嫩,并多吸点水,还可以提高经济效益。这本是一件双方都满意的好事。   不过,为了提高嫩肉粉的“效果”,现在很多嫩肉粉已经进行了成分改革,更新换代。为了提高保水性,其中加入了磷酸盐类和碳酸钠等碱性物质。为了帮助发色、防腐和制作风味,还要加入亚硝酸盐。   2009年,我实验室的学生测定了10种嫩肉粉和腌肉料,发现全部含有亚硝酸盐,但其中只有2种在包装上标注,其余8种根本没有提到亚硝酸盐。按照使用量说明来计算,其中大部分产品的含量合乎亚硝酸盐在肉类中使用限量的国家标准,但也有的产品大大超标,如某嫩肉粉产品中,以亚硝酸盐计的含量高达159g/kg,按推荐用量2%来计算,肉制品中的亚硝酸盐用量高达3180mg/kg,而国家对熟肉制品中添加亚硝酸盐的要求是不超过500mg/kg。   尽管人人皆知,亚硝酸盐是有毒物质,但加入它却可以让肉类煮熟之后颜色粉红,口感更嫩,风味带有类似腊肉的美味,而且能够明显延长保质期。磷酸盐呢,会妨碍钙、镁、铁、锌的吸收,却会让肉类吸收更多的水分,烹调之后肉质一点不收缩,甚至比生肉还要“水嫩”。   这样的嫩肉粉,能够把一片老牛肉变成牙齿不需用力的嫩肉团,让一斤肉发挥一斤半肉的效果,又让肉像化了妆一样,永葆红颜美丽,自然会受到餐馆和摊贩的接纳和欢迎。   近年来,卫生部所报告的亚硝酸盐中毒事件中,餐饮系统占据相当大的份额,其中大多冠以“误用”一词,实际上,很多案例很可能与处理肉类时使用过多亚硝酸盐有关。据2005年对47个嫩肉粉样品的测定表明,其中7份含有亚硝酸盐,最大含量高达10000毫克/公斤以上。而我们的测定表明,嫩肉粉和腌肉料中含有亚硝酸盐的比例又有上升,而且标注非常不规范。即便标注其中含有亚硝酸盐,也没有任何有关其毒性的提示,没有警告厨师不要过量使用的标志。   如此广泛应用的产品,却没有相关标准的规范,也没有行业方面的管理,完全依赖于厨师使用时的个人经验,不能不说是一件令人忧心的事情。如果厨师像加盐加酱油一样随心所欲地使用嫩肉粉,亚硝酸盐能保证不超标么?但愿有关部门能够完善管理,尽快为嫩肉粉制定相关质量标准和使用规范,堵住这个食品安全的漏洞。   文/范志红(中国营养学会会员、中国农业大学食品学院营养与食品安全系副教授)
  • 如何快速现场检测土壤中的硝酸盐氮?
    从一颗种子到成熟的农作物,植物所依赖的不仅仅是阳光的能量,还需要土壤中的营养。跟磷酸盐一样,硝酸盐也是土壤营养的主要成分之一。但过量硝酸盐也会影响农业生产效果,因此,检测土壤中的硝酸盐含量对农业种植业显得尤为重要。 传统的定量检测方法通常都要经过复杂的前处理操作来净化土壤样品,测试流程长、耗时久。采用反射仪结合维生素C测试条的反射法,则可以大大缩短分析时间、简化分析步骤、提高分析效率。 默克RQflex® 20是一款体积小巧的便携式反射仪,含电池重量也不过253g,非常适合现场检测。有了它,搞科研的小伙伴们再也不用担心要从田间背土回实验室了,现场走一圈,检测数据轻松到手!https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/photometry-and-rapid-chemical-testing/test-strips-papers-and-readers RQ20反射仪的产品创新使用简单直观的中文导航式菜单,仪器上显示每一步操作步骤的图示,操作更加简单。方便携带体积小巧的移动实验室,可直接在现场进行关键性指标的分析测试并快速获取定量结果。结果可靠每盒RQ专用测试条包装内带批次校准的的条形码,准确度可达到测试条测试范围中间量程的±10%以内。应用广泛生产线消毒、清洗的主要应用:消毒剂中有效活性成分分析,清洗后消毒剂残留检测等。食品饮料生产过程和质量控制:食品添加剂添加量的监控,原料、成份等分析等。
  • 磷酸根分析仪测试方法指导
    磷酸根分析仪测试方法  离子在固定相和流动相之间有不同的分配系数,当流动相将样品带到分离柱时,由于各种离子对离子交换树脂的相对亲合力不同,样品中的各离子被分离,继而进入抑制器。抑制器的作用主要是降低洗脱液的本底电导,增加被测离子的电导响应值和除去样品中的阳离子,再流经电导池,由电导检测器检测并绘出各离子的色谱图,以保留时间定性,峰高或峰面积定量,测出离子含量。  下面讲讲仪器的操作使用步骤:  一、仪器的校准:仪器校准分为空白校准和曲线校准。  二、水样的测定方法。  1、待测水样的显色:取水样50mL注入塑料杯中,加入5mL试剂,混匀后放置3分钟即可。  2、水样的测量:  (1)做一次空白校准。  (2)在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。  (3)待该数值稳定且确认为有效后,用“+”或“–”键选择欲存入的通道数,按“存储”键,该值将自动存储到相应的通道中。  (4)如果认为该数值无效,可按“排液”键,将液体排空,做一次空白校准。在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。   加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。   目前该通报正在征求意见中。
  • 水质分析仪器--在线磷酸根分析仪器 新品上市
    水是人类生存之源:工厂停水,生产不能进行;家庭缺少水源,生活处处受到限制;土地干旱,更体现了水的重要性。总之,离开了水,人类的生活会受到限制,但是随着工业水平提高,工厂废水以及日常生活污水等等不同程度的排放,使我国的江,河,湖,海等受到不同程度的污染,要想进行水质的治理,必须要掌握水中各参数的情况。水质监测是指对水中的化学物质,悬浮物,底泥和水生态系统进行统一的定时或不定时的检测工作。水质检测在维护水环境健康方面具有重要作用。古语有句话叫:工欲善其事,必先利其器。同理我们想治理好水质,就必须先检测出水中各参数的含量,如果想达到更好的效果,还需在线实时检测,这样才能保障治理出来的水质达标。我们得利特打造精品工程,专注水质检测技术。最近技术部最近研发了在线磷酸根分析仪。B2050在线磷酸根分析仪是在消化吸收国外技术、总结多年国内实践经验的基础上推出的新一代在线磷表,是的电子技术和可靠磷酸盐分析方法的完美结合。可以广泛地应用于火力发电厂、化工等部门,及时、准确地对水中的磷酸盐含量进行监测,保证机组安全、经济运行,尤其适合国内现场环境。下面是产品的具体介绍:技术参数测量范围: (0~5)mg/L或(0~20)mg/L或(0~50)mg/L(根据定货时的指定)仪器示值误差: ±2%F.S重 复 性:不大于1%测量周期:可编程设置1-99分钟,最短5分钟稳 定 性: 基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件: 流量:(150~300)mL/min温度:(5~50)℃压力:14 KPa水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂种类:1种试剂消耗:最多9升/30天(5分钟采样一次),测量周期越长试剂消耗越少。显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690×450×300(mm)高×长×深开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警、下限报警(各通道独立输出)报 警:断样报警、上限报警产品升级特点:1、先进的嵌入式单片机技术2、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强3、大屏幕点阵液晶,显示内容直观、丰富;4、可编程实现1~6通道切换5、可编程修改通道测量周期,有效节省试剂;6、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护7、具有温度测量功能,可以根据温度进行测量数据补偿8、采用**光源和光电池,寿命长、漂移小、稳定、可靠9、具体黑匣子功能,可查询历史数据、运行记录、校准记录10、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求
  • 得利特在线磷酸根分析仪软件成功升级
    对于不同类型的在线水质分析仪器,技术要求也是不同的,一般而言,监测型分析仪器对测量数据的准确度要求较高,数据可以作为有关部门进行管理的依据,对检测原理和方法的限制较多,要求是成熟的分析技术;而过程型分析仪器对仪器的可靠性和稳定性要求较高,要求仪器能够及时可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。对仪器的响应时间要求较高,对仪器的检测方法和原理限制少,允许更多创新型的新原理、新方法的在线分析仪器应用。下面这款在线分析仪器是我公司新升级的产品,跟随小编来了解一下吧!B2050在线磷酸根分析仪是在消化吸收国外新技术、总结多年国内实践经验的基础上推出的新一代在线磷表。可以广泛地应用于火力发电厂、化工等部门,及时、准确地对水中的磷酸盐含量进行监测,保证机组安全、经济运行,尤其适合国内现场环境。仪器特点1、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强2、大屏幕点阵液晶,显示内容直观、丰富;3、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护4、具有温度测量功能,可以根据温度进行测量数据补偿5、采用**光源和光电池,寿命长、漂移小、稳定、可靠6、具体黑匣子功能,可查询历史数据、运行记录、校准记录7、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求技术参数测量范围:(0~5)mg/L或(0~20)mg/L或(0~50)mg/L(根据定货时的指定)仪器示值误差:±2%F.S重 复 性:不大于1%测量周期:可编程设置1-99分钟,最短5分钟稳 定 性:基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件:流量:(150~300)mL/min 温度:(5~50)℃ 压力:14 KPa水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂种类:1种试剂消耗:最多9升/30天(5分钟采样一次),测量周期越长试剂消耗越少。显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690×450×300(mm)高×长×深开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警、下限报警(各通道独立输出)升级点:1、先进的嵌入式单片机技术;2、可编程实现1~6通道切换;3、可编程修改通道测量周期,有效节省试剂。
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • 《食品中亚硝酸盐限量》等38项食品安全国家标准向社会公开征求意见
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准 食品中亚硝酸盐限量》等38项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年3月20日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。附件:征求意见的食品安全国家标准目录           食品安全国家标准审评委员会秘书处2023年2月10日征求意见的食品安全国家标准目录序号标准名称制定/修订污染物标准1项1.食品安全国家标准 食品中亚硝酸盐限量修订食品产品2项2.食品安全国家标准 发酵酒及其配制酒修订3.食品安全国家标准 果冻(GB 19299-2015)第1号修改单修改单营养与特殊膳食食品7项4.食品安全国家标准 食品营养强化剂 血红素铁制定5.食品安全国家标准 食品营养强化剂 L-蛋氨酸(L-甲硫氨酸)制定6.食品安全国家标准 食品营养强化剂 乙二胺四乙酸铁钠修订7.食品安全国家标准 食品营养强化剂 L-赖氨酸天门冬氨酸盐制定8.食品安全国家标准 特殊医学用途婴儿配方食品通则修订9.食品安全国家标准 婴幼儿谷类辅助食品修订10.食品安全国家标准 婴幼儿罐装辅助食品修订生产经营规范1项11.食品安全国家标准 食品中二噁英及多氯联苯污染控制规范制定食品添加剂2项12.食品安全国家标准 食品添加剂 叶黄素修订13.食品安全国家标准 食品添加剂 植物炭黑修订食品相关产品2项14.食品安全国家标准 食品用消毒剂通用安全要求修订15.食品安全国家标准 食品接触材料及制品用添加剂使用标准(GB 9685-2016)第1号修改单修改单理化检验方法与规程18项16.食品安全国家标准 食品中三价铬和六价铬的测定制定17.食品安全国家标准 食品接触材料及制品 氟迁移量的测定制定18.食品安全国家标准 食品中双酚A、双酚F和双酚S的测定制定19.食品安全国家标准 食品中氟的测定制定20.食品安全国家标准 食品中脲酶的测定制定21.食品安全国家标准 食品中酵母β-葡聚糖的测定 制定22.食品安全国家标准 食品中渗透压的测定制定23.食品安全国家标准 食品中甲醛的测定修订24.食品安全国家标准 食品中锑的测定修订25.食品安全国家标准 食品中左旋肉碱的测定修订26.食品安全国家标准 食品中丙酸及其盐的测定修订27.食品安全国家标准 食品中总酸的测定(GB 12456-2021)第1号修改单修改单28.食品安全国家标准 食品中胡萝卜素的测定(GB 5009.83-2016)第1号修改单修改单29.食品安全国家标准 食品中多种磷酸盐的测定修订30.食品安全国家标准 食品中酸价的测定修订31.食品安全国家标准 食用盐指标的测定修订32.食品安全国家标准 食品接触材料及制品 氯乙烯、1,1-二氯乙烯和 1,1-二氯乙烷的残留量和迁移量的测定修订33.食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定(GB 5009.111-2016)第1号修改单修改单微生物检验方法与规程 5项34.食品安全国家标准 食品用菌种安全性评价程序制定35.食品安全国家标准 食品微生物学检验 大肠菌群计数修订36.食品安全国家标准 食品微生物学检验 诺如病毒检验修订37.食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验修订38.食品安全国家标准 食品微生物学检验 大肠埃希氏菌计数修订
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics ofGlycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2. Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3. Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 2020版 《中国药典》盐酸利多卡因注射剂有关物质的分析
    盐酸利多卡因是局麻醉、抗心律失常药物,属于酰胺类化合物,这类物质在C18色谱柱分析过程中容易出现拖尾的问题。 我们按照2020版 《中国药典》和EP方法,对盐酸利多卡因注射剂及其杂质2,6-二甲基苯胺、2,6-二甲基氯代乙酰苯胺进行分析,希望能够解决主成分与杂质分离效果差和拖尾的问题。 常规硅胶系色谱柱,由于受到硅胶基材表面残留硅醇基和金属杂质的影响,在分析碱性化合物时普遍易出现色谱峰拖尾的现象。CAPCELL PAK色谱柱凭借填料表面致密的聚合物包被来抑制硅胶基材的影响,因此能得到对称性良好的色谱峰。 我们使用经过包膜处理的 CAPCELL PAK C18 AQ S5 柱,很好地解决了盐酸利多卡因拖尾的问题;同时主峰与杂质的分离也满足要求。 2020版《中国药典》方法 推荐色谱柱: CAPCELL PAK C18 AQ S5 系统适用性要求:盐酸利多卡因与杂质2,6-二甲基苯分离度满足要求,理论塔板数不低于2000。按照2020版 《中国药典》的要求,选择经过包膜处理的CAPCELL PAK C18 AQ S5 柱,盐酸利多卡因峰形良好;同时2,6-二甲基苯胺与利多卡因分离度16.49,满足基线分离要求。图1 盐酸利多卡因与2,6-二甲基苯胺的色谱图 HPLC Conditions 色谱柱:CAPCELL PAK C18 AQ S5 4.6mm i.d.×250mm流动相:磷酸盐缓冲液:乙腈=50:50(pH8.0)流 速:1.0 mL / min温 度:30 °C检 测:PDA 230 nm进样量:20 µL浓 度:盐酸利多卡因样品2mg/mL、系统适用性溶液:50 µg/mL(溶剂为流动相) 注:磷酸盐缓冲液:1mol/L磷酸二氢钠溶液1.3mL,0.5mol/L磷酸二氢钠32.5 mL,用水稀释至1000 mL,摇匀。 EP 9.0方法 推荐色谱柱:CAPCELL PAK C18 AQ S5 目前,EP没有盐酸利多卡因注射剂的相关规定,因此我们参考了EP中盐酸利多卡因的检测方法。 系统适用性要求:主峰(盐酸利多卡因)保留时间约为17min,杂质A(2,6-二甲基苯胺)与主峰的相对保留时间约为0.4,杂质H(2,6-二甲基氯代乙酰苯胺)与主峰的相对保留时间约为0.37,杂质A与杂质H的分离度不小于1.5。 按照EP 9.0的检测方法,对杂质A、H以及盐酸利多卡因混合标准品进行分析,结果如图2所示,杂质H保留时间6.098min,杂质A保留时间7.357min,杂质A、H分离度为5.31,满足二者分离度大于1.5的标准要求。图2 盐酸利多卡因与杂质A、H的色谱图 HPLC Conditions 色谱柱:CAPCELL PAK C18 AQ S5 4.6mm i.d.×150mm流动相:磷酸盐缓冲液:乙腈=70:30(pH8.0)流 速:1.0 mL / min温 度:30 °C检 测:PDA 230 nm进样量:20 µL浓 度:杂质A:0.5µg/mL、杂质H:5µg/mL、盐酸利多卡因:5µg/mL(溶剂为流动相) 注:磷酸盐缓冲液:4.85g/L磷酸二氢钾溶液。
  • 哈医大通过色谱法建立食物嘌呤数据库
    哪些食物中含有嘌呤物质?每种食物中的嘌呤含量又是多少?今后,痛风的“原凶”——嘌呤物质,将首次得到准确、科学的“再现”,为痛风患者健康膳食提供指导依据。日前,一项规范测定常见食物中嘌呤含量的研究在哈尔滨医科大学进入研究阶段。科研人员将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,为降低国内高尿酸血症和痛风病的患病率及症状减轻提供科学数据。   据了解,随着经济发展和人们膳食结构的改变,我国人群高尿酸血症和痛风的患病率呈直线上升趋势。有资料显示,我国20岁以上的人群约2.4%—5.7%存在血尿酸过高的情况,从而引起痛风的发病。而在对痛风患者的治疗中,医生发现,低嘌呤膳食是治疗该病的关键。   据哈医大公共卫生学院潘洪志副教授介绍,在我国食物成分表中,目前尚无食物中嘌呤含量的准确数据,临床及有关网站上公布的嘌呤含量数据普遍来源不清且彼此不一致,对嘌呤含量高低类别的划分标准也不尽相同,给广大痛风患者治疗时带来极大疑惑。   哈医大科研人员此次开展的嘌呤含量研究拟采用高效液相色谱法,通过现代科技手段,测定我国常见各类食品中的嘌呤含量,包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等,并计算总嘌呤含量,提高嘌呤测定方法的准确度、精密度和重现性,获得准确的常用食物嘌呤含量数据。   测定结果评出后,将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,以此作为痛风患者健康膳食指导的依据。专家表示,该项研究预计在今年内完成,它将为降低我国高尿酸血症和痛风病的患病率和减轻症状提供科学数据,对公共卫生具有重大意义。   嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。   痛风俗称“富贵病”。该病一般在男性身上发病,且会遗传。有痛风的病人发病时,除用药物治疗外,重要的是平时注意忌口,以限制饮食中嘌呤的含量。
  • 海鲜食品安全危机?标准、解决方案这里都有
    北京时间24日中午12时,日本向海洋排放福岛第一核电站污染水正式启动, 2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。对此,群众最为关心的莫过于对我国生态环境和食品安全是否会有影响。据了解,核污染具有毒性和生物蓄积性,对生态系统造成破坏,长期摄入或造成慢性放射性中毒。8月24日,我国海关总署发布公告,自24日(含)起全面暂停进口原产地为日本的水产品(含食用水生动物)。日本核污水排海的后续影响有待研究机构和有关部门进一步判定。小编特整理了海鲜水产品检测中涉及到的检测项目、检测仪器及解决方案,供大家参考:一、检测项目:1)理化检测:感官检测、水分、pH值、净含量检测、含砂量、干燥失重、盐分检测、浸出物、酸价测定、过氧化值、多磷酸盐、挥发性盐基氮、新鲜度检测2)卫生检测:甲醛、多氯联苯、组胺检测、生物胺检测、挥发酚检测、食品添加剂检测、明矾、硼酸、重金属、亚硝胺检测3)微生物检测:菌落总数、大肠菌群、沙门氏菌检验、金黄色葡萄球菌、副溶血性弧菌、寄生虫、商业无菌检测4)农药残留检测:马拉硫磷、毒死蜱、三氯杀螨醇、三唑酮、烯丙菊酯、氯丹、杀扑磷、硫丹、丙草胺、六六六,敌敌畏5)兽药残留检测:青霉素检测、红霉素、土霉素、四环素检测、硝基呋喃类、磺胺类、孔雀石绿6)营养成分检测:能量,蛋白质检测,脂肪,碳水化合物,氨基酸检测,无机盐,维生素检测、DHA检测、EPA7)成分分析:主成分分析,全成分分析,未知物分析,定性定量分析,指标检测,成分含量检测二、海鲜相关检测标准:GB/T 18108-2008 鲜海水鱼GB 5009.206-2016 食品安全标准 水产品中河豚毒素的测定GB 5009.273-2016 食品安全标准 水产品中微囊藻毒素的测定GB 5009.274-2016 食品安全标准 水产品中西加毒素的测定GB 5009.231-2016 食品安全标准 水产品中挥发酚残留量的测定GB 2733-2015 食品安全标准 鲜、冻动物性水产品GB 10136-2015 食品安全标准 动物性水产制品GB 29682-2013 食品安全标准 水产品中青霉素类药物多残留的测定GB 29684-2013 食品安全标准 水产品中红霉素残留量的测定GB 29705-2013 食品安全标准 水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定GB/Z 21702-2008 出口水产品质量安全控制规范GB/T 20361-2006 水产品中孔雀石绿和结晶紫残留量的测定GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定GB 14882-1994 食品中放射性物质限制浓度标准SN/T 4590-2016 出口水产品中焦磷酸盐、三聚磷酸盐、三偏磷酸盐含量的测定SN/T 4526-2016 出口水产品中有机硒和无机硒的测定SN/T 0393-1995 出口水产品中总汞含量检验SN/T 3196-2012 水产品中致病性弧菌检测SN/T 0223-2011 进出口冷冻水产品检验规程SN/T 2564-2010 水产品中致病性弧菌检测SN/T 1974-2007 进出口水产品中亚甲基蓝残留量检测SN/T 1643-2005 进出口水产品中砷的测定SC/T 3012-2002 水产品加工术语SC/T 3015-2002 水产品中土霉素、四环素、金霉素残留量的测定SC/T 3011-2001 水产品中盐分的测定SN 0598-1996 出口水产品中多种有机氯农药残留量检验SN/T 0392-1995 出口水产品中硼酸的测定三、海鲜食品检测仪器有:序号海鲜食品检测仪器名称用途1水分测定仪测定海鲜水分含量2酶标仪检测海鲜疫病、兽药残留、抗生素、真菌毒素等3气相色谱仪配置定制,根据测的项目不同,进行配置4气相色谱-质谱联用仪现场的有机污染物进行准确定性和定量检测,主要应用于环境空气、水体、土壤和固体废弃物中挥发性和部分半挥发性有机物的现场分析5紫外可见分光光度计测量物质对不同波长单色辐射的吸收程度,定量分析6电子天平样品称量必备仪器7脂肪测定仪测定脂肪含量的仪器8凯氏定氮仪测定蛋白质含量的仪器9微生物检测仪用于海鲜食品中的活菌总数、大肠杆菌、绿脓杆菌、沙门氏菌、链球菌、酵母菌等微生物的快速检测10兽药残留检测仪可定量快速检测阿莫西林、孔雀石绿、瘦肉精、黄曲霉毒素等11食品安全检测仪检测海鲜中是否含有重金属、细菌、病毒等超标的污染物。12马弗炉用于测定水分、灰分、挥发分、灰熔点分析、灰成分分析、元素分析。也可以作为通用灰化炉使用。13微波消解仪微波消解对样品进行前处理,可完全消解样品,便于检测更多海鲜食品检测仪器请点击查看: 仪器优选四、海鲜食品相关解决方案: 1、 海鲜水产呋喃类代谢物残留快速检测解决方案 2、 海鲜组织中的兽药分析——实时直接分析 (DART) 和高效液相色谱 (HPLC) 与 Agilent 6400 系列三重四 极 杆质谱仪 (QQQ-MS) 联用系统 3、 海鲜甲醛检测操作流程 4、 解决方案 | 食品中放射性物质锶-90的测定 5、 海鲜储存对质地的影响更多海鲜食品检测解决方案请点击查看:水产品检测面对日本核污水排放这一事件,我们不能过于恐慌。我们应该保持理性,采取必要的措施来保障食品安全。同时,我们也需要加强环境监测和食品安全监管,确保我们的食品安全和健康。最后,让我们一起关注食品安全和环境保护问题,为我们的健康和未来努力。══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/ ) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
  • 质检总局检验司:进口食品添加剂标准将放宽
    4月21日,质检总局正式发文,明确进口食品添加剂检验监管适用标准对暂无食品安全国家标准的食品添加剂,在相关食品安全国家标准发布实施前,现行的国家标准、行业标准仍然有效,可作为进口食品添加剂检验监管的适用标准。  依据2015年10月1日起实施的新《食品安全法》,进口的食品、食品添加剂、食品相关产品应当符合我国食品安全国家标准,不得继续使用其它标准作为进口食品检验的适用标准。  检验检疫部门在执行过程中,陆续接到进口企业反映,由于部分产品尚无对应的食品安全国家标准,严格执行新《食品安全法》要求无法进口,一定程度上影响了正常的进口贸易。  对此,检验检疫部门积极沟通国家卫计委、食药监总局等单位,争取其同意放宽相关适用标准要求。  除上述进口食品添加剂适用标准放宽外,2016年1月还明确在相关食品安全国家标准发布实施前,现行食用农产品质量安全标准、食品卫生标准、食品质量标准和有关食品的行业标准仍然有效,食品生产经营活动及其监督管理应当按照现行相关标准执行。  深圳口岸是我国进口食品的主要口岸之一。2015年10月以来,深圳检验检疫局严格贯彻落实新《食品安全法》要求,截至2016年4月中旬,共监管深圳口岸进口食品30987批,151.23万吨,货值35.16亿美元,实验室检测83046项次,检出不合格187批次,主要不合格项目为大肠菌群、菌落总数及食品添加剂。对检出不合格食品,均严格做退运或销毁处理。  常用的食品添加剂有哪些?  (一) 防腐剂  防腐剂就是能够杀灭微生物或抑制其繁殖作用,减轻食品在生产、运输、销售等过程中因微生物而引起腐败的食品添加剂。防腐剂可以有广义和狭义之不同。狭义的防腐剂主要指山梨酸、苯甲酸等直接加入食品中的化学物质 广义的防腐剂除包括狭义防腐剂所指的化合物质外,还包括那些通常认为是调味料而具有防腐作用的物质,如食盐、醋等,以及那些通常不直接加入食品,而在食品贮藏过程中应用的消毒剂和防腐剂等。作为食品添加剂应用的防腐剂是指为防止食品腐败、变质,延长食品保存期,抑制食品中的微生物繁殖的物质,但在食品中具有同样作用的调味品如食盐、糖、醋、香辛料等不包括在内。食品容器消毒灭菌的消毒剂亦不在此列。常见的几种防腐剂:苯甲酸及其钠盐(目前食品工业中最常见的防腐剂之一,主要用于饮料等液体的防腐。在偏酸性的环境中,具有较广泛的抗菌谱。)  (二) 抗氧化剂  能防止或延缓食品成分氧化变质的食品添加剂称为抗氧化剂。抗氧化剂按溶解性可分为油溶性与水溶性抗氧化剂两类。按来源可分为天然的与人工合成的两类。抗氧化剂能够防止或延缓食品氧化反应的进行,但不能在食品发生氧化后使之复原。因此,抗氧化剂必须在氧化变质之前添加。抗氧化剂的用量一般很少(0.0025%-0.1%),但必须与食品充分混匀才能很好的发挥作用。另外,柠檬酸、酒石酸、磷酸及其衍生物均与抗氧化剂有协同作用,起到增效剂的效果。  (三) 酸味剂  酸味剂是以赋予食品酸味为主要目的的食品添加剂,它还有调节食品pH的作用。酸味剂分为有机酸和无机酸。食品中天然存在的主要有机酸包括柠檬酸、酒石酸、苹果酸和乳酸等。目前,实际应用的酸味剂主要是这些有机酸。酸均有一定抗菌作用,尽管单独使用酸来抑制防腐所需浓度太大,并且会影响食品感官特性,因而难以实际应用。但是,以足够浓度的酸味剂与其他保藏方法并用,可以有效的延长食品的保存期。上述各种酸味剂虽然都可以参加人体内正常代谢,但受消费者可接受性的限制,食品中加入酸味剂的量不可过大。  (四) 着色剂  着色剂是使食品着色和改善食品色泽的食品添加剂,通常包括合成色素和食用天然色素两大类。食用合成色素主要是指化学方法所制得的有机色素。合成着色剂的着色能力强、色泽鲜艳、不易褪色、稳定性好、易溶解、易调色、成本低,但安全性较差。按化学结构又可分为偶氮类和非偶氮类两类。前者有苋菜红、柠檬黄等,后者有赤藓红和亮蓝等。油溶性偶氮类着色剂不溶于水,进入人体内不易被排出体外,毒性较大,目前基本不在使用。水溶性偶氮类着色剂较容易排出体外,毒性较低,目前世界各地允许使用的合成色素几乎全是水溶性的色素。  (五) 漂白剂和护色剂  漂白剂是破坏、抑制食品的发色因素,使其褪色或使食品免于变色的添加剂,分为氧化漂白剂及还原漂白剂两类。氧化漂白剂是通过其本身强烈的氧化作用使着色物质被氧化破坏,从而达到漂白的目的。还原漂白剂大都属于亚硫酸及其盐类,它们通过其所产生的SO2还原作用可使果蔬褪色。而氧化漂白剂主要指过氧化苯甲酰等面粉漂白剂,其他实际应用很少。漂白剂除可改善食品色泽外,还有抑制及抗氧化等作用,在食品加工中应用甚广,可广泛应用于食品的保藏,如果蔬干制和糖制都要熏硫处理使其获得很好的 保藏性。  护色剂又称发色剂,是能与肉及肉制品中成色物质作用,使之在食品加工,保藏等过程中不致分解,破坏,呈现良好色泽的物质。这主要是由亚硝酸盐所产生的NO与肉类中的肌红蛋白和血红蛋白结合,生成一种具有鲜艳红色的亚硝酸基肌红蛋白所致。硝酸盐则需在食品加工中被细菌还原生成亚硝酸盐后再起作用。亚硝酸盐是具有一定毒性,尤其可与胺类物质生成强致癌物亚硝胺,因而人们一直试图开发出某种适当的物质取而代之。亚硝酸盐除可护色外,还能抑制梭状芽孢杆菌为代表的腐败菌的繁殖,从而防止其产生毒素,阻止蛋白质的分解,特别是对于食物中的肉毒梭状芽孢杆菌具有抑制作用,抑制或延缓其产毒。此外,亚硝酸盐还具有增强肉制品风味的作用。迄今为止,尚未见到即能护色又能抑菌,又能增强肉制品的风味的替代品。为此,各国都在保证安全和产品质量的前提下,严格控制亚硝酸盐的使用量。  (六) 乳化剂  乳化剂就是指添加于食品后可显著降低油水两相界面张力,使互不相溶的油和水形成稳定的乳浊液的食品添加剂。食品乳化剂是表面活性剂的一种,其分子结构的共同特点是分子两端不对称,一端是极性的亲水基,另一端是非极性的疏水剂。乳化剂从来源可分为天然和人工合成两大类。而按其在两相中所形成的乳化体系的性质又可分为水包油型和油包水型。  食品是含有水、蛋白质、糖、脂肪等成分的多相体系,食品中许多成分是互不相溶的,由于各组分混合不均匀,致使食品多相体系中各组分相互融合,形成稳定、均匀的形态,改善内部结构,简化和控制加工过程,提高食品质量的一类添加剂。在食品工业中,常常使用食品乳化剂来达到乳化、分散、起酥、稳定、发泡或消泡等目的。此外,有的乳化剂还有改进食品风味、延长货架期等作用。  (七) 增稠剂  增稠剂是指改善食品的物理性质或组织状态,使食品黏滑适口的食品添加剂,也称增黏剂、胶凝剂、乳化稳定剂等。它们在加工食品中的作用是提供稠性、黏度、黏附力、凝胶形成能力、硬度、紧密度、稳定乳化及悬浊体等。由于增稠剂均属亲水性高分子化合物,可水化形成高黏度的均相液,故也称水溶胶、亲水胶体或食用胶。  使用增稠剂后可显著提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、适宜的口感,并兼有乳化、稳定或使其悬浮状态的作用。  增稠剂有60余种,品种很多,按来源可分为天然和人工合成增稠剂两类。多数天然增稠剂来自植物,也有来自动物和微生物的。来自植物的增稠剂有树胶、种子胶、海藻胶和其他植物胶,改性淀粉也被列为食品增稠剂。改性淀粉是一大类物质,由淀粉经不同工序处理后制得,如酸处理淀粉、碱处理淀粉和氧化淀粉等,它们在凝胶强度、流动性、颜色、透明度和稳定性等方面均不同。来自动物的有明胶、酪蛋白酸钠等,来自微生物的有黄原胶等。明胶、酪蛋白酸钠、改性面粉除有增稠作用外,还有一定营养价值、安全性高,应用较广。人工合成的增稠剂如羧甲基纤维素和聚丙烯酸钠等应用较广,安全性也较高。  (八) 稳定剂和凝固剂  稳定剂和凝固剂使食品结构稳定或使食品组织结构不变,增强黏性固形物的一类食品添加剂。常见的有各种钙盐,如氯化钙、乳化钙等。它能使可溶性果胶成为宁胶状果胶酸钙,以保持果蔬加工制品的脆度和硬度,防止果蔬软化。用低酯果胶可制造低糖果冻等。在豆腐生产过程中,则用盐卤、硫酸钙等蛋白凝固剂,来达到固化的目的。另外,金属离子螯合剂能与金属离子在 其分子内形成内环,使金属离子成为此环的一部分,从而形成稳定而又能溶解的复合物,消除了金属离子的有害作用,从而提高食品的质量和稳定性。最典型的螯合物是EDTA。  (九) 水分保持剂  水分保持剂用于保持食品的水分,属于品质改良剂,品种较多。我国允许使用的磷酸盐是一类具有多功能的水分保持剂,广泛应用于各种肉、蛋、水产品、乳制品、谷物制品、饮料、果蔬、油脂以及改性淀粉中中具有明显品质的作用。例如,磷酸盐可增加制品的持水性,减少加工时的原汁的流失,从而改善风味,提高出品率,并可延长贮藏期 防止水产品冷藏时蛋白质变性,保持嫩度,减少解冻损失 也可增加方便面的复水性 还可用于生产改性淀粉。食品加工中常用的磷酸盐、焦磷酸盐、聚磷酸盐和偏磷酸盐等。  延伸阅读:  《进口食品添加剂检验监管适用标准问题通知》原文:各直属检验检疫局  根据《食品安全法》和国务院、质检总局的相关文件要求,以及与国家卫生计生委的沟通情况,现将进口食品添加剂检验监管适用标准有关问题进一步明确如下:  一、在相关食品安全国家标准发布实施前,现行的国家标准,即相关标准号中带“GB”字样的食品卫生标准、食品质量标准仍然有效,可作为进口食品添加剂检验监管的适用标准。  二、对于暂无国家标准的进口食品添加剂,应严格按照《国务院办公厅关于严厉打击食品非法添加行为切实加强食品添加剂监管的通知》(国办发﹝2011﹞20号)以及《关于印发的通知》(国质检食监﹝2011﹞241号)要求,有关企业或者行业组织可以依据有关规定向卫计委提出参照国际组织或相关国家标准指定产品标准的申请,各地检验检疫机构应严格按照卫计委指定标准进行检验。  质检总局检验司  2016年4月12日
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 盐酸毛果芸香碱有关物质的测定
    色谱条件色谱柱:月旭Ultimate® XB-Phenyl(4.6×250mm,5μm)。流动相:取4.4g磷酸氢二钾,加入1000mL娃哈哈水中,再用磷酸调节pH至6.5,抽滤,取630mL磷酸氢二钾溶液和350mL甲醇、20mL乙腈混合,超声脱气,即得。乙腈/甲醇/磷酸盐=2/35/63; 检测波长:215nm; 柱温:35℃; 流速:1.0mL/min; 进样量:10μL。谱图和数据空白溶剂图系统适应性图结论用月旭Ultimate® XB-Phenyl(4.6×250mm,5μm),在此色谱条件下测定,能满足检测的要求。
  • 中科院海水营养盐原位检测仪完成验收
    8月19日,中国科学院南海海洋研究所承担的中国科学院装备研制项目&mdash &mdash &ldquo 海水营养盐的水下高灵敏度原位检测仪&rdquo 顺利通过了中国科学院条件保障与财务局组织的专家验收。验收专家组听取了项目组工作报告、使用报告、财务报告和测试专家组的测试报告,查看了装备运行情况,查阅了文件档案及相关财务账目。验收组一致认为,项目承担单位完成了规定的研制任务,达到了研制目标,部分技术指标优于规定的要求。   该水下原位监测仪在不做任何预处理的前提下可对水体中化学要素(硝酸盐、磷酸盐、铵盐、亚硝酸盐、硅酸盐等)进行快速、准确地检测与分析,能够实现长时间序列监测,为水资源的开发利用以及水质的预警预告提供及时准确的信息。   目前,该项监测技术已进入产业化示范及实际应用阶段,已应用于由中国科学院南海海洋研究所主持的国家海洋局公益性项目&ldquo 珠江口水环境在线监测集成技术及在陆源污染物入海通量评估及总量控制中的应用示范&rdquo 中,进行珠江口水质的长时间序列在线监测。
  • 无需同步辐射光源,台式X射线吸收精细结构谱仪(XAFSXES)最新发布!
    美国easyXAFS公司新推出无需同步辐射光源的台式X射线吸收精细结构谱仪——可以放置在实验室内使用的XAFS! 1. 什么是XAFS?X射线吸收精细结构(X-ray absorption fine structure,XAFS)原理: X射线通过光电效应被物质吸收,产生光电子(出射波);经过周围原子散射,产生散射波;相位不同的两列波在吸收原子处产生干涉,影响吸收原子处的光电子波函数,即吸收系数μ。随能量E变化的μ(E)曲线即XAFS。 由上可知,XAFS信号由吸收原子周围的近程结构决定,可提供小范围内原子簇结构信息,包括配体种类、配位数、配位距离等结构信息和元素价态分析等电子结构信息。 2. 哪里可以做XAFS测试?目前XAFS测试需要依赖同步辐射光源,国内仅有三家:北京高能物理所,上海光源、中国科学院大学;XAFS测试服务也只是同步辐射实验室内的一小部分应用,实在难以满足广大科研用户的使用需求。不过不用担心,台式XAFS谱仪将为您提供服务! 3. 台式XAFS/XES谱仪由美国easyXAFS公司研发的台式X射线吸收精细结构谱仪(XAFS/XES),无需同步辐射光源即可提供XAFS和XES测试;台式体积,可放置于实验室内随时使用,大节省了科研等待时间!同时具有操作简单、方便;配有7位自动样品轮;可集成辅助设备,控制样品条件;后期维护成本低等优势。 XAFS300XES100 4. 应用案例4.1 不同配体化合物的鉴别应用台式XAFS谱仪可以快速实现不同配体化合物的鉴别,直观明了!尤其对广泛应用而言,操作使用无压力。如下图中CoP和CoP标准品。 Mundy, Cossairt, et al., Chemistry of Materials 2018 4.2 同步辐射&台式XAFS/XES经过不同温度处理的橡木的生物炭样品,其同步辐射实验结果和台式XAFS/XES实验结果相一致,即随着温度升高,氧化态S的样品含量在减少。XES:CS500 (800 ppm S) 50min;Oak600 sample (150 ppm S) 6hSynchrotron XANES:CS500(800 ppm)24min;Oak 600sample(150ppm S)114minHolden, Seidler, et al., J. Phys. Chem. A, 2018 4.3 固体核磁&台式XAFS/XES通过对比P的MAS NMR和XES的结果,证明了用P的Kα 的XES谱图可以定量检测LnP量子点的氧化程度和磷酸盐的种类。而且仅从几毫克的样品量即可获得高分辨结果,时间短,将会是更好的测量工具。XES:<5mg样品量,30min内SSNMR:10—20mg样品量,长达数天 在SSNMR谱图中,0ppm位置的峰对应的是表面磷酸盐,而该组分显示在约2014.41 eV的Kα1能量位置。 不同价态的含P化合物的谱图出峰差异,可以判断化合物种类。 -3 -1 +5Stein, Holden, et al., Chem. Mater., 2018. 5. 仪器用户台式XAFS/XES一经推出,便受到广泛的关注,其的性能,得到越来越多的用户认可。目前已安装的用户单位有:催化剂研究方向格罗宁根大学 马克思普朗克研究所 苏黎世理工大学 电池研究方向 克劳斯塔尔工业大学乌尔姆赫尔姆霍兹研究所放射性核素研究方向 谢菲尔德大学
  • 基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用
    基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用在国家环保市场利好的大环境下,环境检测数据质量要求不断提高、检测任务不断加重,人员配置不断缩减,引发环保检测领域对于自动化分析设备的持续大力投入,实验室分析检测作为短期内不可变更的检测需求,传统人工分析检测方法的弊端已经日益凸显,作为依循标准的自动化检测设备对于终端实验室具有极强的适用性。安杰科技的APA-500 全自动高锰酸盐指数分析仪,依循《GBT 11892-1989 水质 高锰酸盐指数的测定》设计开发,专用于《GB 3838-2002地表水环境质量标准》、《GB 5749-2006 生活饮用水卫生标准》 等标准中水质高锰酸盐指数的自动化分析检测,能够实现无人值守式流程操作、数据分析、待机维护、数据推送等人性化、智能化功能,从繁琐的手工分析操作中彻底解放实验员。由于APA-500拥有成熟三轴移液模块、样品杯架模块、多通道注射进样模块和滴定分析功能,同时根据市场的需求,在APA-500的基础上拓展了两个滴定实验的项目,分别是:总硬度 GB/T 7477-1987《水质钙和镁总量的测定 EDTA滴定法》,食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》。水质总硬度是指水中Ca2+、Mg2+的总量,标准中规定用EDTA滴定法测定地下水和地面水中钙和镁的总量。在pH 10的条件下,用EDTA溶液络合滴定钙离子和镁离子。铬黑T作指示剂,与钙和镁生成紫红色或紫色溶液。滴定中,游离的钙离子和镁离子首先与EDTA反应,跟指示剂络合的钙离子和镁离子随后与EDTA反应,到达终点时溶液的颜色由紫变为天蓝色。此过程可以完全使用APA-500进行自动化分析。人工只需做以下操作:准备试剂,将管路放入试剂中;使用样品杯量取样品放入样品盘中;进行样品信息设置等软件操作。APA-500测试总硬度时加快了滴定速度,其测试单个样品的平均时间为2min,测试30个样品只需要1h。对自来水和2.5mmol/L的样品进行9次测试,滴定体积差均小于GB7477-87上±0.2滴(±0.04mmol/L)的测试要求,测定不同浓度的在质控均在范围内。碘是人体正常新陈代谢是必不可少的一种微量元素,在食盐中加入碘酸钾可以保证碘的摄入,因此食盐中的碘是食品检测重要的项目。食品安全国家标准《食用盐碘含量》GB 26878-2011中明确,在食用盐中加入碘强化剂后,食用盐产品(碘盐)中碘含量的平均水平(以碘元素计)应为20mg/kg-30mg/kg。依据食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》3.1直接滴定法。在酸性介质中,试样中的碘酸根离子氧化碘化钾,析出碘单质。使用淀粉溶液做指示剂,用硫代硫酸钠标准溶液进行滴定,从而测定碘的含量。滴定过程中的颜色变化:样品+碘化钾+磷酸→黄色(颜色深浅与浓度有关)+硫代硫酸钠→黄色变浅+加淀粉→蓝色+硫代硫酸钠→蓝色消失(终点)。同样,此过程可以完全使用APA-500进行自动化分析。仪器的测试范围是5~40mg/kg。对市售食盐进行7次测定,结果绝对差值小于标准中给出的2.0mg/kg。对12.1mg/kg和12.1mg/kg质控样品进行测试,均在指控范围内。以上是APA-500的两个扩展应用,该仪器将进行更多扩展应用。充分发挥仪器的优势。为推动仪器行业发展贡献绵薄之力。
  • 《水质 硝酸盐氮的测定 流动注射法》等8项团标正式实施!
    近期,宁夏化学分析测试协会对《水质 敌百虫的测定 液相色谱串联质谱法》等7项团体标准进行了评审,并予以发布,7项标准自2023年12月31日起正式实施。此次实施的团标为水质检测标准,涉及到液相色谱串联质谱法、气相色谱、连续流动分析法和全自动电位滴定法。《水质 硝酸盐氮的测定 流动注射法》(T/NAIA0247-2023)本标准按照 GB/T 1.1-2020 《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定编写。原理:硝酸盐在碱性环境下在铜的催化作用下,被硫酸肼还原成亚硝酸盐,并和对氨基苯磺酰胺及 N-(1-萘基)乙二胺二盐酸(NEDD) 反应生成粉红色化合物在 550nm 波长下检测。加入磷酸是为了降低 pH 值,防止产生氢氧化钙和氢氧化镁。加入锌是为了抑制氧化物和铜的反应。仪器和设备:1.四通道连续流动分析仪:含自动进样器、化学反应单元、检测单元和数据处理单元。2.天平:感量0.001g。3.水性滤膜:孔径为0.45μm。4.一般实验室常用仪器和设备。本文件规定了用流动注射法测定生活饮用水、水源水中的硝酸盐氮。本文件适用于生活饮用水、水源水中硝酸盐氮的测定。本方法当进样速率为50个/h 时,最低检测质量浓度为0.012mg/L。《水质 亚硝酸盐氮的测定 流动注射法》(T/NAIA0248-2023)本标准按照 GB/T 1.1-2020 《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定编写。原理:在酸性条件下,亚硝酸盐氮与对氨基苯磺酰胺反应,生成偶氮化合物,再与 N-(1-萘基)乙二胺二盐酸(NEDD) 反应生成粉红色化合物在550nm 波长下检测。仪器和设备:1.四通道连续流动分析仪:含自动进样器、化学反应单元、检测单元和数据处理单元。2.天平:感量0.001g。3.水性滤膜:孔径为0.45μm。4.一般实验室常用仪器和设备。本文件规定了用流动注射法测定生活饮用水、水源水中的亚硝酸盐氮。本文件适用于生活饮用水、水源水中亚硝酸盐氮的测定。本方法当进样速率为50个/h 时,最低检测质量浓度为0.012mg/L。
  • 海洋行业标准《海水营养盐原位自动分析仪现场比对方法》征求意见
    2023 年 12 月 13 日 ,全国海洋标准化技术委员会发布《海水营养盐原位自动分析仪现场比对方法》征求意见稿。原文链接海水营养盐原位自动分析仪(以下简称“分析仪”)是搭载在浮标或平台上,能够自动过滤、进样、发生化学反应和监测,自动进行数据处理,从而实现在现场对海水中营养盐(硝酸盐、亚硝酸盐、铵盐、磷酸盐和硅酸盐)自动测量的仪器。近年来,我国沿海污染和富营养化现象日益严重,赤潮、浒苔等环境问题频发。大量研究表明,海水营养盐浓度是影响赤潮、浒苔生消的一个重要因素。分析仪逐渐开始被布设在我国沿海,虽然会在安装前进行校准,但是安装到浮标或者平台后,由于海洋环境复杂多变,只能使用自校或比对方法进行质量控制,确保测量数据的准确。由于各单位的自校或比对方法的内容、步骤和方法不尽相同,没有统一的标准方法,造成营养盐测量结果之间存在误差,不利于海水水质数据的统一。本标准规定了海水营养盐原位自动分析仪的比对设备要求、比对环境条件、比对试验、判定依据和 比对报告编写要求,适用于海水营养盐原位自动分析仪的海上现场比对,海水营养盐原位传感器、海水营养盐在线监测系统的海上比对和质量监控也可参照执行。本标准的公布提高了海水营养盐原位自动分析仪测量结果的准确性、一致性和可比性,更好地指导海洋原位仪器的运行维护,为海洋生态预警监测和防灾减灾的工作开展提供技术支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制