当前位置: 仪器信息网 > 行业主题 > >

二钴合七羰基

仪器信息网二钴合七羰基专题为您提供2024年最新二钴合七羰基价格报价、厂家品牌的相关信息, 包括二钴合七羰基参数、型号等,不管是国产,还是进口品牌的二钴合七羰基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二钴合七羰基相关的耗材配件、试剂标物,还有二钴合七羰基相关的最新资讯、资料,以及二钴合七羰基相关的解决方案。

二钴合七羰基相关的资讯

  • 核磁技术揭示丝光沸石分子筛孔道酸性位催化二甲醚羰基化机制
    近日,中科院大连化物所催化基础国家重点实验室催化反应化学研究组(501组)展恩胜副研究员、申文杰研究员等与中科院精密测量科学与技术创新研究院徐君研究员、邓风研究员等合作,在丝光沸石(MOR)催化二甲醚羰基化反应的活性位点鉴别和调控方面取得新进展。  MOR是二甲醚羰基化反应的重要催化剂,其活性与8-MR孔道的总酸量相关。尽管理论计算表明,T3-O9是唯一活性位点,但实验上鉴别和定量描述不同T位点酸性特征和催化机制仍面临挑战。  本工作中,科研人员首先通过分步晶化法合成了片状结构MOR,该MOR表现出优异的催化活性,醋酸甲酯收率达到0.72gMAgcat.-1h-1(473K、2MPa)。随后,科研人员利用二维固体核磁技术和DFT计算确定了骨架铝原子在T1至T4分布,发现该片状结构丝光沸石8-MR孔道的铝原子富集在T3位,动力学研究发现该酸性位的反应速率高达7.2molMAmolT3-Al-1h-1(473K、1MPa)。随后,科研人员调变不同MOR样品的T1至T4位分布,发现位于8-MR窗口的T4酸性位也具有催化作用,但其活性只有T3位的1/4,从实验上证明T3位在催化二甲醚羰基化反应中的主导作用。该工作从原子尺度定量描述了丝光沸石分子筛8-MR孔道T位的催化反应化学,也深化了对沸石分子筛催化剂活性位结构的认知。  相关研究成果以“Experimental Identification of the Active Sites over a Plate-Like Mordenite for the Carbonylation of Dimethyl Ether”为题,于近日发表在Chem上。该工作的共同第一作者是中科院大连化物所501组博士研究生熊志平和中科院精密测量科学与技术创新研究院齐国栋副研究员。上述工作得到了国家自然科学基金等项目的支持。
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 质谱检测新策略助力深度解析阿尔兹海默症相关糖蛋白APP的糖基化
    阿尔兹海默症(Alzheimer’s diseases,AD)是最常见的一种神经退行性疾病,临床表现为渐进性记忆损伤,认知功能障碍,语言障碍等精神症状。我国现有1000多万AD患者,是世界上患者数量最多的国家。且随着人口老龄化,这个数字还在急剧增加,据预测到2050年中国AD患病人数将超过4000万,给我国社会经济以及患者家庭带来极大负担。阿尔兹海默症主要特点为病人脑组织中β淀粉样蛋白(Aβ)的异常产生和累积。Aβ形成的前体蛋白APP(amyloid protein precursor)是一种高度糖基化修饰的糖蛋白。蛋白质糖基化是一类重要的蛋白质翻译后修饰,参与蛋白稳定表达,蛋白加工剪切,细胞间的靶向识别及相互作用等生理过程。越来越多的研究表明糖基化对APP的加工及Aβ的产生具有关键的调控作用,精准判定APP糖基化修饰信息,对深入理解app蛋白在AD疾病发生中的作用和疾病早期诊断方法开发上具有重要意义。 近日,上海交通大学系统生物医学研究院张延课题组与严威课题组联合开发了一种基于质谱多碎裂方式组合靶向完整O-糖肽的质谱解析方法(Targeted MS combined Multi-fragment strategy,TMMF)。 该方法精准描绘出APP蛋白的O-糖基化修饰位点和糖链结构。为从蛋白质糖基化修饰水平理解app的分子功能与AD的发病机制,发现AD治疗靶点以及开发AD早期诊断策略提供了新的思路。该成果以“Comprehensive analysis of O-glycosylation of amyloid precursor protein (app) using targeted and multi-fragmentation MS strategy”为标题发表在国际著名生物化学与生物物理学期刊(BBA-General Subjects)上。(生物谷Bioon.com)
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p  国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。/pp  strong果糖基转移酶(又名β—果糖基转移酶)/strong/pp  米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。/pp  该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。/pp  strong单,双甘油脂肪酸酯/strong/pp  单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。/pp  该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。/pp  strongdl—酒石酸/strong/pp  dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。/pp  该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。/pp  strong可溶性大豆多糖/strong/pp  可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。/pp  该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。/pp  strong亮蓝/strong/pp  亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。/pp  该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。/pp  strong磷酸/strong/pp  磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。/pp  该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。/pp  strong柠檬黄/strong/pp  柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。/pp  该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。/pp  strong乳酸链球菌素/strong/pp  乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。/pp  该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。/pp style="text-align: right "  日期:2018-03-19/p
  • 北京基因组所等揭示O-GlcNAc糖基化修饰维持基因组稳定性的分子机制
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  DNA总是受到内源或外源环境中多种损伤因子的攻击,例如DNA复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起DNA损伤的产生。如果不能够及时有效修复DNA损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控DNA损伤并及时修复,这一机制即为DNA损伤应答。/pp  中国科学院北京基因组研究所郭彩霞研究组与中科院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成DNA聚合酶Polη第457位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成DNA聚合酶Polη被招募到复制叉处替换高保真性DNA复制酶,在相应的损伤DNA模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的DNA复制酶相比,Polη复制未损伤DNA模板的错误率显著升高(10sup-2/sup~10sup-3/sup),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于Polη在TLS完成后如何从复制叉解离尚不清楚。研究发现,干扰Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤DNA模板对侧整合核苷酸的能力,但显著削弱Polη与CRL4supCDT2/sup E3泛素连接酶之间的相互作用,降低第462位赖氨酸的多泛素化修饰水平,进而抑制p97-UFD1-NPL4复合体所介导的Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA复制叉移动速率变缓等。该项研究工作揭示了Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及DNA复制过程中多种DNA聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。/pp  该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从DNA损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。/pp  研究工作以emPolη O-GlcNAcylation governs genome integrity during translesion DNA synthesis/em为题,在线发表在emNature Communications/em上。研究工作获得了国家自然科学基金委、科技部等的资助。/pp style="text-align:center "img alt="" oldsrc="W020171212545298381499.jpg" src="http://img1.17img.cn/17img/images/201712/uepic/afc0a60a-899a-40ca-87bc-2c12afb7ef13.jpg" uploadpic="W020171212545298381499.jpg"//pp style="text-align: center "O-GlcNAc糖基化修饰调控Polη与复制叉解离的分子机制示意图/p
  • 十年耕耘蛋白糖基化质谱分析技术——对话北京大学分析测试中心,质谱实验室高级工程师,周文
    蛋白质的糖基化修饰是一种重要的蛋白翻译后修饰。对于蛋白糖基化修饰的深入表征将有助于加深糖基化作用机制的理解,为相关疾病药物、疫苗的研发提供理论基础,然而糖基化修饰的类型和结构非常复杂,给分析检测带来了非常大的难度。过去10年间,北京大学分析测试中心高级工程师周文和多个课题组深入合作,致力于针对不同种类的糖基化发展相应的质谱分析检测新方法。北京大学分析测试中心高级工程师周文在过去的20年里,糖基化修饰领域在仪器方面有了很多进展,如从传统的碰撞解离到现在的电子转移解离(ETD)的碎裂方式,同时还可以将不同的碎裂方式进行组合。周文形容到,ETD就像闪电一样,它的碎裂过程非常的快,更便于我们进行糖基化的分析。周文表示,希望让更多人关注分析测试领域,也给分析测试人员更多的展示自己的舞台,相信将来一定会有更多的优秀人才加入到我们当中来!
  • 买的多,送的多;你敢买,我敢送! ——买一送一,买二送二,还有培训班名额哦!
    为感谢多年来生物制药分析技术工作者对ACQUITY/XBridge BEH SEC色谱柱与Glycoworks RFMS糖基分析试剂包的认可与支持,我们特别推出盛夏感恩回馈活动,为广大用户提供尊享试新机会,诚邀大家继续感受我们的优质产品!-2010年,全球第一根UPLC SEC柱上市!SEC首次拥有超高效的速度与分离度。-2014年,XBridge BEH SEC分析柱上市,让常规分析SEC柱寿命首次可达1000针以上。-2015年,GlycoWorks RFMS革命性标记试剂,制备更快速,响应更灵敏,从研发到QC广受好评。-2018年底,2.5um XBridge SEC柱上市,帮助研发与生产稳步提升速度与分离度。-2019年初,BioResolve IEX色谱柱全新启航上市!为IEX提供更理想的分离与续航寿命!买一送一(1+1):凡购买任意一根XBridge/BEH SEC分析柱 或 GlycoWorks RFMS糖基分析试剂包,即可获赠一根BioResolv IEX分析柱(配保护柱)。买二送二(2+2):凡购买任意一根XBridge/BEH SEC分析柱 及 任意一套GlycoWorks RFMS糖基分析试剂包,即可获赠一根BioResolve IEX分析柱(配保护柱)及一次Bio LC School课程!长按识别上方二维码,立即参与优惠活动。参与活动产品范围:ACQUITY/XBridge BEH SEC柱:GlycoWorks RFMS糖基分析试剂包:赠!BioResolve SCX分析柱,3um, 4.6x100mm,配VanGuard FIT保护柱(PN:186009059)感恩回馈活动说明:-活动截止时间: 2019年8月30日,仅限终端用户;-多买多送,BioResolv IEX分析柱按购买套数成比例赠送(不超过5根/单位);-多买多送,Bio LC School课程,按购买套数比例赠送(不超过2人/单位)。注:沃特世将会对用户类型进行分析,判断是否适合此活动,以确保符合相关法律法规。沃特世对于此活动拥有最终解释权。关于ACQUITY/ XBridge BEH SEC柱:- BEH杂化颗粒,耐受高盐高pH流动相,SEC色谱柱寿命达到新高度;- 粒径1.7um UPLC, 2.5um UHPLC, 3.5um HPLC,全面覆盖各种仪器平台;- 孔径125A,200A,450A,适用各种级别大小的生物药分析项目。关于GlycoWorks RFMS糖基分析试剂包:- 革命性标记试剂,让制备更快速更便捷,半小时完成;- 无以伦比的MS与荧光灵敏度;- 稳定可靠,方法转移重现无忧;- 大量上市生物药项目实证!关于GlycoWorks RFMS糖基分析试剂包- 革命性标记试剂,让制备更快速更便捷,半小时完成;- 无以伦比的MS与荧光灵敏度;- 稳定可靠,方法转移重现无忧;- 大量上市生物药项目实证!
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 正新鸡排20天不换油被曝光,煎炸用油质量如何检测和评估?
    近日,江西赣州章贡区一正新鸡排门店被曝出“油用了20多天不换”,引发广泛关注。针对正新鸡排门店存在的卫生问题,电章贡区市场监督管理局餐饮服务监督管理股的工作人员表示“后续会依法做出相应的处理”,正新官方也做了回应:“门店有问题的话,公司绝对不会姑息,会督促整改并做出相应处罚。”事实上,在餐饮业,烹炸油“超期服役”成为“老油”,问题由来已久,一直是监管的难点,也是消费者投诉的热点。知名餐饮店麦当劳、小龙坎、永和大王、必胜客都被媒体曝光过煎炸油的质量问题。煎炸用油是否安全通过肉眼并不能直接鉴定。其质量相关指标主要集中在酸价、羰基价、极性组分、过氧化值等,极性组分物质对人体健康有害,如会导致动物生长停滞、肝脏肿大、生育功能和肝功能发生障碍、人淋巴细胞畸变等。酸价则是脂肪中游离脂肪酸含量的标志, 可作为脂肪酸败的指标。在一般情况下, 酸价略有升高不会对人体的健康产生损害。但如果酸价过高, 则会导致人体肠胃不适、腹泻并损害肝脏。如何判断炸鸡排使用的植物油是否为多次使用,可以通过以下几个方面进行检测和评估。1. 感官检查:观察油的颜色和透明度。如果油颜色变深,变得浑浊,或者有残渣,这可能表明油已经被多次使用。2. 气味和滋味:如果油有异味或酸败味,这也可能是油多次使用的迹象。3. 化学指标测定: - 酸价:测定油的酸价,如果酸价升高,可能意味着油经过了多次加热和使用。 - 羰基价:羰基价的测定可以反映油中羰基化合物的含量,但测定方法可能存在操作复杂性和环境污染问题。 - 极性组分:极性组分含量的升高通常与油的热氧化和聚合有关,是油脂品质劣变的一个指标。如果极性组分含量高于标准值(如GB 7102.1-2003规定的≤27%),则油可能已多次使用并变质。 - 过氧化值:过氧化值的升高表明油脂可能已经氧化,这是油脂变质的一个信号。如果过氧化值超过GB 2716-2005规定的食用植物油过氧化值≤0.25 g/100 g,油可能不再适合使用。如何检测煎炸油的质量呢?一共有8种方法:1. 紫外光谱法:这是一种简便快速的检测方法,可以批量连续检测,但可能受到其他紫外吸收物质的干扰,且准确度和灵敏度相对有限。2. 红外光谱法:该方法无需样品前处理,设备简单,分析速度快,且可以实现无损检测和批量连续检测。不过,它通常要求检测含量大于1%,且建模难度较大。3. 荧光光谱法:具有设备简单、选择性强、用样量少等优点,适合批量连续检测。但部分样品可能需要前处理,且易受某些离子的干扰。4. 太赫兹光谱法:这是一种新兴的快速检测技术,具有高透射性、高信噪比和宽带宽等特点,适用于实时、批量、无损、在线检测。不过,该技术目前尚不成熟,且设备成本较高。5. 高光谱成像法:该方法可以实现快速、简便的操作,具有高分辨率和高灵敏度,但设备成本较高,且数据处理可能较为复杂。6. 拉曼光谱法:操作简便,测定时间短,灵敏度高,可以实现无损检测。但结果可能受到光学系统参数和污染物的影响。7. 衰减全反射傅里叶红外光谱法:这是一种快速检测方法,可以评估和鉴别反复高温加热过的食用植物油以及新食用植物油中混入的地沟油,具有操作简单、成本低、无污染的特点。8.酸价和过氧化值的快速检测:KJ 201911标准提供了一种快速检测食用植物油酸价和过氧化值的方法,适用于液态食用植物油和食品煎炸过程中的油品。 建议使用第8条的方法,加上感官检测,以及直接取证。检测结果还需市场监督管理相关部门的验证评价。
  • 2009化学领域重点实验室评估结果发布
    教育部、中国科学院、江苏省科技厅:  今年我部对25个化学领域国家和部门重点实验室组织了评估,其中国家重点实验室22个,部门实验室3个。另外,固体表面物理化学国家重点实验室和金属有机化学国家重点实验室在此之前连续3次评估优秀因而此次免评。现将评估结果通报如下:  一、评估结果  催化基础国家重点实验室、分子反应动力学国家重点实验室、高分子物理与化学国家重点实验室、固体表面物理化学国家重点实验室、金属有机化学国家重点实验室、精细化工国家重点实验室等6个国家重点实验室为优秀类实验室。  材料化学工程国家重点实验室等18个实验室为良好类实验室(名单见附件)。  理论化学计算国家重点实验室和重质油国家重点实验室的评估结果待定。  有机氟重点实验室为较差类实验室。  二、我部将对上述优秀类和良好类的国家重点实验室给予专项经费资助  三、理论化学计算国家重点实验室和重质油国家重点实验室存在问题较多,请有关部门和依托单位高度重视,组织相关实验室就存在的薄弱环节和主要问题进行认真整改。整改工作的主要目标是:明确主要研究方向和重点组织承担国家科研任务、加强科研队伍建设、引进和培养优秀人才、完善和提升实验研究平台、建立搣开放、流动、联合、竞争攠的运行机制等。我部将相应核减这2个国家重点实验室整改期间的专项经费,并在两年后对整改进展情况进行考核。  四、希望各参评实验室、依托单位和主管部门认真总结经验,针对评估专家组提出的问题和建议,找出实验室存在的差距和不足,研究制定解决问题的方法和措施。根据《国家重点实验室建设与运行管理办法》,切实加强实验室的建设和管理,营造有利于原始创新的环境,促进实验室整体水平的提高。  附件:2009年化学领域优秀类和良好类重点实验室名单  科学技术部  二00九年八月二十一日附件:2009年化学领域优秀类和良好类重点实验室名单 实验室名称依托单位主管部门优秀类实验室催化基础国家重点实验室中国科学院大连化学物理研究所中国科学院分子反应动力学国家重点实验室中国科学院大连化学物理研究所中国科学院高分子物理与化学国家重点实验室中国科学院长春应用化学研究所中国科学院固体表面物理化学国家重点实验室*厦门大学教育部金属有机化学国家重点实验室*中国科学院上海有机化学研究所中国科学院精细化工国家重点实验室大连理工大学教育部良好类实验室材料化学工程国家重点实验室南京工业大学江苏省科技厅超分子结构与材料国家重点实验室吉林大学教育部电分析化学国家重点实验室中国科学院长春应用化学研究所中国科学院多相复杂系统国家重点实验室中国科学院过程工程研究所中国科学院功能有机分子化学国家重点实验室兰州大学教育部化工资源有效利用国家重点实验室北京化工大学教育部化学工程联合国家重点实验室清华大学、天津大学、华东理工大学、浙江大学教育部化学生物传感与计量学国家重点实验室湖南大学教育部结构化学国家重点实验室中国科学院福建物质结构研究所中国科学院聚合物分子工程教育部重点实验室复旦大学教育部煤转化国家重点实验室中国科学院山西煤炭化学研究所中国科学院生命分析化学教育部重点实验室南京大学教育部生命有机化学国家重点实验室中国科学院上海有机化学研究所中国科学院羰基合成和选择氧化国家重点实验室中国科学院兰州化学物理研究所中国科学院无机合成与制备化学国家重点实验室吉林大学教育部稀土资源利用国家重点实验室中国科学院长春应用化学研究所中国科学院现代配位化学国家重点实验室南京大学教育部元素有机化学国家重点实验室南开大学教育部 注:本表按汉语拼音排序;固体表面物理化学国家重点实验室和金属有机化学国家重点实验室本次评估免评。
  • 赫施曼助力电子烟中2,3-丁二酮的检测
    电子烟是一种模仿卷烟的电子产品,通过加热雾化产生具有特定气味的气溶胶。2,3-丁二酮因具有奶油香气常作为香精原料被添加在电子烟烟液中,经加热后吸入肺部可能沉积在肺气管中而导致阻塞,加重呼吸道炎症。根据GB 41700-2022,电子烟中释放物中羰基化合物2,3-丁二酮每口释放量不超过2.5微克。其检测方法为:高效液相色谱法。 1.试剂1.1 磷酸水溶液:量取60mL磷酸(质量分数不低于85%)于1L烧杯中,搅拌下缓慢加入440mL水,混合均匀。储存于试剂瓶中有效期为3个月。1.2 衍生化试剂:取1.00gDNPH-HCl(纯度不低于98%)于2L烧杯中,加入500mL乙腈(色谱纯)和40mL磷酸水溶液,溶解后加入500mL水,混合均匀。溶液转入棕色试剂瓶中避光储存,有效期为1周。1.3 2,3-丁二酮溶液:称取0.10g(精确至0.1mg)2,3-丁二酮(纯度不低于98%)于10mL棕色容量瓶中,用乙腈溶解,定容至刻度。-18℃避光储存,有效期为3个月。1.4 DNPH衍生化合物标准储备液:称取0.1mL2,3-丁二酮溶液于25mL棕色容量瓶中,加入20mL衍生化试剂,摇匀,室温反应20min。加入1mL吡啶(纯度不低于99%),用乙腈定容至刻度,-18℃避光储存,有效期为3个月。1.5 标准工作液:用乙腈将DNPH衍生化合物标准储备液逐级稀释,至少备制5个标准工作液,浓度范围宜为0.1-4μg/mL。在使用前配置。2.样品前处理2.1 电子烟烟液:称取0.50g(精确至0.1mg)样品于10mL棕色容量瓶中,加入5mL衍生化试剂,摇匀,室温反应20min。加入0.25mL吡啶,用乙腈定容至刻度,摇匀,用PTFE滤膜过滤于棕色色谱瓶中待测。2.2 固态雾化物:称取0.50g(精确至0.1mg)样品于15mL离心管中,加入10mL衍生化试剂,避光涡轮震荡反应20min。用PTFE滤膜过滤,移取5mL容量瓶于10mL棕色容量瓶中,加入0.25mL吡啶,用乙腈定容至刻度,用PTFE滤膜过滤于棕色色谱瓶中待测。3.绘制标准工作曲线设定高效液相色谱条件后测定标准工作溶液(1.5),以目标化合物峰面积和浓度建立标准工作曲线。每进行20次样品测定后加入一个中等浓度的标准工作溶液,如测定值与原值相差15%则重新绘制标准工作曲线。4.样品测定按照谱条件测定两个样品溶液,每个样品平行测定两次,并以两次测定结果的平均值为最终测定结果。以上实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 空气醛酮污染亟待检测,艾杰尔受任于“危难”
    甲醛等羰基化合物是城市大气中主要的污染物,甲醛污染的主要来源包括汽车尾气排放,煤气及吸烟,在使用某些化学物质的工业生产过程中也会释放甲醛。在室内,甲醛来自硬木镶板,尿素、甲醛泡沫塑料制成的绝缘材料和家具。车内空气中所含的甲醛多是来自座椅沙发垫、车顶装饰布内衬等装饰材料。在美国健康和公共事业部及公共卫生局发布的致癌物质的报告中,已将甲醛列入一类致癌物质。国际癌症研究机构已经于2004年将甲醛上升为第一类致癌物质。专家研究认为,有足够的证据可以证明甲醛引起人类的鼻咽癌、鼻腔癌和鼻窦癌,并有证据证明甲醛可引发白血病。目前,国内已有多起由空气中甲醛超标引起的诉讼案。 醛酮检测势在必行:呼唤优越的检测方法 检测甲醛等羰基化合物在大气、室内,车内以及其他场所的含量水平和分布规律是十分重要的。但羰基化合物在大气中的浓度非常低,需要比较灵敏的方法才能检测,国内很多行业制定了空气中污染物的检测方法和标准,其中所有涉及检测甲醛和羰基类污染物方法中的大部分均采用DNPH衍生法。 汽车内空气中醛酮组分较为复杂,通常含有甲醛、乙醛及丙烯醛等多种物质,且含量分布较广,分光光度法不能同时测定多种醛酮组分,与气相色谱法相比,采用2,4-DNPH 吸附管吸附高效液相色谱法具有操作简便快捷、结果稳定等特点。 检测配件尚需进口:成本高,质量无保证 为了保护环境,促进人体健康,改变目前国内尚无车内环境检测标准的现状,为检测车内空气污染物工作提供技术依据,我国有关部门正在加紧制定国家环境保护标准&ldquo 车内空气污染物测量方法&rdquo 。方法征求意见稿中采用2,4-DNPH 吸附管吸附高效液相色谱法,正式的方法出台后,汽车生产厂家和检测机构将会大量使用DNPH-Silica样品采集管,检测成本也会因此成为影响效益的瓶颈问题。 目前国内使用的DNPH-Silica采集管全部从国外进口,由于DNPH-Silica采集管需要在4℃冷藏,不仅价格昂贵,而且供货周期漫长,质量无法保证。基于此现状,国内相关领域的企业也转向DNPH-Silica采集管的研发与生产,期望能够取代进口产品,降低使用成本,保证产品质量。 展望:艾杰尔将填补国内空白 北京艾杰尔科技有限公司在现有SPE产品技术的基础上,进行了国产DNPH-Silica气体样品采集管的研发,该项目已列入北京市海淀区2007年科技支持项目,完成了实验室试制,得到了小试样品,并对样品的质量进行了初步评价,其功能与进口产品性能相当,符合羰基化合物采样分析的要求;如能实现规模化生产,将对检测和监测大气环境污染起到很好的作用。本项目产品不但可替代进口,填补国内该类产品的空白,而且本产品的价格远低于进口产品,并可保证质量和及时供货。
  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸沃特世科技(上海)有限公司蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。一、色谱条件与标记后的多聚糖样品的分离可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。二、2-AB标记的多聚糖定量及结构鉴定由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。实验流程:一、2-AB 标记糖链使用GlycoPro le试剂盒,Prozyme公司使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。1.使用50&mu l的标记反应液2. 65度反应4-5小时3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO)2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制)3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时5 .将反应液按步骤4处理除去过量的标记试剂二、使用MassPrep亲水作用样品处理板除去过量的标记试剂所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度4.用 90% ACN清洗处理板两次5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献(1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column(2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine(3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 金额确定!天瑞仪器1.69亿收购磐合科仪55.42%股份
    p  3月6日,磐合科仪发布一则收购报告书,宣布天瑞仪器以1.69亿元的金额收购磐合科仪55.42%的股份。/pp  本次收购方案为天瑞仪器将在3年内分4期支付现金合计1.69亿元。收购完成后,天瑞仪器将成为磐合科仪的控股股东、实际控制人。/pp  本次收购分为两部分。第一部分,天瑞仪器与赵学伟、王宏等 21 位股东签署了《江苏天瑞仪器股份有限公司支付现金购买资产协议》,以每股10.17元的价格收购磐合科仪 27.06%股份,支付金额为9737.37万元。此部分交易涉及对赌条款,磐合科仪承诺2017年至2019年累积实现的净利润分别不低于 2405 万元、5705 万元、9615 万元。/pp  第二部分,天瑞仪器将以每股7.12元的价格收购上海行愿投资管理有限责任公司、深圳小乘登陆新三板投资中心(有限合伙)等14位股东合计28.36%的股份,支付金额为7144.21万元。/pp  公开资料显示,天瑞仪器的主营业务是从事以光谱仪、色谱仪、质谱仪为主的高端分析仪器及应用软件的研发、生产、销售。停牌前,公司市值为45.76亿元。/pp  值得一提的是,停牌前,磐合科仪的市值仅为1.8亿元,而本次收购估值却达到了3.6亿元,溢价高达100%。/pp  数据显示,磐合科仪于2014年8月13日挂牌新三板,主营业务是从事在线环境监测系统、前处理仪器等硬件的研发、生产、销售。2016年,公司营业收入1.90亿元,同比增长57.42% 净利润1488.88万元,同比增长32.52%。/ppbr//p
  • 海默科技拟收购思坦仪器近30%股份 成第二大股东
    p  A股上市公司与新三板公司的“联姻”可谓此起彼伏。8月31日晚,海默科技公告披露重大事项,公司拟受让新三板公司思坦仪器不超过30%的股份,本次交易完成后,公司将成为思坦仪器第二大股东,双方将充分利用彼此在石油天然气细分领域的技术、资源及经营方面的优势,共同提升综合盈利能力。/pp  公告显示,为了进一步完善产业布局,提升行业综合竞争力,海默科技拟以现金形式协议受让思坦仪器包括大股东在内的现有股东不超过30%的股份,交易价格尚存在不确定性。本次受让完成后,公司将成为思坦仪器第二大股东。/pp  思坦仪器注册资本10,783.24万元人民币,思坦仪器立足于石油与天然气开采行业,致力于成为油气田开发过程中的增产工程提供设备制造、技术服务与工程承包的生产型企业。思坦仪器主营业务为油气增产工程专用仪器的制造、销售,利用多年从事本行业积累的知识与经验,通过独立的研发与自主创新,为客户提供涵盖地面仪器、井下工具、井下仪器、监测仪器仪表、数据网络传输、应用软件开发等整个生产测井领域的专业仪器设备或服务。公司2014年、2015年及2016 年上半年分别实现营业收入2.26亿元、2.55亿元、1455.97万元,净利润2298.23万元、6164.22万元、-2010.18万元。思坦仪器于2015年7月挂牌新三板。/pp  海默科技表示,公司的主营业务主要在油气田地面计量领域,其多相计量技术位于世界领先水平。思坦仪器在国内油气田生产测井、井下注水工具领域具有明显的技术和市场领先性。本次投资基于双方公司业务发展需要,充分利用彼此细分领域的技术、经营方面的优势,通过双方的资源整合、优势互补,提升双方的综合竞争力及盈利能力,促进公司持续健康发展。/p
  • 2014年磐合科仪精彩回顾
    不知不觉上海磐合科学仪器股份有限公司在仪器行业中已屹立了12个春秋,作为集科研、开发、生产、销售、多元化经营于一体的高新技术企业,2014年是磐合科仪艰辛的一年,也是丰收的一年。就让我们一起见证2014年磐合科仪的飞越发展。 1、磐合科仪上市挂牌 全新姿态登陆新三版 磐合科仪经过多年坚持不懈的努力,于2014年8月21日正式挂牌新三版(证券简称:磐合科仪,证券代码:830992),成为分析仪器界首批“新三板”上市企业之一,让磐合科仪向着成为“中国检测行业No.1的综合服务商”的目标更加接近! 2、高新小巨人企业领先 荣获多项专利授权 磐合科仪一贯重视自主知识产权保护,2014年公司已拥有七项实用新型专利授权,一项软件著作权和一项软件登记证书。特别是“智能化与模块化的全自动食品安全检测前处理系统”项目被上海市创新基金立项,“实时在线监测环境大气中挥发性和半挥发性有机物系统”项目被闵行区产学研项目立项。公司还被上海市科委立项为科技小巨人培育企业,同期还被认定为上海市高新技术企业。上海市、区两级政府、税务、银行都给予很大扶植,让磐合科仪在行业竞争上获得更多优势。 3、深度服务,磐合科仪-英国MARKES携手中国十周年庆典大会成功召开2014年10月17日,“磐合科仪-MARKES携手中国十周年庆典大会”在上海隆重召开。本次庆典活动以磐合科仪和英国MARKES公司十年合作小结和未来发展为主题,分别回顾了两个公司的合作历程,描绘了未来更为广阔的合作蓝图。通过这次盛会,用户、制造商和磐合科仪全体同仁进行了更充分的交流,增进了友谊,提高了信任,为进一步拓展中国市场,为磐合科仪更好的服务于中国客户打下良好的基础,磐合科仪将会更加努力的提升服务质量,和我们的客户共同进步! 4、坚实服务,磐合科仪&MARKES联合实验室正式成立 磐合科仪十年来一直在中国区提供英国MARKES仪器技术支持和售后服务。2014年10月17日磐合科仪&MARKES联合实验室正式成立正式揭牌。实验室的成立,既是英国MARKE公司对磐合科仪实力的承认,也是双方十年合作的完美延伸。此举标志着两家公司的合作达到了新的高度。 5、高端先进的设备在慕尼黑展会上大发光彩 作为第6次参展慕尼黑上海生化展的专业仪器公司,磐合科仪加大了展位投入,扩充了展品范围,与用户更近距离接触,更深入了解用户对仪器、对产品的应用需求,对改进解决方案更有目的性。 展会中德国LCTECH公司Freestyle系列的全自动样品前处理及在线HPLC/HPLC-MS联用平台系统,得到用户高度关注!该系统聚集三个先进技术特点:其一是一套全自动的凝胶净化/固相萃取/定量浓缩多功能的前处理平台;其二是该多功能的前处理平台可以与液相或液质实现在线联用,真正的实现“一站式”样品的前处理分析检测,是目前全球先进技术;其三是在该多功能平台上增加真菌毒素在线模块,可以实现对食品等样品中的真菌毒素在线全自动前处理及分析平台。 6、新产品及应用方案接合时事开创新纪元 目前国内空气雾霾严重、汽车内饰环境、企业偷排或室内装修有毒有害挥发性有机物等环境问题在监测行业已经成为重点攻克的目标。磐合科仪接合自身产品特点和环境检测标准方法及实际需求,提供一系列VOC/在线VOC检测仪器及相关配套解决方案。1)英国MARKES大气VOCs实时在线监测系统该系统可长时间在线测定所有的挥发性有机物,可与市场主流气相、快速气相或全二维气相连接进行色谱分离,短时间内迅速给出定性定量结果。特别适用于当前国内环监体系实时在线监测。 2)德国LCtech全自动的二噁英前处理系统针对目前食品、环境等二噁英样品的检测量日益增加情况下,前处理时间久、毒性大、回收率底等老大难的二噁英前处理问题,德国LCtech推出了全自动的二噁英前处理系统DECS,大大节省检测时间,也完全避免操作人员手动操作等问题,提高了工作效率。 (浙江环保系统一次采购6套该系统)7、广纳百川友好合作同共进步 在多年引进国外产品的消化吸收以及深入分析市场需求的过程中,磐合科仪与同行盟友更是加强深度合作,不断完善使用配套方案。2014年与上海仪盟电子科技有限公司合作,成为该公司气相色谱及耗材在浙江、山东区域代理,同期成为通用电气医疗集团(GE health care)生命科学相关仪器及耗材浙江区代理。新产品新合作给磐合科仪注入新的血液,带来更强大动力。 2015年磐合科仪将一如既往地为广大客户提供完善的“一站式”总体解决方案,身体力行“坚磐品质,合作精神”的企业文化,令广大客户更加满意。
  • 科技部明年将对化学领域重点实验室进行评估
    科技部明年将对化学领域重点实验室进行评估其中国家重点实验室22个,部门重点实验室3个 日前,科技部在其门户网站发布通知,2009年将对化学领域的国家重点实验室和部门重点实验室进行评估。 1.2009年化学领域实验室评估的具体工作委托国家自然科学基金委员会承担。 2.参加2009年化学领域评估的国家重点实验室22个、部门重点实验室3个,共25个。 附件:参加2009年度化学领域评估的国家重点实验室和部门重点实验室 序号实验室名称依托单位主管部门国家重点实验室(22个)1材料化学工程国家重点实验室南京工业大学江苏省科技厅2超分子结构与材料国家重点实验室吉林大学教育部3催化基础国家重点实验室大连化学物理研究所中国科学院4电分析化学国家重点实验室长春应用化学研究所中国科学院5多相复杂系统国家重点实验室过程工程研究所中国科学院6 分子反应动力学国家重点实验室大连化学物理研究所中国科学院7 高分子物理与化学国家重点实验室长春应用化学研究所中国科学院8功能有机分子化学国家重点实验室兰州大学教育部9化工资源有效利用国家重点实验室北京化工大学教育部10化学工程联合国家重点实验室清华大学、天津大学、华东理工大学、浙江大学教育部11化学生物传感与计量学国家重点实验室湖南大学教育部12结构化学国家重点实验室福建物质结构研究所中国科学院13精细化工国家重点实验室大连理工大学教育部14理论化学计算国家重点实验室吉林大学教育部15煤转化国家重点实验室山西煤炭化学研究所中国科学院16生命有机化学国家重点实验室上海有机化学研究所中国科学院17羰基合成和选择氧化国家重点实验室兰州化学物理研究所中国科学院18无机合成与制备化学国家重点实验室吉林大学教育部19稀土资源利用国家重点实验室长春应用化学研究所中国科学院20现代配位化学国家重点实验室南京大学教育部21元素有机化学国家重点实验室南开大学教育部22重质油国家重点实验室石油大学教育部部门重点实验室(3个)序号实验室名称依托单位推荐部门1聚合物分子工程实验室复旦大学教育部2生命分析化学实验室南京大学教育部3有机氟化学实验室上海有机化学研究所中国科学院 详情请见:关于下达2009年度国家重点实验室和部门重点实验室评估计划的通知
  • 55.42%股份交割!磐合科仪正式成为天瑞仪器控股子公司
    p  天瑞仪器7月27日发布公告称,公司对磐合科仪的收购已于 2017 年7月27日完成交割工作。股份完成交割后,天瑞仪器共计持有磐合科仪 19,608,104 股股份,占磐合科仪股份总额的55.42%,磐合科仪成为天瑞仪器的控股子公司,磐合科仪将纳入公司财务合并报表范围。/pp  天瑞仪器于 2017 年3月22日召开 2017 年第一次临时股东大会,审议通过了《关于使用超募资金收购上海磐合科学仪器股份有限公司55.42%股份的议案》,同意公司使用超募资金人民币 168,815,802.68元收购赵学伟、王宏等35位股东所持有的上海磐合科学仪器股份有限公司55.42%的股份。具体内容详见 2017 年3月7日公司刊登在中国证监会创业板指定信息披露网站的《关于使用超募资金收购上海磐合科学仪器股份有限公司 55.42%股份的公告》(公告编号:2017-005)。/pp  根据《全国中小企业股份转让系统业务规则(试行)》相关规定:买卖挂牌公司股票,申报数量应当为 1,000 股或其整数倍,卖出挂牌公司股票时,余额不足 1,000 股部分,应当一次性卖出。因磐合科仪股东陈信燕与公司协商转让的股份仅是其持有的磐合科仪部分股份,通过股转系统转让过程中,不足1,000股部分无法成交。经与陈信燕协商,其参与本次股份转让数做相应调整,由312,500股调整为312,000股。/p
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权  随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。  车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。  车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。  为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。  博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。  博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。  同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。国家重点新产品证书北京市劳动保护科学研究所使用报告中国计量科学研究院测试报告
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功  5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。  “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行     全国人大常委会副委员长、中国科学院院长路甬祥讲话  鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。  乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。  煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。  经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。  关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 科技部发布2014年化学领域国家重点实验室评估结果
    2014年12月18日,科技部关于发布2014年化学领域国家重点实验室评估报告的通知,通知全文如下:  国科发基〔2014〕365号  教育部、中国科学院,江苏省科技厅:  2014年,科技部委托中国化学会对化学领域26个国家重点实验室进行了评估,现将评估报告予以发布。  一、五年整体发展情况  2009-2013年5年间,化学领域国家重点实验室取得丰硕成果,培养引进大批优秀人才,开展一系列有影响的国内外合作研究,成为我国化学领域自主创新研究和人才培养的重要基地,对化学学科发展起到了引领作用,为国民经济建设和社会发展做出重要贡献。  1. 实验室承担国家重大任务能力显著提升,实力大幅增强。  5年间,26个国家重点实验室承担科研任务超过6000项,总经费超过60亿元,是上一个评估周期的2.2倍。其中,实验室承担国家重点基础研究发展计划(973计划)、国家高技术研究发展计划(863计划)、科技支撑计划等国家级科研项目3000余项,总经费37.3亿元,占总经费的62%。有21个实验室主持了973计划或重大科学研究计划项目,实验室固定人员作为项目首席科学家主持973和重大科学研究计划项目46项,其中新增32项,显示了实验室聚焦学科发展前沿和服务国家战略需求能力显著提升,实力大幅增强。  2. 实验室产生了一批有影响力的代表性成果,创新引领作用凸显。  5年来,26个实验室共获得国家自然科学奖二等奖17项,技术发明奖二等奖11项,科技进步奖二等奖16项。分子反应动力学国家重点实验室张存浩获2013年度国家最高科学技术奖。5年来,实验室获国家自然科学奖二等奖数量占化学领域自然科学二等奖总数的比例超过30%,凸显实验室在引领学科发展前沿和聚焦国家重大需求领域的创新引领作用。  5年来,实验室在专利产出和成果转化方面成效显著,在行业和领域发展中起到了引领和支撑作用。26个实验室共获国内和国际专利授权3300余件。实验室突破若干产业关键技术,实现批量成果向产业转化,推动了相关领域的产业升级和发展,获得了重大经济和社会效益。例如,催化基础国家重点实验室实现甲醇制烯烃和汽油超深度催化吸附脱硫等多项催化技术产业化,为我国能源、环境和石油化学工业的技术进步做出了重大贡献。金属有机化学国家重点实验室在金属催化的不对称反应研究中发展的新配体和催化剂,解决了现有配体和催化剂无法解决的效率和选择性问题,在国际上形成了特色,并被国内外同行广泛应用。  3. 实验室成为聚集领军型人才和创新团队的重要基地,优秀人才培养成效显著。  化学领域国家重点实验室已成为我国化学领域有影响力的研究基地,形成一批在国际上具有重要影响力的科学家和研究团队。  实验室共有两院院士56名,其中5年内新当选中国科学院化学学部院士9名。实验室共有216人在国际学术组织任职或在国际学术刊物担任主编、副主编、编委或顾问编委等职务,其中新增国际学术任职116人,表明实验室研究人员在国际化学领域的学术认可度和国际影响力不断提升。  实验室拥有175名国家杰出青年科学基金(以下简称杰青)获得者,其中5年新增杰青获得者56名。固体表面物理化学国家重点实验室拥有杰青获得者17人 催化基础国家重点实验室、化工资源有效利用国家重点实验室在过去5年均新增杰青获得者6人,呈现人才成长高速发展趋势。实验室拥有国家自然科学基金委员会&ldquo 创新研究群体&rdquo 25个,其中5年内新增12个。实验室5年内引进&ldquo 千人计划&rdquo (国家特聘专家)19人,&ldquo 青年千人计划&rdquo 28人。  5年来,26个实验室共培养博士研究生4500余名,出站博士后400余名,为我国化学科研、教育和产业领域输送了一大批优秀的科研人才。  4. 实验室更加重视对外开放和国际合作交流,国内外影响力显著提升。  5年来,26个实验室开展国际合作计划(项目)320余项,合作经费达到3.4亿元 设置开放课题近2000项,投入经费1.2亿元。实验室吸引大量国内外科学家共同开展合作研究,产生大量合作研究成果,在促进协同创新方面发挥了辐射和带动作用。  催化基础国家重点实验室与英国石油公司(BP)合作建立&ldquo BP大连能源创新实验室&rdquo ,在催化和新能源领域开展合作研究,成为BP在全球的四大研发中心之一。精细化工国家重点实验室与美国、德国、日本、瑞典等国一流研究机构分别建立6个高水平的国际合作研究实体。高分子物理与化学国家重点实验室、结构化学国家重点实验室、金属有机化学国家重点实验室等建立&ldquo 国际合作伙伴创新团队&rdquo ,充分发挥海内外优秀人才强强联合的作用,促进国内交叉学科、新兴学科发展。固体表面物理化学国家重点实验室设立实验室特聘研究员制度,吸引国内外优秀科研人员开展科研工作,同时注重与国际顶级科学家、科研机构开展实质性的国际合作。  实验室通过发起、主办和承办高水平的国际、区域、双边或国内重要学术会议拓展交流广度。5年来,26个实验室共承办国际性学术会议128项,区域和双边性学术交流活动109项,国内学术会议110项,显著提高了实验室的知名度和影响力。  5. 存在的问题。  评估发现,化学领域国家重点实验室主要问题有两点:一是聚焦重大前沿科学问题引领科学发展方面有待提高,重大原创性科研成果产出不够多 二是利用国家重点实验室的平台开展合作研究不够,协同创新有待进一步加强。  二、关于评估结果的处理意见  催化基础国家重点实验室(中国科学院大连化学物理研究所)等6个实验室为优秀。  材料化学工程国家重点实验室(南京工业大学)等17个实验室为良好。  煤转化国家重点实验室(中国科学院山西煤炭化学研究所)、羰基合成与选择氧化国家重点实验室(中国科学院兰州化学物理研究所)存在的问题较多,限期整改,减拨专项经费,2年后核查。请实验室主管部门和依托单位高度重视,组织实验室针对存在的薄弱环节和评估专家提出的主要问题,提出整改方案,认真整改。  理论化学计算国家重点实验室(吉林大学)未通过评估,根据《国家重点实验室建设与运行管理办法》和《国家重点实验室评估规则》的有关规定,该实验室不再列入国家重点实验室序列。  希望各实验室、依托单位和主管部门以此次评估为新的起点,面向科学前沿和国家战略需求,加强合作研究和协同创新,重视创新团队建设和优秀青年人才培养,创新管理机制和发展模式,充分发挥国家重点实验室创新平台的作用,提升原始创新能力,为实施创新驱动发展战略、建设创新型国家做出更大贡献。  附件:2014年化学领域国家重点实验室评估结果实验室依托单位主管部门优秀类实验室催化基础国家重点实验室中国科学院大连化学物理研究所中国科学院分子反应动力学国家重点实验室中国科学院大连化学物理研究所中国科学院高分子物理与化学国家重点实验室中国科学院长春应用化学研究所中国科学院固体表面物理化学国家重点实验室厦门大学教育部金属有机化学国家重点实验室中国科学院上海有机化学研究所中国科学院精细化工国家重点实验室大连理工大学教育部良好类实验室材料化学工程国家重点实验室南京工业大学江苏省科技厅超分子结构与材料国家重点实验室吉林大学教育部电分析化学国家重点实验室中国科学院长春应用化学研究所中国科学院多相复杂系统国家重点实验室中国科学院过程工程研究所中国科学院功能有机分子化学国家重点实验室兰州大学教育部化工资源有效利用国家重点实验室北京化工大学教育部化学工程联合国家重点实验室清华大学、天津大学、华东理工大学、浙江大学教育部化学生物传感与计量学国家重点实验室湖南大学教育部结构化学国家重点实验室中国科学院福建物质结构研究所中国科学院聚合物分子工程国家重点实验室复旦大学教育部生命分析化学国家重点实验室南京大学教育部生命有机化学国家重点实验室中国科学院上海有机化学研究所中国科学院无机合成与制备化学国家重点实验室吉林大学教育部稀土资源利用国家重点实验室中国科学院长春应用化学研究所中国科学院现代配位化学国家重点实验室南京大学教育部元素有机化学国家重点实验室南开大学教育部重质油国家重点实验室中国石油大学(北京、华东)教育部整改实验室煤转化国家重点实验室中国科学院山西煤炭化学研究所中国科学院羰基合成与选择氧化国家重点实验室中国科学院兰州化学物理研究所中国科学院未通过评估实验室理论化学计算国家重点实验室吉林大学教育部   科 技 部  2014年12月8日
  • 天瑞仪器2400万元收购磐合科仪6%股份
    p  strong仪器信息网讯/strong 5月16日晚,天瑞仪器发布公告,公司在5月16日召开的第四届董事会第一次(临时)会议上审议通过了《关于收购控股子公司磐合科仪部分股份的议案》。/pp  根据公告,2018年5月,公司与控股子公司上海磐合科学仪器股份有限公司(以下简称“磐合科仪”)少数股东赵学伟、王宏签订了《支付现金购买资产协议》,公司拟以自有资金2400万元收购赵学伟、王宏持有的磐合科仪6%的股份。本次交易前,公司持有磐合科仪55.42%的股份,赵学伟持有磐合科仪 17.81%的股份,王宏持有磐合科仪7.46%的股份。/pp  strong关于磐合科仪/strong/pp  根据磐合科仪4月底发布的2017年年度报告, 2017 年,磐合科仪实现营业收入 3.39亿 元,同比增长78.21%,利润总额 3233万元,同比增长79.32%。据了解,磐合科仪2017年营业收入的增加主要为传统业务保持快速增长的基础上,在线环境监测业务迅速占领市场、形成规模。磐合科仪的产品按照类别可划分为前处理系统、分析系统、消耗品和在线监测系统。/pp  2017年3月,磐合科仪向江苏天瑞仪器股份有限公司合计转让公司55.42%的股权,自此,磐合科仪的实际控制人变为江苏天瑞仪器股份有限公司,但实际上公司的运营主要是法定代表人赵学伟。/pp  strong交易目的和对公司的影响/strong/pp  交易完成后,有利于优化公司业务结构,增强公司综合实力,符合公司发展战略。目前,公司资金状况良好,本次交易不会对公司的财务状况和经营成果造成重大影响,不会影响公司的独立性,不存在损害公司及全体股东利益的情形,也不存在违反相关法律法规的情形。/p
  • CEM Liberty全自动微波多肽合成系统在PNA合成上的成功应用
    PNA(肽核酸)是具有类多肽骨架的DNA类似物,PNA的主链骨架是由N(2-氨基乙基)-甘氨酸与核酸碱基通过亚甲基羰基连接而成的。PNA可以特异性地与DNA或RNA杂交,形成稳定的复合体。PNA由于其自身的特点可以对DNA复制、基因转录、翻译等进行有针对的调控,同时作为杂交探针大大提高了遗传学检测和医疗诊断的效率和灵敏度。PNA特异性地识别和结合互补核酸序列被引进用于医学、化学和生物学等多个学科研究,包括药物筛选、基因诊断、分子识别和生命起源等,展示了其独特的生化属性,成为了基因奥秘的探索者。 使用CEM公司生产的Liberty全自动微波多肽合成系统(多肽合成仪)可以非常快速高效的合成PNA。 有关PNA的合成,请咨询010-65528800,EMAIL:sales@pynnco.com, 或浏览我们的网站:www.pynnco.com 。 CEM Liberty全自动微波多肽合成系统
  • 2022年第二期19个中药配方颗粒国家药品标准公示
    近日,国家药典委发布公告,公示2022年第二期19个中药配方颗粒国家药品标准。原文如下:按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,我委组织相关企业开展中药配方颗粒国家药品标准研究,形成了2022年第二期19个中药配方颗粒拟公示标准。为确保标准的科学性、合理性和适用性,现就上述中药配方颗粒品种国家药品标准公示征求社会各界意见(详见附件),公示期为三个月。请相关单位认真研究,鼓励企业参照国家药品监督管理局发布的《中药配方颗粒质量控制与标准制定技术要求》,开展从标准汤剂到生产工艺及中药配方颗粒产品的标准研究与复核。若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。来函需加盖公章,同时将公函扫描件电子版发送至指定邮箱。公示期满未回复意见即视为对公示标准无异议。联系人:张雪 祁进电话:010-67079632,010-67079633电子邮件:zhangxue@chp.org.cn收文单位:国家药典委员会办公室地址:北京市东城区法华南里11号楼邮编:100061附件:18.五味子配方颗粒.pdf17.熟大黄(掌叶大黄)配方颗粒.pdf16.石韦(有柄石韦)配方颗粒.pdf15.山银花(灰毡毛忍冬)配方颗粒.pdf13.南五味子配方颗粒.pdf14.青蒿配方配方颗粒.pdf12.玫瑰花配方颗粒.pdf10.龙胆(坚龙胆)配方颗粒.pdf9.酒续断配方颗粒.pdf7.筋骨草配方颗粒.pdf8.酒白芍配方颗粒.pdf6.姜黄配方颗粒.pdf11.龙脷叶配方颗粒.pdf5.鹅不食草配方颗粒.pdf4.大蓟配方颗粒.pdf2.醋南五味子配方颗粒.pdf3.醋五味子配方颗粒.pdf1.布渣叶配方颗粒.pdf19.仙鹤草配方颗粒.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制