当前位置: 仪器信息网 > 行业主题 > >

三缩四乙二醇

仪器信息网三缩四乙二醇专题为您提供2024年最新三缩四乙二醇价格报价、厂家品牌的相关信息, 包括三缩四乙二醇参数、型号等,不管是国产,还是进口品牌的三缩四乙二醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三缩四乙二醇相关的耗材配件、试剂标物,还有三缩四乙二醇相关的最新资讯、资料,以及三缩四乙二醇相关的解决方案。

三缩四乙二醇相关的资讯

  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%  记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。  西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。  专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。  乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功  5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。  “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行     全国人大常委会副委员长、中国科学院院长路甬祥讲话  鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。  乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。  煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。  经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。  关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试选择GSB 07-3163-2014 200748水质 总硬度质控样进行测试。质控样真值为2.81±0.08mmol/L (2.73-2.89)。测定结果及滴定最终颜色见下图。质控样测定结果质控样测试-滴定最终颜色样品测试-人机比对取50ml自来水进行测试并进行人机比对,测试数据及滴定最终颜色见下图。自来水人机比对测试数据注意事项若水样中含有金属干扰离子,使滴定终点延迟或颜色变暗,可另取水样,加入0.5mL盐酸羟胺及1mL硫化钠溶液或0.5mL氰化钾溶液,再次滴定。水样中钙、镁的重碳酸盐含量较大时,需要预先酸化水样,并加热除去二氧化碳,以防碱化后生成碳酸盐沉淀,影响滴定。水样中含悬浮性或胶体有机物可影响终点的观察。可预先将水样蒸干并于550℃灰化,用纯水溶解残渣后再进行滴定。结果与讨论使用睿科Auto Titra08全自动滴定仪可以完成标准物质的测定,滴定结果平行性、准确性良好。也可以达到人工滴定的标准。因此,可以使用Auto Titra08自动滴定仪可以代替人工进行水质总硬度的测定。睿科Auto Titra 08自动滴定仪采用仿生颜色识别,完全模仿滴定时人眼颜色识别动作,内置实验方法,节省时间、操作简单,易于掌握;仪器自动滴定,自动判定终点,节省了实验人员的滴定时间;此外仪器还可自动计算结果,一键生成报告。
  • 工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准
    工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准(见附件1)。其中,化工行业32项、石化行业13项、黑色冶金行业9项、有色金属行业51项、机械行业71项、汽车行业43项、船舶行业8项、轻工行业141项、纺织行业35项、包装行业2项、电子行业16项、通信行业165项。批准《水处理剂混凝性能的评价方法》等53项行业标准外文版(见附件2)。其中,化工行业16项、有色金属行业4项、稀土行业3项、建材行业8项、机械行业7项、轻工行业2项、纺织行业3项、通信行业10项。现予公布。以上化工行业标准(含外文版)由化学工业出版社出版,石化行业标准由中国石化出版社出版,黑色冶金行业标准、有色金属行业标准(含外文版)及稀土行业标准外文版由冶金工业出版社出版,建材行业标准外文版由中国建材工业出版社出版,机械行业标准(含外文版)由机械工业出版社出版,汽车行业标准及包装行业标准由北京科学技术出版社出版,船舶行业标准由中国船舶工业综合技术经济研究院组织出版,轻工行业标准(含外文版)由中国轻工业出版社出版,纺织行业标准(含外文版)由中国纺织出版社出版,电子行业标准由中国电子技术标准化研究院组织出版,通信行业标准(含外文版)由人民邮电出版社出版,通信行业工程建设标准由北京邮电大学出版社出版。附件:1.586项行业标准编号、名称、主要内容等一览表.doc   2.53项行业标准外文版名称及主要内容等一览表.doc工业和信息化部 2023年4月21日
  • 七项食品安全国标征集意见 其中三项涉色谱方法(附仪器配置要求)
    p  近日,卫计委发布通知,对《食品安全国家标准 食品添加剂 食用单宁(征求意见稿)》等7项标准(征求意见稿)(见附件)征求意见。br//pp  整理征求意见稿发现,本次征求意见的标准中,有三项标准的检测项目采用了液相色谱或气相色谱方法,且征求意见稿中对仪器使用时的详细配置及参数进行了规定(见附件)。对此,仪器信息网对涉及分析仪器检测方法的标准的检测项目及对应仪器进行了梳理,如下表。/ptable width="600" border="1" cellpadding="0" cellspacing="0" align="center"tbodytr class="firstRow"td width="158"p style="text-align:center "strong标准名称 /strong/p/tdtd width="220"p style="text-align:center "strong检验项目 /strong/p/tdtd width="189"p style="text-align:center "strong采用仪器 /strong/p/td/trtrtd width="158" rowspan="2"p style="text-align:center "《食品添加剂 乙二胺四乙酸二钠钙》/p/tdtd width="220"p style="text-align:center "氨基三乙酸的测定/p/tdtd width="189"p style="text-align:center "span style="color: rgb(255, 0, 0) "高效液相色谱仪/span/p/td/trtrtd width="220"p style="text-align:center "鉴别/p/tdtd width="189"p style="text-align:center "红外分光光度计/p/td/trtrtd width="158" rowspan="3"p style="text-align:center "《食品添加剂 聚乙二醇》/p/tdtd width="220"p环氧乙烷和二氧六环的测定/p/tdtd width="189"p style="text-align:center "span style="color: rgb(255, 0, 0) "气相色谱仪(配有顶空进样器及氢火焰离子化检测器(FID))、振荡器/span/p/td/trtrtd width="220"p乙二醇和二甘醇总量的测定/p/tdtd width="189"p style="text-align:center "span style="color: rgb(255, 0, 0) "气相色谱仪(配有氢火焰离子化检测器(FID))、振荡器/span/p/td/trtrtd width="220"p平均分子量高于450低于1000的聚乙二醇样品中的乙二醇和二甘醇总量的测定/p/tdtd width="189"p style="text-align:center "分光光度计/p/td/trtrtd width="158" rowspan="2"p《食品添加剂 食用单宁》/p/tdtd width="220"p单宁酸含量(以干基计)的测定/p/tdtd width="189"p style="text-align:center "pH计(精度± 0.1)、恒温振荡器、蒸发皿、蒸气浴/p/td/trtrtd width="220"p残留溶剂(乙酸乙酯)的测定/p/tdtd width="189"p style="text-align:center "span style="color: rgb(255, 0, 0) "气相色谱仪(配备氢火焰离子化检测器(FID)和顶空进样器)/span/p/td/tr/tbody/tablep  除7项食品安全国家标准(征求意见稿)之外,卫计委同时对1项食品安全国家标准修改单(征求意见稿)(见附件)开展了意见征集。依据通知要求,相关意见需在2018年3月20日钱登陆食品安全国家标准管理系统(a href="http://bz.cfsa.net.cn/cfsa_aiguo)在线提交反馈意见。" _src="http://bz.cfsa.net.cn/cfsa_aiguo)在线提交反馈意见。"http://bz.cfsa.net.cn/cfsa_aiguo)在线提交反馈意见。/a/pp  附件:1.《食品安全国家标准 熟肉制品生产卫生规范(征求意见稿)》及编制说明/pp  2.《食品安全国家标准 餐(饮)具集中消毒卫生规范(征求意见稿)》及编制说明/pp  3.《食品安全国家标准 食品中黄曲霉毒素的控制规范(征求意见稿)》及编制说明/pp  4.《食品安全国家标准 即食鲜切蔬果生产卫生规范(征求意见稿)》及编制说明/pp  5.《食品安全国家标准 食品添加剂 食用单宁(征求意见稿)》及编制说明/pp  6.《食品安全国家标准 食品添加剂 聚乙二醇(征求意见稿)》及编制说明/pp  7.《食品安全国家标准 食品添加剂 乙二胺四乙酸二钠钙(征求意见稿)》及编制说明/pp  8.《食品安全国家标准 食品添加剂 松香甘油酯和氢化松香甘油酯》(GB 10287-2012)第1号修改单(征求意见稿)及编制说明/pp  下载链接:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_rar.gif"/a href="http://img1.17img.cn/17img/files/201802/ueattachment/f4082582-5499-472f-a3ed-d02172090a94.rar"20180209145640973.rar/a/ppbr//p
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图四乙基铅和甲基叔丁基醚的化学结构式EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标 四乙基铅和甲基叔丁基醚总离子流色谱图 四乙基铅的标准曲线 甲基叔丁基醚的标准曲线 绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 工信部公示一批石化、冶金等行业仪器分析方法标准
    仪器信息网讯 2015年4月30日,工业和信息化部科技司对246项纺织、化工、冶金、建材、石化等行业的行业标准进行公示。公示截止日期为2015年5月30日。其中有关仪器分析检测的方法标准如下表所示。标准编号标准名称标准主要内容代替标准石化行业 SH/T 1157.2-2015生橡胶 丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的测定 第2部分:凯氏定氮法 本标准规定了采用凯氏定氮法测定丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的两种方法:方法A和方法B。 本标准适用于测定NBR生橡胶,其他NBR也可参照使用。SH/T 1157-1997SH/T 1141-2015工业用裂解碳四的烃类组成测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳四的烃类组成。 本标准适用于工业用裂解碳四馏分中浓度不低于0.01%(质量分数)的烃类组成测定。本标准还适用于其它来源碳四烃类的定量分析。SH/T 1141-1992SH/T 1493-2015碳四烯烃中微量羰基化合物含量的测定 分光光度法 本标准规定了用分光光度法测定碳四烯烃中微量羰基化合物的含量。 本标准适用于1-丁烯和1,3-丁二烯中微量羰基化合物含量的测定,最小检测浓度为0.5 mg/kg(以丁酮计)。不适用于异丁烯的测定。SH/T 1493-1992SH/T 1782-2015工业用异戊二烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯纯度和烃类杂质含量。 本标准适用于工业用异戊二烯纯度和烃类杂质含量的测定,其杂质最低检测浓度为0.005%(质量分数)。 SH/T 1784-2015工业用异戊二烯中微量抽提剂的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯(聚合级)中的微量抽提剂二甲基甲酰胺和乙腈。 本标准适用于测定工业用异戊二烯(聚合级)中含量不低于0.5 mg/kg的二甲基甲酰胺或不低于1.0 mg/kg的乙腈。 SH/T 1786-2015工业用异戊烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯试样纯度和烃类杂质含量。 本标准适用于异戊烯试样中的烃类组分含量的测定,其最低检测浓度为0.005%(质量分数)。 SH/T 1787-2015工业用异戊烯中含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯中含氧化合物的含量。 本标准适用于甲醇、二甲醚、甲基叔戊基醚、叔戊醇等含氧化合物杂质浓度不低于0.001%(质量分数)的异戊烯样品的测定。 SH/T 1790-2015工业用裂解碳五中烃类组分的测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳五中各烃类组分的含量。 本标准适用于裂解碳五组分含量的测定,其最小检测浓度为 0.01 %(质量分数)。 SH/T 1793-2015工业用裂解碳九组成的测定 气相色谱法 本标准规定了气相色谱法测定工业用裂解碳九中碳八芳烃、苯乙烯、甲基苯乙烯、双环戊二烯、茚、萘等组分含量。 本标准适用于工业用裂解碳九中含量不低于 0.01 %(质量分数)组分的测定。 SH/T 1796-2015工业用三乙二醇纯度及杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用三乙二醇的纯度和杂质含量。 本标准适用于三乙二醇含量不低于80.0%(质量分数),乙二醇、二乙二醇杂质含量不低于0.01%(质量分数)、四乙二醇杂质含量不低于0.02%(质量分数)样品的测定。 SH/T 1798-2015工业用1-己烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-己烯纯度和烃类杂质的方法。 本标准适用于纯度不低于97.0%(质量分数)以及正己烷、3-己烯、2-己烯、2-甲基-1-戊烯等烃类杂质含量不低于0.005%(质量分数)的工业用1-己烯的测定。 冶金行业 YB/T 4493-2015焦化油类产品馏程的测定 自动馏滴法本标准规定了自动馏滴法测定焦化轻油类馏程的原理、试样的采取、仪器、试验步骤、结果计算、精密度、试验报告等。本标准适用于焦化轻油类(焦化苯类、酚类、吡啶类、喹啉类等)、粘油类(焦化洗油、蒽油、木材防腐油、炭黑用焦化原料油等)产品馏程的测定。 YB/T 4495-2015焦炉煤气 氰化氢含量的测定 硝酸银滴定法本标准规定了测定焦炉煤气中氰化氢含量的试剂、仪器设备、取样、分析步骤和结果计算。本标准适用于高温炼焦所得的焦炉煤气中氰化氢含量的测定,测定范围:0.1 g/m3~2.0 g/m3。 YB/T 4496-2015焦炉煤气 硫化氢含量的测定 气相色谱法本标准规定了焦炉煤气中硫化氢含量的气相色谱测定的原理、仪器和材料、采样、分析步骤、结果计算、精密度和安全注意事项。本标准适用于焦炉煤气中硫化氢含量的测定。 YB/T 4503-2015钢筋机械连接件 残余变形量试验方法本标准规定了钢筋机械连接件残余变形量试验的术语及定义、符号及说明、试验原理、试件、试验设备、试验程序及试验报告。本标准适用于室温下钢筋机械连接件承受规定静载荷后残余变形量的测量。 YB/T 5325-2015黄血盐钠含量的测定方法本标准规定了黄血盐钠含量的测定方法的原理、试剂、仪器、试样的采取和制备、试验步骤、结果计算和精密度。本标准适用于从炼焦煤气回收中所制得的黄血盐钠含量的测定。YB/T 5325-2006建材行业 JC/T 2336-2015碳纤维中硅、钾、钠、钙、镁和铁含量的测定本标准规定了碳纤维中硅、钾、钠、钙、镁和铁含量测定方法。硅的测定用氟硅酸钾容量法和硅钼蓝分光光度法。钾、钠、钙、镁和铁的测定用原子吸收分光光度法和电感耦合等离子体发射光谱法。 JC/T 2342-2015氮化硅材料相含量分析方法 本标准规定了X射线多晶衍射法测定氮化硅材料相含量的术语和定义、仪器、测试步骤及定量分析方法 本标准适用于氮化硅中&alpha 相和&beta 相的定量分析。 纺织行业 FZ/T 50032-2015聚丙烯腈基碳纤维原丝残留溶剂试验方法本标准规定了聚丙烯腈基碳纤维原丝残留溶剂测试方法-气相色谱法(方法A)、比色法(方法B)和汞盐滴定法(方法C)。方法A和方法B适用于以二甲基亚砜(DMSO)、二甲基乙酰胺(DMAC)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定,仲裁时使用方法A。方法C适用于以硫氰酸钠(NaSCN)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定。   附件:246项行业标准名称及主要内容
  • "齐二药"案主犯之一判无期 因犯危害公共安全等三重罪
    昨天(3日),泰州市中级人民法院传出消息,“齐二药”假药案主犯之一王桂平,因犯有危害公共安全、销售伪劣产品、虚报注册资本等三重罪,5月23日被该院一审判处无期徒刑,剥夺政治权利终身。 2006年4月,广州市中山大学附属第三医院,因使用齐齐哈尔第二制药厂生产的“亮菌甲素注射液”,导致十多名病人死亡,从而引发了震惊全国的“齐二药”假药事件。泰兴籍犯罪嫌疑人王桂平,因涉嫌向齐齐哈尔第二制药厂销售假冒的药用材料“丙二醇”被公安部通缉。 泰兴警方迅速成立专案组,很快将犯罪嫌疑人王桂平捉拿归案,并辗转广东、黑龙江、重庆、浙江、山东等10多个省(市、区)调查取证,最后查明王桂平伪造“中国地质矿业总公司泰兴化工总厂”营业执照、药品生产许可证、药品注册证,用“二甘醇”冒充药用“丙二醇”销售给齐齐哈尔第二制药厂,致使该公司生产出来的“亮菌甲素”不合格,最终导致14名患者死亡。此外,王桂平还虚报注册资本,成立江苏美奇精细化工公司,以“二甘醇”假冒“乙二醇”销售给重庆市某化工有限公司,以“二甘醇”假冒“二聚丙二醇”销售给浙江省宁波市某日用品有限公司,累计销售金额30多万元。法院审理认为,王桂平的行为已触犯刑律,以危险方法危害公共安全,社会危害性极大,依法应予严惩,遂判处其无期徒刑,剥夺政治权利终身,并处罚金人民币40万元,没收违法所得29万余元。 “齐二药”重大责任事故案一审宣判 曝光 "齐二药"被告爆惊人内幕 法庭数度哗然 齐二药案主犯一审获刑7年续:被质疑量刑太轻
  • 三维成像有了共聚焦、双光子,为何还要光片显微镜?
    组织透明化和光片显微镜诞生的必要性生物组织的三维特性使得生命科学的研究都需基于3D空间信息而进行分析,如脑部神经投射、血管分布以及肿瘤微环境等。传统组织学检测包括对冰冻或者石蜡包埋的组织样本进行切片,从而产生微米级别的切片,研究者可以对该切片进行免疫组化染色从而获得细胞层面信息。生物学家早就认识到组织薄切片比厚组织观察起来更加容易,显微切片机将组织切割成微米厚度的二维切片,通过二维切片我们可以获得单细胞层面的信息(Richardson & Lichtman, 2015)。但是三维组织结构可以让人们全面理解器官在正常功能和病理状态下的关键信息,例如神经系统就迫切需要进行三维结构的成像,因为大多数单个神经元向许多方向延伸,它们的真实性质和功能无法通过二维切片来确定;此外,发育生物学需要在三维结构上才能更好的认识器官甚至整个动物的形态发生(Chung et al., 2013)。因此获取完整生物组织在单细胞分辨率尺度上的三维结构一直是生命科学领域的重要目标之一。怎样才能获得组织的三维层面信息?一种方法是通过将一系列连续的切片输入电脑进行三维结构重建,但是这种方法在技术上具有挑战性,因为组织在此过程会被撕裂、折叠、压缩或拉伸从而导致组织某个部分的损失或变形,由于剖面不完整,最终的体积重建可能无法还原最原始的三维结构(Oh et al., 2014)。还有一种方法是使用光学切片技术进行整体成像,比如激光共聚焦、双光子显微镜和转盘显微镜等成像显微镜的使用,这些成像显微镜可以对小组织进行三维结构成像,但是这些现代的显微技术没办法解决组织太厚带来的严重速度滞后问题,以及强激光造成的光漂白、光毒性等问题。光学成像与细胞荧光标记相结合,因其具有良好的空间分辨率和高信噪比,是收集器官或组织单细胞分辨率信息的实用方法之一。然而,组织不透明是全组织和全器官光学成像的主要障碍之一,因此要进行光学成像就要进行组织透明化。那么是什么原因导致组织不够透明?在组织中,生物物质如水、脂类、蛋白质和矿物质通常以不均匀的混合物存在,它们的不均匀分布导致光发生强烈的横向散射,此外,生物物质有时会在细胞内外形成不均匀的结构,包括脂质颗粒和细胞器(如线粒体)、大的蛋白质簇(如胶原纤维)、甚至全细胞体积(如红细胞),当光被分子、膜、细胞器和组织中的细胞反射时,本来应该以直线传播的光线会发生多次偏移,因此光不能直接穿过组织从而形成光的散射(Tuchin, 2015 Wen, Tuchin, Luo, & Zhu, 2009)。组织不透明的另一个原因是光的吸收,血红蛋白、肌红蛋白和黑色素是生物组织中吸收可见光的主要分子,血红蛋白存在于所有脊椎动物(除了鳄鱼、冰鱼)和许多无脊椎动物中,样品内的光吸收可以限制激发光进入组织和荧光发射返回到探测器(Richardson & Lichtman, 2015)。正是由于光的散射和光的吸收,导致光的分布加宽、光的强度衰减,特别是在组织的深层区域,最终导致组织不透明,无法进行全组织三维结构光学成像。因此,组织透明化的目的主要是减少光的散射和吸收,以获得更好的光学成像效果(图1)(Gracie Vargas, 2001)。图1 实现组织透明化的关键步骤 (Susaki & Ueda, 2016)当光穿过组织时,由于脂质、色素的存在,导致光发生散射和吸收,从而组织不透明;组织透明化最主要的目的是通过脱脂、脱色等步骤从而减少光的吸收和光的散射。三种组织透明化方法类型:有机溶剂型、水溶剂型、水凝胶型经科学家的不断研究和突破,多种组织透明化方法相继被提出和优化。组织透明步骤包括:①样本固定;②样本透化(依据组织特性选择脱脂、脱钙、脱色、脱水或水化);③折射率匹配。有机溶剂型透明化方法还涉及到组织脱水过程,根据组织成像需要还要涉及到样本免疫标记(图2)(Almagro, Messal, Zaw Thin, van Rheenen, & Behrens, 2021);为了避免组织发生形变以及检测目标丢失,在透明化之前必须进行样本固定,但是固定程度需要控制,如果固定太弱,组织会软榻,如果固定过头,会阻碍免疫标记;一般使用多聚甲醛(PFA)、戊二醛(GA)进行组织固定,PFA可以均匀的固定大于500微米直径的样品,GA比PFA固定效果好,但是速度慢(分子较大,扩散速度慢),SWITCH方法通过改变pH提高GA效率,GA一般适合固定脆弱以及蛋白表达较弱的组织;在组织切片中我们通过抗原修复减少醛固定时造成的抗原表位封闭(二硫键),在水性透明化方法SHIELD采用聚甘油-3-聚缩水甘油醚(P3PE)既能固定组织又能保存蛋白质;透化过程中用到的试剂主要有三种类型:①有机溶剂;②高水化试剂;③脱脂试剂;随后用高折射率的物质替换组织液体进行折射率匹配,实现组织透明。(Park et al., 2018)。图2 组织透明化基本流程(Almagro et al., 2021)(a) 不同来源样本获取。(b) 用不同方式(去垢剂、醇类化学试剂、电泳)增加组织通透性。(c) 组织标记(抗体、染料、凝集素)以及透明化(有机溶剂型透明化方法、水溶剂型透明化方法)。(d) 组织成像(三维数据、定量分析)。依据各透明化方法中使用的溶剂及其作用原理将现有的组织透明化方法主要分为三类:有机溶剂型、水溶剂型、水凝胶型(图3)(Matryba et al., 2020 Ueda et al., 2020b)。基于有机溶剂的组织透明化方法通过使用高折射率(RI)的有机溶剂将不同成分的RI均质,从而获得极好的组织透明度。BABB组织透明化方法可以完全透明胚胎和幼鼠大脑(Dodt et al., 2007),但该方法中乙醇脱水作用会导致内源性GFP信号淬灭,无法透明有髓组织。通过引入四氢呋喃(THF)和二苄醚(DBE), 3DISCO能够实现大多数成年啮齿动物器官的良好透明度,并将FPs保存几天,虽然DBE能有效保护内源荧光信号,但是DBE降解产物如过氧化氢、醛类物质会对荧光蛋白产生有害干扰(Erturk et al., 2012)。与3DISCO相比,uDISCO能够实现全身透明化和成像,并在数月内保持内源性FPs(Pan et al., 2016)。a-uDISCO是uDISCO的改良版本,通过调节pH条件提高荧光强度和稳定性(Li, Xu, Wan, Yu, & Zhu, 2018)。然而,uDISCO和a-uDISCO都不能有效的透明化高度着色的器官和硬组织。为了解决这些限制,赵瑚团队开发了聚乙二醇(PEG)相关溶剂系统(PEGASOS),该系统可以透明所有类型的组织,同时保留内源性荧光(Jing et al., 2018)。朱丹教授团队通过温度和pH值调节开发了一种基于3DISCO,称为FDISCO,FDISCO有效的保存了FPs和化学荧光示踪剂,并允许在几个月内重复拍摄样品(Qi et al., 2019)。最近开发的sDISCO通过添加抗氧化剂稳定DBE,进一步保留了荧光信号。蛋白质也可以通过免疫标记来观察。由Renier等人开发的iDISCO可以对小鼠胚胎和成年器官进行全贴装免疫标记和体积成像(Renier et al., 2014)。vDISCO是一种基于纳米体的全身免疫标记技术。该技术将FPs的信号强度增强了100倍以上,并揭示了Thy1-GFP-M小鼠的全身神经元投射(Cai et al., 2019)。虽然有机溶剂方法表现出出色的透明性能,并实现了亚细胞分辨率的全身成像,但也存在一些不足,例如样品的大幅收缩、大多数有机溶剂的毒性和荧光蛋白的猝灭。由于油性透明化方法存在诸多缺点,水性透明化方法诞生,水性与油性透明化方法最大区别在于水性试剂具有强亲水性,更有利于荧光信号的保存,适用于自带荧光的组织样本进行透明化。水性透明化试剂主要包括:单纯浸泡透明化和高水化脱脂透明。ClearT是基于甲酰胺的浸泡型透明化方法,速度快,但是会导致组织膨胀且荧光信号会淬灭。PEG可以稳定蛋白质构象,继而发展了可保留荧光蛋白的ClearT2透明化技术,但该方法透明度比ClearT低。SeeDB技术以果糖和硫代甘油为主要成分,可以在几天内将组织透明化,但果糖粘度过高导致组织内渗透性低,在此基础上衍生出FRUIT透明化方法,尿素的使用降低了果糖粘度,提高试剂流动性和渗透性。浸泡型透明化方法不能去除脂质,因此样本透明度有限。SDS、Triton X-100可以有效去除脂质,水化法通过在透明化过程中去除脂质,利用水化作用降低样本折射率进而实现组织透明化。Scale技术利用尿素水化作用进行透明化,可保留荧光信号,但该方法操作时间较长,易导致组织破碎。CUBIC在Scale基础上添加了胺基醇,可以去除血红素使组织脱色,也可以保留荧光信号(Tian, Yang, & Li, 2021)。水凝胶解决了高浓度去垢剂导致样本形变的问题,水凝胶与样本中蛋白质和核酸分子形成共价连接便可以固定和保护细胞结构。水凝胶型组织透明化方法是一种基于水凝胶的组织透明化方法,利用丙烯酰胺凝胶将生物分子固定在它本来的位置,用水凝胶来替换组织中的脂类,让溶液中的单体进入组织,然后对其稍微加热,上述单体开始凝聚为长分子链,在组织中形成高分子网络,这一网络能够固定组织的所有结构,但不会结合脂类,随后快速将脂类抽出,便获得了完整透明的立体组织,如脑组织中的神经元、轴突、树突、突触、蛋白、核酸等都完好的维持在原位。这种独特的组织脱脂方法能够最小化结构破坏和生物分子损失。该方法的脱脂方式主要有两种:电泳和简单被动脱脂,均能有效去除脂质,从而大大提高了水凝胶组织的光学透明度和大分子通透性(Chung et al., 2013 Treweek et al., 2015)。CLARITY透明化方法利用凝胶包埋样本,并利用电场力去除脂质使样本快速透明;SHIELD通过环氧化物P3PE固定组织实现蛋白的保护,之后使用SDS进行被动或主动脱脂。水性透明化方法虽然可以部分解决荧光蛋白易淬灭的问题,但是也存在透明时间长,透明能力低的缺点,一般适用于小样本组织透明化。水凝胶透明化方法操作过程复杂,且需要一定的设备。图3 组织透明化方法的主要类型 (Ueda et al., 2020b)(A) 有机溶剂型透明化方法通过使用有机溶剂依次将组织进行脱水、脱脂、折射率匹配,在短时间内可使组织完全透明。然而,有机溶剂会快速漂白荧光蛋白的信号并且使组织皱缩。(B) 水溶剂型透明化方法以水溶性试剂对组织依次进行脱色、脱脂、折射率匹配,从而使组织完全透明。该方法具有更高的生物安全性和兼容性。(C) 水凝胶型透明化方法通过凝胶将生物分子固定在原来的位置,随后对组织进行脱色、脱脂、折射率匹配操作,从而使组织透明。基于水凝胶的方法可以保留足够的RNA用于分析,如荧光原位杂交;由于水凝胶网会固定组织,因此会使组织体积扩大几倍。组织透明化方法的选择(对于不同检测目标、不同组织、含有特定化学成分的组织选择的组织透明化方法以及试剂不同)组织透明化从2014年兴起以来,前期主要在神经科学领域广泛应用,随着透明化方法的不断改进,目前在发育生物学、免疫学、肿瘤学研究中也被广泛应用。检测目标不同,透明化方法中的试剂选择不同,水凝胶适用于不稳定分子如RNA的保存,CLARITY方法中用到的化学试剂单丙烯酰胺或双丙烯酰胺对细胞内部结构进行很好的固定,使得在后期脱脂等处理后组织内部结构依然保持;常用的样本固定试剂是甲醇,在使用过程中可以较好的固定蛋白质(表1)(Almagro et al., 2021)。表1 不同试剂适用于不同检测目标(Almagro et al., 2021)水性试剂蔗糖和尿素对内源性荧光试剂、脂类试剂比较友好;而有机溶剂苄醇-苯甲酸苄酯(BABB)会造成脂质洗脱和蛋白质荧光基团淬灭,所以不能用于脂肪组织的检测;聚乙二醇(PEG)是有机溶剂型透明化方法PEGASOS中用到的试剂,可以有效保护内源性荧光;此外在有机溶剂型透明化方法中可以通过调节pH、温度达到保护荧光的效果,如FDISCO在四氢呋喃(THF)中,维持碱性pH和低温下,EGFP荧光信号可以维持数月(表2)。此外,免疫标记中使用的小分子染料(如细胞核染料DAPI、碘化丙啶、RedDot和SYTO)、凝集素、抗体对目标进行标记,其中抗体被动扩散速度非常慢,免疫染色可以通过优化抗体浓度、温度、孵育时间等提高染色效率;我们也可以通过减小样品体积、用小分子荧光染料代替抗体增强染色效果。也可以通过改变荧光标记的亲和属性如SWITICH方法,让它们在组织中自由扩散再进行结合;通过电泳的方式也可以提高染色效率(Almagro et al., 2021)。 表2不同试剂对于荧光信号的保留(Almagro et al., 2021)此外,某些组织中含有较难去除的成分如色素、脂肪,其中血红素是组织中较难去除的色素,仅仅通过灌注PBS不足以去除肾脏、心脏、肌肉、肝脏中的血红素,可以选择含有漂白剂成分的试剂进行脱色如双氧水,并且能去除自发荧光,但是过氧化物处理会损伤目标荧光蛋白,所以荧光标记一般在漂白之后进行;前列腺和乳腺富含脂肪,会阻碍抗体进入、光线穿透,可以选择含有去垢剂成分的组合如TritonX-100、SDS、CHAPS等进行脱脂,去污剂可以破坏脂质双层使组织形成可以运输出组织的胶束,SHANEL方法中的CHAPS能生成较小的胶束,能更快的从组织中析出,具有有效的去脂效果。当组织较大时,被动去脂速度就比较慢,这时可以通过电泳的方式加快进程;电泳组织透明设备(ETC)和随机电子迁移(使用旋转电场或在单向电场内旋转样品)可以加速去脂。其它类型组织如硬组织骨骼,其中含有的钙化矿物质阻碍光的穿透,50%-70%的骨骼由遍布蛋白基质的钙化羟基磷灰石(HAP)晶体组成,这时可以选择含有钙螯合剂组合的方法如乙二胺四乙酸(EDTA)中性缓冲液,进行脱钙处理(表3)(Almagro et al., 2021)。表3不同试剂对于细胞组分去除(Almagro et al., 2021)组织透明化方法的应用范围不同组织在透明化方法的选择上都有所不同,根据组织成分、检测目标、组织类型选择不同的透明化方法,下表是不同透明化方法在不同健康以及肿瘤组织上的应用实例,对于组织在选择方法的时候可以借鉴这些实例,从而更好的避开长时间的摸索(表4)。表4 不同透明化方法应用到不同肿瘤组织举例(Almagro et al., 2021)此外,利用组织透明化方法可以实现人类器官三维成像(图4)(Ueda et al., 2020a)。图4 人类胚胎组织以及器官透明化三维结构图(Ueda et al., 2020a)(a) 胚胎周围神经三维图像。(b) 泌尿系统中的肾脏和Wolffian管。(c) 胚胎背部、手臂、头部肌肉。(d)手部脉管系统。(e)手部三种感觉神经。(f)肺上皮小管。参考文献Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J., & Behrens, A. (2021). Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer, 21(11), 718-730. doi:10.1038/s41568-021-00382-wCai, R., Pan, C., Ghasemigharagoz, A., Todorov, M. I., Forstera, B., Zhao, S., . . . Erturk, A. (2019). Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci, 22(2), 317-327. doi:10.1038/s41593-018-0301-3Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., . . . Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332-+.Dodt, H. U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C. P., Deininger, K., . . . Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods, 4(4), 331-336. doi:10.1038/nmeth1036Erturk, A., Becker, K., Jahrling, N., Mauch, C. P., Hojer, C. D., Egen, J. G., . . . Dodt, H. U. (2012). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc, 7(11), 1983-1995. doi:10.1038/nprot.2012.119Gracie Vargas, M., Kin F. Chan, PhD, Sharon L. Thomsen, MD, and A.J. Welch, PhD. (2001). Use of Osmotically Active Agents to Alter Optical Properties of Tissue: Effects on the Detected Fluorescence Signal Measured Through Skin.Jing, D., Zhang, S., Luo, W., Gao, X., Men, Y., Ma, C., . . . Zhao, H. (2018). Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res, 28(8), 803-818. doi:10.1038/s41422-018-0049-zLi, Y., Xu, J., Wan, P., Yu, T., & Zhu, D. (2018). Optimization of GFP Fluorescence Preservation by a Modified uDISCO Clearing Protocol. Front Neuroanat, 12, 67. doi:10.3389/fnana.2018.00067Matryba, P., Sosnowska, A., Wolny, A., Bozycki, L., Greig, A., Grzybowski, J., . . . Golab, J. (2020). Systematic Evaluation of Chemically Distinct Tissue Optical Clearing Techniques in Murine Lymph Nodes. J Immunol, 204(5), 1395-1407. doi:10.4049/jimmunol.1900847Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., . . . Gerfen, C. R. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-+.Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., . . . Erturk, A. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods, 13(10), 859-867. doi:10.1038/nmeth.3964Park, Y. G., Sohn, C. H., Chen, R., McCue, M., Yun, D. H., Drummond, G. T., . . . Chung, K. (2018). Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol. doi:10.1038/nbt.4281Qi, Y., Yu, T., Xu, J., Wan, P., Ma, Y., Zhu, J., . . . Zhu, D. (2019). FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci Adv, 5(1), eaau8355. doi:10.1126/sciadv.aau8355Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., & Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell, 159(4), 896-910. doi:10.1016/j.cell.2014.10.010Richardson, D. S., & Lichtman, J. W. (2015). Clarifying Tissue Clearing. Cell, 162(2), 246-257. doi:10.1016/j.cell.2015.06.067Susaki, E. A., & Ueda, H. R. (2016). Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol, 23(1), 137-157. doi:10.1016/j.chembiol.2015.11.009Tian, T., Yang, Z., & Li, X. (2021). Tissue clearing technique: Recent progress and biomedical applications. J Anat, 238(2), 489-507. doi:10.1111/joa.13309Treweek, J. B., Chan, K. Y., Flytzanis, N. C., Yang, B., Deverman, B. E., Greenbaum, A., . . . Gradinaru, V. (2015). Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 10(11), 1860-1896.Tuchin, V. V. (2015). Tissue Optics and Photonics: Light-Tissue Interaction. Journal of Biomedical Photonics & Engineering, 98-134. doi:10.18287/jbpe-2015-1-2-98Ueda, H. R., Erturk, A., Chung, K., Gradinaru, V., Chedotal, A., Tomancak, P., & Keller, P. J. (2020a). Tissue clearing and its applications in neuroscience. Nat Rev Neurosci, 21(2), 61-79. doi:10.1038/s41583-019-0250-1Ueda, H. R., Erturk, A., Chung, K., Gradinaru, V., Chedotal, A., Tomancak, P., & Keller, P. J. (2020b). Tissue clearing and its applications in neuroscience (vol 21, pg 61, 2020). Nature Reviews Neuroscience, 21(5), 298-298.Wen, X., Tuchin, V. V., Luo, Q. M., & Zhu, D. (2009). Controling the scattering of Intralipid by using optical clearing agents. Physics in Medicine and Biology, 54(22), 6917-6930.
  • 超临界液相二氧化碳输液泵的使用注意
    导 读随着超临界液相应用的逐渐普及,使用中特别是超临界液相独有的二氧化碳输液泵的注意事项显得尤为重要,本篇就和小编一起看一下吧。01二氧化碳钢瓶气的使用注意二氧化碳钢瓶气纯度至少99.9%且带有虹吸管。除了常规液相使用的试剂,还需要乙二醇用于二氧化碳输液泵的泵头冷却。二氧化碳钢瓶气的送液原理钢瓶中的上层气态二氧化碳从上往下施加压力,使得底部液态二氧化碳能够通过虹吸管排放出正常的液态,二氧化碳输液泵维持住5摄氏度低温继续维持二氧化碳液态状态,能够正常通过输液泵输送。国标40L/40kg的二氧化碳钢瓶气通常可以使用10个工作日。在使用一瓶新的钢瓶气气体充盈的情况下,打开钢瓶气总开关,在只打开二氧化碳输液泵截止阀shutoff valve的情况下(点击如图valve按钮),一瓶新的钢瓶气的瞬时压力读数夏天为6.5MPa。冬天因为环境温度较低,热胀冷缩原因,高压充进钢瓶的液态二氧化碳汽化困难,正常为4.5MPa。若上述操作二氧化碳输液泵的瞬时压力读数低于4.5MPa,即表明钢瓶气不够,不足以维持稳定输液,需要更换钢瓶气。针对冬季环境温度较低,钢瓶内压力较低,造成二氧化碳流出不畅的问题,可以将钢瓶放置在有暖气的房间里(环境温度维持在20-30摄氏度),或者在安全使用的前提下通过钢瓶底部加热的方式(底部包裹电热毯、放置取暖器直照),达到提高钢瓶温度增加钢瓶内部压力的目的,易于二氧化碳钢瓶气的充分使用。(注意钢瓶温度不能超过50摄氏度)。02使用环境要求及废液管路处理方式若环境温度高于28摄氏度,安装环境将影响二氧化碳输液泵的冷却,导致性能下降。所以必须保持环境温度低于26摄氏度,周边远离可能产生高温的设备,远离墙壁角落,防止散热不良。由于二氧化碳输液泵泵头冷却长期默认设置为5摄氏度低温状态,在环境湿度较大时,更容易产生冷凝水附着在冷却液循环管路外壁、泵头温度传感器等位置,影响整体冷却效果,导致温度传感器误报警等情况。所以必须保持环境湿度低于60%,同时在如图位置正确连接废液管路,以便于冷凝水的正常排出。03二氧化碳钢瓶气的使用注意若乙二醇水溶液浓度过低,乙二醇接近冰点,容易低温结晶,不易于冷却液循环泵正常输送冷却循环液。若乙二醇水溶液浓度过高,乙二醇粘度过大,增加冷却液循环泵的负载,影响循环泵的运作寿命。所以冷却液要求严格配比30%乙二醇水溶液。如果还需要其它帮助的话,欢迎致电岛津客服热线中心前来咨询,咨询电话:400-650-0439。
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。  该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 北京普瑞赛司仪器有限公司在分析测试中国两会取得圆满成功!
    2008分析测试中国两会于4月25日在山东济南舜耕国际会展中心圆满闭幕。本次盛会以其规模大,技术尖端,涉及面广而受到社会各界的广泛赞誉。北京普瑞赛司仪器有限公司作为众多受邀商之一在本次展会上取得了重大的成功! 北京普瑞赛司仪器有限公司借助此次展会的平台,展出了德国蔡司公司Axio Observer A1m和Axio Imager A1m两款世界顶尖高端显微镜。Axio Observer A1m显微镜是在全国具有最高知名度和口碑的蔡司倒置式显微镜Axiovort 200 mat的升级换代产品,其成像质量、操作舒适性、机械稳定性等方面均改写了世界倒置式研究级显微镜的新标准。Axio Imager A1m采用世界上最先进的光学系统及设计,其优秀的成像质量、机械稳定性以及操作舒适度等方面已经被众多的中国用户青睐。两款顶级产品的出现,成为了众多参观者争相体验的焦点,也成为了此次展会的最大亮点。 为了能够让广大的用户更好的了解蔡司显微镜方面技术,我公司技术工程师也到展会现场与参会者进行了广泛的技术交流,针对用户在显微镜实际操作中所遇到的各类问题进行现场示范和解答,并为客户带来的样品进行显微拍照和分析演示。同时为了让广大客户更充分的了解蔡司公司及其产品,我公司特在此次展会上邀请了蔡司三坐标部公冶凡强工程师和蔡司电镜部唐圣明工程师为与会者讲解蔡司公司其它检测部门的最新产品和最新科技成果,并为用户在物理检测方面提出了更加具有科学性的解决方案。这一举动也受到了广大与会者的高度赞赏和一致的肯定。 借助此次展会,使广大的用户进一步了解的蔡司公司的先进的光学技术和最高端的产品,再次证明了蔡司公司世界光学先锋的领先地位。同时我公司的参展规模、展位设计效果、参会人员组成等方面与往年相比都有一个较大的跨越,充分展现了北京普瑞赛司仪器有限公司做大做强的决心,以及将世界上最好的仪器介绍到中国的经营理念。
  • 生物学中的化学专家——百灵威!
    您看到的是神奇的生命现象,我们看到的是参与其中的化学反应;您看到的是鲜活的组织、细胞,我们看到的是珍藏在里面的化学元素;您看到的是美妙的蛋白电泳条带,我们看到的是错落有致的化合物;您看到的是氨基酸连接成多肽的奇妙历程,我们看到的是多个化学基团的催化重组。和您y样热爱生命科学,伴您勇闯科学难关,与您y起为生物学研究做出贡献!为您的工作提供更为专业的产品服务!十八年的创新发展铸就了有机化学行业的l导者,十八年的资源整合精细制造成就了业界金字招p,十八年的真诚沟通用心服务赢得了科研精英们的y致口碑!贴心的不只是产品,还有我们的价格&mdash &mdash 低至八折,持续两个月真诚回馈。(活动时间:2010年11月20日&mdash &mdash 2011年01月20日)产品编号英文名称中文名称CAS规格目录价折后价160975SDS, 99%十二烷基硫酸钠151-21-3100g500g¥261¥383 ¥209¥30620765SDS in pellets, 99%十二烷基硫酸钠151-21-3250g1kg¥362¥1013 ¥290¥810 166974Acrylamide, 99%丙烯酰胺79-06-1100g500g ¥192¥466 ¥154¥373 402847Bis-Acrylamide, 98% N,N-亚甲基双丙稀酰胺110-26-9100g¥260 ¥208 19148Brilliant Blue G 250考马斯亮蓝G-2506104-58-125g ¥405 ¥324 19149Brilliant Blue R 250考马斯亮蓝R-2506104-59-25g ¥263 ¥210 17096Ethidiumbromide, pure95%溴化乙啶1239-45-81g5g¥238¥958 ¥190¥766 149443Imidazole, 99%咪唑288-32-4500g¥589 ¥471 42145TCA, 99+%三氯乙酸76-03-9100g ¥337 ¥270 32687DMF, 99.8%N,N-二甲基甲酰胺68-12-2100mL¥394 ¥315 149332Glycine, 98%甘氨酸56-40-6250g1kg¥200¥528¥160¥422256725Tricine, 99%三(羟甲基)甲基甘氨酸5704-04-125g100g ¥300¥720 ¥240¥576 255989TEMED, 99%N,N,N' ,N' -四甲基乙二胺110-18-9100mL500mL ¥213¥520 ¥170¥416 288975CHAPS, 98%3-[3-(胆酰胺丙基)二甲氨基]丙磺酸内盐75621-03-31g5g ¥329¥1277 ¥263¥1020 415951DTT, 99% [for molecularbiology]二硫苏糖醇3483-12-31g5g ¥276¥679 ¥221¥543 168802EDTA-2Na, 99%乙二胺四乙酸二钠盐水合物6381-92-6250g1kg ¥302¥906 ¥242¥725 226162Tris, 99.5%三(羟基甲基)氨基甲烷77-86-1100g500g ¥247¥925 ¥198¥740S0596Sodium CholateC24H39NaO5361-09-15g ¥208 ¥166 23336Tween 20吐温209005-64-5250mL¥290 ¥232 27863Tween 80吐温809005-65-6250mL ¥254 ¥203 21568Triton X-100曲拉通X-1009002-93-1250mL1L¥278¥739¥222¥591 16379&beta -Alanine, 99%&beta -氨基丙酸107-95-9500g¥520 ¥416 B3473PMSF苯甲磺酰氟化物329-98-65g¥779 ¥701 20587Ammonium sulfate, for analysis, 99.5%硫酸铵7783-20-2250g ¥420 ¥336 19228PEG 6000聚乙二醇25322-68-31kg ¥792 ¥633 331686Iminodiacetic acid, 98% IDA(亚氨基二乙酸)142-73-4100g ¥240 ¥192 41574Nitrilotriacetic acid, 99%次氮基三乙酸139-13-9250g¥426¥340 13891Thiourea, extra pure, 99%硫脲62-56-6500g ¥368 ¥294 167691-Butanol, 99+%正丁醇71-36-3100mL ¥206 ¥164 14849Benzenesulfonamide, 98%苯磺酰胺98-10-2500g ¥901 ¥720
  • 富尔邦邀您参加“2022年(第三届)中国石油化工设备检维修技术大会”
    2022年8月10日—2022年8月12日,“2022年(第三届)中国石油化工设备检维修技术大会”将在浙江宁波举办。北京富尔邦将参加此次会议,欢迎各位用户莅临展位交流相关技术、产品和服务。大会由中国化工学会主办,中国石油、中国石化、中国海油、中国中化、国家能源集团、国家管网、大唐集团、神华、延长石油及地方炼油、石化、煤化工、化工企业设备管理部门的大力支持,围绕“构体系,抓预防,夯基础,不断提升中国石化设备管理水平”主题,推广应用新技术、新方法、新成果和新产品,引领行业和企业管理与科技进步,促进石油化工产业及相关设备行业健康、有序、高质量发展。同时,将在石油化工转动设备运行维护技术;LNG 关键技术与储运罐区运行维护;石油化工设备完整性管理及腐蚀防护技术;石油化工高端密封与润滑技术等方面展开专题研讨,进一步夯实提高我国石油化工设备管理运维水平。会议主题:构体系,抓预防,夯基础,不断提升中国石化设备管理水平会议地址:浙江省宁波市鄞州区彩虹北路50号,宁波东港喜来登酒店此次会议,我司将携带美国斯派超科技的油液监测设备参展。并针对此次会议内容现场为您解答关于专业油液监测及仪器设备维修保养的难题,旨在助力石油化工企业设备运维、管理、发展提供全面专业的解决方案。斯派超科技参与制定了多项油液检测标准,创新的产品及检测技术为广大用户带来了巨大的经济效益和社会效益,推动了整个行业的良性发展。北京富尔邦作为检测化验行业的服务商,针对此次会议的主题和研讨内容,将携带多款便携式仪器设备参展,为仪器设备故障诊断、状态监测、预防性维护策略、智能解决方案、仪器设备保养、故障维修,提供专业的油液预知性的维护技术、全套的监测设备和针对性的维修保养方案。斯派超科技的产品和监测技术具有针对性强、稳定性好、可靠性高、检测成本低、操作简便等特点,对大型用油设备进行有效监控以及对其潜在风险进行预警,通过对监测数据的实时分析及趋势分析提早发现设备的潜在故障隐患。提高设备的可利用率及生产效率、降低设备维护成本、减少故障停机次数、优化设备运行性能及提高安全系数。仪器一览:专业仪器“早知道”:1.FluidScan1000 便携式油液状态分析仪仪器满足ASTM D7889-13标准,基于直读红外光谱(DIR)技术,用来直接定量分析润滑油液的各种关键状态指标,直接测定合成油或矿物质油的老化程度以及污染程度。直接定量检测结果包括:总酸值TAN、总碱值TBN、氧化度、硝化度、硫化度、添加剂损耗、混油污染、微水、烟炱、乙二醇(防冻液污染)、油液匹配度以及生物柴油中的脂肪酸甲酯(FAME)等。2. MiniVisc3050便携式粘度计仪器满足ASTM D7279和D445(修正后)标准,可以直接快速、准确测定油液在40℃下的运动粘度,使用户可及时识别出由于油液老化、外界污染或混油污染所引起的粘度变化,有效提高设备的可靠性、避免设备不定期停机。3. Ferrocheck 2100便携式直读铁量仪直读铁量仪采用铁磁线圈,仅需3ml油样便可完成铁磁颗粒浓度测试 可以直接快速、准确测定油液中铁磁颗粒含量(ppm,mg/kg),帮助用户及时判断设备的磨损情况,有效提高设备的可靠性、避免设备不定期停机。专业服务“早知道”:仪器设备维修保养是富尔邦公司应用户的需求而开展的一种综合性的技术服务。借助于我们公司强大的检测化验行业仪器成套综合能力、专业的电商采购平台和成熟的仪器维修保养团队,通过我们的服务能及时预见并快速解决仪器设备使用中出现的各种问题,减少仪器的故障率,提高仪器的使用效率,从而使客户的实验室运行便捷、省心、经济、高效、安全。服务内容:1、安装调试培训服务;2、日常维护保养服务;3、仪器设备维修服务;4、设仪器设备维保线上管理平台;5、仪器设备远程维修系统;6、实验室移机搬迁服务。服务目标:让客户以“经济舱”的价格,享受“头等舱”的服务。安全第一,客户为上;维保实时,量身定做;维修快捷,响应迅速;技术精湛,服务周到。我们的收益——来自为客户提高的效率和节约的成本富尔邦维修保养服务已经在石油化工、煤化工、医药、食品、航空航天等企业和科研单位,及众多的第三方检测机构取得了良好的业绩,详细业绩可致电联系我们。
  • 国家市场监督管理总局对《动植物油脂 甘油一酯、甘油二酯、甘油三酯和甘油的测定 高效体积排阻色谱法(HPSEC)》等339项拟立项国家标准项目公开征求意见
    各有关单位:经研究,国家标准委决定对《聚对苯二甲酸乙二醇酯纤维及切片的相对分子质量及其分布的测定高效聚合物色谱-多角度激光光散射法(APC-MALLS)》等339项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年10月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001379,查询项目信息和反馈意见建议。2023年9月4日相关标准如下:#项目中文名称制修订截止日期1动植物油脂 甘油一酯、甘油二酯、甘油三酯和甘油的测定 高效体积排阻色谱法(HPSEC)制定2023-10-042橄榄油和橄榄果渣油中脂肪醇和三萜醇含量的测定 毛细管气相色谱法制定2023-10-043粮油储藏 就仓干燥技术规范修订2023-10-044粮油储藏技术规范修订2023-10-045粮油机械 大米色选机修订2023-10-046塑料平托盘修订2023-10-047塑料制品碳足迹核算通则制定2023-10-048碳排放核算与报告要求 第XX部分:日用陶瓷企业制定2023-10-049小麦和小麦粉 面筋含量 第1部分:手洗法测定湿面筋修订2023-10-0410小麦硬度测定 硬度指数法修订2023-10-0411溴敌隆母药修订2023-10-0412溴敌隆原药修订2023-10-0413溴甲烷原药修订2023-10-0414溴鼠灵母药修订2023-10-0415溴鼠灵原药修订2023-10-0416药品冷链物流追溯管理要求制定2023-10-0417一次性托盘修订2023-10-0418医药产品冷链物流温控设施设备验证 性能确认技术规范修订2023-10-0419标准化教育课程建设指南 药学标准化制定2023-10-0420电子商务平台交易信息监测指南制定2023-10-0421电子商务平台适老化通用要求制定2023-10-04
  • 用Sievers M9总有机碳TOC分析仪进行USP 661.1塑料包装结构材料筛选
    简介药品生产商需要用包装系统将他们生产的药品包装后投放到市场上。包装系统通常含有塑料和塑料组件,塑料组件包括静脉输液袋、泡罩包装袋、塑料瓶、预填充注射器等等。包装系统使用的塑料不仅含有聚合物,还含有抗氧化剂、稳定剂、润滑剂、增塑剂、着色剂等多种添加剂。当药品直接接触到塑料包装系统及其组件时,药品和塑料之间就会互相影响。为了确保药品的完整性、有效性、以及对患者的安全性,美国药典(USP)颁布了有关应用于药品的塑料包装系统及其组件的监管要求。USP 661总章颁布于2016年5月,对各种塑料材料和完整包装系统的稳定性进行了表征1。总章于2017年5月1日经过修订2,更改了以下两点。第一,允许为期三年的实施期,总章的最终生效日期为2020年5月1日2。第二,取缔了之前批准的市场上“特许的老式”包装系统。无论是现在还是将来,市场上所有的制药商都在监管范围之中。USP 661USP 661阐述了塑料包装系统及其结构材料。USP 661分为以下两章:USP 661.1结构材料3和USP 661.2药用塑料包装系统4。本文着重介绍USP 661.1,说明规则所要求的材料和方法。USP 661.1规定了一系列测试来表征和筛选塑料材料,以保证其适用性。描述的特征包括材料的特性、生物反应性、一般物理化学性质、可提取物和可浸出物的成分测试3。在物理化学测试中,总有机碳(TOC,Total Organic Carbon)分析是必不可少的药典测试之一。对所用的TOC仪器和方法的要求如下3:...用于进行TOC分析的方法必须有0.2 mg/L(ppm)的检测限,以及0.2至20 mg/L的线性动态范围...此外,USP 661.1还规定了TOC测试的材料筛选接受标准3(见表1)。表1列出了USP 661.1规定的各组塑料材料的提取和测试方法。该方法代表了最坏情况下的可控研究,以判断可提取物变成潜在可浸出物的程度。USP 661.1测试方法第1组:聚乙烯、环烯烃、聚丙烯3:将25 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入500 mL纯净水(PW),在回流条件下保持煮沸5小时。让溶液冷却,然后用烧结玻璃过滤器过滤提取液。将滤液收集在500 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第2组:聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸乙二醇酯G(PETG)3:将10 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入200 mL纯净水,加热到50°C,保持温度5小时。让溶液冷却,将溶液倒入200 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第3组:增塑聚氯乙烯(PVC)3:将25 g的测试材料倒入硼硅酸盐玻璃烧瓶中。加入500 mL纯净水,用铝箔或硼硅酸盐烧杯盖住瓶口,在高压锅中加热到121±2°C,保持温度20分钟。让溶液冷却,使固体沉淀。将溶液倒入500 mL容量瓶中,用纯净水稀释至刻度。结果对USP 661.1中规定的各塑料类别标样的测试,证明了Sievers M9 TOC分析仪适用于USP 661.1结构材料筛选。在测试中采用了USP 661.1规定的测试方法,并且准备和分析了各组的空白。表2和图1显示了所测试塑料的扣除空白后的TOC结果。讨论USP 661.1中规定的TOC分析仪和方法标准必须具有0.2 mg/L(ppm)的检测限和0.2至20 mg/L(ppm)的线性动态范围3。Sievers M9 TOC分析仪的检测限为0.03 μg/mL(ppb),线性范围为0.03 μg/mL(ppb)至50 mg/L(ppm)。Sievers M9符合甚至超过USP 661.1的要求,完全适用于USP 661.1要求的塑料中TOC的药典筛选。USP 661.1筛选结果表明,即便是控制的标准塑料,也含有多种可浸出物和可提取物,测量出的具体含量取决于塑料种类。结果表明了通过稳固可靠的材料筛选和测试来正确选择包装材料的重要性。结论Sievers M9 TOC分析仪适用于USP 661.1规定的塑料包装结构材料测试。此外,Sievers还通过特有的标样和文档来提供额外的USP 661.1应用支持。Sievers提供以下认证的参照材料(获ISO 17034和ISO/IEC 17025认证),以支持Sievers M9分析仪在USP 661.1规则达标中的应用1:- 准确度/精确度标准品,8 ppm(STD 77013)- 准确度/精确度标准品组,5 ppm(STD 99011)- USP 661线性标准品组(STD 99012)Sievers还按照用户要求提供线性任务和电子表格以供参考。上述标样和Sievers的调查性事件分析报告(FAR,Failure Analysis Report)一起,提供了事件的可追溯性,加快了对“检验结果偏差(Out of Specification)”的调查。本文用数据证明,Sievers M9 TOC分析仪可以用来测量USP 661.1规定的塑料中的各种浓度的TOC。有了可追溯性标样和事件分析报告,Sievers能够为USP 661.1合规性提供全面的应用支持。参考文献1.USP 661 Compliance for TOC Analysis, 300 00347, 2017. Retrieved Dec. 20, 2017, from https://geinstruments.com/downmedia?f_id=39418.2.661 Plastic Packaging Systems and Their Materials of Construction, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661_rb_notice.pdf.3.661.1 Plastic Materials of Construction Revision Bulletin, Postponement, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.1_rb_notice.pdf.4.661.2 Plastic Packaging Systems for Pharmaceutical Use, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.2_rb_notice.pdf.◆ ◆ ◆联系我们,了解更多!
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 同时检测乳品中双氰胺和三聚氰胺的沃特世解决方案
    丁娟娟 纪英华 赵嘉胤 庄淑萁沃特世科技(上海)有限公司摘要:2008年,三鹿奶粉被爆检出对人体有害的三聚氰胺,一时间震惊全国。自此,国家一直在加强对奶粉中三聚氰胺的监管。2013年初,新西兰牛奶及奶制品被检测出含有低含量的有毒物质双氰胺,新西兰政府已经下令禁售含有双氰氨的奶类产品。沃特世(Waters)公司一直致力于保障人类的健康生活,第一时间开发了奶粉中双氰胺和三聚氰胺同时检测的方法,以提高检测分析的有效性。二氰二氨(双氰胺),缩写DICY或DCD。是氰胺的二聚体,也是胍的氰基衍生物。化学式C2H4N4。白色结晶粉末。可溶于水、醇、乙二醇和二甲基甲酰胺,几乎不溶于醚和苯。三聚氰胺,俗称密胺、蛋白精,是一种三嗪类含氮杂环有机化合物,被用作化工原料。微溶于水,可溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶等,不溶于丙酮、醚类,对身体有害,不可用于食品加工或食品添加物。分析难点:对于同时分析奶粉中双氰胺和三聚氰胺,其主要难点在于虽然两者均为极性物质,都需要使用HILIC色谱分离模式,但根据之前的经验,三聚氰胺在BEH HILIC色谱柱上保留和峰形较好,而双氰胺在BEH Amide色谱柱上保留和峰形较佳。因此需要建立一个统一的LCMSMS方法用于分析双氰胺和三聚氰胺,并获得更好的峰形和灵敏度。另一方面,传统的三聚氰胺方法是采用Oasis MCX这种反相和阳离子交换的复合SPE模式,然而这种方法完全不适用于双氰胺;而Sep-Pak AC2小柱虽然可以用于双氰胺的净化和富集,但仍需开发一个更为快速的前处理方法。实验方法:仪器:Wa ters ACQUITY UPLC with Xevo TQ-S色谱柱:ACQUITY BEH Amide column,1.7&mu m, 2.1*150mm流动相A: 5mM甲酸铵 0.1%甲酸水溶液流动相B:乙腈流速:0.4mL/min柱温:35℃进样体积:5&mu L梯度曲线:质谱参数:毛细管电压:2.5kv脱溶剂气温度:500度脱溶剂气流速:8 00 L/Hr碰撞气流速:0.15mL/min样品前处理方法:为达到快速、高效的检测目的,本实验采用Waters DisQuE样品制备试剂盒。Waters DisQuE样品制备流程如下:本实验在未添加同位素内标的情况下,空白基质添加1ppb样品浓度,测得双氰胺平均回收率为83%,三聚氰胺平均回收率为71%。实验结果结论:本文采用沃特世超高效液相色谱UPLC与高灵敏度三重四极杆Xevo TQ-S,开发了同时分析奶粉中双氰胺和三聚氰胺的检测方法,此方法建立在HILIC机理的BEH Amide色谱柱上。对于基质中添加1ppb的待测物,经过DisQuE基质分散样品制备盒净化后进样,不但峰形良好、不受基质干扰影响,灵敏度也完全满足检测要求。为了达到快速、高效的分析目的,本文采用DisQuE基质分散样品制备盒,样品经简单的蛋白沉淀后加入到DisQuE试剂盒中净化,之后直接进样即可,无需挥干复溶。方法简单、快速,尤其对于大批量样品的检测,该方法可以大大提高分析效率。在LCMSMS方法开发中,杂化颗粒的HILIC模式色谱柱起到了很大作用,首先两种待测物均为极性化合物,反相色谱无法保留,HILIC提供了一个互补的选择。其次在众多HILIC模式色谱柱中,BEH Amide色谱柱为杂化颗粒技术,pH耐受范围广(pH 1-10),为方法开发提供了更大的空间,且BEH Amide在此应用中具有更好的选择性和峰形。
  • 天瑞仪器:公司仪器产品可用于检测塑化剂
    天瑞仪器(300165) 周四(6月2日)在深交所上市公司投资者关系互动平台上表示,公司仪器产品可用于检测邻苯二甲酸酯(塑化剂),塑化剂风波前就有非食品行业客户从公司购买液相色谱仪检测塑化剂。  天瑞仪器的主营业务为化学分析仪器及其应用软件的研发、生产和销售。
  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash 5.250 色谱仪的进样口处。step 2:puriFlash 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;3、色谱方法与流动反应池的进料流速同步,以实现成功的耦合。ONE应用实例(A) 乙二醇和苯甲酰氯酯化反应的在线快速纯化流程示意图。 (B) 40 个连续分离的酯产物的色谱堆叠图。DMAP:4-(二甲氨基)吡啶,FBR:固定床反应器。 实验体系证明了流动化学集成 puriFlash 5.250 从粗反应混合物中同时分离两种产品(以克/小时为单位,纯度 99%)的潜力。在乙二醇和苯甲酰氯的连续流动酯化中,两种酯的产率分别为 9.9 和 7.6 mmol/h。ONE讨论 使用测试混合物(4-甲氧基苯酚和2,5-二溴对二甲苯,正己烷/乙酸乙酯体系)成功进行了原理验证研究,证明了流动化学-puriFlash5.250集成的可行性,并确认了 Advion Interchim Scientific Flash 柱的耐用性。 受到该方法成功的启发,另外几种不同的反应也得到了验证,连续分离出纯度为 97-99% 的产品。 除此之外,puriFlash 5.250 纯化制备系统还可以提供重要的辅助功能。 • 以4,7-二苯基-2,1,3-苯并噻二唑为均相光敏剂,催化 fmoc-l-蛋氨酸生成相应的亚砜为例,证明了均相催化剂在线回收的可能性。 • 可以实现 AIS puriFlash 纯化制备色谱系统与您的流动化学无缝集成,这种联合能够满足实验需求,有助于加速化学新反应的发现。
  • pvc(糊树脂)难溶甲醇,听听禾工技术员怎么说
    pvc糊树脂是一种特殊的pvc,外观为白色细微粉末,主要用于制造人造革、纱窗、汽车胶、壁纸、地板卷材、玩具等。生产过程中,pvc糊树脂中水分含量是一项重要的测量指标,对生产具有重要的指导意义。 国家标准GB-T2914-20008《塑料 氯乙烯均聚合共聚树脂挥发物(包括水)的测定》方法中主要测定树脂本身所含有的水分及挥发性有机杂质,这些组分在加工过程中将成为气泡含于制品中,影响制品的强度、外观等性能,是衡量糊树脂产品质量的一项重要指标。但是由于国家标准分析方法采用烘箱法,且糊树脂具有颗粒小、质量轻、有静电等特点,所以环境条件和设备条件对分析结果影响很大,分析结果准确度和可靠度不高。卡尔费休法在测定物质水分的各类化学方法中,是世界公认的测定物质水分含量的最为专一和准确的经典方法。使用卡尔费休水分测定仪可快速的测出糊树脂中的水分含量,但是由于糊树脂不溶于甲醇,不能直接与卡尔费休试剂反应,因此我们需要卡尔费休水分测定仪与卡式加热炉一起使用。使用禾工AKF-PL2015C卡氏水分仪(配有卡式加热炉)把糊树脂样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析。 使用禾工AKF-PL2015C卡氏水分仪的优势:AKF-PL2015C塑料粒子专用水分测定采用瓶式加热技术,既能避免反应杯和加热炉膛污染问题,也能减少载气消耗。无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结 操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。 塑料粒子(树脂)含水量专用卡尔费休水分测定仪测定范围: 适用多种塑料粒子的生产及注塑,实现塑料粒子的水分含量检测。可测定abs、聚丙烯酰胺(pam)、聚酰胺(pa)、聚氯乙烯(pvc)聚碳酸酯(pc)、聚乙烯(pe)。聚对苯二甲酸乙二醇酯(pet)、聚甲基丙烯酸甲酯(亚克力、pmma)、聚丙烯(pp)、聚苯乙烯(ps)、聚乙烯醇缩丁醛(pvb)、硅橡胶塞等等。禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!您得到的不仅仅是一份报告,更可能是一份行业专业的解决方案!
  • 北京佳仪分析设备有限公司成功中标中科院高能物理研究所循环制备型高效液相色谱仪采购
    北京佳仪分析设备有限公司成功中标中科院高能物理研究所循环制备型高效液相色谱仪采购项目我司于近日成功中标中科院高能物理研究所循环制备型高效液相色谱仪采购项目。日前,我司参加了中科院高能物理研究所委托东方国际招标有限责任公司招标循环制备型高效液相色谱仪采购项目的投标并成功中标。在评标期间,本着公平公正的原则,我司与另一投标商分别在客户处进行样品分离纯化实验,经过结果对比,再次证明我司仪器的循环功能是独一无二的。这种开创性的循环功能使液相色谱内部形成一个闭合的回路,样品可以在这个回路中反复过柱,在节省溶剂的同时达到了其他液相色谱无法达到的纯化效果。同时,由于该仪器使用绝无仅有的独特的管路设计(日本专利号2006-138699),可以有效的防止哪怕最微小的扩散回流物质对于溶剂或样品的污染,这是其他液相色谱所无法比拟的。从我司提供给评标专家组百余篇世界各国学者使用我司仪器在其研究领域发表的文章及国内对应领域客户名单中可以看出,我司仪器有着广泛的应用性,特别是在富勒烯研究领域,更被默认为行业标准配置仪器。我们相信,随着我国科研水平的日益提高,业界对高端仪器设备的需求会逐渐增大,我司仪器会在更多的领域做出更大的贡献。最后,我司特向在此期间给予技术支持和分析指导的北京大学施祖进教授和中科院化学所王春儒研究员表示感谢!
  • Sievers M系列TOC分析仪可实现快速泄漏检测
    时间就是金钱!生产工艺总是快速变化,迅速诊断工艺中发生的污染事故,对工厂及时采取正确的纠正措施来保护设备、减少停机时间、节省维修费用来说至关重要。在检测有机物(如糖类或石化产物)泄漏时,仪器响应时间的长短决定了工厂能否迅速排除污染物的干扰,是否应将被污染的水送回生产循环或排放出去。在所有工业TOC分析仪中,配置了Turbo运行模式的Sievers M系列TOC分析仪是响应时间最快的仪器之一,充分满足用户对快速检测的要求。M系列分析仪具有世界一流的测量精确性和稳定性,为无缝工艺监测提供理想的解决方案。“挑战”工厂在生产中用大量的水来进行清洁、制造、加热、冷却,甚至作为生产原料。在水的各种应用中,都必须满足特定的水质适用标准。工厂为了确保工艺水的适用质量,需要监测和测量因泄漏或污染而导致的水质变化。以下是一些水质检测实例:检测冷凝液中的冷却剂(如乙二醇)泄漏。在生产下一批产品之前,确定水容器中是否有清洁剂或上一批产品的残留物。确定排放水的浓度是否超标。在检测泄漏或污染时,仪器的快速响应时间对化工、石化、食品加工等行业的生产工艺来说极为重要。快速检测能够避免产品损失、产品污染、工艺中断。通常来说,充分了解和准确建立基准水平,比全面测量泄漏和污染的程度更加重要。如果没有准确的基准水平,就很难发现何时发生泄漏。检测泄漏的目的是,一旦发现泄漏,首先将其堵住,然后查出泄漏源头,最后解决导致泄漏的问题。在泄漏对设备、生产、环境造成损害之前,工厂必须快速检测出泄漏,并分流处理被污染的水。“解决方案”通过总有机碳TOC分析进行碳监测,非常有利于检测泄漏和污染事故。操作人员能够根据水中的总有机化合物浓度,迅速判断出是否发生有机物泄漏。TOC分析的最低测量浓度可到“微克/升”或更低的痕量水平。有机物监测的工业应用如今制药和半导体行业广泛采用TOC监测技术,来监测水的纯度、注射用水水质、设备清洁和工艺过程控制。TOC监测对电力行业也至关重要,因为发电厂的蒸汽系统需要使用不含腐蚀性化合物(或能降解成腐蚀物的化合物)的超纯给水。在化工和食品加工行业的生产过程中,如果工艺流体泄漏到产品中,或产品泄漏到工艺流体中,TOC监测仪器都能及时提供详细信息。如果没有TOC监测,泄漏事故可能会导致工厂停产或产品召回。Sievers M9便携式TOC分析仪用Sievers TOC和电导率分析仪来快速识别污染越能快速发现污染事故并分流处理被污染的水,就越能降低停机、停工、意外维修、产品损失的风险。Sievers M系列TOC分析仪的Turbo运行模式每4秒提供一次监测数据,为用户提供快速检测污染事故的关键信息,从而将污染事故的后果降至最低。 Sievers M系列分析仪有实验室型、便携式、在线型3种配置,可以测量总碳(TC)和无机碳(IC),然后用减法得出TOC浓度。IC包括样品中的背景二氧化碳、碳酸盐、碳酸氢盐。M系列分析仪采用“紫外线过硫酸盐氧化和膜电导检测法(UV Persulfate Oxidation And Membrane Conductometric Detection)”来测量TOC。M系列分析仪除了测量TC、TOC 、IC之外,还能测量电导率,为用户提供识别泄漏和查找泄漏原因的进一步信息。在计算分析仪的响应时间时,必须考虑两方面的因素,即样品如何被传送到分析仪,以及分析仪如何对污染事件作出响应。前者所涉及的具体考虑因素包括:相对于分析仪的样品流位置、从取样点到分析仪的样品流量、泄漏的位置、从泄漏点到分析仪的样品传输管的直径等。后者是指分析仪所具备的功能,例如测量模式或仪器设置。Sievers分析仪的快速响应时间M9便携式TOC分析仪配置了Turbo运行模式,通过“集成在线取样器(iOS,Integrated Online Sampler)”来在线监测超纯水(TOC浓度小于10 ppb),其工作流程如图 1 所示。在注入样品时,先停止超纯水流动。用注射器将60毫升的10 ppm TOC溶液直接注入iOS的上游,然后恢复水的流动。从开始注入样品时计算时间。计时结果如表1和图2所示。图1:实验流程。圆圈代表阀门。当超纯水流动时,注射器阀关闭。当注入样品时,超纯水阀关闭。注水完毕时超纯水阀立即重新打开。表1:在Turbo模式下运行Sievers M9分析仪的响应时间测试结果图2:两次注入样品的响应时间曲线。能控制的变量包括注水位置、注入体积、浓度。不受控制的变量为工艺系统中的超纯水流量。T0是第一次测量的响应时间,其中TOC浓度从所建立的基线开始增加1 ppb以上。T5是达到注射加标浓度5%的响应时间。在理想情况下,操作人员有足够时间来采取措施,分流处理被污染的水以终止进一步污染。M系列分析仪的普通运行模式是2分钟测量,不在本文的讨论之中。Sievers M系列TOC分析仪中的样品流量是恒定的,不受有机物浓度或分析步骤的影响。因此,M系列分析仪的响应时间也是恒定的,并没有批次型TOC分析仪常有的延时特性。“结论”本文中的测试结果证明了Sievers M系列分析仪具有出色的响应时间。M系列分析仪的快速响应给操作人员足够的时间来分流处理被污染的工艺水,抢在损失或违规发生之前解决生产中发生的泄漏和污染事故。Sievers M系列TOC分析仪具有快速响应能力,并在宽广的测量范围内提供稳健和准确的TOC结果。M系列分析仪的维护要求低、校准长期稳定、运营成本低、性能出色,是泄漏检测和其它工艺监测的理想设备。 ◆ ◆ ◆联系我们,了解更多!
  • 【瑞士步琦】SFC遇见SEC——三种模式应用于聚合物分离
    三种模式应用于聚合物分离 通常来讲,对于聚合物的分离,主要方法为体积排阻色谱(SEC)和液体吸附色谱(LAC),然而在这两个模式之间,存在着所谓的临界条件下液相吸附色谱法(LACCC)。原理上,对于所有的模式都是根据分子的特性来对聚合物进行分离。其实,在这三种模式中使用超临界 CO2 只是停留在早期的研究中,但是随着 SFC 领域的快速发展,又燃起了我们对于这些模式研究的希望!本篇文章,我们将会以聚乙二醇(PEG)为模型展示这三种模式下的分离状态。为了确定临界条件下的色谱参数,采用了质量设计(QbD)的方法来减少所需的实验。1聚合物分离的色谱原理超临界条件下体积排阻色谱scSEC临界条件下超临界流体吸附色谱SFACCC超临界流体吸附色谱SFAC大量的改性剂强溶剂聚合物与固定相无相互作用焓变强溶剂和弱溶剂的混合物焓和熵的效应是相等的二氧化碳含量高(弱溶剂)聚合物在固定相上的解吸与吸附基于流体动力体积的分离高分子量优先被洗脱不依靠分子量的聚合物共洗脱基于端基的分离基于相互作用强度的分离更高分子量的后洗脱表1. 超临界流体色谱法对聚合物不同分离方式的比较。哪种模式占主导地位取决于色谱条件,主要是溶剂强度。2实验材料与设备实验条件色谱柱250 mm x 20 mm, 5μm (制备柱)Reprosil SEC 200&angst (Dr. Maisch, Germany)150 mm x 2.1 mm, 1.9μm (分析柱)仪器分析型:Waters UPC2 with Acquity ELSD(Waters)制备型:Sepiatec SFC-250 with ELSD(Sepiatec)软件Fusion QbD software (S-Matrix Corp.)3SFACCC 中使用 QbD 对聚合物进行条件筛选与分离QbD 法确定关键色谱条件:在第一次筛选后,使用 QbD 方法以最少的实验确定关键色谱条件在较小的条件区域内,所有共洗脱的聚乙二醇都可以得到,图中用白色背景表示这一点通过实验得到了验证PEG-400 与聚多卡醇(端基为 C12-烷基的 PEG-400)在如下条件分离:名称目标下界上界颜色所有PEGs最大保留时间差最小0.030——红色聚多卡醇/PEG400保留时间差最大——0.100绿色▲图1.由 Fusion QbD 软件生成的方法设计;在临界色谱条件 T 中进行▲图2.在临界色谱条件:36% 甲醇和 56℃ 下,不同 PEG 的共洗脱(上图)和 PEG-400 与聚多卡醇的分离(下图)4在相同系统下采用 SEC 与吸附色谱对聚乙二醇进行实验实验条件色谱柱200 &angst 1.9μm背压调节阀1800psi(124bar)洗脱液CO2(A)/甲醇(B)流速1 mL/min温度40℃检测器ELSD▲图3.scSEC:等度模式;10/90(CO2/甲醇)▲图4.SFAC:梯度模式;十分钟之内 90/10 – 50/50(CO2/甲醇)▲5.SFAC:等度模式;90/10(CO2/甲醇)scSEC色谱法在亚临界条件下通过高比例的强溶剂进行等度洗脱,高分子量的 PEG 更早的洗脱出来。SFAC色谱法通过梯度洗脱模式对 20kDa – 200Da 分子量范围内的 PEG 进行洗脱。后续采用低比例改性剂的等度模式对可将 PEG-200 和 PEG-400 分散剂分解为其单分散组分。分子量的确认通过 SFC-MS 联用技术进行确认。SEC校准:将衍生化均匀聚合物与常规 PEGs 分散剂进行校准比较,以此来证明均匀聚合物的可用性。5制备分离 PEG-400 里均匀聚合物实验条件仪器Sepiatec SFC-250色谱柱200 &angst 5μm洗脱液CO2(A)/甲醇(B)= 93/7流速60 mL/min温度40℃检测器ELSD▲图6.通过 SFAC 色谱模式对 PEG-400 均匀聚合物进行分离效果图谱聚合物纯度验证:在分析层面上使用开发的 SFAC 色谱法对均匀聚合物的纯度进行检测,结果表明即使在不优化分离条件的情况下,所有聚合物的纯度都>99%。6结论通过改变 CO2 和甲醇的比例,三种模式均可在相同的系统中实现。除此之外,在实际应用中,通过将开发的分析方法顺利转移到制备规模中,对不同分子量的聚乙二醇进行分离纯化且得到了均匀的聚合物。
  • 长江存储发布声明:日媒肆意杜撰炒作其供应链管理政策
    5月10日,长江存储在官网发布声明称,发现“日经亚洲评论”等多家网络媒体援引不可靠信源,对长江存储供应链管理政策进行了肆意杜撰,发布不实报道。对此,长江存储郑重声明如下:1. 长江存储是一家全球化运作的商业公司,致力于融入全球半导体产业链,与世界优秀的企业共同成长,并始终遵循公平公正的供应链审核制度;2. 长江存储始终以提供高品质闪存解决方案产品满足全球客户需求为目标,不以任何非法律和非市场化竞争的因素排除特定区域的合作伙伴;3. 目前长江存储与各国合作伙伴均保持着友好互信的商业往来,合作共赢仍是我们共同的追求,也诚挚欢迎各国优秀企业与长江存储合作,继续支持长江存储发展,共同推动产业不断创新、不断进步。长江存储声明 图源长江存储官网据了解,事情起源自日媒不可靠报道。相关报道称长江存储为了减少对美的依赖,开始进行了大规模审查,不管是螺钉、螺母和轴承还说是那些生产设备和化学药品等等,都是力求是本土供应商,甚至是非美供应商就行!其中某知情人表示,现在的长江存储不仅仅是在排查自己的生产线,还在排查供应商以及供应商的供货链,用“掘地三尺”来形容似乎也不足为过!比如螺母的来源、交货时间、是否存在替代品等等方面,长江存储都要严格审查!长江存储科技有限责任公司成立于2016年7月,总部位于“江城”武汉,是一家专注于3D NAND闪存设计制造一体化的IDM集成电路企业,同时也提供完整的存储器解决方案。长江存储为全球合作伙伴供应3D NAND闪存晶圆及颗粒,嵌入式存储芯片以及消费级、企业级固态硬盘等产品和解决方案,广泛应用于移动通信、消费数码、计算机、服务器及数据中心等领域。2017年10月,长江存储通过自主研发和国际合作相结合的方式,成功设计制造了中国首款3D NAND闪存。2019年9月,搭载长江存储自主创新Xtacking架构的64层TLC 3D NAND闪存正式量产。2020年4月,长江存储宣布128层TLC/QLC两款产品研发成功,其中X2-6070型号作为业界首款128层QLC闪存,拥有业界最高的IO速度,最高的存储密度和最高的单颗容量。截至目前长江存储已在武汉、上海、北京等地设有研发中心,全球共有员工6000余人,其中资深研发工程师约2200人。通过不懈努力和技术创新,长江存储致力于成为全球领先的NAND闪存解决方案提供商。日媒援引不可靠信源报道,可能对长江存储的海外设备采购造成不利影响。
  • 氯丙二醇兴风作浪,岛津方案让您一招全搞定
    导读近日有媒体报道,香港婴儿配方奶粉检出致癌物氯丙二醇(3-MCPD)及可致癌的环氧丙醇,其中不乏有惠氏、美赞臣、雅培、meiji等知名品牌。此事牵动着广大宝妈对婴幼儿奶粉质量安全及婴儿身体健康等的担忧。当晚,香港食安中心在专页澄清指出,根据联合国粮农组织及世界卫生组织专家委员会的相关参考值,全部奶粉均无超标,市民可放心按奶粉建议食用分量给婴儿食用。这使得宝妈悬着的心又一次平静下来。但此事也反映了广大民众对食品安全质量的又一次警钟长鸣。 什么是氯丙二醇类物质 氯丙二醇类物质是包括3-MCPD(3-氯丙二醇)、2-MCPD(2-氯丙二醇)、3-MCPDE(3-氯丙二醇脂肪酸酯)、2-MCPDE(2-氯丙二醇脂肪酸酯)以及GE(缩水甘油脂肪酸酯)。其中氯丙醇酯是氯丙醇在食品中与各种脂肪酸形成的一大类物质的总称,主要为3-MCPDE及2-MCPDE。缩水甘油又称环氧丙醇,是一种环氧化合物,在食品中与脂肪酸结合形成较为稳定的缩水甘油酯(GE)。这类物质中3-MCPD毒性最大,对人体的肝、肾、神经系统及血液循环系统会造成毒害,具有潜在致癌性,国际癌症研究机构(IARC)将其定2B级,即“可能的人类致癌物”。 表1 氯丙二醇类物质相关信息 氯丙二醇类物质属于是食品原料中带入的一种污染物,目前还无法完全避免。食品在加工生产过程中,酸水解植物蛋白或者高温油脂精炼过程中,均会产生氯丙二醇及相关污染物。婴幼儿配方奶粉脂肪含量大约为25%,添加的多数为精炼油脂,因此受到了氯丙二醇污染。同时媒体报道的奶粉中可疑致癌物环氧丙醇,在食品中以缩水甘油脂肪酸酯(GE)的形式存在。 因氯丙二醇类物质的致癌性,各国也推出了其建议的限量要求。 FAO/WHO及欧盟建议3-MCPD的最高日允许摄入量为2μg/Kg体重。美国FDA建议食品所含3-MCPD不应超过1mg/kg干物质;欧盟食品污染限量法规(EC)规定:酱油、水解植物蛋白(干物质含量为40%的液体产品)最大限量要求为20μg/Kg;干物质产品为50 μg/Kg。我国GB 2762-2017《食品安全国家标准 食品中污染物限量》中规定了3-MCPD的限量为:添加酸水解蛋白的液态调味品≤0.4 mg/Kg;固态调味品≤1.0 mg/Kg。 氯丙二醇类物质检测方法 目前对氯丙二醇类物质的检测国际上没有统一的标准,采用较多的为AOCS(美国油脂化学协会)官方方法 cd 29a-13;我国国标GB 5009.191-2016、SN/T 5220-2019也对氯丙二醇类物质规定了检测方法。以上标准均采用气相色谱-单四极杆质谱法(GC-MS)进行测定,但会出现复杂样品杂质干扰大的缺点,从而影响结果的准确定性定量;同时为了提高灵敏度需要复杂的样品前处理及净化过程。而采用气相色谱-三重四极杆质谱法(GC-MS/MS)的多反应监测模式(MRM)检测,定量目标物更加准确,是目前复杂基质中微量化合物最有效的检测手段,也是氯丙二醇类物质测定的最佳选择。 岛津整体解决方案 岛津公司秉承以“为了人类及地球的健康”的公司理念,结合自身仪器特点,在氯丙二醇事件发生后,快速应对,为食品中氯丙二醇类物质的检测提供完整的解决方案。在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪 氯丙醇的检测方法 使用岛津公司独有的在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪(GPC-GCMS-TQ8040),食品样品简单的提取后,经在线GPC净化去除掉样品中的脂肪、蛋白等大分子干扰物,采用GC-MS/MS的MRM方式无需衍生的条件下分析食品中的氯丙醇含量,同时采用氘代同位素内标法进行校正。相关MRM条件及色谱图如下 表2 氯丙醇类化合物MRM参数 图1 氯丙醇及氘代同位素内标溶液色谱图 在0.005~1 mg/L范围内,通过同位素内标法得到的线性其相关系数R均大于0.999,其各物质的检出限及定量限见下表所示: 表3 氯丙醇类化合物线性相关系数、检出限、定量限 注:以上数据来源于易青,苗虹,吴永宁,《在线凝胶渗透色谱-气相色谱-串联质谱非衍生化法测定食品中氯丙醇》,分析化学研究报告,2016,5(44):678~684. 气相色谱-三重四极杆质谱联用仪(GCMS-TQ8040 NX) 氯丙醇酯及缩水甘油酯的检测方法 食品中的脂肪经溴代反应后,其中的缩水甘油酯转变成溴丙醇酯;溴丙醇酯以及样品中的氯丙醇酯在酸性条件下发生酯交换反应,并被水解为相应的氯丙醇,同时经基质分散固相萃取净化后,氮吹并经七氟丁酰基咪唑(HFBI)衍生后,上GC-MS/MS仪器进行分析,采用同位素内标法定量,可一次性同时测定样品中的3-MCPDE、2-MCPDE和GE的含量。相关MRM条件及色谱图如下: 表4 氯丙醇酯类化合物MRM参数 图 2. 氯丙醇酯及缩水甘油酯标准色谱图(100 ng/mL) 在0.01~0.3 mg/L范围内,通过同位素内标法得到的线性相关系数(R2)均大于0.997,其各物质的检出限及定量限见下表所示: 表5 氯丙醇类化合物线性相关系数、检出限、定量限 结论 岛津公司提供全面应对食品中氯丙二醇类致癌物质检测的整体解决方案,结合自身独有技术特点,方便、快捷地让您轻松应对食品污染物分析,在婴儿奶粉氯丙二醇事件中乘风破浪!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制