当前位置: 仪器信息网 > 行业主题 > >

硫代三磷酸酯

仪器信息网硫代三磷酸酯专题为您提供2024年最新硫代三磷酸酯价格报价、厂家品牌的相关信息, 包括硫代三磷酸酯参数、型号等,不管是国产,还是进口品牌的硫代三磷酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫代三磷酸酯相关的耗材配件、试剂标物,还有硫代三磷酸酯相关的最新资讯、资料,以及硫代三磷酸酯相关的解决方案。

硫代三磷酸酯相关的资讯

  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。   固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • 赛恩思碳硫仪牵手磷酸铁锂企业七星光电
    近年来新能源产业发展迅猛,四川赛恩思仪器已与多家新能源企业开展合作。近日,又一台HCS-801型碳硫仪在一家磷酸铁锂厂家---攀枝花七星光电科技正式投入使用。我公司HCS-878和HCS-801两代产品服务于同一公司。攀枝花七星光电科技有限公司现已建成并投产5000吨/年磷酸铁锂生产线,为国内规模前列的磷酸铁锂生产线,占全国40%的市场份额,可向全球客户提供多规格碳酸锂、氢氧化锂、氯化锂、金属锂、锂辉石及相关衍生产品。赛恩思HCS-801高频红外碳硫仪可检测产品的原料及成品的碳、硫含量,协助客户把关其产品质量。 碳、硫含量的差异会对磷酸铁锂材料本身的性能造成巨大的影响。利用高频红外碳硫仪对其进行碳、硫含量的测定是一种高效、便捷的方法。四川赛恩思HCS-801型高频红外碳硫仪测试数据准确,操作便捷,每小时可测量60个以上样品。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 【新品上新】SVHC清单物质更新至223项,坛墨打造全球屈指可数标准品!
    2022年4月随着经济全球化快速发展,reach法规的不断更新,企业面临的管控要求也越来越多。近日,欧盟化学品管理局(echa)将svhc候选清单正式更新为223项。新增4项物质信息如下:序号物质名称ec号cas号示例用途12,2' -亚甲基双-(4-甲基-6-叔丁基苯酚)204-327-1119-47-1橡胶润滑剂胶粘別油墨燃料2乙烯基-三(2-甲氧基乙氧基)硅烷213-934-01067-53-4橡胶塑料密封別3(±)-1,7,7-三甲基-3-[(4-甲基苯基)亚甲基]双环[2.2.1]庚-2-酮,包括任何单独的异构体和/或其组合(4-mbc)--化妆品4(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯401-850-92558s1-94-8润滑剂润滑酯紧跟国际法规,新品一睹为快坛墨紧跟国际法规,第一时间研发生产出配套标准品,为出口检测保驾护航!特别是最新添加进入svhc候选清单中的标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体),因其对研发工艺要求极高,该产品的生产商在全球屈指可数,坛墨作为中国标准品的领军企业,率先推出其标准品纯品、标准品溶液,帮助检测单位解决因产品稀缺带来的采购受阻这一难题。点击图片即可选购标准品/(三环[5.2.1.0’2,6]癸-3-烯-8(或9)-基)o-(异丙基或异丁基或2-乙基己基)o-(异丙基或异丁基或2-乙基己基)二硫代磷酸酯(外消旋体)此次新增的4项svhc物质涉及领域较广,化妆品、橡胶、润滑剂、油墨及胶黏剂等工业用品、塑料均有应用。四种物质中的一种用于化妆品,并已被添加到候选清单中,它具有干扰人体激素的特性。其中两种用于橡胶、润滑剂和密封剂中,会对生育能力产生负面影响而被包括在内。第四种用于润滑剂和润滑脂中,因为它具有持久性、生物累积性和毒性,对环境也会产生危害。坛墨在此提醒广大中国企业需提高自己产品的风险意识,在物质列入svhc候选清单后六个月内,符合条件的企业需要完成物品中的svhc通报。建议企业及早对供应链展开调查,以从容应对法规变化。 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957
  • 赛恩思碳硫仪助力紫金锂元磷酸铁锂项目
    近日,赛恩思HCS-808型高频红外碳硫仪在紫金锂元磷酸铁锂项目投入使用。紫金锂元是紫金矿业投产的磷酸铁锂生产线,项目一期规划产能为2万吨/年,建成后产品将主要用于新能源汽车和储能利电子电池的正极材料。磷酸铁锂中碳、硫含量的差异会对材料本身的性能造成巨大的影响。例如,当磷酸铁锂材料中碳含量低时,材料中Fe2+被氧化的比例大,会造成样品纯度降低,而且电子导电率低导致充电电阻过大;但当磷酸铁锂材料中碳含量太高时,影响材料的振实密度,致使材料的克容量低;当硫含量达到一定程度时,对磷酸铁锂的颗粒形貌、放电容量和循环性能的影响逐渐明显。因此磷酸铁锂中的碳、硫含量的测试是必须进行的。当前对磷酸铁锂材料碳硫含量测试的主要的方法就是采用碳硫分析仪。四川赛恩思高频红外碳硫分析仪能够准确、快速、简便地检测出磷酸铁锂材料中的碳、硫含量。公司设备在多家锂电材料企业服役,产品获得客户的好评。
  • 食品包装中的防油剂可致血液污染
    美欧各国加强监测多氟烷基磷酸酯   加拿大多伦多大学科学家发现,垃圾食品包装材料及微波爆米花袋上的化学物质会转移到食物中去,并被人体吸收,导致血液化学污染。该研究成果发表在近日出版的《环境与健康展望》杂志上。   全氟羧酸(PFCAs)是一种可分解的化学物质,主要用于制造不粘锅及食品包装材料的防水剂、防污剂。而全氟辛酸(PFOA)目前已在全世界各地的人体内发现。   由多伦多大学化学系的杰西卡和斯科特马伯里领导的研究小组推测,人体内全氟羧酸的来源可能与多氟烷基磷酸酯(PAPS)有关。PAPS在快餐食品包装材料或微波爆米花袋中作为防油剂使用。   研究人员让大鼠口服或注射PAPS三个星期,并监测其血液中多氟烷基磷酸酯和全氟羧酸的代谢物及全氟辛酸的浓度。虽然研究人员尚不能证明多氟烷基磷酸酯是人体内发现的全氟辛酸和全氟羧酸的唯一来源,但此项研究发现,多氟烷基磷酸酯代谢物是全氟辛酸和全氟羧酸的主要来源,因此人体内发现的全氟辛酸很可能与人们平时接触多氟烷基磷酸酯有关。   目前世界各国政府对于监测多氟烷基磷酸酯的兴趣不断增长。加拿大、美国及欧洲各国政府已经表示要长期监测这些化学物质。新研究为监管机构制定相关政策提供了有价值的信息。
  • 欧盟修订食品添加剂磷酸三钙的相关规定
    据欧盟网站消息,3月20日欧盟发布(EU)No 244/2013号法规,修订了(EC)No 1333/2008法规附件III中关于磷酸三钙用于婴儿以及儿童食品的规定。   最新规定如下: E341(iii) 磷酸三钙 作为P2O5的最大残留量150mg/kg,并在钙,磷与钙的限量内:氮磷比见2006/141/EC指令中的规定 所有营养物 婴儿奶粉以及较大婴儿奶粉见2006/141/EC指令中的规定 成品中以P2O5计的最大限量为1000 mg/kg见附件II中E部分13.1.3条规定 所有营养物 用于婴儿与儿童的加工类谷物食品以及儿童食品见2006/125/EC指令中的规定   新规定将自公布20天后生效。   原文链接:   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:077:0003:0004:EN:PDF
  • 广东省环境科学学会公开征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见
    各分支机构、各会员单位和有关单位:由广东省生态环境监测中心、华南师范大学等单位共同提出并主持编制的《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》三项团体标准已编制完成并形成征求意见稿。根据《团体标准管理规定》(国标委联〔2019〕1号)《广东省环境科学学会标准管理办法(试行)》要求,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家提出宝贵建议和意见,并于2024年9月20日前以邮件的形式将《广东省环境科学学会标准意见反馈表》反馈至邮箱gdhjxh@126.com,逾期未回复视为无意见。该标准的征求意见稿已登载在全国团体标准信息平台(网址为:http://www.ttbz.org.cn/)和广东省环境科学学会网站(网址为:https://www.gdses.org.cn/)。 联系人:陈诚 严辉联系电话:020-83224979邮箱:gdhjxh@126.com 附件:1.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)2.《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明3.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)4.《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明5.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)6.《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明7.广东省环境科学学会标准征求意见反馈表 广东省环境科学学会2024年8月19日关于征求《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》等三项团体标准意见的函.pdf附件1:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件2:《水质 新烟碱农药的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件3:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件4:《水质 16种有机磷酸酯的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件5:《水质 15种酚类内分泌干扰物的测定 固相萃取-高效液相色谱-串联质谱法》(征求意见稿).pdf附件6:《水质 15种酚类内分泌干扰物的测定固相萃取-高效液相色谱-串联质谱法》(征求意见稿)编制说明.pdf附件7:广东省环境科学学会标准征求意见反馈表.doc
  • EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用
    EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用哈希公司哈希EZ7300 ATP(三磷酸腺苷)在线分析仪是一个全自动化的微生物检测系统,符合国际认可的ASTM D4012-81标准方法。传统的用于评估饮用水和工业用水中的细菌安全的方法由于采样频率、菌种筛选和操作不当、污染等限制,通常需要较长的反应时间。等到分析结果出来了,水已经被使用了。哈希为现有的检测方法提供了一个替代方案。哈希EZ7300 ATP(三磷酸腺苷)在线分析仪使用生物荧光法来测量ATP的含量,从而获得快速且准确的结果。该在线分析仪可以自动进行采样、分析和数据处理,可在0-250 ng/mL ATP (或者 0-500 pM ATP)的范围内快速对水中微生物负荷进行反馈。影响电厂冷却塔杀菌剂投加方案的主要因素有两个。首先,是排放许可证的要求,会对投加药剂的速度或时间有要求,第二,需要根据水中的微生物负荷来制定投加药剂的方案,且该方案会根据水的来源和是否需要循环利用而不同。印第安纳州一个发电厂的操作员需要实时信息来优化杀菌剂加药方案。操作员需要这些数据来确定否间歇加药或连续加药(氯胺浓度较低)哪种加药方式更有效且更具成本效益。减少冷却水回路和冷却塔中的总微生物负荷,减少生物膜的形成以及大型冷却塔军团杆菌爆发的相关风险也是必要的。发电厂对哈希EZ7300 ATP(三磷酸腺苷)在线分析仪进行为期2个月的试验,清楚地证明了连续监测的优势,间歇使用杀菌剂的数据显示与不使用杀菌剂相比,间歇使用杀菌剂对ATP水平和微生物负荷有显著影响。在试验之后,工厂订购了一台仪表并对两路水流进行连续监测,从而优化杀菌剂的剂量并降低潜在风险。其姊妹电厂也订购了一台EZ7300用于监测供水系统的微生物负荷。END
  • Py-Screener的进阶玩法
    随着欧盟RoHS 2.0指令执行,相信各位小伙伴们对岛津Py-Screener和Twin Line MS系统在邻苯二甲酸酯检测的便捷性和配置的灵活性留下深刻印象。 Py-Screener之入门玩法 01 RoHS指令之限定物质 Py-Screener之进阶玩法 01 六溴环十二烷 六溴环十二烷(Hexabromocyclodo-decane,HBCDD)是一种高含溴量的脂环族添加型高效阻燃剂,与多溴二苯醚、四溴双酚A合称为世界三大阻燃剂,被广泛应用于电子电气产品中。因其高毒性、易于生物累积的特性,早在1997年,欧盟就将HBCDD归于重点管控物质。2013年,联合国《关于持久性有机污染物的斯德哥尔摩公约》宣布在全球范围内禁止生产和使用HBCDD。近年来,世界各国对于安全、环保要求日趋严格,欧盟、挪威等国家已经颁布了相关技术法规和限量标准。 HBCDD与邻苯二甲酸酯、多溴联苯和多溴二苯醚相同,也采用EGA/PY-3030D的热脱附功能分析,能够省去溶剂提取的步骤。 02 磷酸酯类阻燃剂 近年来,有机磷酸酯类阻燃剂(OPEs)凭借其品种丰富,价格低廉,与高聚物相容性好等优势,作为溴代阻燃剂的替代品被广泛使用 。目前常用的OPEs类阻燃剂约20多种,其中芳香基、卤素取代的磷酸酯类主要作为塑料消费品、纺织品、电子设备以及建筑、装修材料的阻燃添加剂。欧盟REACH法规,美国密歇根州、加利福尼亚州、缅因州、夏威夷州、纽约州法令以及日本《家用产品有害物质控制法》112法均对OPEs的限量提出明确要求,限量一般为0.1%(1000 ppm)。OPEs亦与邻苯二甲酸酯、多溴联苯和多溴二苯醚一样,也采用EGA/PY-3030D的热脱附功能分析,能够省去溶剂提取的步骤。 03 红磷阻燃剂 红磷阻燃剂以红磷为代表,是一种紫红或略带棕色的无定形粉末,为有机无卤阻燃剂,具有优良的热稳定性,不挥发性,不产生腐蚀性气体,阻燃效果好,电绝缘性佳等特点。在使用过程中没有毒性危险,添加量少,不溶解,熔点高等优点。 但因其自身颜色必须为红色或者配合黑色、加工特性比较差、与树脂的相容性不太好、加工制作的材料力学性能有限、生产过程中的“恶臭”的味道使得其很难在高档材料中得以推广。部分厂家对电子电气产品中的红磷阻燃剂的含量仍有要求,以便寻求合适的存放地点和使用方法。红磷的沸点较高,需采用EGA/PY-3030D的Single shot单步裂解模式。经过优化,选取550℃作为红磷分析的条件。 更多详细信息请致电岛津。
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。   加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。   目前该通报正在征求意见中。
  • 如海光电推出农药残留快速筛查解决方案
    近年来,随着人们对自身健康的关注,有机食品成了人们的宠儿,越来越多的人愿意付出更高的价格购买天然、环保、健康、安全的瓜果蔬菜。但曾在2018年,央视曝光“有机”蔬菜不有机,顶着10倍的身价,仍被检测出多种农药残留。高价购买的“放心蔬菜”却不能放心,可见农药残留之泛滥,针对此现象,如海光电基于表面增强技术,推出了食品中农药残留快速检测方案。蔬菜瓜果中农药残留最常见的是有机磷类农药,例如三唑磷、保棉磷、对硫磷,倍硫磷、乐果等,大部分是用做杀虫剂的,也有一些品种可做杀菌剂、除草剂、灭鼠剂等。目前有机磷农药也是农药工业的主体,在品种的数量、产量和市场占有率方面居于农药的首位。有机磷农药是含磷的有机物,有的还含硫、氮元素,大部分是磷酸酯类或酰胺类化合物。其通式如下:其中R1、R2多为甲氧基(CH3O-)或乙氧基(C2H5O-),X多为烷氧基、芳氧基或其他取代基团,如:有机磷农药进入靶标生物体内可与乙酰胆碱酯酶结合,产生抑制乙酰胆碱水解的作用,而乙酰胆碱作为神经递质大量积聚,可作用于乙酰胆碱受体,同时突触部位的正常神经冲动传导受阻,进一步产生严重的神经功能紊乱。有机磷农药与胆碱酯酶结合生成的磷酰化胆碱酯酶有两种形式。一种结合不稳定,如对硫磷、内吸磷、甲拌磷等,部分可以水解复能:另一种形式结合稳定,如三甲苯磷、敌百虫、对溴磷等,被抑制的胆碱酯酶不能再复能:综上,有机磷农药用作杀虫剂的生物活性作用机理主要是其对靶标生物体内的乙酰胆碱酯酶有强抑制作用,进而抑制乙酰胆碱的水解,引起神经调节功能紊乱,表现为神经异常兴奋,发生异常活动,最后强烈痉挛,致死。传统的食品中有机磷农药残留检测方法是液相色谱、气相色谱及其与其他设备联用等方法检测,由于其定位的使用场景,比如仪器昂贵、体积大、操作复杂,一次只能检测量少,费时费力,目前尚难以满足大批量样品检测的需求。而利用表面增强拉曼的方法,通过提取分离富集等操作步骤,可以对有机磷类农药做快速检出,整个检测过程在15分钟之内即可完成。方法操作简单快捷,并可对多种有机磷类农药进行检测。以下是苹果基质中加标检测谱图:除食品农药残留检测,如海光电还研发了包括减肥保健品西布曲明、保健品那非类药物、兽药残留等多达上百种常用科目快速检测方案,致力于分析与研究、服务与分享,为保健食品安全行业保驾护航!
  • 赛恩思助力长春一汽弗迪,高频红外碳硫仪成为磷酸铁锂样品检测的明星选择
    在新能源汽车领域的快速发展过程中,长春一汽弗迪选择赛恩思高频红外碳硫仪检测磷酸铁锂样品,把控产品质量,赛恩思再次获得新能源企业的青睐。随着电动汽车产业的迅猛发展,长春一汽弗迪作为该领域的重要参与者,一直致力于提升新能源电池技术的研发水平。为了更准确地了解磷酸铁锂电池样品的碳硫含量,弗迪汽车选择了赛恩思高频红外碳硫仪,这是一项集先进技术与卓越性能于一身的检测工具。赛恩思高频红外碳硫仪是一款专为碳硫分析而设计的先进仪器。其高频红外技术不仅能够高效迅速地完成样品检测,而且在保证准确性的同时具有出色的稳定性。这使得该仪器成为磷酸铁锂电池样品检测的理想选择,为新能源电池技术的发展提供了有力支持。赛恩思高频红外碳硫仪再次受到行业认可,成为长春一汽弗迪磷酸铁锂样品检测的得力助手。赛恩思将继续致力产品质量和服务的提升,为新能源汽车和绿色能源领域的发展贡献更多力量。
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 圆满落幕!环境新污染物分析检测创新技术论坛!
    3月2日,天津分析测试协会与仪器信息网联合主办的环境新污染物分析检测创新技术论坛,圆满结束,现场讨论氛围热烈。来自中海油天津化工研究设计院有限公司的王琪主任作为特邀嘉宾,主持出席了本次大会,与此同时,6所天津知名高校的权威专家进行了报告分享。报告嘉宾:汪磊 (南开大学环境科学与工程学院 教授/博士生导师)9:00-9:30,汪磊教授就微纳塑料的检测方法进行了分享,系统介绍了环境微塑料的检测方法开发与应用,并分享了课题组最新的科研进展。 报告亮点:微、纳塑料的定量检测方法缺乏是长期制约其环境行为与风险研究的瓶颈问题。被广泛采纳的“消解-分离-显微计数”检测方法仅能提供微塑料的数量丰度,并且难于对微塑料污染水平和传输通量进行量化。相比之下,质谱检测方法可提供更为准确的质量浓度信息。“原位化学解聚-单体小分子质谱检测-聚合物总量回溯”就是这样一种可准确定量环境中痕量微塑料聚合物的质谱检测新方法。报告结束后,汪磊教授与各位线上听众进行了热烈的现场互动,部分问答如下:Q:汪老师好,食品中微塑料和环境中微塑料检测的差异点有哪些呢,谢谢。A:食品中微塑料如果来源于包装材料,可考虑直接检测包装材料的释放,要简单很多。Q:汪教授好,微塑料的溯源您有研究吗? A:溯源目前没有太成熟的方法,我们做了一个微塑料成分指纹谱用于灰尘中微塑料溯源的工作,正在投稿,但也仅能针对行业溯源,也就是说来自纺织业的和非纺织业的。Q:汪教授您好,可以检测植物的根系和叶片中的微塑料吗?A:可以,但限定聚合物种类。实际环境样品很难测到,通常浓度不高,这部分我们是用的实验室培养的拟南芥,是不同剂量的胁迫,现在用的是荧光微塑料,但是还是想再进一步的进行定量检测。Q:汪老师好,做PLA微纳米塑料的定量时,怎么去考虑纳米塑料与环境微生物或者微生物的作用?以及这种作用对检出值的影响。A:最主要困难是乳酸背景值高,其他的影响不太大;因为加热碱消解加SPE。报告嘉宾:张晓丹 (安捷伦 分子光谱应用工程师)9:30-10:00 , 安捷伦张晓丹老师分享了安捷伦8700 LDIR 激光红外成像——生物体中微塑料全自动快速定性及定量分析,主要介绍了安捷伦公司利用8700LDIR激光红外成像技术。据介绍,该技术开发了专门的微塑料测试全自动解决方案,用户仅需将处理好的样品滴至标准的反射窗片后,软件即可自动完成颗粒的识别、定性测试统计以及粒径统计等。报告嘉宾:刘青 (天津科技大学 博士后/助理研究员)10:00-10:30,刘青老师为我们介绍了植物对有机磷酸酯的转化途径及机理研究,利用高分辨UHPLC-orbitrap-HRMS-MS进行非靶标分析识别了OPEs在植物体内的转化产物。3种OPEs共检测出25种产物,包括羟基化产物、水解产物、还原产物,以及多种结合态产物。Q:刘青博士,有机磷酸酯测定的质量控制如何把控,背景干扰的去除?A:有机磷酸酯的前处理过程尽量避免接触塑料制品,如果是环境样品 我们是有个专门的实验室只做环境样品的分析 前处理的质控我们会用氘代物质做一个回收率的监控。Q:刘青博士,对于低于检出限的有机磷酸酯测定结果,如何定值?A:如果是环境样品监测低于LOD 一般我们就认为是未检出;如果出于统计的目的当 检测值低于MDL时 用 MDL的值 除以 2代替。报告嘉宾:刘宪华 (天津大学 教授)10:30-11:00,刘宪华教授为我们分享了微塑料的分析测试及其环境影响研究。报告亮点:在实际环境中,微塑料和其他污染物的复合污染是普遍存在的环境污染现象,因而研究环境中微塑料介导的复合污染物质与生物体之间的相互作用具有重要现实意义,本报告以微塑料、抗生素和重金属在土壤、水体和沉积物等典型介质中的复合污染为研究背景,介绍了其中涉及的分析测试方法和环境影响表征手段。报告嘉宾:穆莉 (农业农村部环境保护科研监测所 副研究员)11:00-11:30 ,穆莉老师分享了典型纳米材料的环境识别技术及植物风险效应研究报告亮点:针对纳米材料分类、用途及存在的环境问题,介绍典型纳米材料的环境识别技术,包括分离提取技术以及相关的多种检测表征手段,进一步,介绍典型纳米材料属性对植物毒性影响的组学分析技术,为纳米材料科学合理应用提供科学技术支持。报告嘉宾:王捷 (天津工业大学 副院长/教授)11:30-12:00,天津工业大学的王捷副院长,为我们带来了关于膜基微流控耦合系统应用于痕量污染物检测研究的报告内容。报告亮点: 用于监测水中痕量污染物的传统技术存在例如检测成本高、周期长,技术门槛高等问题。因此迫切需要开发简单、廉价和灵敏度高的方法实现环境中有毒环境污染物的高效检测。基于微流控芯片的传感检测平台是近年新兴的检测技术。本报告围绕膜基微流控耦合系统展开研究,通过将不同的功能膜与微流控芯片合理的设计耦合实现不同的检测功能,具有所需样品少、测试时间短、灵敏度高的特点。本会议回放视频将在会议结束后1-3天内上线,可添加助教微信进入交流群。微信:13260310733
  • 23项在研/拟制订!新污染物生态环境监测分析方法标准大气篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与空气废气相关的分析方法标准38项,按编制状态分类,已发布15项、在研2项、拟制订21项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1三氯杀螨醇环境空气 三氯杀螨醇的测定 气相色谱-质谱法A拟制订2多氯萘环境空气和废气 多氯萘的测定 气相色谱-三重四极杆质谱法B在研3六溴联苯环境空气和废气 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订4毒杀芬环境空气 指示性毒杀芬的测定 气相色谱-质谱法(HJ 852-2017)B已发布5有机磷酸酯类环境空气和废气 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订6环境空气和废气 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订7麝香类环境空气 麝香类化合物的测定 气相色谱-质谱法C拟制订8N,N'-二甲苯基-对苯二胺环境空气和废气 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订9甲醛和乙醛苯胺类(邻甲苯胺)固定污染源排气中乙醛的测定 气相色谱法(HJ/T 35-1999)C已发布10环境空气 醛、酮类化合物的测定 高效液相色谱法(HJ 683-2014)C已发布11固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020)C已发布12苯胺类(邻甲苯胺)大气固定污染源 苯胺类的测定 气相色谱法(修订 HJ/T 68-2001)C拟制订增加邻甲苯胺指标和环境空气介质13多环芳烃环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法(HJ 647-2013)C已发布14环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法(HJ 646-2013)C已发布15烷基汞环境空气和废气 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订16硝基苯环境空气 硝基苯类化合物的测定 气相色谱法(HJ 738-2015)C已发布17环境空气和废气 硝基苯类化合物的测定 气相色谱-质谱法C拟制订18邻苯二甲酸酯类环境空气 酞酸酯类的测定 气相色谱-质谱法(HJ 867-2017)D已发布19环境空气和废气 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订20固定污染源废气 酞酸酯类的测定 气相色谱法(HJ 869-2017)D已发布21有机锡化合物(三丁基锡)环境空气 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订22得克隆环境空气和废气 得克隆的测定 气相色谱-质谱法A B拟制订23多氯联苯环境空气 多氯联苯的测定 气相色谱-质谱法(修订 HJ 902-2017)A B拟制订增加固定源废气介质24环境空气和废气 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订25有机氯农药环境空气 有机氯农药的测定 气相色谱-质谱法(HJ 900-2017)A B已发布26环境空气 有机氯农药的测定 气相色谱法(HJ 901-2017)A B已发布27环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法(HJ 1224-2021)A B已发布28二噁英类环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.2-2008)B C在研29多溴二苯醚环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(HJ 1270-2022)A B C已发布30固定源废气 26 种多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订31短链 氯化石蜡环境空气和废气 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订32环境空气和废气 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订33挥发性有机物环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023)A C D已发布34环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法(HJ 644-2013)A C D已发布35固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法(修订HJ 734-2014)A C D拟制订36壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚环境空气 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订37六溴环十二烷双酚 A环境空气和废气 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订38氯苯类环境空气 氯苯类化合物的测定 气相色谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 《食品添加剂标准》允许大米含3种添加剂遭质疑
    日前,有匿名的粮食系统内专家反映,新版的《食品添加剂使用标准》(简称"新标准")中,大米被允许添加包括防腐剂在内的三种添加剂。该专家认为,大米使用防腐剂在工艺上并无必要,按照《食品安全法》应该撤销。   三种物质包括防腐剂   上述专家所指的三种添加剂分别为淀粉磷酸酯钠,功能为增稠剂 双乙酸钠,功能为防腐剂 脱乙酰甲壳素(又名壳聚糖),功能为增稠剂、被膜剂。   根据新标准,淀粉磷酸酯钠使用的范围是粮食和粮食制品,包括大米、面粉、杂粮、块根植物、豆类和玉米提取的淀粉等(不包括原粮及07.0类焙烤制品),用量为"按生产适量使用".   双乙酸钠在大米中的最大使用量为0.2g/kg,但残留量要小于等于30mg/kg.壳聚糖在大米中使用量为0.1g/kg.   尚未发现有企业添加   该专家介绍说,双乙酸钠是防腐剂,在查找有关资料时,没看到国际标准或外国标准里可以用在大米里的情况。   之前有往大米里添加香精或食用油的情况,但都已被禁止或严厉打击。现在大米很干净,"没听说过有大米企业添加双乙酸钠等这三种添加剂的情况。"   长期从事大米研究的河南工业大学粮油食品学院教授周显青也认为,新标准"无法理解".在他接触的大米生产厂家中,也没有用到这三种添加剂的。周显青说,一是没有使用必要,二是增加了厂家成本。   "你说的是什么?"北大荒米业八五九制米厂的李经理昨日听记者提到这三种添加剂时感到有些奇怪,"我们没用过。"   是不是真如专家所说,没有企业在使用这三种物质?记者前日就此向中国疾控中心发去了采访函,但截止到发稿时,未收到回复。   允许使用将埋下隐患   "大米是我国主粮,也都是食品原料,其中允许使用添加剂,应十分慎重。"上述粮食系统内专家说:"食品安全标准允许使用,这无异埋下了隐患。"   根据《食品安全法》规定"食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用的范围".之前,即因无技术必要而撤销了面粉增白剂---过氧化苯甲酰和过氧化钙。   从保证健康的角度,大米一旦被列入允许添加防腐剂,就可能会有人去"钻研",可能有人想到不去控制水分进行保鲜。"粮食应该回到它的天然属性。对添加剂的使用,应该宁缺勿滥。"周显青表示。   ■ 专家释疑   大米加防腐剂是否多此一举?   河南工业大学粮油食品学院教授周显青表示,"大米主要是淀粉、蛋白质和少量脂肪,淀粉和蛋白质相对稳定,在安全水分下,微生物变化非常小。大米可以保持其原有品质,不需要添加任何东西。"   此外,周显青说,这三种物质在防虫上也没有作用。   北大荒米业八五九制米厂李经理也介绍说,按标准,生产时将大米内的水分控制在14.5%以内,就能保证大米在保质期内不生虫,也保证卫生,"所以不需要添加任何东西。"   那么,这三种物质是否应在国家粮食储备上使用?据了解,大米储备粮的保存是以原粮保存,即保存的是稻谷或糙米,因此不受标准影响。   周显青还认为,在实际生产中,大米使用添加剂比较困难,它是颗粒,不像淀粉,很难均匀分布。   ■ 新闻主角   三种添加剂大揭底   解读人:河南工大粮油食品学院教授周显青   双乙酸钠--本身是防腐剂,比较安全。但根据目前掌握的技术,用干燥的方式就可以让水分降到安全储藏水平,微生物很难滋长,正常情况下大米的保鲜在三个月到半年没有问题。   壳聚糖--本身是增稠剂、被膜剂,大米加工成本高,利润又低,所以实际生产中很少使用。粮企有可能将其用于大米表面的被膜或抛光,给大米表面覆一层膜,就像是水果包上了保鲜膜一样,但是这种物质成本高。目前大米的抛光技术,能使表面非常好,没必要使用添加剂。   淀粉磷酸酯钠---本身是一种淀粉的变性产品,有吸水的作用,成本较高。可能用在大米制品譬如汤圆、米粉等。   ■ 市场探访   看包装标志如读天书   "我们一般就看厂家和分量,后面的标签也看不懂。"日前,在北京市朝阳区双井附近的世纪联华超市里,马阿姨和老伴儿来买米。   记者随机询问了几名消费者,他们都不知道大米还能使用防腐剂。   在散装大米周围,没有看到任何标志。而袋装大米的标志则过于专业,让消费者一头雾水。   袋装大米上除了会写明产地外,也会写出执行何种国家标准,比如"执行GB 1354-2009",但没有写大米中添加了什么物质。   记者通过上网查询才知道,"GB 1354-2009"即2009年开始实施的大米国标,规定"生产过程中,除符合GB 5749规定的水之外不得添加任何物质",并且这一规定为强制性条款。   ■ 商家举措   日前,海底捞16家门店正式"亮锅底儿",公示10种食品中所使用的食品添加剂,成为北京首家公示食品添加剂的餐饮企业。   按照北京市卫生局的要求,本月底前,自制火锅底料、自制饮料、自制调味料的餐饮单位应向卫生监督部门备案所使用的食品添加剂名称,并在店堂醒目位置或菜单上予以公示。对于不公示者,将责令整改。同时,对故意非法添加非食用物质的餐饮单位一律吊销餐饮服务许可证,不仅要行政处罚,还要交给公安部门进行刑事处理。
  • 34项在研/拟制订!新污染物生态环境监测分析方法标准固体废物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与固体废物及其他相关的分析方法标准36项,按编制状态分类,已发布2项、在研1项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素固体废物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2固体废物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3固体废物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4固体废物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5固体废物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6固体废物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7固体废物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8固体废物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇固体废物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料生物体 聚乙烯等 4 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订11多氯萘固体废物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订12六溴联苯固体废物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订13毒杀芬固体废物 指示性毒杀芬的测定 气相色谱-三重四极杆质谱法B拟制订14有机磷酸酯类固体废物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订15固体废物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订16麝香类固体废物 麝香类化合物的测定 气相色谱-质谱法C拟制订17N,N'-二甲苯基-对苯二胺固体废物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订18甲醛和乙醛固体废物 醛、酮类化合物的测定 高效液相色谱法C拟制订19苯胺类(邻甲苯胺)固体废物 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法C拟制订20烷基汞固体废物 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订21硝基苯固体废物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订22邻苯二甲酸酯类固体废物 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订23有机锡化合物(三丁基锡)固体废物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订24得克隆固体废物 得克隆的测定 气相色谱-质谱法A B拟制订25多氯联苯固体废物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订26有机氯农药固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017)A B已发布27二噁英类固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.3-2008)B C在研28多溴二苯醚固体废物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订29短链 氯化石蜡固体废物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订30五氯苯酚固体废物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订31挥发性有机物固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法(HJ 643-2013)A C D已发布32壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚固体废物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订33六溴环十二烷双酚 A固体废物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订34全氟 化合物类固体废物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订35固体废物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B C D拟制订36氯苯类固体废物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函   卫办监督函〔2012〕441号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com   二○一二年五月十六日 食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1 食品添加剂 醋酸酯淀粉 2 食品添加剂 磷酸酯双淀粉 3 食品添加剂 氧化淀粉 4 食品添加剂 酸处理淀粉 5 食品添加剂 乙酰化二淀粉磷酸酯 6 食品添加剂 羟丙基淀粉 7 食品添加剂 羟丙基二淀粉磷酸酯 8 食品添加剂 乙酰化双淀粉己二酸酯 9 食品添加剂 氧化羟丙基淀粉 10 食品添加剂 辛烯基琥珀酸铝淀粉 11 食品添加剂 磷酸化二淀粉磷酸酯 12 食品添加剂 淀粉磷酸酯钠 13 食品添加剂 羧甲基淀粉钠 14 食品添加剂 松香甘油酯和氢化松香甘油酯 15 食品添加剂 天门冬氨酸钙 16 食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics ofGlycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2. Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3. Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。 /span /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg" / /p p style=" text-align: center " strong 普渡大学 陶纬国教授 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 磷酸化蛋白突破性发现 /strong /span /p p   通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。 /p p   蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。” /p p   陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。 /p p   那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。 /p p   谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。” /p p    span style=" color: rgb(255, 0, 0) " strong 质谱用于生物大分子检测的思考 /strong /span /p p   陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。 /p p   在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。” /p p   同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。” /p p   现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。 /p p    span style=" color: rgb(255, 0, 0) " strong 整合临床大数据 /strong /span /p p   2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。” /p p   现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。 /p p   目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。” /p p   陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。” /p p   span style=" color: rgb(255, 0, 0) " strong  热衷学界公益事务 出任CASMS主席 /strong /span /p p   作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。” /p p   CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。” /p p   未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。 /p p    span style=" font-family: 楷体,楷体_GB2312, SimKai " strong 后记: /strong 临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。 /span /p p style=" text-align: right " 采访编辑:李博 /p
  • 镉化合物、阻燃剂和二异氰酸酯类物质被添加至美国优先测试列表中
    近日,美国有毒物质控制法案(TSCA)机构协办测试委员会(ITC)将几类化学物质添加至TSCA高度优先级测试列表中。种类包括:   • 镉化合物,包括任何含镉成份的化学物质   • 六种非邻苯二甲酸增塑剂   • 25种磷酸酯阻燃剂   • 2种溴化阻燃剂   • 69种二异氰酸酯类物质以及相关化合物(包括14种EPA行动计划化学物和55种相关化合物)   • 9种危险废弃场附近儿童生活可能受到暴露的化学物质。   EPA解释,此次新增的镉化合物类别将取代此前高度优先测试列表中的103种镉化合物,旨在提供更为全面的途径评估这类物质的安全性。机构协办测试委员会同时从列表中移除了2011年6月至11月期间14种高产量(HPV)挑战项目化学品,这些物质也被包含在EPA2011年10月21日TSCA第四节拟议测试法规中。   经美国有毒物质控制法案第4节(a)和(e)授权,机构协办测试委员会至少每六个月就要对EPA提出建议。目前的ITC报告的评议截止到2012年6月22日。
  • 安捷伦科技公司完成其大规模核酸制造能力扩建
    安捷伦科技公司完成其大规模核酸制造能力扩建 北京,2009年6月23日&mdash &mdash 安捷伦科技公司(NYSE:A )今天宣布,已完成其核酸解决方案部门(NASD)一次重大扩建,从而该公司每年可以生产几百公斤的治疗性寡核苷酸。投入商业运行后,这一生产能力使得安捷伦可以满足客户临床前和临床研究的供求需要。 寡核苷酸疗法是药品研发增长最快的领域之一,NASD产品已被生物制药公司用于药品研发的各个阶段。目前NASD具备一整套灵活的、具有成本效益的生产能力,可以生产从几克到数百公斤的寡核苷酸活性药物成分(API)。这是自2006年安捷伦收购了位于科罗拉多州博尔德的设施之后的第二次扩建,并增建了大规模核酸合成、纯化和干燥的生产能力。 &ldquo 现在我们的设施、设备和专业知识使得我们有足够能力生产一系列的核酸活性药物成分,满足客户不断增长的需求。&rdquo NASD部门总经理詹姆斯&bull 鲍威尔如是说。 安捷伦生产寡核苷酸能力的提升,主要体现在新增加的1摩尔合成器;该合成器能够批量生产以公斤计的活性药物成分。与此生产能力相当的下游加工设备,如色谱分离、超滤法和冷冻干燥等,也已安装完毕。安捷伦针对寡核苷酸市场增长速度最快的领域,客户定制的寡核苷酸共轭化学修饰和siRNA的双链退火制备,也添加了相应的基础设施和反应器。 安捷伦参加了5月17-20日在内华达州拉斯维加斯红岩度假村举办的TIDES国际会议,并带去更多信息。 关于安捷伦的核酸疗法 安捷伦通过其核酸解决方案部门,为生物科技和制药行业提供全球领先的治疗用核酸开发服务以及生产解决方案。该部门在美国科罗拉多州博尔德,设有一个占地33,500平方英尺的符合GMP规范要求的核酸活性药物成分(API)生产设施;该先进设施的治疗用核酸API的年生产能力可以高达数百公斤。依托其世界级的专家团队,该部门有能力生产各种各样的治疗用核酸产品,包括硫代磷酸酯、混合PO/PSs、核酸适体、结合型核酸适体和siRNA 。安捷伦还提供包括分析方法和流程的开发、稳定性研究和法规服务支持在内的一系列承包服务。有关安捷伦核酸解决方案部门的信息,请访问网址:www.agilent.com/chem/nucleicacid。 关于安捷伦科技 安捷伦科技(NYSE:A)是全球领先的测量公司,是通讯、电子、生命科学和化学分析领域的技术领导者。公司的19,000 名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问www.agilent.com。
  • 2013食品国标制(修)订项目承担单位公布
    2013年5月2日,国家卫计委印发《2013年食品安全国家标准项目计划》的通知,通知中列出了所有2013年食品安全国家标准计划项目承担单位,全文如下:   国家卫计委关于印发《2013年食品安全国家标准项目计划》的通知   卫办监督函〔2013〕359号   各有关单位:   根据《食品安全法》和《食品安全国家标准管理办法》规定,我委在向社会公开征求意见的基础上制定了《2013年食品安全国家标准项目计划》,现印发给你们,请认真组织落实。有关工作要求如下:   一、填报项目委托协议书,及时落实食品安全国家标准项目计划   2013年食品安全国家标准计划项目承担单位应当填写《2013年食品安全国家标准制(修)订项目委托协议书》(可从卫生计生委网站http://www.moh.gov.cn下载),打印后由承担单位负责人签字并加盖单位公章(一式五份),于2013年5月20日前报送食品安全国家标准审评委员会秘书处(以下简称秘书处)。逾期未提交协议书的,视为自动放弃标准起草单位和起草人资格。秘书处对协议书进行审核后,于2013年5月31日前报送我委。   二、加强日常管理,确保食品安全国家标准项目及相关经费按时保质执行   (一)项目承担单位和项目负责人要加强食品安全国家标准制定、修订工作的管理,保证项目质量和进度,请于2013年12月30日前向秘书处提交工作中期进展报告和经费使用情况报告,于2014年6月30日前完成任务,向秘书处提交送审材料和经费决算报告。经费决算报告由财务负责人和单位负责人签字并加盖公章。   (二)未按期完成任务提交送审材料的,项目承担单位和项目负责人应当提交说明,并附经费使用情况报告,加盖单位公章后报秘书处。我委将视情况予以通报批评,并根据国家有关财经法规制度,对已拨付的项目经费采取追回等必要的处理措施。   (三)相关省(区、市)卫生厅(局、卫生计生委)、有关单位要支持并督促下属单位承担的项目工作,秘书处要督促检查项目执行情况,确保项 目计划整体进度。   2013050901.doc   2013年食品安全国家标准项目计划 序号 项目名称 制定/修订 建议承担单位 食品产品 1 藻类制品 修订 浙江省疾病预防控制中心 中国水产科学研究院 微生物检验方法 2 食品微生物检验采样与检样处理规程 修订 国家食品安全风险评估中心 理化检验方法 3 食品中B族和G族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 4 食品中M族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 食品添加剂质量规格 5 食品添加剂 4-己基间苯二酚 制定 中海油天津化工研究院 6 食品添加剂 冰结构蛋白 制定 中国食品添加剂和配料协会 7 食品添加剂 刺梧桐胶 制定 中国食品发酵工业研究院 上海市质量监督检验技术研究院 8 食品添加剂 甲基纤维素 制定 中国食品发酵工业研究院 9 食品添加剂 偏酒石酸 制定 天津科技大学 10 食品添加剂 植酸钠 制定 江西出入境检验检疫局 11 食品添加剂 羟基硬脂精 制定 中国食品发酵工业研究院 上海市食品添加剂行业协会 12 食品添加剂 海藻酸钠 修订 黄海水产研究所 中国海藻工业协会 13 食品添加剂 36项香料标准包括: 橙苷(柚皮甙提取物)、橙皮素、丁香花蕾油、根皮素、黄芥末提取物、可可酊、葡萄籽提取物、大蒜油、白兰花油、白兰叶油、红茶酊、玫瑰净油、杭白菊油、罗汉果酊、小花茉莉净油、树兰油、桂花净油、绿茶酊、椒样薄荷油、茶树油、香茅醛(合成)、香茅(精)油、麦芽酚、覆盆子酮(悬钩子酮)、丙酸苄酯、丁酸丁酯、异戊酸乙酯、苯甲酸乙酯、苯甲酸苄酯、2-甲基吡嗪、2,3-二甲基吡嗪、2,3,5-三甲基吡嗪、5-羟乙基-4-甲基噻唑、2-乙酰基噻唑、2,3,5,6-四甲基吡嗪、乙基香兰素 制定 国家食品安全风险评估中心 上海香料研究所 营养强化剂质量规格 14 维生素E琥珀酸钙 制定 广东出入境检验检疫局检验检疫技术中心 15 硝酸硫胺素 制定 景德镇出入境检验检疫局 16 维生素C磷酸酯镁 制定 中国食品添加剂和配料协会 17 生物素 制定 中国食品发酵工业研究院 18 氯化胆碱 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 19 葡萄糖酸亚铁 制定 江西省疾病预防控制中心 20 焦磷酸铁 制定 上海市质量监督检验技术研究院 21 柠檬酸亚铁 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 22 柠檬酸铁铵 制定 广西出入境检验检疫局检验检疫技术中心 23 柠檬酸苹果酸钙 制定 天津出入境检验检疫局动植物与食品检测中心 24 骨粉(超细鲜骨粉) 制定 江苏省疾病预防控制中心 天津科技大学 25 乳酸锌 制定江西省疾病预防控制中心 26 碳酸锌 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 27 亚硒酸钠 制定 张家港市产品质量监督检验所 28 硒蛋白 制定 湖北省疾病预防控制中心 29 富硒食用菌粉 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 30 L-硒-甲基硒代半胱氨酸 制定 江西省疾病预防控制中心 31 硒化卡拉胶 制定 中国食品添加剂和配料协会 32 富硒酵母 制定 中国食品发酵工业研究院 33 DHA(金枪鱼油) 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 34 葡萄糖酸锰制定 广东出入境检验检疫局检验检疫技术中心 35 葡萄糖酸铜 制定 广东出入境检验检疫局检验检疫技术中心 36 5’-单磷酸胞苷 制定 江苏省卫生监督所 37 乳铁蛋白 制定 中国食品发酵工业研究院 38 酪蛋白钙肽 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 39 海藻碘 制定 中国地方病协会 营养与特殊膳食食品 40 运动营养食品通则 修订 中国食品科学技术学会运动营养食品分会 41 孕产妇和乳母用营养补充品通用标准 制定 中国疾病预防控制中心营养与食品安全所 生产经营规范 42 食品用菌种生产卫生规范 制定国家食品安全风险评估中心 43 航空食品生产卫生规范 制定 中国航空运输协会航空食品委员会   国家卫生和计划生育委员会办公厅   2013年5月2日
  • 新品发布|微流路系列再添猛将:HQ-6200正磷酸盐在线分析仪震撼发布!
    新品发布泽铭明星系列HQ-6000微流路分析平台喜迎新成员:HQ-6200正磷酸盐在线分析仪在近日震撼发布!产品介绍泽铭HQ-6200正磷酸盐在线分析仪,依托于泽铭微流路平台,采用高性能比色技术,同时集:宽量程、高灵敏度、超低检出限、快速响应为一体。能做到试剂消耗量少,高效节约所需成本。和6000系列的产品相同,泽铭HQ-6200支持连续、周期、定点方式测定正磷酸盐的浓度,更灵活地满足不同测量需求。同时配备智能清洁系统,让仪器更易于保养,进一步降低运维成本的同时,更能减少仪器的学习成本,让仪器用起来更简单、便捷。应用领域- 电厂、化工、钢铁等行业的冷却水、锅炉系统等监测;- 污水处理厂脱磷工艺等监测;- 环境中的磷酸盐等监测;- 农业灌溉水排放监测/水产品养殖水体等监测;- 湖泊、河流等水体营养盐的科研监测等。产品特色- 泽铭HQ-6200正磷酸盐在线分析仪的测量周期极短:仅需短短5分钟即可完成从样品处理到结果输出的全过程。同时试剂消耗量极少,单次测量为微升级别,可显著减少整体运维成本,为用户带来更加经济高效的监测体验;- 宽量程(0.05-5mg/L PO4-P)(0.5-50mg/L PO4-P)及低检出限(0.02mg/L),可匹配应用于更多使用场景,无论是严格的水体环境监测、精细的工业工程控制、要求严苛的科研等领域都能轻松胜任;- 单次、连续、周期、定点四种测量模式,灵活可设(可编程设计);- 仪器结构合理,模块化设计理念,便于操作、维护和集成。产品参数结语泽铭科技将秉持“科技净化地球”的崇高使命,深耕于水质监测领域的科研阵地,为环保、水务、生态修复、工业、农业等多元领域注入科技力量。我们坚信,技术的力量能够引领未来,通过不断创新的技术解决方案,我们为守护绿水青山、构建美好生态环境筑起坚实的屏障,为地球的可持续未来贡献力量。
  • 欧盟委员会提议限制玩具中的阻燃剂
    2013年7月29日消息,欧盟委员会发布一份拟议草案,将根据欧盟玩具安全指令(Toy Safety Directive ,TSD)对玩具中的阻燃剂引进特定限值。   该要求将在采纳后的18个月后生效,一旦实施,所有进口至欧盟的玩具企业将要求确保其产品中的阻燃剂含量不超过5毫克/千克(ppm),这些物质包括:磷酸三(2-氯乙基)磷酸酯(tris(2-chloroethyl)phosphate ,TCEP)、磷酸三(2-氯-1-甲基乙基)酯(tris(2-chloro-1-methylethyl) phosphate,TCPP),和磷酸三(1,3-二氯异丙基)酯(tris[2-chloro-1-(chloromethyl)ethyl] phosphate ,TDCPP)   美国玩具行业协会(TIA)技术事务高级副总裁称,由于这些物质通常都不会添加到玩具中,因此这些要求只会增加合规成本,实际上不会提高玩具本身的安全性。此外,设置的总含量限制忽略了如暴露和风险等重要因素。欧盟委员会并无正当理由发布这些限制。   TIA将继续提倡科学合理、基于风险、跨越国界的国际玩具安全要求。欧盟目前正在接受有关该草案指令的评议意见 TIA将时刻通知各成员国该提案的发展动态。
  • 上海市净水技术学会发布团团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法(征求意见稿)》
    各有关单位和专家:团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》已完成征求意见稿,现予征求意见。请将意见和建议于 2024年2月7日前反馈至学会秘书处。意见征询期:2024年1月31日~2月7日联系单位:上海市净水技术学会联系地址:上海市杨树浦路855号1楼 邮编:200082联系人: 阮辰旼 13585990831(同微信)邮箱:50706127@qq.com 附件:1、团体标准征求意见稿2、团体标准编制说明3、团体标准征求意见反馈表团体标准征求意见反馈表.docx征求意见稿-水中微生物三磷酸腺苷(ATP)的测定 生物发光法-红头文带附件完整20240131.pdf
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。   本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。   本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。   第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。 关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:   GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)   GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)   GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)   GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)   GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)   GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)   GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)   GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)   GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)   GB 29924-2013 食品添加剂标识通则   GB 29925-2013 食品添加剂 醋酸酯淀粉   GB 29926-2013 食品添加剂 磷酸酯双淀粉   GB 29927-2013 食品添加剂 氧化淀粉   GB 29928-2013 食品添加剂 酸处理淀粉   GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯   GB 29930-2013 食品添加剂 羟丙基淀粉   GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯   GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯   GB 29933-2013 食品添加剂 氧化羟丙基淀粉   GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉   GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯   GB29936-2013 食品添加剂 淀粉磷酸酯钠   GB 29937-2013 食品添加剂 羧甲基淀粉钠   GB 29938-2013 食品用香料通则   GB 29939-2013 食品添加剂 琥珀酸二钠   GB 29940-2013 食品添加剂 柠檬酸亚锡二钠   GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)   GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)   GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)   GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)   GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)   GB 29946-2013 食品添加剂 纤维素   GB 29947-2013 食品添加剂 萜烯树脂   GB 29948-2013 食品添加剂 聚丙烯酸钠   GB 29949-2013 食品添加剂 阿拉伯胶   GB 29950-2013 食品添加剂 甘油   GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯   GB 29952-2013 食品添加剂 &gamma -辛内酯   GB 29953-2013 食品添加剂 &delta -辛内酯   GB 29954-2013 食品添加剂 &delta -壬内酯   GB 29955-2013 食品添加剂 &delta -十一内酯   GB 29956-2013 食品添加剂 &delta -突厥酮   GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮   GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯   GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮   GB 29960-2013 食品添加剂 二烯丙基硫醚   GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)   GB 29962-2013 食品添加剂 2-巯基-3-丁醇   GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)   GB 29964-2013 食品添加剂 二甲基二硫醚   GB 29965-2013 食品添加剂 二丙基二硫醚   GB 29966-2013 食品添加剂 烯丙基二硫醚   GB 29967-2013 食品添加剂 柠檬酸三乙酯   GB 29968-2013 食品添加剂 肉桂酸苄酯   GB 29969-2013 食品添加剂 肉桂酸肉桂酯   GB 29970-2013 食品添加剂 2,5-二甲基吡嗪   GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛   GB 29972-2013 食品添加剂 乙醛二乙缩醛   GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑   GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)   GB 29975-2013 食品添加剂 二糠基二硫醚   GB 29976-2013 食品添加剂 1-辛烯-3-醇   GB 29977-2013 食品添加剂 2-乙酰基吡咯   GB 29978-2013 食品添加剂 2-己烯醛(叶醛)   GB 29979-2013 食品添加剂 氧化芳樟醇   GB 29980-2013 食品添加剂 异硫氰酸烯丙酯   GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺   GB 29982-2013 食品添加剂 &delta -己内酯   GB 29983-2013 食品添加剂 &delta -十四内酯   GB 29984-2013 食品添加剂 四氢芳樟醇   GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)   GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮   GB 29987-2013 食品添加剂 丁苯橡胶   GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)   GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定   GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单   特此公告。   附件:75项食品安全国家标准及BHT第1号修改单.zip   国家卫生计生委   2013年11月29日
  • 监测前沿交流 | 高风险的微污染物——多重人为胁迫增加了大型城市淡水生态系统的风险
    第一作者:陈苗通讯作者:金小伟、徐建通讯单位:中国环境监测总站、中国环境科学研究院图片摘要成果简介近日,中国环境监测总站金小伟教授级高工团队与中国环境科学研究院徐建研究员团队合作在环境领域著名学术期刊Journal of Hazardous Materials上发表了题为“Micropollutants but high risks: Human multiple stressors increase risks of freshwater ecosystems at the megacity-scale”的研究论文。该文研究了大型城市(北京市)淡水生态系统中包含农药、PPCPs、非法药物和工业化学品在内的133种微污染物对不同营养级水生生物的生态风险,考查了不同空间尺度土地利用对生态风险的影响,并利用结构方程模型(SEM)分析了多重胁迫对微污染物生态风险的效应,定量了人类活动和气候条件对微污染物风险效应的相对权重。该结果说明淡水生态系统中微污染物的生态风险不可忽略,气候、土地利用、水文条件等因素均会影响微污染物的生态风险,在进行水域管理时必须综合考虑多重胁迫因素。引言人类世以来,淡水生态系统越来越多的受到人类活动的直接或间接影响。气候变化、水文调节、土地利用和化学污染物是威胁河流生态系统结构和功能的主要因素。同时,随着土地利用和城市化的加剧,许多淡水生态系统正面临着生物多样性丧失和功能改变。除土地利用外,水环境中的有机微污染物也因其普遍分布和潜在的生态风险而引起广泛关注,长期接触微污染物会对水生生物和人类健康构成重大风险。在流域尺度的自然环境中,多种复杂的胁迫因素相互作用,对淡水生态系统造成破坏,很难确定其主要驱动因素。已知有机污染物与城市、耕地等人类土地利用有关,然而,以前的研究侧重于定性探索,缺乏对土地利用与多种微污染物暴露模式或生态风险之间的定量研究。以往对流域微污染物的研究主要集中在环境暴露、毒性和潜在生态风险。部分研究侧重于单一类别微污染物或某类污染物与土地利用之间的定性关系,而忽略了土地利用的多尺度影响。先前的研究没有确定土地利用和气候条件对多类型微污染物风险效应的相对权重。本研究主要关注大型城市淡水系统中微污染物的分布模式、生态风险及其受气候和人类活动的影响效应,特别是土地利用的多尺度效应及多重胁迫的影响,以期为流域尺度水域治理和管控提供有效的保护策略。图文导读微污染物的分布特征图1 北京市地表水中13类微污染物的浓度(a,*:P枯水期;c,e.平水期),不同字母表示显著差异(P有机磷酸酯(OPEs)抗病毒药(ANVIs),枯水期平均浓度分别为483、225和150 ngL−1。不同行政区域和河流中微污染物的分布和相对组成不同。南部区域的浓度明显高于北部区域,这与人类活动和污水处理厂分布显著相关。微污染物的生态风险图2 不同类别微污染物对不同营养级水生生物造成风险的比例(a.枯水期,b.平水期)。根据平均浓度(c)和最大浓度(d)确定的优控污染物(TUs1)在平水期,96.7%、100%和100%区域的藻类、无脊椎动物和鱼类受微污染物的慢性影响,这一比例高于枯水期(分别为41.7%、98.3%和100%)。在平水期,8.3%、33.3%和1.7%区域的藻类、无脊椎动物和鱼类处于高风险,而枯水期的比例分别为11.7%、3.3%和0%。有机磷农药(OPPs,杀虫剂)、三嗪类农药(TPs,除草剂)和OPEs占鱼类、藻类和无脊椎动物风险的最大比例,在枯水期分别占47.9%、46.6%和 56.5%。与平水期相比,不同的是拟除虫菊酯对鱼类风险的占比最大(图2a-2b)。这些结果表明,微污染物是威胁水生生物和生态系统的重要因素。根据微污染物的平均浓度,对其生态风险进行排序(图2c-2d)。18种微污染物被确定为优控污染物,其中高风险和中风险分别有7种和11种。TU分别为445.9、300和182.4的λ-氯氟氰菊酯、六嗪酮和磷酸三(2-乙基己基)酯(TEHP)的风险最大,验证了农药和OPEs的潜在风险。此外,敌敌畏、吡虫啉、毒死蜱和三(1-氯-2-丙基)磷酸酯(TCPP)表现出较高的环境风险。该优控清单有助于管理和控制北京市甚至其他类似大型城市地表水中的微污染物。不同空间尺度土地利用对生态风险的影响图3 枯水期(a、b和c)和平水期(d、e和f)河岸带不同尺度(0.1~15km)内耕地、不透水表面和植被地与藻类、无脊椎动物和鱼类生态风险的关系研究了不同空间尺度土地利用对不同营养级水生生物慢性风险的影响(图3)。当河岸带缓冲区分别超过5 km和2 km时,耕地对无脊椎动物和藻类的慢性风险有显著影响(p)(图3b和3c),平水期影响最大的是缓冲区范围分别为1 km、2 km和5 km(图3e)。对于植被地,所有尺度缓冲区的土地利用(宽度为0.1 km的缓冲区除外)对慢性风险表现出显著的负效应(p和3f)。河岸带缓冲区中大于2 km的土地利用类型对三类水生生物的慢性风险有显著影响,表明太宽泛的河岸带缓冲区范围并不能解释当地的污染状况。在规划土地利用策略时,必须考虑最佳河岸带缓冲区,这有利于以较低成本获得理想的生态效益。图4 结构方程模型显示的气候条件和人类土地利用对藻类、无脊椎动物和鱼类慢性风险的直接和间接效应(a)及相应的直接效应、间接效应和总效应系数(b)利用SEM确定了人类土地利用和气候条件对三种不同营养级水生生物生态风险的直接和间接效应(图4,χ2=14.784,df=17,CFI=1,RMSEA=0.000)。人类土地利用对水质参数(WQPs)和新污染物浓度有显著的正效应,尤其是对NH3-N(标准化路径系数β = 0.40, Pβ = 0.87, Pβ=0.91,PP种优控污染物,该清单可能有助于大型城市的微污染物管理和控制。不同空间尺度土地利用对不同营养级水生生物的慢性风险效应不同,其结果对规划土地利用管理和流域生态保护具有重要意义。多重胁迫因素,包括气候条件、污染排放,尤其是人类土地利用,影响着微污染物的生态风险。在控制流域内的微污染物时,有必要同时考虑这些多重因素。然而,气候变化是一个复杂而长期的影响,它与污染物之间的相互作用可能在短期内不明显。未来的研究可以更多地关注微污染物与长期气候变化之间的相互作用。淡水生态系统中多重压力源的相互作用仍然存在很大的不确定性,在以后的研究中应该重视这些相互作用的机制研究。本项目得到了国家自然科学基金委和国家重点研发计划的资助。
  • 上海市净水技术学会《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》 团体标准项目立项
    各有关单位:根据《上海净水技术学会标准管理办法》,我学会对《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》项目开展了团体标准立项审查,拟同意该团体标准项目立项,并于2023年3月30日至4月7日进行公示。截至目前,公示已毕,未受理疑义反馈,故《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》正式立项,请项目编制组根据立项审查相关意见启动团体标准编制工作。联系人:阮辰旼手机:13585990831邮箱:rcm@jsjs.net.cn上海市净水技术学会2023年4月10日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制