当前位置: 仪器信息网 > 行业主题 > >

野黄芩苷甲酯

仪器信息网野黄芩苷甲酯专题为您提供2024年最新野黄芩苷甲酯价格报价、厂家品牌的相关信息, 包括野黄芩苷甲酯参数、型号等,不管是国产,还是进口品牌的野黄芩苷甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合野黄芩苷甲酯相关的耗材配件、试剂标物,还有野黄芩苷甲酯相关的最新资讯、资料,以及野黄芩苷甲酯相关的解决方案。

野黄芩苷甲酯相关的资讯

  • 标准| 药典委发布“关于勘误黄芩苷标准有关内容的函”
    p style="text-indent: 2em "日前,国家药典委员会官网发布了关于勘误黄芩苷标准的有关内容。更正原文中“鉴别”项目中的“strong二氯化锆/strong”为“strong二氯/strongspan style="color: rgb(255, 0, 0) "strong氧/strong/spanstrong化锆/strong”。全文如下:/pp br//pp span style="font-family: 楷体, 楷体_GB2312, SimKai "各省、自治区、直辖市药品监督管理局:/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "经我委核查,黄芩苷标准[标准编号为WS-10001-(HD-0989)-2002]【鉴别】(2)项中的“然后再滴加5%二氯化镐溶液1滴”应更正为“然后再滴加5%二氯氧化锆溶液1滴”。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "特此勘误,请及时通知辖区内相关企业遵照执行。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " 国家药典委员会/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " 2020年5月7日/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-indent: 2em "strong黄芩苷/strong(Baicalin)是从黄芩根中提取分离出来的一种黄酮类化合物。具有抑菌、利尿、抗炎、抗过敏及解痉等显著的生物活性。黄芩苷还能吸收紫外线、清除氧自由基、抑制黑色素的生成。既可用于医药,也可用于化妆品,是一种很好的功能性美容化妆品原料。黄芩苷也是药典中规定的很多中药饮片和中成药的标准品。/pp style="text-align: center" img style="max-width: 100% max-height: 100% width: 450px height: 140px " src="https://img1.17img.cn/17img/images/202005/uepic/2a16348f-988c-4af8-9b96-2f7dccf9ae63.jpg" title="二氧化锆.png" alt="二氧化锆.png" width="450" vspace="0" height="140" border="0"//pp style="text-indent: 2em "strong二氯氧化锆/strongZrOCl2· 8H2O的作用是用于制造strong二氧化锆/strong,及其他涂料干燥剂、橡胶添加剂等。亦可以做耐火材料、陶瓷釉料和润滑剂。strong二氯化锆/strong的常见形态是结合两个环戊二烯基。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong附:黄芩苷标准品说明书/strong/spanbr//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 624px height: 418px " src="https://img1.17img.cn/17img/images/202005/uepic/bbd85870-0707-482a-b141-6c8215d6ff9b.jpg" title="说明书-1.png" alt="说明书-1.png" width="624" vspace="0" height="418" border="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 592px height: 547px " src="https://img1.17img.cn/17img/images/202005/uepic/e53ebde2-a2c0-4ee2-8644-c434cccd785c.jpg" title="说明书-2.png" alt="说明书-2.png" width="592" vspace="0" height="547" border="0"//pp style="text-indent: 2em "br//p
  • 小柴胡颗粒中黄芩提取物检查项补充检验方法
    5月23日,根据《中华人民共和国药品管理法》及其实施条例的有关规定,《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。小柴胡颗粒,中成药名。为和解剂,具有解表散热,疏肝和胃之功效。主要组成为柴胡、姜半夏、黄芩、党参、甘草、生姜、大枣。小柴胡颗粒中黄芩提取物采用HPLC进行测定,补充方法中将色谱条件、参照物/供试品溶液的制备、测定方法等都有详细的介绍。补充检验方法的起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院。小柴胡颗粒中黄芩提取物检查项补充检验方法(BJY 202304)【检查】黄芩提取物 照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(建议色谱柱的内径为4.6mm,粒径为2.7μm);以甲醇为流动相A,0.5%甲酸为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.6ml;检测波长为270nm。理论板数按黄芩苷峰计算应不低于5000。时间(分钟)流动相A(%)流动相B(%)0~105→2595→7510~4025→5575→4540~5555→8045→20参照物溶液的制备 取黄芩对照药材0.1g,加水煎煮1.5小时,滤过,滤液浓缩至近干,加入50%乙醇溶液25ml,密塞,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,作为对照药材参照物溶液。另取黄芩苷对照品和汉黄芩苷对照品适量,加甲醇制成每1ml各含60µg的混合对照品溶液,摇匀,用0.22μm微孔滤膜滤过,作为对照品参照物溶液。供试品溶液的制备 取本品,混匀,研细,取约1g﹝规格(1)﹞、0.4g﹝规格(3)﹞、0.3g﹝规格(2)、规格(4)﹞或0.25g﹝规格(5)﹞(均相当于含黄芩生药量0.056g),精密称定,置具塞锥形瓶中,精密加入50%乙醇溶液25ml,密塞,称定重量,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,再称定重量,用50%乙醇溶液补足减失的重量,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,即得。测定法 分别吸取参照物溶液与供试品溶液各5μl,注入超高效液相色谱仪,测定,即得。结果判定 供试品色谱中应呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致,且峰4与峰1的峰面积比值应不低于0.10。对照特征图谱5个特征峰中 峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素注:规格(1)每袋装10g;(2)每袋装5g(无蔗糖);(3)每袋装4g(无蔗糖);(4)每袋装3g(无蔗糖);(5)每袋装2.5g(无蔗糖)。起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院
  • 感冒常用药——小柴胡颗粒中黄芩提取物检查项补充检验方法应对方案
    导语5月23日,国家药品监督管理局发布“小柴胡颗粒中黄芩提取物检查项补充检验方法”。小柴胡颗粒是由柴胡、黄芩、姜半夏、党参、生姜、甘草和大枣7味药材组成,具解表散热、疏肝和胃的功效,临床用于外感病,症见寒热往来、胸胁苦满、食欲不振、口苦咽干等。其质量标准收载于《中华人民共和国药典》2020年版一部,法定制法为姜半夏、生姜以70%乙醇为溶剂进行渗漉提取,其余黄芩等5味水煎提取;对于臣药黄芩的质控项目包括薄层色谱鉴别和含量测定两项,但均使用黄芩苷对照品作为参照,存在指标化合物较为单一的问题。现行质量标准的不完善,让一些不法生产企业有机可乘,为降低成本,可能存在添加黄芩提取物进行投料的现象。【1】据相关研究表明:黄芩提取物的主要成分为黄芩苷(含量占85%以上);而黄芩中的黄酮苷为主要的有效成分,包括黄芩苷、黄芩素、汉黄芩苷、汉黄芩素等120种以上,其中前四者含量约占9.0%~20%、0.15%~5.4%、1.7%~4.5%、 0.01%~1.3%,说明两者的物质基础存在明显差异。黄芩药材中掺入黄芩提取物投料或是以黄芩提取物代替黄芩药材投料均为未按法定制法生产,擅自改变小柴胡颗粒的制法,导致其物质基础发生改变,无相应临床数据证实其有效性,存在安全风险。【1】为打击掺入黄芩提取物或将黄芩药材按提取物制法制备后投料生产小柴胡颗粒的违规行为,建标单位建立了黄芩提取物检查项补充检验方法。岛津分析方案分析仪器及色谱柱分析色谱条件柱温:20℃流速:0.6 mL/min检测波长:270 nm进样量:5 µ L流动相:A:0.5%甲酸 B:甲醇岛津复现案例色谱图补充检验方法对照特征图谱峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素使用LC-20AD高效液相色谱仪可以重现标准,对照药材呈现的色谱图峰形良好,主要特征峰均有检出,出峰顺序与标准对照参照图谱一致,各峰实现良好分离,黄芩苷峰理论板数达到190000,满足标准系统适用性要求(应大于5000)。供试品溶液色谱图呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致。综上所述,岛津仪器+色谱柱方案可以满足标准检测要求,供相关检测单位参考。参考文献:[1]乔莉,简淑仪,赖竹仪,李华,黄俊忠.超高效液相色谱法检测小柴胡颗粒中掺入的黄芩提取物[J].中国药事, 2023,37(04):450-460. DOI:10.16153/j.1002-7777.2023.04.012.本文内容非商业广告,仅供专业人士参考。
  • 甘肃开展药品检查:停产5家药企 没收4家GMP证书
    今年9月,省食药监局对省内16家、省外2家药品制剂、中药饮片、医用氧生产企业开展了集中飞行检查及延伸检查,发现缺陷问题和风险隐患113项,现场抽样28批次,限期整改16家,责令停产整顿5家,收回药品GMP(药品生产质量管理规范)证书4家。为强化问题整改,日前省食药监局对风险隐患较为突出的12家药品制剂生产企业法定代表人、企业负责人、生产负责人、质量负责人、质量受权人进行集体约谈告诫。其中,武威天利医药有限公司中药饮片厂生产的假药(批号为20160801的柴胡)被移交公安部门。 据悉,被收回GMP的4家药企为靖远爱新气体有限公司、陇西县百宝药业有限责任公司、陇西县志奇中药材加工厂、武威天利医药有限公司中药饮片厂。 其中,靖远爱新气体有限公司原料管理混乱,工业氧和医用氧混存,用于分装医用氧的液态氧购进渠道混乱;质量受权人不能有效履职,非质量受权人代签放行产品;部分产品无批生产记录,液态氧购进量、生产量和销售量失衡;气瓶未按规定定期检验,存在安全隐患;供货商审计档案不健全;化验室使用的容量仪器未校准;气瓶的储存条件不符合规定;对重复使用的部分气瓶充装前未对瓶体进行清洁消毒。 陇西县百宝药业有限责任公司物料管理混乱;生产过程混乱,批生产记录不完整,无法反映生产过程,购进量、生产量和销售量失衡;检验制度不有效落实。 陇西县志奇中药材加工厂仓储区内的原料无质量状态标示;原版空白的批生产记录生产管理负责人和质量管理负责人未严格审核;质量管理部门未与物料供应商签订质量协议,无法明确双方所承担的质量责任;擅自出租厂区场地、库房,用于他人加工中药材,存在混淆等质量安全、消防安全风险隐患,扰乱生产市场秩序;此外,该厂2016年生产的黄芪、黄芩、党参、当归、防风等5个品种34批(次)生产检验记录,部分数据、图谱等缺乏真实性和可追溯性。 武威天利医药有限公司中药饮片厂现场抽验批号为20160801的柴胡,检验结果性状不符合规定,为假药;甘草、黄芪等原料及成品检验未按药典规定全检,黄芪检验存在套用色谱图的问题;2015年7月之前对原药材均未留样;成品库中50kg包装的批号为20160201、20160301的黄芪,50kg包装批号为20130101的甘草包装袋上无品名、批号、规格、产地等标识,不能有效证明产品的真实来源;企业供应部电脑账目显示独活库存为312kg,但在库房内未发现实物。
  • 想用户之所想,节省成本和时间-东西分析HPLC,半制备兼分析
    高效液相色谱仪具有高分辨率、高灵敏度、速度快,色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、天然产物化学、食品分析、医药研究、环境分析、无机分析等各种领域。 东西分析从用户角度出发,研究、生产的高效液相色谱仪(HPLC)通过更换流通池,实现对样品的分析及少量样品的制备的功能,一机两用,为用户节省更大的成本和时间,广泛应用到物质的定性、定量分析及少量样品的制备,如药物和少量天然产物的半制备分析、有机物转化产物(中间体)分离纯化,新兴有机污染物及其代谢转化产物的分离富集和纯化,复杂基质(沉积物、生物样品等)的前处理净化等。LC-5520分析兼半制备高效液相色谱仪微机反控,轻松实现分析条件设置;积木式结构设计,立体式柱温箱;可快速实现分析型与半制备液相的互换;可连接柱后衍生,可兼容UV\ELSD等检测器。高性能可变波长紫外-可见光检测器抑制示差拆光技术,保证低噪声和漂移;多波长10段时间程序编程,全波段停泵扫描,可精确选择波长。高精度立式柱温箱可容纳任意两根分析色谱柱,可安装半制备色谱柱;色谱柱安装更换更人性化,兼顾了半制备色谱柱的安装需求。高压输液泵双柱塞往复式大冲程高压泵,精度高,流量范围宽;程序控制实现双泵的梯度洗脱 具有柱塞杆在线自动清洗功能。色谱工作站中英文界面,更好地满足国内外用户需求;强大的数据处理功能,可实现各种定量算法;记录谱图原始采集数据及相关信息,遵循GLP规范。应用案例紫外检测器测定多环芳烃图1 16种多环芳烃标样谱图(3ug/mL)色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN和H2O(梯度洗脱) 紫外检测器:多波段时间编程紫外检测器测定铁皮石斛中甘露糖图2 铁皮石斛中甘露糖的测定谱图 色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN-0.02mol/L:NH4OAc:20:80 检测波长:250nm 紫外检测器测定工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸图 3 工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸测定谱图色谱柱:Inertsil C18 4.6 mm×250mm 流动相:MeOH-0.02mol/L HOAc 1:9 检测波长:254nm紫外检测器测定双黄连口服液中绿原酸和黄芩苷图4 双黄连口服液中绿原酸和黄芩苷的测定谱图流动相:ACN-0.4%H3PO4 梯度洗脱 色谱柱:Inertsil C18 4.6mm×250mm 检测波长:324nm 紫外检测器测定盐酸头孢噻呋注射液中盐酸头孢噻呋图5 盐酸头孢噻呋注射液中盐酸头孢噻呋的测定谱图色谱柱:Inertsil C18 4.6mm×250mm 流动相:H2O-ACN-TFA(950:50:1200:800:1); 检测波长:254nm 蒸发光散射检测器测定黄芪甲苷图6 250ppm黄芪甲苷标准品测试谱图色谱柱:Inertsil C18 4.6x250mm 流动相:35%ACN流速:1mL/min 进样量:20uL漂移管温度:70℃ 气体流速:900mL/min蒸发光散射检测器测定齐墩果酸、熊果酸图7 50ppm齐墩果酸和100ppm熊果酸标样测试谱图色谱柱:Inertsil C18 4.6×250mm 流动相:MeOH-0.2%HOAc(88:12) 流速:1mL/min 进样量:20μL漂移管温度:60℃ 气体流速:900mL/min蒸发光散射检测器测定银杏叶提取物图8 银杏叶提取物标样测试谱图色谱柱:Inertsil C18 4.6×250mm流动相:MeOH-THF-H2O(25:10:65)漂移管温度:65℃ 气体流速:900ml/min 进样量:20uL 样 品:银杏内酯A 236ppm 银杏内酯B 92ppm银杏内酯C 176ppm 白果内酯 252ppm
  • 助力新冠诊疗|防风通圣丸的测定
    在新型冠状病毒肺炎诊疗方案(试行第五版 修正版),中医治疗项下,防风通圣丸被推荐用于治疗处于医学观察期的患者。防风通圣丸具有解表通理,清热解毒之功效。主治外寒内热,表里俱实,恶寒壮热,头痛咽干等。在此参照《中国药典》中防风通圣丸的含量测定,使用日立高效液相色谱仪Primaide进行测定。图1.分析测定条件 图2. 标准品测定结果 图3. 重现性实验结果 取50mg/L黄芩苷标准溶液,重复测定6次,保留时间和峰面积的RSD分别是0.04%和0.19%,均获得了良好的重现性。 图4. 标准曲线 黄芩苷标准溶液在1.00mg/L~200mg/L浓度范围内获得了R2 = 1.0000的良好线性关系。 图5. 系统适用性结果 取50mg/L黄芩苷标准溶液进行系统适用性测试,结果远优于药典规定值。图6. 样品前处理过程样品 图7. 防风通圣丸的测定结果前图8. 含量测定结果 对市售防风通圣丸中黄芩的含量进行了测定,以黄芩苷计算,每1g样品含黄芩苷9.6mg,符合药典的规定值。并在样品中添加了黄芩苷标准品,进行加标回收率的测定,回收率为102.8%~103.6%,证明该测定方法准确可靠。关于日立高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。 处理方法
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、显微镜、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法鸡新城疫活疫苗-2023.10.2359禽用灭活疫苗中非法添加禽腺病毒Ⅰ群全病毒抗原检测方法禽用灭活疫苗-2023.10.2360禽用灭活疫苗中非法添加禽流感病毒抗原检测方法禽用灭活疫苗禽流感病毒抗原2017.6.12农业部公告第2538号61清瘟败毒片中非法添加三磷酸核苷竞争性抑制剂(GS-441524)检查方法清瘟败毒片三磷酸核苷竞争性抑制剂(GS-441524)2024.6.19农业农村部公告第801号参考自农业农村部官方网站:http://www.xmsyj.moa.gov.cn/zcjd/202403/t20240321_6452006.htmhttp://www.xmsyj.moa.gov.cn/gzdt/202406/t20240619_6457458.htm
  • 高效液相色谱监测中药的发展现状及前景
    中药的成分非常复杂,以往常用的薄层色谱等方法因其精密度、准确度、灵敏度、重现性差而不能满足现代中药的需要。高效液相色谱正是以其稳定、可靠、高效的特点成为中药研究的最重要的分析方法。目前高效液相色谱已经广泛应用于生物碱、皂苷、黄酮、蒽醌、香豆素等各种中药有效成分的测定。近年来对高效液相色谱监测中药的研究非常多,由于高效液相色谱集经典液相色谱和气相色谱的优势于一身,无论柱效、选择性还是分析程度都达到或超过了它们,近年来对高效液相色谱的不足之处进行了改进,使这项技术日臻完善。1、高效液相色谱发展近况  高效液相色谱在药物分析中的应用,主要考虑试样的预处理和分析柱、检测器的选择。在试样的预处理上,日前兴起的固相(微)萃取使得许多含量低的成分得到精制提纯,从而适于高效液相色谱的测定,而孙新国采用逆流萃取测定川芎嗪含量取得了很好的效果。中药中有些紫外吸收弱,或无特征紫外吸收的成分,直接用高效液相色谱测定,其灵敏度和分离度都不尽人意,利用柱前或柱后衍生化法可使这些成分较精确地测定出来。对于极性大、脂溶性差物质,在YWGCl8柱上不易保留,用十二烷基磺酸钠作为离子对试剂,降低其极性,延长柱上的保留时间,取得较好的分离较果。将液相色谱和质谱这两个强有力的分析技术在线连接在一起,经过三十年的发展已成为一项较为成熟的分析手段,但是它从形成伊始就存在着问题:从液相色谱流进质谱时,流动相的变化、溶剂的组成、高温高压离子化的问题制约着这种联用技术发展,大气压离子化接口具有去除溶剂和离子化的双重功效,它的引入,使得该技术在各个领域得到了广泛的应用。电喷雾离子源是一种软电离技术,一般只生成(M H) 和(M-H)-两种分子离子峰,选择性监测(mz)190的负分子离子峰,具有较高的灵敏度、准确度、专一性,满足了低浓度药物研究的需求。由张莉等人研究的三维高效液相色谱法可以同步测定葛根素和阿魏酸两种指标。通过实验证明:如果选择合适的柱温等色谱条件,乙醇作为反相高效液相色谱流动相,分析中药及中成药中有效成分,既安全又准确。结构相似的物质,普通的检测器难以检测出来,高效液相色谱-电化学法可以有效地测定黄连粉中仅差一个基团的黄芩苷和黄芩素的含量。样品经色谱柱分离后收集,再经荧光分光光度计测荧光强度,影响因素多,测定复杂,改进后的高效液相色谱-荧光法则可以不经衍生化和收集分离物,只经化学处理除杂,浓缩后直接进样即可。用该法测定贯叶连翘中金丝桃素的含量也取得了较好的结果。高效液相色谱-示差折光测黄芪精口服液中黄芪甲苷的含量也都取得了较为满意的结果。对于只有紫外末端吸收,用紫外检测时灵敏度低,基线易漂移,示差折光检测其易受外界条件干扰,蒸发散射检测器能克服以上不足,响应值只与样品质量有关,其信号相应与质量成正比,不同化合物,质量相同则信号相应基本一致。蒸发光散射检测法是基于不挥发样品分子对光的散射程度与其质量成正比,与其所含基团性质无关。只要选择适当的检测器参数,便可使流动相和溶剂完全气化,不产生信号,而样品中的各个组分以不挥发粒子存在,对光有散射,以被检测出来。因此,蒸发光散射检测器可用于含不同基团的多组分同时分离、分析。和紫外、荧光等方法相比,蒸发光散射检测法对不同物质有近似相同的响应因子,  因而不出现低浓度、高响应或高浓度、低响应的现象,有利于不同比例混合物的准确测定.高效液相色谱-蒸发光散射检验法测定银杏叶中萜类内酯含量、红参及育精胶囊中人参  皂苷Rg1和Re的含量和藤黄中藤黄酸含量都得到了很好的结果。2、高效液相色谱的研究动向  2.1缩短分析时间,提高分离效率。应用先进的检测仪器和方法,对流动相、固定相进行调节或改变,采用梯度洗脱、柱切换技术有望解决这个问题。梯度洗脱的高效液相色谱法,能分析较宽极性范围的样品,较等度洗脱具有很大的优势,但对于成分更复杂、极性范围更宽的中药样品则有些力不从心。多柱高效液相色谱法又称多维高效液相色谱法。除具有梯度洗脱一样的改变流动相浓度的优点外,还可以改变固定相种类、键合度、粒径、柱长、柱径等及流动相种类、浓度等。  2.2进一步向自动化、智能化及联用技术上发展。液相色谱与质谱联用在国外已成为测定低浓度生物药品中药物及代谢物的首选方法,LC-MS-MS法测定血浆中HIV-1蛋白酶,准确高效,血浆中残留的内源性组份和其他药物不干扰测定,既节省材料又节约时间。已经应用于体液、血浆、血清中的药物分析。中药复方注射液“清开灵”中的胆酸类物的分析采用液相色谱质谱质谱联用,效果理想。高效液相色谱-核磁共振联用在药物分析方面的作用很不错。新近提出的智能多柱高效液相色谱系统利用切换技术的模块式分离性能,把样品分块的切换进不同性质的色谱柱,再用合适的流动相洗脱。全过程采用智能化控制。3、高效液相色谱在中药分析中的应用前景  中药研究的大趋势是全成分分析,通过对从单味药到复方的不同配伍、煎煮时间等的研究,才能发现中药中化学成分的变化规律,找到中药机理之间的有机联系。中药成分繁多,且各种成分的性质遍布所有极性段、酸碱范围。实现多成分分析的最简单途径即在一根足够长的色谱柱上,采用温和的流动相,在足够久的时间内洗脱。但这与现代分析要求的简便快速相违。通过大量的应用研究表明,高效毛细管电泳在分析中药成分,尤其在分析高极性化学成分方面有较大优势,在分析大量的复方制剂方面显示了较高的能力。由于毛细管几乎不会出现高效液相色谱分析中常出现的柱床污染现象,而且用过的毛细管柱只需很短的时间进行冲洗后,即可以进行第二个样品的分析,快速高效且分辨率很高。新兴的毛细管电色谱是集高效液相色谱和毛细管电泳优势于一身的一种新型电分离微柱液相色谱技术,它是将高效液相色谱的多种填料微粒移到毛细管中,以样品与固定相间的相互作用作为分离机制,以电渗流为流动相驱动力的色谱过程。最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速、选择性好、灵敏度高等优点,建立更加系统的成分分析方法。通过与质谱联用、梯度洗脱、柱切换技术、配合先进的检测技术,以及与分子生物学、现代分子药理学相结合,必将在中药分析中发挥很大作用。
  • 上榜!迪马色谱柱入选多个中药配方颗粒国家药品标准
    中药配方颗粒是由单味中药饮片经水提、分离、浓缩、干燥、制粒而成的颗粒,在中医药理论指导下,按照中医临床处方调配后,供患者冲服使用。中药配方颗粒的质量监管纳入中药饮片管理范畴。按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,国家药典委员会组织相关企业开展中药配方颗粒品种试点统一标准研究,并组织专家开展标准审评工作。 NEWS  2021年4月29日,国家药典委员会发布《关于执行中药配方颗粒国家药品标准有关事项的通知》:   经国家药品监督管理局批准,首批160个中药配方颗粒国家药品标准已正式颁布,将于2021年11月1日正式实施,现在我委网站予以转发,并就有关事项通知如下: 迪马色谱柱入选多个中药品种   在国家药典委员会发布的首批160个中药配方颗粒国家药品标准中,炒牛蒡子、川牛膝、干姜、黄芩、酒黄芩、酒女贞子、牛蒡子、女贞子、山楂(山里红)等多个品种推荐使用迪马科技液相色谱柱,现将部分品种汇总如下,供广大中药配方颗粒分析工作者参考。 160个中药配方颗粒如下:备注:以上红框标注品种推荐使用迪马液相色谱柱。
  • 第六届普析通用杯药物分析优秀论文获奖名单公布
    p  strong仪器信息网讯/strong 2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会于2015年10月20-21日在北京前门建国饭店隆重召开,100余名来自于药物分析领域的专家、学者参加了此次会议。出席本次会议的嘉宾有:中国食品药品检定研究院副院长王佑春、北京普析通用仪器有限责任公司总经理田禾、副总经理王峰、中国药学会药物分析专业委员会原主任委员田颂九、中国食品药品检定研究院中药民族药检定所所长马双成、澳门大学药学院副院长李绍平、上海市药品检验所副所长陈桂良、药物分析杂志主编金少鸿、浙江大学药学院曾苏、中国药学会副理事长兼秘书长丁丽霞,药物分析杂志编委会主任粟晓黎等。金少鸿研究员主持了此次会议的开幕式和闭幕式。本次优秀论文评选颁奖活动是在中国科协和中国药学会的支持下,以精品科技期刊工程项目为指导目标,以表彰近两年药物分析优秀论文为主题形式。/pp style="TEXT-ALIGN: center"img title="IMG_7669金少鸿_meitu_1.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fe802379-e1cb-4bd6-a35a-89b7ff8e9970.jpg"//pp style="TEXT-ALIGN: center"金少鸿研究员致词/pp style="TEXT-ALIGN: center"img title="IMG_9790_meitu_8.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2770d3fb-9cd5-487c-af39-bc9d464927de.jpg"//pp style="TEXT-ALIGN: center"中国食品药品检定研究院副院长 王佑春/pp  王佑春谈到,全国药物分析优秀论文评选活动是《药物分析杂志》组织的学术活动之一。2004年中国药品生物制品检定所(中检院前身)与北京普析通用仪器有限公司签署了合作协议,共同组织优秀论文评选活动,表彰在药物分析专业科研工作中敢于创新、成绩优秀的作者。从2004年起,每两年举办一次。全国药物分析杂志优秀论文评选交流会是药物分析学科领域重要的学术活动之一,是药物分析研究工作者显示成果的舞台。历届优秀论文评选会议无论是投稿、文章评审、还是现场评奖均得到了药物分析专业领域作者、专家的积极参与。这个活动也推动了我国药物分析学科的成熟与发展。/pp style="TEXT-ALIGN: center"img title="IMG_7662丁丽霞_meitu_3.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/5321410c-7731-440a-92f6-f42c787aceda.jpg"//pp style="TEXT-ALIGN: center"中国药学会副理事长兼秘书长 丁丽霞/pp style="TEXT-ALIGN: center"img title="田禾_meitu_10.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2d50c596-3f73-4298-a141-59ef35c917a1.jpg"//pp style="TEXT-ALIGN: center"北京普析通用仪器有限责任公司总经理 田禾/pp  田禾讲到,十分高兴能够作为仪器厂家,为药物分析工作者在实际工作中提供一些保障和支持。中国的分析仪器产业相比于国外还存在一定的差距,普析通用作为一家国内领先的民营企业,深深地感受到国外品牌带来的冲击和压力。但是,中国一定要发展自己的分析仪器产业,这样才能更好地服务于国内的分析行业工作者。药物分析杂志与普析通用合作举办的“全国药物分析优秀论文评选”活动,一方面可以很好地了解国内分析仪器在药物工作者中的使用情况 另一方面也可以帮助企业提高其仪器的整体研发技术水平,继而促进中国分析仪器产业的提升。/pp style="TEXT-ALIGN: center"img title="IMG_7689王峰_meitu_2.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/a92662b4-9fc1-438b-b805-9d3b62152193.jpg"//pp style="TEXT-ALIGN: center"北京普析通用仪器有限责任公司总经理 王峰img title="ceng.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/bffee579-7a47-467a-826d-4bda7b26037e.jpg"//pp style="TEXT-ALIGN: center"药物分析杂志副主编 曾苏/pp style="TEXT-ALIGN: center"(浙江大学药学院、中国药学会药物分析委员会副主任)/pp  曾苏谈到,为了奖励近年来药学工作者在药物分析领域所做的贡献,进一步推动我国药物分析学科发展,中国食品药品检定研究院专门在2015年工作计划中,列入了2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会。评选范围确定为征集会议投稿和2013~2014年在《药物分析杂志》上已发表的文章。截止到2015年9月,接收会议投稿近60篇。近两年在《药物分析杂志》上已发表的论文960篇。/pp  此次论文评选的主体范围从以下方面进行筛选,体现导向性:/pp  1、 药物分析新理论、新技术、新方法研究;/pp  2、 现代分析技术在药物分析中的应用研究;/pp  3、 新药质量标准的建立及药物质量再评价研究;/pp  4、 药物原料、制剂及新剂型的研究;/pp  5、 药用辅料、药包材和医药材料质量分析;/pp  6、 药物活性、药物毒性分析研究;/pp  7、 药物分析检测质量控制方法技术研究;/pp  8、 药物代谢动力学、生物利用度等研究;/pp style="TEXT-ALIGN: center"img title="IMG_9784_meitu_15.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/267a0377-476a-443e-8309-151eee36765e.jpg"//pp style="TEXT-ALIGN: center"大会现场/ppstrong部分参会报告:/strong/pp style="TEXT-ALIGN: center"strongimg title="IMG_9825_meitu_3.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c6f4aafc-f2f7-42df-9a05-5e4225ae5442.jpg"//strong/pp style="TEXT-ALIGN: center"范昌发报告题目 《C57-ras转基因小鼠模型的建立》/pp  中国食品药品检验研究院范昌发通过PCR方法克隆人的原癌基因c-Ha-ras,全长6.5 kb,含有4个外显子,以及该基因本身的启动子、调控序列和poly A信号序列 并将其通过原核注射注入C57BL/6J小鼠受精卵雄原核。同时,通过PCR,real-time RT PCR和反转录cDNA测序比对等手段鉴定c-Ha-ras基因的插入和表达,并结合病理切片分析自发肿瘤的发生。/pp  范昌发表示,通过该实验,成功建立了C57/B6J背景的人类c-Ha-ras转基因小鼠模型。该C57-ras转基因小鼠的制作和用途已申请专利,这是我国首个以临床前药物致癌性实验为目的的c-Ha-ras转基因小鼠,也是在我国建立符合ICH规范的、拥有自主知识产权的临床前药物安全性致癌评价替代方法体系的基础。/pp  img title="IMG_9730_meitu_4.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/4bc5f0e1-6c73-4460-aa0f-0ebca8160cc6.jpg"//pp style="TEXT-ALIGN: center"孙煌报告题目 《核磁共振和液相色谱—质谱法对多索茶碱未知杂质的结构分析》/pp  黑龙江省药品检验所孙煌应用HPLC-MS/MS、核磁共振(1H-NMR、13C-NMR、HMBC)技术,对多索茶碱及其未知杂质进行结构分析,并首次发现并确定多索茶碱未知杂质的结构。该方法可为多索茶碱的质量控制提供依据。/pp style="TEXT-ALIGN: center"img title="IMG_9646_meitu_5.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c2a99326-3788-4611-b027-eb33e2e8f1c7.jpg"//pp style="TEXT-ALIGN: center"赵琰报告题目 《基于黄芩苷单克隆抗体的ELISA快速检测方法的建立》/pp  北京中医药大学赵琰以制备出的黄芩苷特异性单克隆抗体为基础,选择单抗最佳工作浓度,建立了黄芩苷间接竞争酶联免疫分析方法,并应用此方法检测精制清开灵注射液中的黄芩苷含量。采用该方法检测精制清开灵注射液中黄芩苷的含量,所得结果与HPLC一致。从而为含黄芩苷的中药材及复方的质量控制分析提供了更加快速灵敏的检测方法。/pp style="TEXT-ALIGN: center"img title="IMG_9812_meitu_6.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2c5004d0-0ca4-4c54-87d8-609b66f729cd.jpg"//pp style="TEXT-ALIGN: center"颁奖现场/pp style="TEXT-ALIGN: center"img title="IMG_7721_meitu_16.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fb264ce6-e8c9-4816-b9fa-331cdd8d4d9b.jpg"//pp style="TEXT-ALIGN: center"参会代表合影/ppstrong附获奖名单:/strong/pp style="TEXT-ALIGN: center"img title="截图00_meitu_9.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/e500d708-53e7-4f31-8c01-dd5995a04d4c.jpg"//p
  • 第十二届全国生物医药色谱及相关技术学术交流会圆满闭幕
    p  strong仪器信息网讯 /strong2018年4月18日,历经两天的学术交流,“第十二届全国生物医药色谱及相关技术学术交流会”在贵阳圆满闭幕。香港浸会大学蔡宗苇教授、中国农业科学院质量标准与检测技术研究所王静研究员、西北大学郑晓晖教授、广西师范大学赵书林教授、贵州医科大学高秀丽教授,以及岛津、赛默飞两家企业的代表作大会特邀报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/52a28e7e-5083-4031-97a6-9a17375b3eb9.jpg" title="蔡宗苇_副本.jpg"//pp style="text-align: center "strong报告人:香港浸会大学蔡宗苇教授/strong/pp style="text-align: center "strong报告题目:PM2.5致大鼠肺损伤作用/strong/pp  报告介绍课题组对太原地区PM2.5中多环芳烃(PAHs)和硝基多环芳烃(NPAHs)的浓度水平、源解析、健康风险进行分析,发现太原市冬季PM2.5污染较严重,PM2.5引起的炎症反应、线粒体损伤和脂质过氧化是PM2.5致大鼠肺损伤的重要调控机制。此外,课题组通过开展PM2.5对肺氧化应激的研究,揭示DNA损伤修复基因和DNA损伤应激基因在PM2.5和NPAHs诱导肺DNA损伤中的调节机制显示PM2.5载有的NPAHs对PM2.5致肺DNA损伤效应有毒性贡献。而活性氧(ROS)/ 活性氮 (RNS)引起的氧化应激与线粒体损伤之间的关系还有待于进一步研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d1db3974-ed7f-402b-b51f-19fdfe19f9aa.jpg" title="IMG_6430_副本.jpg"//pp style="text-align: center "strong报告人:中国农业科学院质量标准与检测技术研究所王静研究员/strong/pp style="text-align: center "strong报告题目:高风险农药助剂的分析方法与消解行为/strong/pp  农药助剂作为农药制剂的必要组成成分,其安全性日益受到关注。APxEOs和PPxEOs这两类助剂的大量使用,对生态环境、食品安全和人体健康构成高风险,因此,有必要开展农产品和产地环境中这两类助剂的分析方法、污染水平和环境行为研究。课题组建立了基于超临界流体色谱-串联质谱法(SFC-MS/MS)的农产品和产地环境中这两类助剂残留的检测方法,并采用模拟试验研究它们在种植过程的消解、转化等环境行为,从而为这两类助剂的安全合理使用、有效控制和科学管理提供技术支撑。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2844a97b-501b-4988-9cc0-e8aa6c98cd6a.jpg" title="郑晓晖_副本.jpg"//pp style="text-align: center "strong报告人:西北大学郑晓晖教授/strong/pp style="text-align: center "strong报告题目:药物-机体复杂巨系统中生命效应分析科学体系的构建与应用/strong/pp  药物-机体相互作用形成的复杂巨系统之复杂性造成效应物质难以辨识问题不仅严重阻碍了新药研发的进程,也给现代分析技术带来了巨大的挑战。针对上述难题,团队提出并建立了药物-机体开放复杂巨系统的因果相关数理模型,以及分析药物-机体复杂巨系统中数据所蕴涵的元素间的双向因果关系。进而发展靶-药识别组合受体色谱功能辨识技术,对复杂巨系统中的复杂活性信息进行准确分析及特异性活性筛选,结合化学分子结构辨识及生物活性功效辨识,完成核心效应物质的精筛,从而构建了中药有效成分群辨识技术体系。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/aaedf802-b737-4e25-8ebb-4b26f97da82d.jpg" title="赵书林_副本.jpg"//pp style="text-align: center "strong报告人:广西师范大学赵书林教授/strong/pp style="text-align: center "strong报告题目:微芯片电泳免疫和手性分析用于药物和疾病标志物检测/strong/pp  微芯片电泳免疫和手性分析技术,以其快速、高效、灵敏度高、选择性好、成本低、样品消耗量少等优点, 越来越受人们的关注。要满足临床人体液中微量药物和疾病标志物的检测,必需将微芯片电泳免疫分析技术与高灵敏的检测技术相结合。为此,课题组研制了一套微流控芯片电泳-激光诱导荧光、化学发光检测多功能分析仪,发展了一系列微流控芯片电泳激光诱导荧光、化学发光检测-免疫和手性分析新方法,并应用于药物和疾病标志物检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/bf420132-d8e6-4789-8596-f1d9106c8e39.jpg" title="高秀丽_副本.jpg"//pp style="text-align: center "strong报告人:贵州医科大学高秀丽教授/strong/pp style="text-align: center "strong报告题目:药用辅料PEG对黄芩苷体内吸收的影响/strong/pp  黄芩苷是从唇形科植物黄芩的干燥根中提取的一种黄酮类化合物,具有广泛的药理活性和临床治疗作用,也是大多数中药复方制剂中的有效成分,但却由于其溶解性不好,导致其口服生物利用度降低,口服吸收差。课题组曾采用HPLC、UPLC-MS/MS等分析方法展开研究,揭示药用辅料PEG可能促进了黄芩苷在大鼠体内的吸收。基于此,课题组利用UPLC-MS/MS分析方法和原位灌注模型进一步探究PEG400对黄芩苷在大鼠胃肠吸收的影响,系统研究药用辅料PEG对黄芩苷体内吸收的影响,并揭示该影响作用的规律和机理,为解决中药黄芩苷口服吸收差的难题、辅助设计更好的黄芩苷新制剂提供药代动力学支撑。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/685c1a31-c56d-444f-b774-3e63687295ef.jpg" title="金燕_副本.jpg"//pp style="text-align: center "strong报告人:赛默飞世尔科技(中国)有限公司金燕/strong/pp style="text-align: center "strong报告题目:单抗及疫苗制剂HPLC分离纯化表征/strong/pp  报告介绍了赛默飞U3000he Vanquish UHPLC单抗及疫苗制剂分离纯化与表征,如肽谱、聚集体分析、电荷变异体、完整蛋白水平的反相分离和糖谱等,还包括辅料方面的分析应用。突出介绍了U3000双梯度液相、Vanquish DUO双系统和CAD检测器在生物制药领域的最新应用进展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/48fedf99-ae3b-410c-a34c-d324e4de9c83.jpg" title="张歆媛_副本.jpg"//pp style="text-align: center "strong报告人:岛津企业管理(中国)有限公司张歆媛/strong/pp style="text-align: center "strong报告题目:岛津独有的nSMOL技术在抗体药物生物分析中的新应用/strong/pp  传统使用ELISA的分析方法常常会受到诸如ADA(anti-drug antibodies)的内源性配体的严重影响。岛津独有的nSMOL(nano-surface and molecular-orientation limited proteolysis.),可以为抗体类药物的生物分析提供具有极佳的准确性和重现性的定量分析方法。而nSMOL方法不仅可以应用于抗体药物药代动力学的研究,还能应用于治疗相关的ADA。/pp style="text-align: left "  大会召开闭幕式,首先宣布“青年论坛优秀奖”、“青年论坛鼓励奖”及“优秀墙报奖”获奖名单,奖项均由东曹(上海)生科技有限公司赞助。大会主席、北京大学刘虎威教授致闭幕词,“第十二届全国生物医药色谱及相关技术学术交流会”圆满闭幕。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/e665535f-6657-4594-b2f2-6f764375f1eb.jpg" title="IMG_6529_副本.jpg" style="text-align: center "//pp style="text-align: center "strong中国科学院生态环境研究中心汪海林研究员宣布“青年论坛优秀奖”获奖名单/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c75648c8-4b62-40e4-b78a-2d866ad94785.jpg" style="" title="IMG_6535_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6759f267-db9e-41ef-9011-1462adfcd159.jpg" style="" title="IMG_6543_副本.jpg"//pp style="text-align: center "strong颁发“青年论坛优秀奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/3b020c5d-be73-43b5-8266-63e16dd8c594.jpg" style="" title="IMG_6545_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/1c99b320-bc6b-4b91-84d4-8d68528eea06.jpg" style="" title="IMG_6549_副本.jpg"//pp style="text-align: center "strong颁发“青年论坛鼓励奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/72ed8d1f-f67e-466d-a238-d47597fdefd1.jpg" style="" title="IMG_6553_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/db4c267b-2baf-4721-9250-179203cbc02a.jpg" style="" title="IMG_6562_副本.jpg"//pp style="text-align: center "strong颁发“优秀墙报奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/03227b56-68fc-4625-8936-27d22d5baf9e.jpg" title="IMG_6566_副本.jpg"//pp style="text-align: center "strong东曹(上海)生物科技有限公司二木研辅(右)致辞/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/f3ab796f-1d54-46cf-907e-f53b5cafef8a.jpg" title="IMG_6523_副本.jpg"//pp style="text-align: center "strong大会主席刘虎威教授致闭幕词/strong/p
  • 中药抗病毒文献解读丨岛津LCMS-8060助力新冠肺炎治疗研究
    随着国内新型冠状病毒(COVID-19)感染的肺炎疫情逐渐得到控制,重症及危重症患者数量也开始相应减少,新型冠状病毒肺炎诊疗方案的成效日益凸显。在与疫情的斗争中,传统中医药的普遍使用,为病人症状的改善和病情的控制发挥了巨大作用。 新冠病毒COVID-19感染者的常见症状为发热、咳嗽、肌痛或疲劳,重症患者会产生大量的细胞因子,而细胞因子风暴的出现会严重威胁病人生命。 科学家们在之前的研究中发现,黄芩苷、黄芩素、橙皮苷、烟碱胺、甘草酸等中草药化合物具有与冠状病毒受体血管紧张素转换酶2(ACE2)结合的能力,因而具有潜在的抗COVID-19病毒的作用。 在对于生物体中的这些天然化合物进行研究的过程中,定量分析研究是必不可少的重要部分。三重四极杆型液相色谱质谱联用仪在复杂生物样品体系的痕量化合物定量分析中有着无可比拟的优势,尤其是岛津旗舰级的LCMS-8060所具备的超高灵敏度和超快速分析性能,更是为广大分析科研工作者所青睐。 岛津旗舰级LCMS-8060 最近,华中农业大学的研究团队在预印本平台Preprints上发表题为“Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2”的文章(Cheng, L. Zheng, W. Li, M. Huang, J. Bao, S. Xu, Q. Ma, Z. Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2. Preprints 2020, 2020020313)。 研究人员尝试从柑橘属植物中的黄酮类化合物中发现有效的抗病毒和抗炎化合物,并提出预防和治疗COVID-19的建议。 为了评估柚苷、柚皮素、橙皮苷、橙皮素、新橙皮苷、川皮苷等6种黄酮类化合物与ACE2结合的能力,研究人员对柑橘、柚子和甜橙进行了有针对性的代谢谱分析,利用LCMS-8060对16个栽培品种的柑橘中的459种已知代谢产物进行了定量检测,并确认了不同黄酮类化合物在不同种类柑橘中的含量差异。 通过LC-MS / MS(Shimadzu LCMS-8060)分析了不同柑橘属种和栽培品种中六种化合物的含量。通过LabSolutions Insight LCMS软件进行数据分析。离子信号峰值面积代表相对含量。(A)柚皮素,柚苷,橙皮素,橙皮苷,新橙皮苷和川皮苷在不同柑橘种类中的分布。(B)不同栽培品种中六种类黄酮化合物的含量。 随后的体外和体内实验表明,柚苷可以抑制脂多糖(LPS)诱导的巨噬细胞中促炎细胞因子的表达,并进一步发现可能通过抑制高迁移率族蛋白B1(HMGB1)来抑制细胞因子的表达。因此,柚苷可能具有预防细胞因子风暴的潜在应用。 通过模拟分子对接,以柚苷为代表的6种黄酮类化合物均与ACE 2表现出不同的结合亲和力。柑橘类中的黄酮类化合物由此表现出抗COVID-19的潜力,该研究也为柑橘类或其衍生的植物化学物质在COVID-19感染的预防和治疗中指明了广阔的应用前景。 文献题目《Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2》 使用仪器岛津LCMS-8060 第一作者程丽萍、郑伟康、李明 原文链接:https://www.preprints.org/manuscript/202002.0313/v1
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style="TEXT-ALIGN: center"span style="FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0"2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部/span/span/ppspan style="FONT-FAMILY: times new roman"  strong序 /strong传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。/span/ppspan style="FONT-FAMILY: times new roman"  20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanimg title="qinghaosu_副本.jpg" src="http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg"//ppspan style="FONT-FAMILY: times new roman"   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0"strong敞开式离子化质谱技术在中草药研究中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"作者:黄 鑫,刘文龙,张 勇,刘淑莹/span/span/ppspan style="FONT-FAMILY: times new roman COLOR: #002060"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。/span/span/ppspan style="FONT-FAMILY: times new roman"  敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong 1 敞开式离子化质谱技术的基本原理、特点和分类/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。/span/ppspan style="FONT-FAMILY: times new roman"  AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong2 敞开式离子化质谱技术在中草药研究中的应用/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。/span/pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"表1 敞开式离子化质谱在中草药研究中的应用/span/strong/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="255" colspan="2"p style="TEXT-ALIGN: center"strong敞开式离子化质谱技术/strongstrong /strong/p/tdtd width="83"p style="TEXT-ALIGN: center"strong中草药/strongstrong /strong/p/tdtd width="272"p style="TEXT-ALIGN: center"strong分析物/strongstrong /strong/p/tdtd width="58"p style="TEXT-ALIGN: center"strong文献/strongstrong /strong/p/td/trtrtd rowspan="25" width="99"p style="TEXT-ALIGN: center"直接电离/p/tdtd rowspan="3" width="156"p style="TEXT-ALIGN: center"DI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"何首乌/p/tdtd width="272"p style="TEXT-ALIGN: center"2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子醇甲、五味子醇乙/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Tissue spray/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷、氨基酸、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"11/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Leaf spray/p/tdtd width="83"p style="TEXT-ALIGN: center"生姜/p/tdtd width="272"p style="TEXT-ALIGN: center"姜辣素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"银杏籽/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"圣罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"乌索酸、齐墩果酸及其氧化产物/p/tdtd width="58"p style="TEXT-ALIGN: center"13/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊叶/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"14/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Direct plant spray/p/tdtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"15/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Field-induced DI/p/tdtd width="83"p style="TEXT-ALIGN: center"长春花/p/tdtd width="272"p style="TEXT-ALIGN: center"长春碱、脱水长春碱/p/tdtd width="58"p style="TEXT-ALIGN: center"16/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"iEESI/p/tdtd width="83"p style="TEXT-ALIGN: center"银杏叶/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素、精氨酸、脯氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"17/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、精氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"18/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Field-induced wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甘草/p/tdtd width="272"p style="TEXT-ALIGN: center"甘草酸、甘草素/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"苦参/p/tdtd width="272"p style="TEXT-ALIGN: center"苦参素、苦参碱、苦参酮/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"Al-foil ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"附子/p/tdtd width="272"p style="TEXT-ALIGN: center"苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd rowspan="7" width="156"p style="TEXT-ALIGN: center"Pipette-tip ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"牛蒡子/p/tdtd width="272"p style="TEXT-ALIGN: center"牛蒡苷及其苷元、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"莲子心/p/tdtd width="272"p style="TEXT-ALIGN: center"莲心碱、甲基莲心碱/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"三七/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子甲素、乙素、五味子酯甲、酯乙/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd rowspan="21" width="99"p style="TEXT-ALIGN: center"直接解吸电离/p/tdtd rowspan="13" width="156"p style="TEXT-ALIGN: center"DESI/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄/p/tdtd width="272"p style="TEXT-ALIGN: center"莨菪碱、东莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"毒参/p/tdtd width="272"p style="TEXT-ALIGN: center"毒芹碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗/p/tdtd width="272"p style="TEXT-ALIGN: center"16种托品烷类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"阿托品/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"24/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"克罗烷型二萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"25/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"青脆枝/p/tdtd width="272"p style="TEXT-ALIGN: center"喜树碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"26/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"27/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贯叶连翘/p/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、糖类/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、长链脂肪酸类/p/tdtd width="58"p style="TEXT-ALIGN: center"28/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"大麦/p/tdtd width="272"p style="TEXT-ALIGN: center"羟氰苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"29/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白毛茛/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"30/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"橙皮甙、柚皮甙、苦橙甙等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"31/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"DAPCI/p/tdtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"萜品烯类/p/tdtd width="58"p style="TEXT-ALIGN: center"32/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参、红参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"33/p/td/trtrtd rowspan="6" width="156"p style="TEXT-ALIGN: center"DCBI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"黄连素、黄连碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄藤/p/tdtd width="272"p style="TEXT-ALIGN: center"黄藤素/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鱼腥草/p/tdtd width="272"p style="TEXT-ALIGN: center"别隐品碱、白屈菜红碱、原阿片碱、血根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄柏/p/tdtd width="272"p style="TEXT-ALIGN: center"药根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"粉防己/p/tdtd width="272"p style="TEXT-ALIGN: center"轮环藤酚碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"两面针/p/tdtd width="272"p style="TEXT-ALIGN: center"两面针碱、白屈菜赤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd rowspan="34" width="99"p style="TEXT-ALIGN: center"解吸后电离/p/tdtd rowspan="27" width="156"p style="TEXT-ALIGN: center"DART/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"阿托品、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"35/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"蒌叶/p/tdtd width="272"p style="TEXT-ALIGN: center"蒌叶酚/p/tdtd width="58"p style="TEXT-ALIGN: center"36/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"芫荽/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"绿薄荷/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"乌头属药材/p/tdtd width="272"p style="TEXT-ALIGN: center"乌头碱类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"38/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗籽/p/tdtd width="272"p style="TEXT-ALIGN: center"托品碱、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"39/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"萝芙木/p/tdtd width="272"p style="TEXT-ALIGN: center"单萜吲哚类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"40/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"姜黄/p/tdtd width="272"p style="TEXT-ALIGN: center"姜黄素类/p/tdtd width="58"p style="TEXT-ALIGN: center"41/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"荜澄茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"荜澄茄油烯/p/tdtd width="58"p style="TEXT-ALIGN: center"42/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"极细当归/p/tdtd width="272"p style="TEXT-ALIGN: center"藁苯内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"朝鲜当归/p/tdtd width="272"p style="TEXT-ALIGN: center"日本前胡素、日本前胡醇/p/tdtd width="58"p style="TEXT-ALIGN: center"43,44,51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白芷/p/tdtd width="272"p style="TEXT-ALIGN: center"白当归脑/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"川芎/p/tdtd width="272"p style="TEXT-ALIGN: center"川芎内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"槟榔子/p/tdtd width="272"p style="TEXT-ALIGN: center"槟榔碱、槟榔次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"延胡索/p/tdtd width="272"p style="TEXT-ALIGN: center"延胡索碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、去氢贝母碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"钩藤/p/tdtd width="272"p style="TEXT-ALIGN: center"钩藤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"丁公藤/p/tdtd width="272"p style="TEXT-ALIGN: center"东莨菪内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"46/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"制川乌/p/tdtd width="272"p style="TEXT-ALIGN: center"单酯和双酯型二萜类乌头碱/p/tdtd width="58"p style="TEXT-ALIGN: center"47/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"48/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"桑叶/p/tdtd width="272"p style="TEXT-ALIGN: center"脱氧野尻霉素/p/tdtd width="58"p style="TEXT-ALIGN: center"49/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"厚叶岩白菜/p/tdtd width="272"p style="TEXT-ALIGN: center"熊果素、岩白菜素、鞣花酸、没食子酸/p/tdtd width="58"p style="TEXT-ALIGN: center"50/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子素、戈米辛/p/tdtd width="58"p style="TEXT-ALIGN: center"51,52/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Nano-EESI/p/tdtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"53/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAESI/p/tdtd width="83"p style="TEXT-ALIGN: center"孔雀草/p/tdtd width="272"p style="TEXT-ALIGN: center"花青素、山奈酚等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"54/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"DAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草叶/p/tdtd width="272"p style="TEXT-ALIGN: center"鼠尾草酸及其衍生物/p/tdtd width="58"p style="TEXT-ALIGN: center"56/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"川皮苷、黄酮醇类、沉香醇/p/tdtd width="58"p style="TEXT-ALIGN: center"57/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"PALDI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、汉黄芩素/p/tdtd width="58"p style="TEXT-ALIGN: center"58/p/td/tr/tbody/tablespan style="FONT-FAMILY: times new roman" /span/ppspan style="FONT-FAMILY: times new roman"  strong2.1 直接电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。/span/ppspan style="FONT-FAMILY: times new roman"  姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.2 直接解吸电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。/span/ppspan style="FONT-FAMILY: times new roman"  DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。/span/ppspan style="FONT-FAMILY: times new roman"  DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.3 解吸后电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。/span/ppspan style="FONT-FAMILY: times new roman"  EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.4 在中草药质量评价和质量控制中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。/span/ppspan style="FONT-FAMILY: times new roman"  目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.5 本实验室的研究工作/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。/span/ppspan style="FONT-FAMILY: times new roman"  1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span/ppspan style="FONT-FAMILY: times new roman"  2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span/ppspan style="FONT-FAMILY: times new roman"  3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span/ppspan style="FONT-FAMILY: times new roman"  4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span/ppspan style="FONT-FAMILY: times new roman"  5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman" strong3 总结与展望/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。/span/pp strong /strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"strong《质谱学报》致谢/strong: 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。/span/ppspan style="COLOR: #002060" /span/p
  • 中成药双黄连口服液可抑制新型冠状病毒 暂无临床支持
    p style="text-align: center"img style="max-width: 100% max-height: 100% width: 406px height: 406px " src="https://img1.17img.cn/17img/images/202001/uepic/bb7fdf2b-f4e2-40c4-a294-48398b6c5714.jpg" title="微信图片_20200131230056.png" alt="微信图片_20200131230056.png" width="406" height="406"//pp style="text-align: justify text-indent: 2em "记者31日从中国科学院上海药物所获悉,该所和武汉病毒所联合研究初步发现,中成药双黄连口服液可抑制新型冠状病毒。此前,上海药物所启动由蒋华良院士牵头的抗新型冠状病毒感染肺炎药物研究应急攻关团队,在前期SARS相关研究和药物发现成果基础上,聚焦针对该病毒的治疗候选新药筛选、评价和老药新用研究。/pp style="text-align: justify text-indent: 2em "双黄连口服液由金银花、黄芩、连翘三味中药组成。中医认为,这三味中药具有清热解毒、表里双清的作用。现代医学研究认为,双黄连口服液具有广谱抗病毒、抑菌、提高机体免疫功能的作用,是目前有效的广谱抗病毒药物之一。/pp style="text-align: justify text-indent: 2em "上海药物所长期从事抗病毒药物研究,2003年“非典”期间,上海药物所左建平团队率先证实双黄连口服液具有抗SARS冠状病毒作用,十余年来又陆续证实双黄连口服液对流感病毒(H7N9、H1N1、H5N1)、严重急性呼吸综合征冠状病毒、中东呼吸综合征冠状病毒具有明显的抗病毒效应。/pp style="text-align: justify text-indent: 2em "目前,双黄连口服液已在上海公共卫生临床中心、华中科技大学附属同济医院开展临床研究。/p
  • 国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告
    国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告(2023年第66号)根据《中华人民共和国药品管理法》及其实施条例的有关规定,《丹七片中异性有机物检查项补充检验方法》《脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法》《檀香清肺二十味丸中松香酸检查项补充检验方法》《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。   附件:丹七片中异性有机物检查项补充检验方法.docx 脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法.docx 檀香清肺二十味丸中松香酸检查项补充检验方法.docx 小柴胡颗粒中黄芩提取物检查项补充检验方法.docx国家药监局  2023年5月18日
  • 中国首个指纹图谱质控的中药注射剂产生
    目前中药注射剂乃至整个中药产业都面临严重的“信任危机”。如何在国家不断加大药品监督力度的情况下保证中药注射剂的安全性,就成为了解决此次信任危机的重中之重。  由于中药成分相对复杂,需要对每味中药和每种成分逐一鉴定,才能够严保质量关。但就现有的技术而言,只有指纹图谱技术能够在检测中尽可能多地反映产品全貌,因此,指纹图谱技术就成为了监督中药产品质量的关键。  具有先进分析技术的指纹图谱特别是数字化色谱指纹图谱的出现为中药产品质量的控制开辟了新途径。为促使此项技术能早日正式投入使用,企业的质检中心从2004年起就用指纹图谱全程控制注射用双黄连(冻干)的质量。无论是对注射用双黄连(冻干)的原料金银花、黄芩、连翘及提取物 还是对注射用双黄连(冻干)配剂药液及该制剂成品都进行了严格的监控。技术应用至今,注射用双黄连(冻干)成品的指纹图谱均达到国家标准。  2009年7月1日,注射用双黄连(冻干)将进入2005年中华人民共和国药典增补本,这不仅是我国唯一一个,同时也是首个采用指纹图谱控制产品质量的中药注射剂。中华人民共和国药典是药品的最高法典,代表着国家对药品的最高标准,只有安全性好、用药广泛、质量标准高的药物才能进入此药典。此举无疑是继注射用双黄连(冻干)第一个进入2000版药典的中药粉剂后,中药企业的又一次重大突破。届时中药企业会正式将指纹图谱技术应用于生产过程的各个环节,从而严格有效地控制注射用双黄连(冻干)的质量,以此保证产品质量的均一和稳定,并保证产品的有效性和安全性。  指纹图谱标准的应用,不仅能确保对中药产品的质量控制,更能提高中药产品的市场竞争力,同时对中药注射剂质量与安全再评价的顺利通过,以及整个中药行业产品质量标准的提高都将奠定良好的技术基础。
  • 中英共建植物和微生物科学联合中心
    p  9月24日,英国约翰· 英纳斯中心和中国科学院共建植物和微生物科学联合研究中心(CEPAMS)在上海正式挂牌。/pp  英国大学、科研与创新国务大臣乔· 约翰逊主持揭牌仪式时表示,加强国际合作是解决世界性难题、共同面对挑战的重要手段。新成立的研究中心是英国与中国建立科学合作伙伴关系的见证,将把中英双方顶尖科学家的智慧用于提高作物产量,以应对日益增长的世界人口,同时尽可能在农业生产中降低除草剂的使用。/pp  据介绍,这个中心是英方与中科院两个研究所(遗传与发育生物学研究所和植物生理生态研究所)的合作项目,将中英两国先进的实验室组合在一起,共同应对食品安全和可持续医疗保健全球性挑战,培育优秀科研成果。该跨国研究团队将重点增加农作物产量,生产植物和微生物高附加值产品。新中心的成立得到中科院和英国生物技术与生物科学研究理事会的资助。该机构研究人员最近取得重大突破,发现中药黄芩中含有抗癌成分。/pp  据了解,中英两国共同投资建立的研究设施数量越来越多,这个中心是其中最新增加的一个机构。英国生物技术与生物科学研究理事会、自然环境研究理事会、经济与社会科学研究理事会和艺术与人文科学研究理事会均已开设虚拟联合中心,支持中英两国的研究合作。br//p
  • 检测以及第三方检测促进赤峰市中药产业升级
    在传统的中药行业中,大多数企业仅停留在出售原材料的初级阶段,这使得它们易受市场波动的影响,导致利润并不可观。同时,药材市场普遍偏好某些特定地区的原料,使得其他地区的生产者想要稳固自己在中药市场中的地位变得颇具挑战。2023年,笔者有幸对内蒙古赤峰市的中草药产业进行了实地考察。调研结果显示,赤峰的中草药行业已经发展成为一个包括种植、制药和销售在内的一体化产业体系,不仅稳定且健康发展,更成为了当地经济的重要支柱之一。值得一提的是,中药检测以及第三方检测在整个产业链中扮演了至关重要的角色。笔者考察中一、赤峰中药产业的蓬勃发展赤峰市拥有悠久的中药材种植历史,超过300年。得益于昼夜温差大、阳光充足以及较低的降水量,该地区非常适宜培育多种名贵中药材,因此所产药材不仅外观上乘,而且有效成分含量高。赤峰人工种植的中药材资源十分丰富,包括桔梗、北沙参、怀牛膝、党参、黄芪、黄芩、板蓝根、紫草、甘草、荆芥等众多品种,其种植面积和使用量均较大。北沙参桔梗截至2023年底,全市中药材的种植面积达到40.7万亩,产量为37万吨,总产值逾50亿元。其中,大宗药材品种如桔梗、北沙参、防风、黄芪、黄芩和板蓝根的种植规模均相当庞大。特别是桔梗,以其色泽洁白、条形修长、根部分叉少、口感佳而著称。除了少量用于药用,新鲜桔梗全部出口至韩国和日本。赤峰市喀喇沁旗牛家营子镇更是被誉为“中国北沙参、桔梗之乡”。目前,全市拥有超过5000亩的中药材种植基地13处,其中万亩以上的大型基地3处。赤峰中药基地采收中药场景赤峰已构建起一个涵盖化学药品、生物制药、医疗器械以及中蒙药和医药物流配送的完整产业体系。形成了从“原料药—中间体—制剂”到“道地药材—初加工饮片—配方颗粒—制剂”的成熟产业链条。在中成药生产方面,全市有两家规模较大的企业。除此之外,还有21家规模以上的中蒙药材加工企业,生产包括中药饮片、中药材、中成药和蒙药在内的120多种产品,销售网络遍布全国30个省市自治区。二、中药检测以及第三方检测对产业发展的推动作用随着绿色消费观念在中国深入人心,消费者对重金属和农药残留等问题的认识日益重视。国家也制定了严格的《药用植物及制剂进出口绿色行业标准》(WM2-2001),并对绿色中药标识实行严格管理。中药产品必须通过严格的检测并提供报告,才能进入制药厂。然而,许多中药种植基地缺乏进行成分检测的能力,这限制了中药产业的发展。随着中药(蒙药)在世界各地越来越受欢迎,对中药(蒙药)国际标准化的需求和呼声也越来越高。针对这一情况,赤峰市的大型中药企业投入巨资建立检测实验室,配备了色谱、质谱等先进仪器,不断提升中药品质。大型饮片企业也建立了自己的检测实验室,成为推动中药产业持续发展的关键力量。此外,第三方检测服务体系提供全面的检测服务,助力整个产业的进步。赤峰市产品质量检验检测中心不断加强药品检验能力的建设,技术水平持续提升,药品综合检验能力不断增强,为提高赤峰市药品质量安全水平提供了有力的技术支持。“精准蒙中药材定制与全程溯源技术研究”项目取得了阶段性成果。该项目由内蒙古天奇中蒙制药股份有限公司牵头,联合北京中医药大学、北京机械工业自动化研究所共同实施。主要目的是解决药材种源混乱和田间生产管理无序的问题,开展精准良种选育繁育、分子防伪关键技术、质量评价体系和快速检测技术等方面的研究,进一步推动中药产业的繁荣发展。天奇药业作者简介:张绍芬,大学毕业,高级畜牧师,曾任北京市延庆区工商联常务副主席。
  • 2605万!农业农村部禽流感等家禽重大疾病防控重点实验室建设项目
    一、项目基本情况项目编号:GZGK23P227A0763Z项目名称:农业农村部禽流感等家禽重大疾病防控重点实验室建设项目采购方式:公开招标预算金额:26,059,000.00元采购需求:合同包1(重点实验室建设(一)):合同包预算金额:7,967,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1临床检验设备数字PCR仪1(台)详见采购文件1,270,000.00-1-2生物、医学样品制备设备移液工作站组合1(台)详见采购文件210,000.00-1-3光学式分析仪器全波长酶标仪1(台)详见采购文件120,000.00-1-4临床检验设备荧光定量PCR仪(1)3(台)详见采购文件1,410,000.00-1-5生物、医学样品制备设备超高速离心机1(台)详见采购文件997,000.00-1-6生物、医学样品制备设备核酸气溶胶污染清除仪1(台)详见采购文件300,000.00-1-7制冰设备冻干机(1)1(台)详见采购文件610,000.00-1-8临床检验设备全自动分选型流式细胞仪1(台)详见采购文件2,900,000.00-1-9生物、医学样品制备设备超低温离心机1(台)详见采购文件150,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包2(重点实验室建设(二)):合同包预算金额:3,126,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1生物、医学样品制备设备超滤系统1(台)详见采购文件530,000.00-2-2生物、医学样品制备设备低温超高压连续流细胞破碎机1(台)详见采购文件210,000.00-2-3生物、医学样品制备设备生物反应器1(台)详见采购文件736,000.00-2-4生物、医学样品制备设备高精密二氧化碳震荡培养箱1(台)详见采购文件230,000.00-2-5生物、医学样品制备设备非接触式超声波破碎仪1(台)详见采购文件400,000.00-2-6生物、医学样品制备设备二联生物反应系统1(台)详见采购文件1,020,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包3(重点实验室建设(三)):合同包预算金额:3,815,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1临床检验设备荧光定量PCR仪(2)1(台)详见采购文件490,000.00-3-2制冰设备冻干机(2)1(台)详见采购文件296,000.00-3-3生物、医学样品制备设备气套型二氧化碳培养箱1(台)详见采购文件89,000.00-3-4生物、医学样品制备设备实验型细胞生物反应器1(台)详见采购文件350,000.00-3-5多种原理分析仪多功能检测仪1(台)详见采购文件490,000.00-3-6生物、医学样品制备设备蛋白液相分析系统1(台)详见采购文件1,480,000.00-3-7生物、医学样品制备设备激光扫描成像系统1(台)详见采购文件620,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包4(重点实验室建设(四)):合同包预算金额:3,593,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1生物、医学样品制备设备药物溶出度仪1(台)详见采购文件230,000.00-4-2生物、医学样品制备设备厌氧工作站1(台)详见采购文件220,000.00-4-3生物、医学样品制备设备核转染系统1(台)详见采购文件500,000.00-4-4生物、医学样品制备设备大型台式低温离心机1(台)详见采购文件130,000.00-4-5显微镜研究级倒置荧光显微镜1(台)详见采购文件578,000.00-4-6生物、医学样品制备设备纯水/超纯水系统1(台)详见采购文件120,000.00-4-7容器消毒机械脉动真空蒸汽灭菌器1(台)详见采购文件215,000.00-4-8其他网络设备超算服务器集群系统1(台)详见采购文件1,600,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包5(重点实验室建设(五)):合同包预算金额:1,008,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)5-1色谱仪高效液相色谱仪1(台)详见采购文件678,000.00-5-2光学式分析仪器傅里叶红外光谱仪1(台)详见采购文件330,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包6(重点实验室建设(六)):合同包预算金额:3,300,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)6-1显微镜激光共聚焦显微镜1(台)详见采购文件3,300,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。合同包7(重点实验室建设(七)):合同包预算金额:3,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)7-1质谱仪三重四极杆液相色谱-质谱联用仪1(台)详见采购文件2,500,000.00-7-2生物、医学样品制备设备全自动微生物鉴定及药敏分析系统1(台)详见采购文件750,000.00-本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。二、获取招标文件时间: 2024年03月26日 至 2024年04月02日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东省农业科学院动物卫生研究所地 址:广州市天河区五山白石岗联系方式:020-852914712.采购代理机构信息名 称:广州市国科招标代理有限公司地 址:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)联系方式:020-31603857、020-877764233.项目联系方式项目联系人:陈舒琪、董镜电 话:020-31603857、020-87776423
  • 钻石二代色谱柱又增新品
    钻石二代色谱柱自上市以来,以其优良全面的性能和优质完善的服务,深受用户的好评和信赖。 为了扩大钻石二代色谱柱的应用范围,迪马科技的每一款3&mu 和5&mu 键合相又新增3.0mm内径以及30mm柱长色谱柱。进一步满足HPLC,特别是LC-MS快速分析的应用需求。 另外,迪马科技又进一步拓展了钻石二代色谱柱在不同行业及领域的应用,比如中药/天然产物分析(红叁、何首乌、黄芩苷、脱水穿心莲内酯),禁用偶氮染料中的芳香胺,以及维生素E,维生素B2等。
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1 g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • 美国农业部同意撤销中国大陆熟家禽产品的进口限制
    美国农业部食品安全检验局经过多年商讨以及在美国相关业界多番要求下,于8月30日通知中国国家质量监督检验检疫总局,表示中国质检局可以开始为符合美国食品安全检验局规定的中国家禽加工设施签发认证。这些获认证的设施将可出口加工家禽产品(经过热处理/煮熟)到美国,条件是用来制造这些产品的家禽,必须在美国食品安全检验局监检下于美国屠宰,或于有资格向美国出口屠宰家禽的国家屠宰。这些合资格的国家包括澳洲(仅限于平胸类雀鸟)、加拿大、智利、法国、墨西哥(有若干限制)及新西兰(仅限于平胸类雀鸟)。美国食品安全检验局表示,正在审核中国的屠宰检验制度,而现时在中国内地饲养及屠宰的鸡不得出口到美国。  早于2006年4月,美国食品安全检验局曾颁布一项最终规则,准许中国内地的加工家禽产品出口至美国,条件是这些产品必须在认可设施加工,而所使用的家禽必须在认可屠宰房屠宰,有关屠宰房位于有资格向美国出口家禽的其他国家内 此外,这些家禽产品必须在美国入境港口再受检查,以防出现运输损坏、标签、适当认证、一般情况、准确数量、缺陷及微生物污染等问题。后来美国国会通过法例,成功阻止美国食品安全检验局实施上述规则。不过,美国国会议员已于2009年秋天同意废除这项法例,但要求美国农业部作出以下承诺:  1.对于中国提出向美国出口家禽或家禽产品的申请,不会提供任何优待   2.中国内地设施获发认证并有资格对美国出口家禽产品前,必须先审核有关的检验制度,并派员实地视察有关屠宰及加工设施、化验所及其他监管运作,之后至少每年1次进行有关审核   3.显着提升进境口岸的重检水平   4.与其他输入中国内地家禽产品并进行审核和实地视察的国家建立正式和快捷的资料共用系统   5.向美国参众两院拨款委员会汇报有否颁布或实施任何家禽产品检查规定,允许中国内地向美国出口家禽或家禽产品   6.美国农业部就新审核和实地视察完成报告后,须于30天内公布。若有关审核或实地视察的目的,是要决定中国的家禽检查制度是否达到美国的卫生保护水平,则须在发出任何有关决议的通知前至少30天公布有关审核或视察报告   7.对外公布获认可对美国出口家禽或家禽产品的中国内地设施名单,若有关认可设施超过10家,即须通知美国参众两院拨款委员会。  过去4年,美国农业部与当地机构及中国内地的相关部门合作,确保能够履行上述承诺。美国食品安全检验局于2013年3月4至19日进行了实地审核,认为在2010年12月审计时发现的问题已经解决,监管加工家禽的中国食品安全制度与美国的卫生保护水平相同,有能力确保加工设施生产安全、健康、无掺杂以及有正确标签的产品。审核主要检视中国国家质量监督检验检疫总局监管加工家禽生产活动的能力,以及评估以下6个范畴的表现,包括政府监管、法定机构和食品安全规例、卫生、危害分析和关键控制系统、化学残余物项目,以及微生物检测项目。  美国食品安全检验局指出,将执行以下措施,确保中国可以维持监管水平:(1)中国内地必须使用指定的标准方法,向美国提供其食品安全制度的各方面详细资料,(2)在中国内地加工的鸡产品进口美国时必须接受较严格的检查,(3)局方每年都会审核中国的家禽加工制度,以及(4)若局方发现中国内地出口到美国的产品未符合美国食品安全标准,中国内地将不再有资格向美国出口加工家禽。
  • 第二代药品检测车研制成功
    近来,中国药品生物制品检定所(以下简称中检所)及各地药品检验所不断完善已建方法、开展快检方法研究,充分发挥药品检测车的作用。目前,第二代药品检测车已研制成功,可适用第三世界国家药品打假工作和WHO药品国际招标采购的需要。  据中检所常务副所长金少鸿介绍,该所全面修订并补充了药品快检方法。2008年版《药品快检工作手册》共收录182种中成药、229种中药材和505种化学药品快检方法,基本覆盖常用药品,预计于今年年底上传至国家食品药品监管局药品检测车数据网络管理平台,供药品监管及筛查使用。  近年来,中检所积极开展药品近红外检测技术的基础研究,对目前药品检测车上已经装配的405个定性和53个定量近红外模型采用双模型定性,并对定性和定量模型串联技术进行了全面维护,以提高药品近红外通用模型的准确性。此外,中检所还通过有针对性地开展快检方法培训和研究,充分发挥药品检测车的作用。如探索性开展中成药非法添加西地那非、二甲双胍目标物的近红外筛查模型的技术研究 利用近红外技术监控进口药品的质量 研究建立了采用两个薄层色谱系统对中药非法添加11种降糖类西药的化学快筛方法 研究建立了中药非法添加盐酸西布曲明的化学快筛方法。各地药品检验所还根据当地实际,自建了冰片、朱砂粉(水飞朱砂)、蒲黄、黄芩片、人工牛黄等中药材的近红外筛查模型。  据金少鸿介绍,中检所不断完善药品检测车车载管理信息系统,及时更新车载信息系统数据库,目前车载信息系统内药品批准文号数据库数据已更新至2008年10月16日。与此同时,完善了车载管理信息软件的操作系统,实现了与近红外车载软件药品抽样信息的共享功能。
  • 1472万!农业农村部畜禽资源(家禽)评价利用重点实验室建设项目第一批仪器设备采购项目
    一、项目基本情况1.项目编号:JSZC-321000-JSSZ-G2024-0006号2.项目名称:农业农村部畜禽资源(家禽)评价利用重点实验室建设项目第一批仪器设备采购项目3.预算金额:1472万元(中央资金),本次招标预算1368万元。4.本项目设置最高限价1368万元,包号名称最高限价是否接受进口产品包件1高分辨液相色谱质谱联用仪等设备453万元是包件2三重四极杆液相色谱质谱联用仪等设备360万元是包件3气相离子迁移谱仪等设备330万元部分设备不接受进口产品,详见第四章 项目需求包件4氨基酸分析仪等设备225万元是5.采购需求:见招标文件第四章。6.合同履行期限:见招标文件第四章。7.本项目不接受联合体投标。8.本项目接受进口产品投标。二、获取招标文件1.时间:自招标文件公告发布之日起5个工作日。5个工作日后仍可下载招标文件,但不作为供应商权益受到损害的证明材料和依据。2.获取方式:本项目采用网上注册登记方式。3.潜在供应商访问政府采购管理交易系统(苏采云)的网络地址和方法:(1)潜在供应商访问政府采购管理交易系统(苏采云)的方法:“苏采云”系统用户注册--获取“CA数字证书”--CA绑定与登录--网上报名--下载采购文件(后缀名为“.kedt”)--将后缀名为“.kedt”的采购文件导入政府采购客户端工具--制作投标文件--导出加密的投标文件(后缀名为zip)--通过“苏采云”系统上传投标文件。(2)“CA数字证书”的获取:供应商需办理CA锁,“苏采云”系统目前仅支持“苏采云”系统下的政务CA,省内各地区办理的“苏采云”系统下的政务CA全省通用。(3)“CA数字证书”的办理材料以及供应商操作手册详见:http://zfcg.yangzhou.gov.cn/zfcg/xzzx/202309/4d7de1f7865f4a2894fc22bc452f94d8.shtml。(4)潜在供应商访问“苏采云”系统的网络地址和方法:“苏采云”系统的网址:http://jszfcg.jsczt.cn/。(5)采购文件(后缀名为“.kedt”)、供应商操作手册及政府采购客户端工具也可通过“苏采云”系统--已报名项目--报名详情页面内相应链接进行下载。(6)招标代理机构(采购代理机构)将数据电文形式的采购文件加载至“苏采云”系统,供潜在供应商下载或者查阅。(7)苏采云系统使用谷歌浏览器参与不见面开标。三、本次招标联系方式1.采购人信息名 称:江苏省家禽科学研究所地 址:扬州市邗江区仓颉路58号联系人:顾萍联系方式:0514-872535212.代理机构信息名 称:江苏苏咨工程咨询有限责任公司地 址:扬州市广陵区万福西路179号家禽信息中心二楼联系人:王剑联系方式:0514-82817289
  • 美农业部要求在肉类和家禽制品上标注营养标识
    2011年1月3日,FoodNavigator-USA网站消息,美国农业部(USDA)指出:从2012年1月1日起,将必须在40种常用的生鲜肉制品上标注营养标识,内容包括卡路里数、总脂肪和饱和脂肪的克数。  1990年的《营养标签与教育法》指出,营养标识的推广仅限于美国食品药品监督管理局(FDA)管辖范围内的食物,而肉和家禽制品则处于这个规则之外,因为它们是属于农业部管辖的食品。美国农业部食品安全检验局(FSIS)指出:尽管标注肉制品的营养含量是属于自愿性行为,但是目前几乎没有肉制品生产商遵守这一规定,因此提议加注强制性营养标识。  美国农业部部长Tom Vilsack指出:“越来越多的,忙碌的美国家庭希望获知他们能够快速和容易理解的相关营养信息。我们应该尽我们所能提供一个营养标签,这将有助于消费者作出明明白白的消费选择。美国农业部和健康与公共事业部致力于每五年向美国人民提供一次饮食指导,现在消费者将有另外一个工具来帮助他们理解这些指导。”  营养信息必须出现在肉制品标签上或者销售点上,应用范围包括生鲜切割的肉和家禽制品,也包括肉和家禽制品的肉末。  另外,FSIS指出消费者习惯于根据肉末制品的切割率来判断质量,一旦在产品的旁边标示出其脂肪百分率,我们相信这种标签将提供了一个“鉴别肉末质量的快速、简单和正确的工具”。  美国肉制品协会常务会长和总法律顾问Mark Dopp指出:12个月后增加强制性标示的期限对行业界来说将是一个挑战,但对消费者来说将提供一个机会了解肉制品的切割率范围,包括一些切割牛肉和猪肉制品。长久以来,许多消费者没有充分的认识到肉类和禽类制品营养价值,以及可以选择不同切割率的肉制品,这次的新标识将有助于纠正消费者的这个思维误区。  最终的法律规则公布在2010年12月29日的联邦公报上。
  • 我国GAP认证企业仅75家 质量成中药材瓶颈
    近年来,随着“欣弗事件”“齐二药”和“毒胶囊”等事件的曝光,药品安全成为老百姓继食品安全之后不得不面对的又一重危机。  而据国家食品药品监督管理局公布的药品质量公告显示:近年来,中药饮片不合格率一直高于西药和中成药,成为老百姓用药的心头隐患。尤其是随着国家近年来对中药材行业的扶持不断加强,中药材产品的质量问题也不断浮出水面,成为阻碍中药材行业甚至是中成药行业发展的重大制约因素。  中药材质量问题  主要体现在四个方面  近几年“两会”期间,中药材质量问题一直都是代表委员们关注的重点之一。全国政协委员、国家中医药管理局台港澳交流合作中心主任王承德在接受媒体采访时指出,当前,中药材和饮片的质量问题主要体现在四个方面。  一是伪品、替代品增多。中药材有数千种,且品种繁多。随着新的药用品种被开发和利用,代用品等用品层出不穷。一些中药材经营者通过以次充好、以假乱真、掺杂使假、不同品种混用等,将假冒、伪劣药材销售到患者手中。  二是未按GAP要求进行种植,达不到用药质量要求。如一些药农大量使用农药、化肥,或是未按规定的时间和方法采收等,形成劣品。  三是炮制不当。比如黄芩对于炮制的温度和时间都有着很高的要求,有效成分随着时间增加而增加,但随温度的增加而递减,很多药材加工者经常忽略这一点。  四是运输储存不当。目前,国内市场对同一种中药材没有规定统一包装,经营药材的专业公司多数也未制定相关的包装标准。有的药材因包装物使用不当,造成药效减弱、变化 有的因包装物潮湿破裂,或粘有剧毒农药、高效化肥,或附有虫卵、霉菌,产生二次污染。  多部门监管  导致一个“媳妇”六个“妈”  “国家中医药管理局竟然只管医不管药”,面对记者的不解和疑惑,卫生部副部长、国家中医药管理局局长王国强每每谈及此,多少显得有些无奈。  按照目前的“行规”,中药种植领域的主管部门为农林部门,中药材市场监管属于工商部门,中药饮片、中成药的生产由药监部门监管,而医院开方、抓药则由卫生部和国家中医药管理局主管,中药对外贸易则由商务部主管。这种6个“婆婆妈”管1个“媳妇”的多部门监管方式看似各司其职,却直接导致了对中药产业链监管的缺失。  就目前这种多部门监管的格局,王国强认为,将会导致中药领域在基础科研方面很难做到相互协调和有步骤、有计划的开展,在相关法律、法规和标准的制定上也难以统一,在监管上具体部门的具体职责可能出现重合交叉或者真空地带……  “中药材和饮片的质量监管涉及到种植、采收加工、炮制、贮运保管、市场销售和使用等环节。作为一种特殊商品,中药材既具有农副产品的属性,又具有药品的属性,这也决定了对它的监管非常复杂。” 王国强如是说。  GAP基地建设  从源头保障中药材质量  在王承德看来,中药材的质量问题说到底是种植的问题,中药材治理最终要从源头做起。  为了推进规范化种植,2004年,有关部门在中药材种植领域引入了《中药材生产质量管理规范》(GAP),涉及从种植资源选择、种植地选择一直到中药材的播种、田间管理、采购、产地初加工、包装运输以及入库整个过程的规范化管理。中药材GAP作为一项旨在推动药材规范化种植、保证药材质量的非强制性行业标准,自2002年起开始推动至今,已有10个年头。但由于药材生产的特殊性、学术争议和成本较高等诸多原因,GAP并未获得像GMP那样的强制认证。据统计,我国目前通过中药材GAP认证的企业仅有75家。  今年6月,工信部发布了《2012年度国家拟扶持中药材生产建设项目》的公告。在公布的60个建设项目中,重点扶持的38个品种都是依据“十二五”规划确定的重点扶持的100个大宗和濒危中药材品种选定的,包括30万亩茯苓、20万亩连翘、5万亩山茱萸、3万亩滇龙胆等30个品种、共49个项目的常用大宗药材生产基地建设,中药材扶持资金规模再次增加1000万元,扶持规模达到了1.35亿元。  对此,专家表示,我国中药材GAP基地生产的药材无论是从种植面积、产量还是从种植品种等方面,均占份额较低,今后中药材GAP种植或基地建设将具有较大的发展空间。实施和推广中药材GAP种植或基地建设将会极大程度地从源头上保障中药材的质量。  王承德认为,除此之外,要确保中药材产业的可持续发展,还应当加强中药品种的优选优育和中药的种源研究,加强中药材品牌培育和保护,解决品种源头混乱的问题 其次应当加强中药材栽培技术的研究,实现中药材规范化种植和产业化生产 再次应当加强植保技术研究,发展绿色药材 此外还应当加强中药材新品种的培育,开展珍稀濒危中药资源的替代研究。  中药材标准化的制定  呼声渐高  新医改方案中,中药被纳入国家基本药物目录,这为中药行业提供了历史性的发展机遇。业界认为,如何保障中药材及中药饮片质量,已经成为当下中药材行业发展所必须面临的核心问题,对中药材行业来说,规范化种植是源头保障的一个方面,中药材标准化的制定则是解决这一问题的先决条件。  中国中药协会会长房书亭指出,影响中药材和中药饮片质量的另外一个重要原因在于规范的缺失。比如中药饮片是中药产业的三大支柱之一,是中医临床辨证施治必需的传统武器,也是中成药的重要原料,我国早在“九五”期间就开展了中药饮片标准化的研究,但到现在依然没有一套完整的中药饮片标准化的体系出台。他认为,目前中药饮片产业出现的问题,最根本的原因就在于缺乏一套统一而规范的标准化体系。  全军中药研究所所长肖小河曾在2010年全国中成药学术研讨会上指出,多年来,在中药标准体系的建设中,主要是在面向生产检验的质量标准研究方面取得了成就,而在用药方面,结合临床的中药标准化问题还没有受到足够的重视,缺少现代科学实验研究数据的支持,如临床中药用量、用法、功效、药性等研究。肖小河认为,现行的中药质量标准主要是基于指标性成分的定性定量测定,与安全性和有效性关联不密切或不明确,因而对中医临床合理用药的指导和参考意义不是很突出。  他呼吁,亟须开展并加强结合临床的中药标准化研究,建立关联疗效、可控可评的中药标准体系,使质量标准更加贴近临床,使临床标准更有科学依据,中药标准能更好地指导和服务中医临床,保证中医临床用药安全有效。肖小河认为,建立完善的中药标准体系,使质量控制标准化贯穿于生产、流通、使用全过程,是中医药行业持续发展的基本条件。
  • 沃特世助力中国制药标准建设,推进公众用药安全保障
    中国药典-沃特世联合开放实验室成立一周年成果初显 中国上海 - 2016年2月5日 - 沃特世公司(Waters)与国家药典委员会合作创立的中国药典-沃特世联合开放实验室(以下简称“联合开放实验室”)近日迎来其一周岁生日。联合开放实验室成立一年来,沃特世公司大力支持实验室建设成为一个坚持公益性、开放性、创新性和互利性原则的实验平台,并在检测技术培训、药典标准热点问题方法学研究等方面进行了广泛合作。未来,沃特世公司与国家药典委员会将进一步深化合作,加强联合开放实验室建设,助力国家制药标准研究与发展,为维护公众用药安全做出贡献。 针对制药标准建设与用药安全保障,沃特世公司协助联合开放实验室于2015年进行了一系列相关培训与科研工作。联合开放实验室不仅与药典委共同举办了“基于‘质量源于设计’(QbD)理念的药品质量控制研究高级培训班”, 还在药典科学年会和行业研讨会上就药典标准分析和检测技术发展展开交流,以帮助众多药品生产企业的检验研发人员了解世界药品标准现状、掌握相关政策法规和学习生产质量控制的先进理念,为促进我国医药产品走向国际搭建平台。 而在科研领域,沃特世与联合实验室为推进小颗粒色谱柱在制药行业的应用,尝试建立了从5微米到亚2微米色谱方法转换的原则和可接受标准,并以阿托伐他汀类药物与银杏叶检测为例,验证了方法转换的可行性与检测结果的平行性。同时,实验室也尝试建立了ACQUITY UPLC与HPLC方法并行的药典标准,为愿意尝试新技术,提高检验效率的企业提供了法规上的依据。此外,为了推动中药标准现代化,联合开放实验室积极参与了连翘子、连翘、黄芩、丹参、黄花等多个品种的标准研究工作。 新年伊始,沃特世公司总裁兼首席执行官Chris O' Connell先生即访问了联合开放实验室,国家药典委员会秘书长张伟先生对Chris的来访表示欢迎,并指出:“中国药典-沃特世联合开放实验室成立一年来,已经取得了重大的工作进展与学术成果,并在药典标准制定中体现出兼具‘前瞻性、引领性、示范性和基础性’的重要作用。未来,我们要充分发挥联合开放实验室的技术优势,更好地支持药典标准发展,造福社会公众。” Chris也表示:“沃特世非常重视与国家药典的合作,希望沃特世在中药、天然药物和植物药的领域的丰富经验与众多解决方案,双方能够进一步深化合作,从而加速联合开放实验室发展,并在药品质量标准建设、先进检测技术的推广应用、技术培训等方面为中药产业的现代化与全球化做出更大的贡献。” 面对当前中国中药市场药材质量差异大,质量不稳定,尤其真、伪、优、劣难以辨认的客观现实,沃特世公司作为科技创新的领导者,在中药、天然药物和植物药等领域与包括国家药典在内的众多合作伙伴及客户进行了广泛紧密的科研合作,并开发了众多完整解决方案,广泛应用于中药及天然产物中的成分鉴定、中药复方的组分研究、药物溯源、中药农残筛查、中药打假等领域。例如UPLC技术能够解决中药成分复杂、分离难度大、分离周期长的难题;ACQUITY UPC2(超高效合相色谱)则针对中药中异构体、脂溶性成分、易挥发性组分等实现技术互补;最新UNIFI天然产物解决方案则为科研人员设计了一个高效简便的工作流程及多种实用的模板,并且该流程中嵌入了独特的中药数据库,为天然产物的组分分析及鉴定提供了一体化的平台。 以银杏叶检测为例,为了保护银杏叶制剂的产品安全,沃特世与联合开放实验室共同开发了槐角苷检查方法。为了提高检验效率,同时保证方法的普适性,实验室同时建立了基于UPLC(亚2微米)、UHPLC(亚3微米)、HPLC(5微米)平台的三种方法,企业可根据实际需求选取其中一种进行槐角苷检测。此后, 沃特世公司也利用其全球资源帮助联合实验室开展国际合作,继续致力于银杏叶的特征性鉴别相关研究工作,为保护中国银杏叶市场贡献力量。 2016年,中国正致力于建设中药化学物质数据库,以保障中药质量与临床用药安全,建立中药质量控制的公共服务体系。沃特世将积极支持联合开放实验室这一公益实验平台,在2015年推出方法转换原则的基础上,继续以实际样品为例,验证方法转换的可行性,为企业在新技术应用上扫清法规上的障碍,并参与配方颗粒标准的制定工作,帮助规范药品质量。 沃特世还将协助联合开放实验室,结合中国药品质量标准建设(特别是中药标准建设)的发展需要,积极参与相关培训与行业活动,并针对药品质量研究和质量管理技术人员举办相关培训,利用最前沿的分析仪器及技术,理论结合操作为新技术及新理念的推广提供技术支撑,如针对2015版药典附录新增的分析检测技术SFC(超临界流体色谱)进行解读及应用培训等。随着2015版药典正式颁发,对现有药典标准进行转换需要做哪些工作一直是困扰分析工作者的问题之一。沃特世与联合实验室将与广大业内同仁共同努力,不断完善技术方案,提高国内药品的研究分析工作,并为全球制药及天然产物质量标准的提高以及国际标准的协调统一提供支持。 关于中国药典-沃特世联合开放实验室“中国药典-沃特世联合开放实验室”是由国家药典委员会以及沃特世公司共同建立的公益性联合实验室。中国药典-沃特世联合开放实验室将深入开展药典标准研究,检测方法和开发与验证工作,同时开展国内外药典标准的分析方法,及各论的数据比对工作。实验室还将为药品监管及药品生产科研人员提供培训,并就药物开发研究开展广泛的国际间技术交流。 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ###Waters、ACQUITY、ACQUITY UPLC、UPLC、UPC2 和UNIFI是沃特世公司的商标。
  • 江苏发现禽流感病毒 扑杀家禽37万只
    据农业部相关负责人介绍,12月15日,农业部接到江苏省兽医部门报告,在对家禽实行例行监测时,在海安县、东台市个别农户饲养的蛋鸡中监测到H5N1禽流感病原学阳性样品。目前上述地区未发现禽流感疫情。  经专家初步分析,检测到的禽流感病毒与我国南方地区流行毒株有一定差异。家禽带毒可能与迁徙候鸟传播病毒有关。据秋季集中免疫大检查结果显示,江苏省兽医部门组织对全省家禽实施禽流感免疫,抗体合格率在89%以上,高于国家规定70%的标准。 接到报告后,农业部立即部署江苏省兽医部门落实防控措施。一是对监测阳性鸡群及周边地区家禽进行扑杀,已扑杀家禽37.7万只。二是实行隔离监控。禁止调运东台市和海安县所有家禽及其产品,限制流通。三是消毒灭源。对被扑杀家禽的养殖场(户)及其周边地区环境进行彻底消毒,防止病毒传播扩散。 按照农业部监测方案规定,每年5月、11月需要进行两次禽流感集中监测,日常监测由各地根据实际情况安排。今年1-10月,全国各地已监测禽流感样品431万份,检出禽流感病原学阳性样品46份,对病原学阳性禽群均及时进行了处置。 目前,海安县、东台市周边县市没有发现异常情况。国家禽流感参考实验室已按农业部要求,对阳性样品开展进一步检测,分析病毒是否发生变异。中国动物卫生与流行病学中心也已派出专家组赶赴上述地区开展流行病学调查,分析病毒来源。 农业部已将有关情况向世界动物卫生组织(OIE)进行了通报。
  • 530万!钦州市检验检测院超高效液相色谱三重四极杆质谱联用仪等采购项目
    项目编号:QZZC2022-G1-00008-CGZX 项目名称:钦州市检验检测院仪器设备采购 预算总金额(元):5300000 采购需求:标项一标项名称:A分标数量:不限预算金额(元):3100000简要规格描述或项目基本概况介绍、用途:1台超高效液相色谱三重四极杆质谱联用仪,具体内容详见招标文件。最高限价(如有):3100000合同履约期限:合同签订之日起90个工作日内安装调试完毕并交付使用。本标项(否)接受联合体投标备注:标项二标项名称:B分标数量:不限预算金额(元):2200000简要规格描述或项目基本概况介绍、用途:1台超高效液相色谱三重四极杆质谱联用仪,具体内容详见招标文件。最高限价(如有):2200000合同履约期限:合同签订之日起90个工作日内安装调试完毕并交付使用。本标项(否)接受联合体投标备注:
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制