当前位置: 仪器信息网 > 行业主题 > >

二硫代赤藓醇

仪器信息网二硫代赤藓醇专题为您提供2024年最新二硫代赤藓醇价格报价、厂家品牌的相关信息, 包括二硫代赤藓醇参数、型号等,不管是国产,还是进口品牌的二硫代赤藓醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二硫代赤藓醇相关的耗材配件、试剂标物,还有二硫代赤藓醇相关的最新资讯、资料,以及二硫代赤藓醇相关的解决方案。

二硫代赤藓醇相关的论坛

  • 【求助】可否用甲醇替代二硫化碳解析活性炭?

    我们在用GC测定环境或职业场所的一些有机物时,是用甲醇解析活性炭的,但标准上都是写的二硫化碳。因为二硫化碳气味大、提纯麻烦、毒性大、干扰峰又多,所以用甲醇替代了!想请教一下,可否用甲醇替代?会有哪些影响?影响大不大?有人做过对比实验吗?

  • 【分享】(一篇文献)氯化钠-二乙基二硫代氨基甲酸钠-丙醇体系萃取分离铜

    【分享】(一篇文献)氯化钠-二乙基二硫代氨基甲酸钠-丙醇体系萃取分离铜

    [center]氯化钠-二乙基二硫代氨基甲酸钠-丙醇体系萃取分离铜[/center][center]李全民张丽敏 刘 奇 郭金枝[/center]摘 要:研究了氯化钠-二乙基二硫代氨基甲酸钠-丙醇体系萃取铜的行为及丙醇水溶液分相条件的选择。实验表明,丙醇作为萃取溶剂,能萃取中性螯合物。在EDTA 存在下,调节 pH5~pH10,该体系能使 Cu2+从常见元素 Fe3+、Co2+、Ni2+、Al3+等离子的混合液中分离出来。关键词:铜;二乙基二硫代氨基甲酸钠;丙醇;萃取分离中图分类号:O65  文献标识码:A   文章编号:1000-0720(1999) 02-020-04The Liquid-Liquid Extraction Behaviour of Copper(Ⅱ) Based on Sodium Chloride-Sodium-Diethyldithiocarbamate-n-Propanol System LI Quan-min,ZHANG Li-min,LIU Qi and GUO Jin-zhi(Department of Chemistry,Henan Normal University,Xinxiang 453002),Fenxi Shiyanshi,1999,18(2):20~23  In this paper,the liquid-liquid extraction behaviour of the chelate of copper(Ⅱ) with sodium diethyldithiocarbamate based on sodium chloride-sodium diethyldithiocarbamate-n-propanol system was investigated and the proper conditions of phase separation of n-propanol and water were selected.The quantitative extraction separation of Cu2+ from Fe3+,Co2+,Ni2+ and Al3+ was carried out by adding 1.0mL of 0.001mol/L EDTA as the masking agent to 10mL 30%(V/V) n-propanol solution at pH 7.0 .The separation results are satisfactory.  Keywords Sodium chloride sodium diethyldithiocarbamate n-propanol copper extraction separation  在无机盐存在下,乙醇水溶液可以分成液-液两相,已利用该体系进行了钼的萃取分离[1]。研究发现,在丙醇水溶液中加入无机盐也能使丙醇与水分成液-液两相,金属离子的螯合物沉淀可以在丙醇-水两相中进行分配,其分离操作方式及萃取分离体系的特点类似于乙醇溶液体系,从而建立了以丙醇作为萃取溶剂的均相萃取、异相分离的新型萃取体系,还未见国内外文献报道。本文研究了氯化钠-二乙基二硫代氨基甲酸钠(铜试剂)-丙醇体系萃取 Cu2+的行为。实验表明,在丙醇与水相条件下,铜与铜试剂形成的螯合物沉淀能被丙醇相完全萃取,在EDTA存在下,Fe3+、Co2+、Ni2+、Al3+被掩蔽而留在水相,实现了在同一体系中 Cu2+与 Fe3+、Co2+、Ni2+、Al3+的分离。该萃取体系与传统的有机溶剂萃取分离法相比,具有挥发性小,无毒,平衡时间短,相分离界面清晰,无三相乳化,无环境污染,操作简单,均相萃取-异相分离等特点。特别是由于丙醇对某些大分子缔合物及螯合物沉淀有很好的溶解性,用丙醇作为萃取溶剂的萃取体系,可以萃取大分子缔合物或螯合物沉淀后直接进行光度测定,从而避免了萃取浮选体系中的相分离后再选择适当的溶剂溶解沉淀的光度法这一繁琐操作[2,3],使测定更加简便和准确。可见,该体系的研究为建立新型萃取体系打下了基础,具有一定的应用和研究前景。1 主要试剂与仪器  正丙醇(A.R,北京化工厂);硫酸铵(A.R,北京化工厂);铜试剂(A.R.上海试剂三厂);配成 5×10-3mol/L 水溶液;金属离子标准液按文献[4]配制;缓冲溶液:pH1.0~2.0(KCl-HCl 配制);pH3.0(KHC8H4O4-HCl 配制);pH4.0~pH7.0(KHC8H4O4-NaOH 配制);pH8.0~pH10.0(NaOH-H3BO3 配制);所用其它试剂均为分析纯。  721型分光光度计(上海第三分析仪器厂);pHS-2 酸度计(上海第三分析仪器厂);康尔振荡器(江苏盐城医疗器械厂)。 2 试验方法  于 25mL 磨口比色管中,加入一定量的丙醇、铜试剂和被研究的金属离子溶液,根据试验条件不同,分别加入不同 pH值的缓冲溶液 1.0mL 调节溶液所需要的pH值,用水稀至 10mL,再加入一定量的固体 NaCl,振荡 1~2min,放置片刻,使溶液分成丙醇与水两相,移取丙醇相或下层盐水相测量被萃取金属离子的浓度,计算萃取百分率(E%)。在多元混合离子溶液中采用 ICP-AES 法测定各离子的量。3 结果和讨论3.1 不同盐对丙醇水溶液分相条件及 Cu2+萃取率的影响  固定水溶液中丙醇浓度,分别加入不同量的 NaCl、NaNO3、NaH2PO4、KH2PO4、Na2CO3、(NH4)2SO4,实验发现,除了 KH2PO4 之外,其余盐均能使丙醇与水分相。不同浓度的丙醇水溶液其分相时所需盐用量见图1。丙醇的浓度越大,分相时盐的用量就相应减少。原因可能是当溶液中的水用于盐的水合作用到一定程度时,丙醇与水才能分相。在加入质量相同的盐中,几种盐的分相能力按 Na2CO3、NaCl,(NH4)2SO4、NaH2PO4,NaNO3 的顺序递减。这是由于盐析作用能力不仅与离子体积参数a有关[4],而且与离子数目有关。同质量的盐中,离子数目越多,且a越大,盐析作用就越强。在相同条件下,NaCl 电离出的离子数目最多,阴离子中 CO2-3 的 a值最大,综合考虑以上两种因素,因此,Na2CO3 的分相能力最强,NaCl 次之。考虑到多数金属离子的碳酸盐会产生沉淀,在两醇水溶液分相条件下,又分别试验了不同量的 NaCl、(NH4)2SO4、NaNO3, NaH2PO4对 Cu2+萃取率的影响。结果表明,几种盐均能使 Cu2+的萃取率达 100%,但考虑到 (NH4)2SO4 易与碱作用而放出 NH3,NaH2PO4 易与金属离子络合,用 NaNO3 时盐用量又太大,而用 NaCl 不仅萃取效果好,又价廉易得,故在本实验中选择 NaCl 作盐析剂。当 NaCl 用量仅为 1.0g时,Cu2+已能被完全萃取,这说明 Cu2+与铜试剂生成的螯合物沉淀极易溶解在丙醇相。这也说明,用丙醇作为萃取溶剂有很好的应用前景。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802161014_79045_1632583_3.jpg[/img]3.2 溶液酸度对丙醇与水分相时 NaCl 用量的影响  固定丙醇加入量为 3.0mL,溶液总体积为 10mL,改变试液 pH,试验了酸度对丙醇与水分相时 NaCl 用量的影响。试验表明,pH 大于 1.0,NaCl 的用量只需 1.0g 就能使丙醇与水分相,且随 pH 增加 NaCl 的用量不再改变。酸浓度为 1mol/L HCl时,加入 1.5g NaCl 才能分相,这是由于高酸度下,丙醇分子质子化增强了在水中的溶解度,这表明高酸度条件下不利于丙醇与水的分相。3.3 NaCl 用量对丙醇相析出体积的影响  调节溶液 pH 为 5.0,丙醇的用量及溶液总体积同 3.2节,NaCl 用量为 1.0g,丙醇相体积为 1.9mL。这表明相分离时,部分丙醇留在了水相,当 NaCl 用量增至 1.5g,丙醇相体积为 2.6mL,大于 2.0g,丙醇相体积为 2.8mL,且不再随盐用量增加而改变,这说明丙醇与水分相程度已基本趋于完全。为了保证在萃取过程中丙醇体积保持不变,实验中选择 NaCl 的用量 2.0g。3.4 铜试剂用量对 Cu2+萃取率的影响  加入 Cu2+的量为 50μg,3.0mL丙醇、1.0mL pH5 的缓冲溶液,稀至 10mL,再加入 2.0g NaCl,改变铜试剂用量测得了 Cu2+的萃取率。试验表明,加入浓度为 5×10-3mol/L 铜试剂 0.5mL 以上时即可使 Cu2+完全萃取。无铜试剂时,对 Cu2+根本无萃取作用,这表明丙醇相不能萃取简单金属离子。3.5 酸度对不同金属离子萃取率的影响  酸度对不同金属离子萃取率的影响的实验表明,氯化钠-铜试剂-丙醇体系中,在 EDTA 掩蔽下,从 pH 5.0~10.0,Fe3+、Co2+、Ni2+、Al3+萃取率很低或根本不被萃取,控制一定的条件,有可能使 Cu2+与这些离子得到满意的分离。3.6 分离试验  在 3.5 条件下,分别试验了合成样中二元及多元体系中 Cu2+与 Fe3+、Co2+、Ni2+、Al3+,分离结果见表1、2。[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802161015_79046_1632583_3.jpg[/img] 表1、表2 的分离测定结果及不同pH下各金属离子萃取率表明,在 EDTA 存在下,氯化钠-铜试剂-丙醇体系能使 Cu2+与 Fe3+、Co2+、Ni2+、Al3+得到很好分离的适宜酸度范围 pH为(5.0~10.0),最佳 pH 为 7.0,且各离子单独萃取行为与混合液中的萃取行为相同,根据单一离子的萃取行为可以估计混合液中的萃取行为。建立分离富集铜的新方法是分析化学工作者所关心的课题。该工作对于从上述元素混合液中分离富集铜有一定的实际意义。资金来源:河南省科委、省教委自然科学基金资助项目作者简介:李全民,男,41岁,副教授;郭金枝:河南省粮食学校工作作者单位:李全民,张丽敏,刘 奇,郭金枝 河南师范大学化学系,新乡 435002参考文献 [1] 李全民,张青芬,刘 奇.分析化学,1997,25(10):1143 [2] 徐其亨,刘绍璞.理化检验(化学分册),1984,20(4):48 [3] 徐其亨.化学通报,1981,11:682 [4] 常文保,李克安.简明分析化学手册.北京:北京大学出版社,1981:241,255

  • 【求助】砷化氢测定 二乙胺基二硫代甲酸银

    请问一下哦,我在做完砷化氢测定实验时, 二乙胺基二硫代甲酸银-乙醇氯仿溶液吸收完后,用乙醇清洗吸收管,乙醇在里面放置一夜后,吸收管理出现类似白色的亮晶晶的小片状固体,很想知道这是什么东东啊,请各位指点一下,谢(⊙o⊙)哦

  • 关于香料硫代香叶醇

    我想请教一下,硫代香叶醇(39067-80-6)这个香料。不知为什么,这个原料在谱图中找不到峰,会不会是这个香料很容易分解呢?

  • 【分享】空气中二甲胺的测定方法 二甲氨基二硫代甲酸铜比色法

    【分享】空气中二甲胺的测定方法 二甲氨基二硫代甲酸铜比色法

    空气中二甲胺的测定方法 二甲氨基二硫代甲酸铜比色法 1 原理二甲胺与氯化铜及二硫化碳作用生成黄棕色二甲氨基二硫代甲酸铜,比色定量。2 仪器2.1 大型气泡吸收管。2.2 抽气机。2.3 流量计,0~1L/min。2.4 具塞比色管,10ml。2.5 分光光度计。3 试剂3.1 吸收液:盐酸异丙醇溶液,C(HCl)=0.01mol/L。3.2 显色剂甲液:取40ml二硫化碳,于100ml量瓶中,用异丙醇稀至刻度。乙液:称取150mg氯化铜,300mg EDTA,2g醋酸钠于烧杯中,加煮沸冷却的去离子水至250ml,倾于1L量瓶中,加异丙醇至刻度。临用前将甲液与乙液等体积混合。3.3 标准溶液:将0.1810g二甲胺盐酸盐溶于1L量瓶中,用去离子水稀释至刻度,即为1ml=1mg二甲胺贮备液。用时再稀释成1ml=10微克二甲胺的标准溶液。4 采样串联两支各盛5ml吸收液的大型气泡吸收管,以0.5L/min的速度抽取1L空气。5 分析步骤5.1 对照试验:用两支盛有吸收液的大型气泡吸收管带至现场,但不抽取空气,按样品分析,作为空白对照。5.2 样品处理:用吸收管中吸收液洗涤进气管内壁3次,分别取2ml吸收液放入两支具塞比色管中。5.3 标准曲线的绘制:取6支具塞比色管按表1配制标准管。表1 二甲胺标准管的配制[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201413_52374_1625938_3.jpg[/img]向各管加入8ml显色剂(3.2),混匀,振摇2min,放置20min,于波长430nm下比色。并绘制标准曲线。5.4 测定:空白对照,样品管操作均按标准管项下进行。从标准曲线上求出含量。6 计算X=2.5C/V0式中:X——空气中二甲胺的浓度,mg/m3;C——所取样品溶液中二甲胺的含量,微克;V0——标准状况下的样品体积,L。7 说明7.1 本法的检测限为2微克/2ml,当二甲胺浓度分别为4、10、18微克/2ml时,变异系数分别为4.04%、1.20%、4.54%。7.2 显色剂中不能用乙醇,乙醇与二硫化碳,氨会慢慢生成黄原酸,使颜色逐渐加深。7.3 干扰实验:4微克二甲胺内分别加入40微克一甲胺,50微克氨均未见干扰。

  • 【求助】环境有机物检测中能否用甲醇代替二硫化碳解析?

    我们在用GC测定环境或职业场所的一些有机物时,是用甲醇解析活性炭的,但标准上都是写的二硫化碳。因为二硫化碳气味大、提纯麻烦、毒性大、干扰峰又多,所以用甲醇替代了!想请教一下,可否用甲醇替代?会有哪些影响?影响大不大?

  • 【求助】哪个药品质量标准是采用第二法(二乙基二硫代氨基甲酸银法)

    [b][size=4]小弟学习药典中的砷盐检查法,发现虽然药典附录载有第一法(古蔡氏法)和第二法(二乙基二硫代氨基甲酸银法),但是所有的品种都是用第一法检查砷盐的啊。 现征集,有没有[color=#f10b00]那个药品质量标准是用第二法[/color](二乙基二硫代氨基甲酸银法)检查砷盐的? [/size][/b]

  • 【讨论】砷分析 二乙基二硫代氨基甲酸银光度法

    我在用二乙基二硫代氨基甲酸银光度法测定砷,有三个问题,第一个为什么要加1ml150g/L的硫酸铜,是不是先抑制[H]的生成,使Zn粒加入后先生成铜,再生成氢,之后产生砷化氢,这样创造时间有利于快速盖上砷反应管?第二个砷发生器的密封性如何做,能否用凡士林,使之不漏气?第三个是反应过程中三氯甲烷的挥发,能否最后补加三氯甲烷,这样是否严重影响结果,其他关于二乙基二硫代氨基甲酸银光度法测定砷的好建议方法,希望能指教,谢谢大家

  • 职业卫生里广泛使用的二硫化碳能用其他溶剂替代吗

    职业卫生活性炭采样绝大多数用二硫化碳解吸。二硫化碳做FID的溶剂优点是峰小,可是它的副作用也很大,比如它是高毒物质,很臭危害健康,污染环境!采用高效毛细柱把要分离的物质和溶剂峰分离的远些溶剂峰大些似乎也没关系。所以讨论下替代二硫化碳的溶剂目前我想到的有:正己烷,二氯甲烷,甲醇,丙酮

  • 如何测定二硫代氨基甲酸铵?

    二硫代氨基甲酸铵化学结构:http://ng1.17img.cn/bbsfiles/images/2013/08/201308221014_459304_1654054_3.gif稳定性:在空气中分解成硫氰化铵和硫化铵,必须保存在密闭容器内。用途:二硫代氨基甲酸铵主要用于有机合成中的环合反应,如用于合成头孢地嗪(Cefodizime)中间体2-巯基-4-甲基-5-噻唑乙酸乙酯等。在化学分析上用于代替硫化氢和硫化铵。样品说明:我们是采用二硫代氨基甲酸铵做原料合成噻唑环,现在需要测定该原料的含量。提供该原料的厂家技术很弱,没有对应的含量测定方法,所以只能我们自己找方法测试。请问大家有什么好的建议吗?http://simg.instrument.com.cn/bbs/images/default/em09508.gifhttp://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • CNS_19.018_赤藓糖醇

    [align=left][font='宋体'][size=24px]赤藓糖醇[/size][/font][font='宋体'][size=24px]的性质及国标测定方法[/size][/font][/align][size=24px]游臻[/size][size=24px]时 间:2021.[/size][size=24px]7[/size][align=center][font='黑体'][size=20px]赤藓糖醇的性质及国标测定方法[/size][/font][/align][size=16px]摘 要[/size][size=16px]:[/size][size=16px]赤藓糖醇,一种天然活性物质,被广泛应用于食品、医药保健品、日化产品和化工产品中。近年来,随着人们对于营养健康的关注度逐渐增加,学者对其理化及生物学特性研究的不断深入,赤藓糖醇的安全性得到证实,应用范围逐渐扩大。为此,本文对赤藓糖醇的理化特性[/size][size=16px]、[/size][size=16px]来源[/size][size=16px]、[/size][size=16px]提取方法[/size][size=16px]、[/size][size=16px]应用[/size][size=16px]、[/size][size=16px]检测方法[/size][size=16px]、[/size][size=16px]检测标准[/size][size=16px]进行了简要介绍,从机理和应用的角度阐述了赤藓糖醇在不同领域的研究。[/size][size=16px]因为[/size][size=16px]赤藓糖醇独特的代谢方式,使其被应用于糖尿病、葡萄糖不耐受症等特殊人群的功能食品中。赤藓糖醇的防龋性、抗氧化性、保湿性和不可燃性等特性使其在医药、日化领域的应用不断扩展。[/size][size=16px]关键词[/size][size=16px]:赤藓糖醇;性质;检测;应用;生产[/size][size=18px]一、[/size][size=18px]赤藓糖醇的理化性质[/size][size=18px]与生理性质[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的性质[/size][/font][size=13px]赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为[/size][size=13px]1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,[/size][size=13px]其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]1][/size][/font][font='宋体'][size=14px](1) [/size][/font][font='宋体'][size=16px]赤藓糖醇的甜度[/size][/font][size=13px]赤[/size][size=13px]藓糖[/size][size=13px]醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的[/size][size=13px]70%~80%。[/size][size=13px]与其他甜味剂混合使用具有改善、协调味质[/size][size=13px]的[/size][size=13px]作用,如赤藓糖醇与高甜味剂甜菊[/size][size=13px]糖[/size][size=13px]苷以[/size][size=13px]1000:(1~7)混合使用,可有效掩盖甜菊[/size][size=13px]糖[/size][size=13px]苷[/size][size=13px]的后苦味;将[/size][size=13px]20%以上的赤藓糖醇与白砂糖并用,其后[/size][size=13px]味和甜味比白砂糖更为理想;溶液中[/size][size=13px]1%~3%的赤藓糖[/size][size=13px]醇能有效掩饰刺激性口味,改善溶液的口感和风味[/size][size=13px];与糖精,阿斯巴甜等甜味剂混合使用,甜味特性良好,可以掩盖人工合成甜味剂的不良味感。[/size][font='宋体'][size=14px](2) [/size][/font][font='宋体'][size=16px]赤藓糖醇的稳定性[/size][/font][size=13px]赤[/size][size=13px]藓糖醇在热[/size][size=13px],[/size][size=13px]酸,碱条件下[/size][size=13px]稳定,[/size][size=13px]适用的酸碱范围为[/size][size=13px]pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。[/size][font='宋体'][size=14px](3) [/size][/font][font='宋体'][size=16px]赤藓糖醇的结晶性[/size][/font][size=13px]赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为[/size][size=13px]20℃、相对湿度为90%的环境中,放置5d后的吸湿增[/size][size=13px]重,麦芽糖约为[/size][size=13px]17%,蔗糖约为10%,而赤藓糖醇仅为2 %左右。[/size][font='宋体'][size=14px](4) [/size][/font][font='宋体'][size=16px]赤藓糖醇的溶解热[/size][/font][size=13px]赤藓糖醇在[/size][size=13px]20℃时溶解度仅为37%,大约是山梨醇[/size][size=13px]溶解度的[/size][size=13px]50%,在制作高甜度食品时,为防止结晶析出,[/size][size=13px]保持食品的质构稳定,应和其他糖醇混合使用。赤藓糖醇溶解热高是葡萄糖的[/size][size=13px]3倍,为-96.86kJ/kg,溶于水会吸[/size][size=13px]收较多的能量,食用时有一种凉爽的口感特性。赤藓糖醇结晶性好,不吸潮,在[/size][size=13px]20℃、相对湿度为90%时仍不吸[/size][size=13px]潮,特别适用于加工巧克力糖果等食品。[/size][font='宋体'][size=14px](5) [/size][/font][font='宋体'][size=16px]赤藓糖醇的[/size][/font][font='宋体'][size=16px]渗透压[/size][/font][size=13px]由于赤藓糖醇分子小,分子量仅为蔗糖的[/size][size=13px]1/3左右,[/size][size=13px]能大大地降低水分活度。[/size][size=13px]25℃、36%的水溶液,水分活度[/size][size=13px]为[/size][size=13px]0.91;而赤藓糖醇渗透压高,20℃、15%的水溶液渗透[/size][size=13px]压为[/size][size=13px]1861mosm/kg,是蔗糖的3.2倍,山梨醇的1.8倍。赤[/size][size=13px]藓糖醇的这一特性有利于提高食品的防腐能力,延长食品的[/size][size=13px]保质[/size][size=13px]期。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]2][/size][/font][font='宋体'][size=16px]2.赤藓糖醇的生理性质[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]1)赤藓糖醇的代谢[/size][/font][font='宋体'][size=13px]赤藓糖醇在小肠易于吸收,大部分能进入血液中循环,仅有少量直接进入大肠中作为碳源发酵。由于人[/size][/font][font='宋体'][size=13px]体缺乏代谢赤藓糖醇的酶系,进入血液中的赤藓糖醇不能被消化降解,只能透过肾从尿液中排出体外,这一独特的代谢特征,决定了赤藓糖醇低热值的特性。据文献报道[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],进入机体内的赤藓糖醇有约[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]经小肠吸收并从[/size][/font][font='宋体'][size=13px]尿液中排出,[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]左右进入大肠,进入大肠中的最多有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]被细菌利用,其他经由粪便排出体外。由此得知,摄入的赤藓糖醇只有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]代谢产能,为人体提供能量,而赤[/size][/font][font='宋体'][size=13px]藓糖醇的能量值为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]k[/size][/font][font='宋体'][size=13px]cal/g[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]kcal/g[/size][/font][font='宋体'][size=13px],仅为蔗糖能量[/size][/font][font='宋体'][size=13px]的[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],是所有多元糖醇甜味剂中能量最低的一[/size][/font][font='宋体'][size=13px]种。[/size][/font][font='宋体'][size=13px]由于进入机体的赤藓糖醇进入大肠的量很少,因此不会造成不吸收物质可能带来的腹泻及肠胃胀气等副作用,所以赤藓糖醇具有很高的耐受性,是糖醇中耐受性最高的一种。由于人体缺乏代谢赤藓糖醇的酶系,进入机体的赤藓糖醇大部分由尿液排出,其代谢途径与胰岛素无关或很少依赖胰岛素,所以对糖代谢没有影响。食用含赤藓糖醇的食品对糖尿病患者等糖限量的特殊消费群体是安全的。[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]2)赤藓糖醇的非致龋齿特性[/size][/font][font='宋体'][size=13px]由于口腔中的细菌,特别是金黄链球菌[/size][/font][font='宋体'][size=13px]([/size][/font][font='宋体'][size=13px]Streptococcus mutans)[/size][/font][font='宋体'][size=13px]不能利用和发酵赤藓糖醇,所以不会引[/size][/font][font='宋体'][size=13px]起口腔牙表面[/size][/font][font='宋体'][size=13px]pH[/size][/font][font='宋体'][size=13px]值下降产生牙斑,导致龋齿。[/size][/font][size=18px]二[/size][size=18px]、[/size][size=18px]赤藓糖醇的生产[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]化学法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]化学合成法[/size][/font][font='宋体'][size=13px]是[/size][/font][font='宋体'][size=13px]由丁烯二醇与过氧化氢反应,其中丁烯二醇是由乙炔和甲醛先制成2[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]丁烯[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 1,4 [/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 二 醇, 然后将其水溶液与活性镍催化剂混合并加[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]阻化剂氨水,在[/size][/font][font='宋体'][size=13px]0.5[/size][/font][font='宋体'][size=13px] M Pa压力下通[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]氢化,得到赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖醇产品。以淀粉为原料的化学合成法是将淀粉用高碘酸法生成双醛淀粉,再经氧化裂解生成赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]和其他衍生物[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]化学合成生产赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]的工艺方法存在流程长、成本高、污染严重、条件要求高、产品安全性差等不足,无法与发酵法比拟,因此目前研究和应用最多的是以淀[/size][/font][font='宋体'][size=13px]粉为原料的发酵法来生产赤藓糖醇的工艺方法。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]发酵法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]发酵法是以淀粉水解葡萄糖为原料,经耐高渗酵母菌株发酵产生赤藓糖醇及少量的核糖醇,丙三醇等副产物,经分离,提取,精制,获得高纯度的赤藓糖醇产品。产品的收率大约为5[/size][/font][font='宋体'][size=13px]0%[/size][/font][font='宋体'][size=13px]。与化学合成法相比,具有条件温和,易于控制,环境友好,污染少,产品安全,原料来源丰富,成本低等优点,更易于实现规模生产。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4][/size][/font][font='宋体'][size=18px]三[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的应用[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在食品工业的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇经过急性、亚急性、慢性毒性试验等动物 试验以及人体试验确认安全无毒、食用安全性较好, 允许添加量较高,不易引起腹泻或胃肠等不适感。1990 年日本食品法规批准赤藓糖醇可直接作为食品配料; 1997年通过美国食品与药品管理局(FDA)批准,获美 国FDA安全食品配料(GRAS)认[/size][/font][font='宋体'][size=13px]证和允许在标签上标 注“有益于牙齿健康”;1999年世界粮农组织(FAO)和 世界卫生组织(WHO)联合组成的食品添加剂专家委员 会(JECFA)批准赤藓糖醇作为食用甜味剂,无需规定 ADI值;1999年澳大利亚和新西兰食品监督局(AN 、A)批准赤藓糖醇作为食用配料,我国在GB 2760-86标准 中也允许其在食品中应用。 [/size][/font][font='宋体'][size=13px]由于赤藓糖醇的热、酸稳定性好,在一般性食品加工条件下,几乎不会引起褐变或分解现象,在硬糖生产时高温熬煮也不会引起褐变。赤藓糖醇的热稳定性高使巧克力生产的精炼可以在更高的温度下进行,进一步促进巧克力风味的形成,改善产品的品质。赤藓糖醇的吸湿性差,在湿度为90%的环境也不易吸潮,这一特性对巧克力、口香糖等食品加工很有利。赤藓糖醇的高吸热性使得产品食用后具有持久的爽口清凉感觉,对改善口香糖、清凉性固体饮料和糖果的品质十分重要。赤藓糖醇甜味爽净,在与蛋白糖、甜菊糖等高甜度甜味剂复配时可有效地掩盖其后苦味;赤藓糖醇还可以降低酒精的异味,改善蒸馏酒和葡萄酒的口感与风味,在蔬菜汁饮料中使用,可有效地抑制蔬菜饮料特有的不良口味;在饮用咖啡时添加可有效地抑制咖啡的涩味。赤藓糖醇的耐热和耐酸等特性,使得巴氏高温或超高温等杀菌工艺对以赤藓糖醇为甜味剂的饮料外观品质均不会产生影响。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在医药生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇的防龋特性是近年来赤藓糖醇的一个应用热点。张帆等通过体外的人工龋实验证实,赤藓糖醇和牛奶的混合液具有抑制变异链球菌在生物膜中黏附生长,促进脱矿牙釉质再矿化的作用,可以在一定程度是阻止龋病的发展。未来,赤藓糖醇-牛奶混合液,作为一种安全、营养的食品,极有可能成为替代加氟牛奶成为另一条防龋的有效途径。李维丹实验表明赤藓糖醇对牙周炎的主要致病菌牙龈卟啉单胞菌有明显抑制作用,并能降低其在牙骨质表面的黏附作用,为牙周病的防治提供了新的方向。[/size][/font][font='宋体'][size=13px]此外,赤藓糖醇还能抑制多种龋病致病链球菌及耐氟菌的生长和产酸。目前,越来越多的防龋产品使 用赤藓糖醇代替传统的氟化物和抗生素。赤藓糖的抗氧化性,不仅是添加到柠檬汁饮料中保护 VC,还可以应用为一种体内抗氧化剂,防止身体的氧化应激损伤。韩春妮等通过设计实验表明,赤藓糖醇可减轻 H2O2 对 PC12 细胞的氧化损伤程度,具有体外抗氧化损伤的作用,为赤藓糖醇应用于预防和治疗机体氧化应激引起的糖尿病及其并发症提供了理论基础。在链脲佐菌素诱导的糖尿病大鼠实验中,赤藓糖醇不仅是一种极好的自由基清除剂和抑制剂,还具有保护内 皮细胞层的作用。此外,研究还表明,赤藓糖醇对2,2-偶氮二异丁基脒二盐酸盐引起的大鼠溶血有抑制作用,对减轻高血糖症引起的血管损伤起到积极作用。此外,赤藓糖醇的吸湿性低、分散性好、口感优良、与各种药物兼容性好等特性,正越来越多的应用于药片包衣、药剂辅料、吸入剂药物载体或赋形剂等诸多领域[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在日化品生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇因其防龋齿性,促进牙菌斑分解,有利于维持口腔健康等优势已被应用于牙膏中, KAO(花王)、LG 竹盐炫润白系列牙膏都添加有赤藓糖醇。另外,赤藓糖醇不仅具有和甘油相同的保湿及改善肌肤粗糙的效果,而且黏稠性低、有清凉效果,已被日本资生堂用于多个系列的护肤品中[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=18px]四[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的检测[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]高效液相色谱法[/size][/font][font='宋体'][size=13px]根据[/size][/font][font='宋体'][size=13px]GB 26404-2011[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]利用高效液相色谱仪和示差折光检测器,色谱条件为流动相是重蒸蒸馏水;色谱柱为[/size][/font][font='宋体'][size=13px]氢型大孔径阳离子交换树脂填充柱,树脂包含大网格磺化聚苯乙烯[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]二乙烯基苯[/size][/font][font='宋体'][size=13px]共聚物,交联度为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],颗粒大小为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]微米;流速为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]ml[/size][/font][font='宋体'][size=13px]/[/size][/font][font='宋体'][size=13px]min;柱温为6[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]摄氏度;进样量为1[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]L。[/size][/font][font='宋体'][size=13px]实验步骤为[/size][/font][font='宋体'][size=13px]准确称取0.25g 在105℃下干燥4h后的赤藓糖醇标准品[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个[/size][/font][font='宋体'][size=13px]50mL容量瓶中,用流动相溶解,稀释定容至刻度[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]再[/size][/font][font='宋体'][size=13px]确称取2.0g在105℃下干燥4h后的赤藓糖醇试样[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]最后[/size][/font][font='宋体'][size=13px]在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录60min的色谱图。赤藓糖醇的出峰时间根据标准品的出峰时间定性。重复实验两次,得到平均峰面积值[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]结果计算[/size][/font][font='宋体'][size=13px]赤藓糖醇含量以赤藓糖醇([/size][/font][font='宋体'][size=13px]C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px])的质量分数 w[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]计,数值以%表示,按公式计算:[/size][/font][font='宋体'][size=13px]式中: m[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──称取的赤藓糖醇标准品质量的数值,单位为克(g); m[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g); A[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──试样液色谱图中赤藓糖醇平均峰面积值的数值; A[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中赤藓糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px] 实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于0.5%。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]7[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]灼烧残渣的测定[/size][/font][font='宋体'][size=13px]准确称取2g试样,精确至0.0001g,置于800℃±25℃下灼烧至恒重的坩埚中,缓缓加热直至试 样完全碳化。将碳化的试样冷却,用0.5 mL的硫酸润湿残渣,继续加热至硫酸蒸汽逸尽,并在800℃ ±25℃的高温炉中灼烧残渣至恒重[/size][/font][font='宋体'][size=13px]灼烧残渣以质量分数[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]计,数值以[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]表示,按公式计算[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──残渣和空坩埚的质量的数值,单位为克(g);m[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──空坩埚的质量的数值,单位为克(g);m──称取的试样质量的数值,单位为克(g)。[/size][/font][font='宋体'][size=13px]实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.05%[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]还原糖(以葡萄糖计)的测定[/size][/font][font='宋体'][size=13px]准备[/size][/font][font='宋体'][size=13px]葡萄糖溶液:0.75mg/mL。费林溶液A:称取34.66 g硫酸铜(CuSO[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]5H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O),溶于水中,完全溶解后,用水稀释至500 mL,贮存于密闭容器中。费林溶液B:称取173g酒石酸钾钠(KNaC[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]4H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O)和50g氢氧化钠(NaOH),溶于水中,完全溶解后,用水稀释至500 mL,贮存于橡胶塞玻璃瓶内。 [/size][/font][font='宋体'][size=13px] 分析步骤[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]准确称取约0.5 g试样,精确至 0.0001 g,转移至一个 20 mL 烧瓶中,加入2mL水,溶解、混合,此为试样液。移取2mL葡萄糖溶液,置于另一烧瓶中。分别往两个烧瓶中加入1mL费林溶液 A和1mL费林溶液 B,加热至沸腾后冷却。溶液形成红棕色沉淀。[/size][/font][font='宋体'][size=13px]若葡萄糖溶液反应液较试样液反应液混浊,则判定为合格。[/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]核糖醇和丙三醇的测定[/size][/font][font='宋体'][size=13px]参考色谱条件同[/size][/font][font='宋体'][size=13px]赤藓糖醇测定的参考色谱条件。准确称取核糖醇标准品和丙三醇标准品各 0.025g,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm 微孔滤膜过滤。试样液制备:准确称取2.0g在105℃下干燥4h后的赤藓糖醇试样,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录 60 min 的色谱图。核糖醇和丙三醇的出峰时间根据对应标准品的出峰时间定性。重复实验两次,得到平均峰面积值。[/size][/font][font='宋体'][size=13px]结果计算核糖醇和丙三醇的含量分别以质量分数w[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]和w[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]计,数值均以%表示[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──称取的核糖醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──试样液色谱图中核糖醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中核糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──称取的丙三醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──试样液色谱图中丙三醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中丙三醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]取两次平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.01 %[/size][/font][font='宋体'][size=18px]五[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的国家标准[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]在产品中的使用量[/size][/font][font='宋体'][size=13px]赤藓糖醇在国家标准中规定在产品中适量使用,没有明确的限制标准,这是因为赤藓糖醇安全性较高并且在产品中过量使用时反而会使产品的外观口感等质量指标大幅度下降,从而影响产品的销售。所以国标中对产品中赤藓糖醇的使用量并没有限制量。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的质量标准[/size][/font][font='宋体'][size=13px]感官要求标准,[/size][/font][font='宋体'][size=13px]色泽[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]白色[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]滋味[/size][/font][font='宋体'][size=13px]要求[/size][/font][font='宋体'][size=13px]有甜味[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]组织状态[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]结晶性粉末或颗粒[/size][/font][font='宋体'][size=13px]理化指标为[/size][/font][font='宋体'][size=13px]赤藓糖醇[/size][/font][font='宋体'][size=13px](以[/size][/font][font='宋体'][size=13px] C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4 [/size][/font][font='宋体'][size=13px]计,以干基计),w/% [/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]99.5~100.5[/size][/font][font='宋体'][size=13px]干燥减量,[/size][/font][font='宋体'][size=13px]w/% ≤ 0.2 [/size][/font][font='宋体'][size=13px]灼烧残渣,w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]还原糖(以葡萄糖计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.3 [/size][/font][font='宋体'][size=13px]核糖醇和丙三醇(以干基计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]铅([/size][/font][font='宋体'][size=13px]Pb)/(mg/kg) ≤ 1 [/size][/font][font='宋体'][size=13px]参考文献[/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]肖素荣,李京东.赤藓糖醇的特性及应用[J].中国食物与营养,2008(05):26-28.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥.低热值甜昧剂——赤藓糖醇[J].食品与发酵工业,2007(09):132-135.[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]3]尤新.尤新食品发酵论文选[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]M].北京:中国轻工业出版社,2005.272[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]274[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]]李树东,宋微,魏春红,曹龙奎.发酵法生产赤藓糖醇的研究综述[J].农产品加工(创新[/size][/font][font='宋体'][size=13px]版),2009(12):50-52.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥,李丕武.低热值甜味剂赤藓糖醇的研究现状及应用[J].中国酿造,2006(12):1-3+16.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]李俊霖,郭传庄,王松江,王建彬,隋松森.赤藓糖醇的特性及其应用研究进展[J].中国食品添加剂,2019,30(10):169-172.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]GB 26404-2011, 食品安全国家标准 食品添加剂 赤藓糖醇[s].[/s][/size][/font]

  • 新08代崂应3012,测不出二氧化硫?

    新08代崂应3012,去年才买的,用的不算频繁,3月份才在广州测试中心校准过!最近发现烟气有点问题,含氧量偏高,二氧化硫基本测不出,但我用刚买的标气进行标定时,又发现烟气数值跟标气数值相差不大,纳闷呀!今天带出去测,没经过处理的锅炉二氧化硫居然测不出,氮氧化物又非常高,(根据经验,现场的二氧化硫不可能是零)实在是不解呀!

  • 二硫代氨基甲酸盐(或酯)类农药怎样定性?

    二硫代氨基甲酸盐(或酯)类农药怎样定性?丙森锌代森铵代森联代森锰锌代森锌福美双福美锌在2763中有7种农药的残留物都是二硫代氨基甲酸盐(或酯),以二硫化碳表示。可以知道具体是哪一种吗?

  • 【求助】标硫代硫酸钠时,出现的问题

    大家好,我在标定硫代硫酸钠时出现些问题,空白变化范围,0.02ml到0.08ml,总是不稳定。为什么?还有硫代硫酸钠放二个月后,再次标定溶液浓度是否变高了?标定溶液精确度范围是多少?望各位不吝赐教!

  • 二丁基二硫代氨基甲酸锌的高效液相色谱分析方法

    分享一个金属螯合物二丁基二硫代氨基甲酸锌的残留量测定[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]方法。样品经四氢呋喃-乙腈(体积比为10∶90)超声提取制得供试品溶液。流动相:四氢呋喃-乙腈(体积比为35∶65),供试品溶液经SunFire C18色谱柱分离后,用254 nm检测波长进行HPLC测试。本方法检出限和定量限分别为20和30 ng,加标回收率为98. 84~102. 58%,供试品溶液在6 h内稳定。本方法简便、准确、灵敏、稳定。由于二丁基二硫代氨基甲酸锌与二硫代氨基甲酸盐类化合物是类似物,该研究也能为二硫代氨基甲酸盐类物质的分析提供有益借鉴。详见谢兰桂等, 橡胶工业. 2022,69(07)。

  • 用二硫化碳来稀释甲醇中的苯

    用二硫化碳来稀释甲醇中的苯,稀释时却发现溶液分层?问了一个同事,说是因为CS2中含有用来液封的水。但是水水可以溶解于甲醇里的啊?另:我在CS2原试剂瓶中也没有看到分层。奇怪?另:加热后,二硫化碳稀释甲醇中的苯溶液又不会分层,静置后又分层?

  • 甜味剂——赤藓糖醇

    赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。 1 赤藓糖醇的性质 赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。1.1 甜味纯正赤藓糖醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的70%~80%。与其他甜味剂混合使用具有改善、协调味质作用,如赤藓糖醇与高甜味剂甜菊苷以1000:(1~7)混合使用,可有效掩盖甜菊苷的后苦味;将20%以上的赤藓糖醇与白砂糖并用,其后味和甜味比白砂糖更为理想;溶液中1%~3%的赤藓糖醇能有效掩饰刺激性口味,改善溶液的口感和风味。1.2 稳定性高赤藓糖醇在热、酸、碱条件下稳定,适用的酸碱范围为pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。 1.3 结晶性好赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为20℃、相对湿度为90%的环境中,放置5d后的吸湿增重,麦芽糖约为17%,蔗糖约为10%,而赤藓糖醇仅为2%左右。1.4 熔解热高 其溶解热为-97.4J/g,由于溶解热较大,溶于水时会吸收较多的能量,有很强的制冷作用。实验表明,将10g赤藓糖醇溶解于90g水中,温度下降约4.8℃,用它添加生产的固体食品和糖果在食用时具有口感清凉特点。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制