当前位置: 仪器信息网 > 行业主题 > >

二氯四氨合铂

仪器信息网二氯四氨合铂专题为您提供2024年最新二氯四氨合铂价格报价、厂家品牌的相关信息, 包括二氯四氨合铂参数、型号等,不管是国产,还是进口品牌的二氯四氨合铂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氯四氨合铂相关的耗材配件、试剂标物,还有二氯四氨合铂相关的最新资讯、资料,以及二氯四氨合铂相关的解决方案。

二氯四氨合铂相关的资讯

  • 【激光氨气分析】AE: 华北农区秋冬季地气氨交换规律
    原文:中国科学院大气物理研究所 题注:宁波海尔欣光电科技有限公司和中科院大气物理研究所和深入合作,研发了一款便携式、高精度、快响应的HT8700开路多通池激光氨分析仪,并以HT8700为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统,这是目前测量地气氨交换通量的理想方法。 本文介绍了一个发表在Atmospheric Environment的研究工作。该项目采用了HT8700和涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据。============================================================================== 华北是我国氨的热点区域,大气中的氨含量高,空间覆盖范围广,这与区域内高强度的农业活动密切相关,如农业施肥、畜牧养殖等。高浓度的大气氨和由此引发的过量活性氮沉降,会导致重霾污染天气,也深刻改变了氮素的生物地球化学循环。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。 相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 鉴于此,中国科学院大气物理研究所联合中国农业大学、中国科学院亚热带农业生态研究所等单位,采用自主研制的开路激光氨分析仪(Wang et al.,2021)和基于大气湍流理论的涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,研究站点位于河北省曲周县,该地区的氨排放和沉降问题尤为突出。 研究团队成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据,并估算出由此损失的氮占氮肥施用量的0.57-0.71%,该结果远远低于同类观测研究的估算结果,这在很大程度上归因于优化后的施肥管理措施,为评估农业氨减排途径的有效性提供了观测证据。得益于观测设备在测量精度和频率上的优良性能,研究团队还首次获得农区高时间分辨率(半小时)的氨干沉降通量数据集,监测到平均沉降速率为14 g N ha-1 d-1,并发现迥然不同于自然生态系统的干沉降日变化规律。未来,利用该自主仪器及方法开展长期定位观测,可为氨干沉降通量的联网观测研究提供有效的验证数据,有助于提升对氨沉降时空变化规律的认识。 图1 基于自主研制仪器的氨湍流通量观测系统 图2 华北典型农区秋冬季氨浓度和氨通量半小时平均观测值(子图b和c中的通量值与子图a相同,纵轴坐标数值范围不同) 图3 华北典型农区秋冬季氨浓度和氨干沉降通量日变化趋势 上述研究成果近期发表于Atmospheric Environment,论文一作为大气物理研究所王凯博士和中国农业大学王敬霞研究生,通讯作者为中国农业大学刘学军教授。研究得到国家大气重污染成因与治理攻关项目(DQGG0208)、国家重点研发计划项目(2018YFC0213301、2017YFD0200101)、国家自然科学基金(41975169、42175137)等项目的资助。 相关文献:1. Wang K., Wang J., Qu Z., Xu W., Wang K., Zhang H., Shen J., Kang P., Zhen X., Wang Y., Zheng X., Liu X., 2022. A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment 278, 119070. 2. Wang K., Kang P., Lu Y., Zheng X., Liu M., Lin T., Butterbach-Bahl K., Wang Y., 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.
  • 资助1500万元!“重型车辆氨氢融合零碳动力系统基础研究”专项项目指南
    为推动面向国家碳中和的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目,针对重型车用氨氢融合燃料及其高效近零排放的核心科学问题,开展多学科交叉研究,为我国实现重型运输装备的碳中和提供科学依据和基础支撑。  一、科学目标  本专项项目旨在围绕氨氢融合燃料和热、电复合动力系统,探索相关化学反应动力学、流体动力学、热力学和系统动力学的协同机制,建立氨氢融合燃料复合动力系统的设计理论与方法,解决车用氨燃料点火难、燃烧慢及动态控制复杂等问题,为重型运载车辆氨氢融合燃料复合动力系统零碳排放技术创新与应用奠定基础。  二、拟资助方向  (一)氨氢燃料融合、发动机燃烧、排放物生成及后处理全过程的化学反应动力学。阐明氨车载制氢、氨氢融合燃料燃烧及有害排放物(NOx、NH3等)生成与净化机理,形成新型发动机设计理论和方法。  (二)氨氢融合动力系统中的多相多组分非稳态流体动力学。揭示氨氢融合燃料喷雾、相变机理以及混合流动规律,建立跨临界、多相多组分流体动力学模型,实现非稳态条件下燃料与空气混合的精确控制。  (三)重型车辆氨氢融合热电复合高效动力系统的热力学和动力学及其动态控制方法。阐明多源能量在动态条件下的调配与控制机制,建立车用高效氨氢多源复合动力系统设计理论与协同控制方法。  三、资助期限和资助强度  本专项项目资助期限为5年,项目研究期限应填写“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  四、申请要求及注意事项  (一)申请资格  1.具有承担基础研究课题的经历。  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定  1.本专项项目从申请开始直到自然科学基金委作出资助与否决定之前,不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;获资助后计入高级专业技术职务(职称)人员申请和承担总数的范围。  2.申请人和参与者只能申请或参与申请1项本专项项目。  3.申请人同年只能申请1项专项项目中的研究项目。  (三)申请注意事项  1.申请书报送时间为2022年4月15日—4月21日。  2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:  (1)申请人在填报申请书前,应当认真阅读本“专项项目指南”和《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。  (2)本专项项目旨在紧密围绕指南公布的科学目标集中国内优势研究团队进行协同攻关,申请人应针对拟资助研究方向具体阐述拟开展的研究内容、方案及资金预算。同时要求综合运用多学科研究方法开展深入、系统的研究,各研究方向间要有紧密和有机联系,研究内容互补,充分体现项目整体研究与各研究方向的科学目标实现路径,各研究方向间涉及材料、数据和方法的应进行共享。  (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。  (4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”,申请代码选择“T01”。以上选择不准确或未选择的项目申请不予受理。  (5)本专项项目的依托单位和合作研究单位数合计不得超过5个。主要参与者必须是项目的实际贡献者。  (6)申请书应突出有限目标和重点突破,明确对实现本专项项目总体目标和解决核心科学问题的贡献。  如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  (7)专项项目资金管理采用预算制。申请人应当认真阅读《2022年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,根据《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号)、《国家自然科学基金项目申请书预算表编制说明》的具体要求,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。  3.本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目接收工作截止时间前(2022年4月21日16时)通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。  4.本专项项目咨询方式:  国家自然科学基金委员会交叉科学部综合与战略规划处,联系电话:010-62328382。  (四)其他注意事项  1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定。  2.为加强项目的学术交流,每年应举办一次项目年度学术交流会,并不定期地组织相关领域的学术研讨会。 国家自然科学基金委员会交叉科学部2022年3月15日
  • 绿色化工新突破!电催化一氧化氮高效合成氨
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室理论催化创新特区研究组肖建平研究员团队和碳基资源电催化转化研究组汪国雄研究员团队在电催化一氧化氮还原反应(eNORR)合成氨研究方面取得新进展,在Cu6Sn5合金催化剂上实现了96.9%的氨法拉第效率和安培级电流密度。图片来源于大连化学物理研究所氮氧化物(NOx)的转化处理是一种缓解环境和能源问题的方法。氨作为一种重要的化学物质,可用于肥料、炸药和硝酸等的制备,还可作为燃料。eNORR合成氨相较于传统的哈伯法,是一种更绿色更经济的去中心化合成氨的策略。  图片来源于大连化学物理研究所本工作中,肖建平团队基于自主开发的图论和反应相图分析算法(ACS Catal. ,2021),通过基于描述符的方法初步筛选出铜锡合金具有高eNORR合成氨活性,汪国雄团队进一步合成了Cu6Sn5合金并验证了其具有安培级的合成氨活性。NO电催化实验表明,Cu6Sn5催化剂比Cu和Sn具有更高的活性和选择性,在更广泛的电压范围内也表现出很高的合成氨选择性,在电压为-0.23V vs. RHE时,得到流动池中的氨产率达到10mmolcm-2h-1,法拉第效率为96.9%,并且在大于600mAcm-2时,保持稳定运行135小时。电化学能垒计算表明,Cu6Sn5催化剂比Cu和Sn上生成氨的能垒更低,而且证明Cu6Sn5合金上各产物决速步能垒的大小关系(NH3N2ON2H2)。合作团队基于自主研发的碱性膜电解器件技术(Nat. Nanotechnology ,2023),在总电流为400A时,Cu6Sn5合金上NO电还原产氨速率达到2.5molh-1,展现出了应用潜力。相关研究以“Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst”为题,于近日发表在《自然—能源》(Nature Energy)上。该工作的第一作者是我所05T8组博士研究生井会娟和523组博士研究生邵加奇。以上工作得到国家重点研发计划、国家自然科学基金、中国科学院洁净能源创新研究院合作基金、中国科学院B类先导专项“功能纳米系统的精准构筑原理与测量”、榆林创新院人工智能科技专项等项目的资助。文章链接:https://doi.org/10.1038/s41560-023-01386-6 小科普:氨,化学式NH3,是一种无色、有刺激性气味的气体。氨的用途很广泛,是合成肥料、硝酸(制造炸药的原料之一)、药物的重要原料,而且它还是一种高能量密度(一定空间或质量物质中储存能量的大小)的零碳能源载体,且相对易储存。传统工业上合成氨主要通过一种叫做哈伯法的制备方法在高温高压下进行,能耗较大且产生污染。科学家一直在探索新的合成路线,用可再生能源发电作为驱动力,通过电化学催化的方式合成氨是目前较有应用前景的方式之一。
  • 宁波近岸海水都是劣四类 酸雨发生率89.5%
    6月2日,宁波市环保局发布了《2012年宁波市环境状况公报》。这份公报,可以说是喜忧参半。  喜的是,水环境和大气环境都在慢慢改善,比如,空气质量,2011年宁波空气优良率在全国120个环保重点城市中排名第93,华东地区35个城市中列第28位。而到了去年,这两个数据分别跃升到65位和18位。  忧的是,环境问题仍然很严重:比如地表水水质状况评价仍为轻度污染,而酸雨发生频率为89.5%。  地表水水质  轻度污染  2012年,宁波无论是地表水水质优良率,还是功能达标率,总体来说都比较低,水质状况评价是轻度污染。全市80个市控以上监测站位优良水质率为35%,功能达标率为56.3%。  解读:水质优良及功能达标的水域主要分布在甬江水系各支流源头,宁海、象山境内入海溪流,  平原河网水质优良率和功能达标率普遍较低。而石油类、总磷、氨氮等指标浓度过高是造成平原河网水质普遍不能达标的主要原因。  环保局的工作人员表示,石油类的污染物主要来源是工矿企业,而总磷和氨氮的主要来源则是生活污水和农业污染,农业污染主要由畜禽养殖污水、过量化肥流失等造成。  平原河网中,水质最好的是奉化内河,以Ⅰ~Ⅲ类水质为主,水质优良率和功能达标率均为85.74%。而水质最差的是慈溪河网,以劣Ⅴ类水质为主,属重度污染,水质优良率10%。  近岸海域海水  均为劣四类水质  近几年来宁波近海海域的水质一直都很差。2012年宁波近岸海域海水均为劣四类水质(四类以下),不能满足近岸海域水环境功能要求。主要超标指标为无机氮和无机磷,其中无机氮指标所有监测站位均超过四类海水标准。  解读:无机氮和无机磷的超标,给海水带来的最大麻烦就是富营养化以及赤潮的频发。其中杭州湾南岸二类区营养程度最高,达到严重富营养状态,镇海-北仑-大榭四类区、象山港一类区为重富营养,其它均为中度富营养。  杭州湾无机氮、化学需氧量浓度比其它海区明显偏高,镇海-北仑-大榭海区的无机氮浓度次高,两个功能区的海水水质主要是受钱塘江、长江口大环境海水水质与本地排污的叠加影响   象山港由于港湾内外海水交换缓慢,以及港湾西半部与西沪港的海产网箱养殖与陆源排污的叠加影响,无机磷浓度与&ldquo 十一五&rdquo 相比有较大幅度升高。  灰霾天  全年96天,占26.2%  2012年,全年灰霾天数共计96天,占总天数26.2%,相比上年减少25天。  解读:按《环境空气质量标准》(GB3095-2012)新标准试评价,2012年,中心城空气优良率为80.3%,其中Ⅰ级(优)60天,Ⅱ级(良)234天,Ⅲ级及以上(污染)72天。  主要污染物为PM2.5、NO2、PM10,其中PM2.5超标率13.7%,11月、12月均值浓度为全年最高,7月、8月份最低。  灰霾天气主要集中在初春、秋末和冬季三个季节,10、11、12月则是高发月份。其中11月&ldquo 灰霾&rdquo 天有16天,也就是说有半个月我们都是在&ldquo 灰霾&rdquo 天里度过的,而大气环境污染物主要是以细颗粒物PM2.5为主。  酸雨  发生频率为89.5%  2012年,降水pH年均值为4.55,平均酸雨发生频率为89.5%。相比2011年下降2.6个百分点。  解读:宁波中心城区(老三区)、慈溪、镇海、北仑为重酸雨区,其他都为中酸雨区,相比2011年,宁波中心城区(老三区)、慈溪、镇海、北仑、宁海降水酸性程度(pH年均值)有所增强,其中慈溪和镇海由中酸雨区转为重酸雨区,余姚、奉化、象山和鄞州降水酸性程度有所减轻,但酸雨强度等级仍为中酸雨区。  根据地面水水域使用目的和保护目标,可将我国地面水划为五类:  I类 主要适用于源头水、国家自然保护区   II类 主要适用于集中式生活饮用水水源地一级保护区、珍贵鱼类保护区、鱼虾产卵场等   III类 主要适用于集中式生活饮用水水源地二级保护区、一般鱼类保护区及游泳区   IV类 主要适用于一般工业水区及人体非直接接触的娱乐用水区   V类 主要适用于农业用水区及一般景观要求水域。
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。预 处 理水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。仪 器 100ml具塞量筒或比色管。试 剂(1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。试 剂 水样稀释及试剂配制均用无氨水。(1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。(2) 1mol/L盐酸溶液。(3) 1mol/L氢氧化钠溶液。(4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。(5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。(6) 防沫剂,如石蜡碎片。(7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。步 骤(1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。(2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项(1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。(2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。(3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法 GB7479--87概 述1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。仪 器(1) 分光光度法。(2) pH计。试 剂 配制试剂用水应为无氨水。1. 纳氏试剂 可选择下列一种方法制备。(1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。步 骤1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。2. 水样的测定(1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。注意事项(1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。(2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法GB7481--87概 述1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。仪 器(1) 分光光度计。(2) 滴瓶(滴管流出液体,每毫升相当于20±1滴)试 剂 所有试剂配制均用无氨水。1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。步 骤1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。试 剂(1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。(2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。(3)0.05%甲基橙指示液。步 骤1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。计 算氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法概 述1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。仪 器(1) 离子活度计或带扩展毫伏的pH计。(2) 氨气敏电极。(3) 电磁搅拌器。试 剂 所有试剂均用无氨水配制。(1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。(2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。(3) 电极内充液:0.1mol氯化铵溶液。(4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。步 骤1. 仪器和电极的准备 按使用说明书进行,调试仪器。2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。注意事项(1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。(2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。(3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。(4) 水样不要加氯化汞保存。(5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。(6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目
    为推动面向国家碳中和的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)交叉科学部拟设立“重型车辆氨氢融合零碳动力系统基础研究”专项项目,针对重型车用氨氢融合燃料及其高效近零排放的核心科学问题,开展多学科交叉研究,为我国实现重型运输装备的碳中和提供科学依据和基础支撑。本专项项目资助期限为5年,项目研究期限“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  一、科学目标  本专项项目旨在围绕氨氢融合燃料和热、电复合动力系统,探索相关化学反应动力学、流体动力学、热力学和系统动力学的协同机制,建立氨氢融合燃料复合动力系统的设计理论与方法,解决车用氨燃料点火难、燃烧慢及动态控制复杂等问题,为重型运载车辆氨氢融合燃料复合动力系统零碳排放技术创新与应用奠定基础。  二、拟资助方向  (一)氨氢燃料融合、发动机燃烧、排放物生成及后处理全过程的化学反应动力学。阐明氨车载制氢、氨氢融合燃料燃烧及有害排放物(NOx、NH3等)生成与净化机理,形成新型发动机设计理论和方法。  (二)氨氢融合动力系统中的多相多组分非稳态流体动力学。揭示氨氢融合燃料喷雾、相变机理以及混合流动规律,建立跨临界、多相多组分流体动力学模型,实现非稳态条件下燃料与空气混合的精确控制。  (三)重型车辆氨氢融合热电复合高效动力系统的热力学和动力学及其动态控制方法。阐明多源能量在动态条件下的调配与控制机制,建立车用高效氨氢多源复合动力系统设计理论与协同控制方法。  三、资助期限和资助强度  本专项项目资助期限为5年,项目研究期限应填写“2023年1月1日—2027年12月31日”,拟资助1项,直接费用为1500万元。  四、申请要求及注意事项  (一)申请资格  1.具有承担基础研究课题的经历。  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定  1.本专项项目从申请开始直到自然科学基金委作出资助与否决定之前,不计入高级专业技术职务(职称)人员申请和承担总数2项的范围;获资助后计入高级专业技术职务(职称)人员申请和承担总数的范围。  2.申请人和参与者只能申请或参与申请1项本专项项目。  3.申请人同年只能申请1项专项项目中的研究项目。  (三)申请注意事项  1.申请书报送时间为2022年4月15日—4月21日。  2.本专项项目申请书采用在线方式撰写。对申请人具体要求如下:  (1)申请人在填报申请书前,应当认真阅读本“专项项目指南”和《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南和相关要求的申请项目不予受理。  (2)本专项项目旨在紧密围绕指南公布的科学目标集中国内优势研究团队进行协同攻关,申请人应针对拟资助研究方向具体阐述拟开展的研究内容、方案及资金预算。同时要求综合运用多学科研究方法开展深入、系统的研究,各研究方向间要有紧密和有机联系,研究内容互补,充分体现项目整体研究与各研究方向的科学目标实现路径,各研究方向间涉及材料、数据和方法的应进行共享。  (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。  (4)申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”,申请代码选择“T01”。以上选择不准确或未选择的项目申请不予受理。  (5)本专项项目的依托单位和合作研究单位数合计不得超过5个。主要参与者必须是项目的实际贡献者。  (6)申请书应突出有限目标和重点突破,明确对实现本专项项目总体目标和解决核心科学问题的贡献。  如果申请人已经承担与本专项项目相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  (7)专项项目资金管理采用预算制。申请人应当认真阅读《2022年度国家自然科学基金项目指南》申请规定中预算编报要求的内容,根据《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号)、《国家自然科学基金项目申请书预算表编制说明》的具体要求,认真如实编报项目预算,依托单位要按照有关规定认真进行审核。  3.本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核,在项目接收工作截止时间前(2022年4月21日16时)通过信息系统逐项确认提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。  4.本专项项目咨询方式:  国家自然科学基金委员会交叉科学部综合与战略规划处,联系电话:010-62328382。  (四)其他注意事项  1.为实现专项总体科学目标,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定。  2.为加强项目的学术交流,每年应举办一次项目年度学术交流会,并不定期地组织相关领域的学术研讨会。
  • 使用超高效合相色谱系统测定氨苯砜片(Dapsone)的色谱含量
    使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量目的使用沃特世(Waters)ACQUITY UPC2&trade 系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。背景目前,美国药典(USP)规定了含有氨苯砜(4,4&rsquo -二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µ m的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。解决方案使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。SFC方法的条件如下:色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µ m柱温: 45 ° C流动相: 85% CO2:15% MeOH流速: 3.0 mL/min,背压: 130 bar/1885 psi检测器: UV /PDA,254 nm药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为0.1%,1.1%。超高效合相色谱方法UltraPerformance Convergence Chromatography&trade (UPC2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。联系方式: 叶晓晨沃特世科技(上海)有限公司市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 水质自动监测系统(高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷)
    水质自动监测系统(高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷)在水质自动监测系统集成的建设及运营维护上,厦门隆力德环境技术开发有限公司多年来积累了丰富的经验,以下以高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷等为测试参数,选配仪器集成水质自动监测系统。一、高锰酸盐指数水质自动分析仪(型号:AVVOR 9000-CODmn,加拿大AVVOR)测定方法:高锰酸盐氧化还原法,国家标准:GB11892-89、HJ/T100-2003产品特点:1.试剂和水样均采用隔离式微量泵进样,计量精度高,重复性好。为保证泵的计量精度,泵在运转前需预热2分钟,因此启动测量后前2分钟为泵的预热时间。2.滴定终点判定采用动态算法,ORP电极长期使用不需校准,更换电极也不需要校准。3.流程结构简单,维护方便。4.独有的增强校准技术、和仪器工作参数自动调整技术。二、五参数自动监测仪(型号:IQ SenSor Net)德国WTW五参数有5大特点:1.测试量程广,一台仪器可以测试各种水质,为突发事件提供可靠的数据;2.分析原理采用国家标准分析方法;3.浊度电极的超声波自动清洗科学先进,效果良好,有效去除气泡和浊度的影响,不会影响其他参数的分析;4.预留其他监测模块,为日后的扩展提供方便(最多可以扩展20个参数);5.通过计量认证,进口品牌唯一通过国家环保认证。三、氨氮自动监测仪(型号:TresCon UNO OA111)1.量程从0.05-1000mg/L分三挡自动切换,一台仪器可以测试各种水质,为突发事件提供可靠的数据;2.氨气敏电极法可以有效抗浊度、色度的干扰;3.提供试剂配方,采用国产试剂,试剂的配置简单且运营维护成本低;4.预留其他监测模块,为日后的扩展提供方便;5.通过国家环保认证和计量认证。四、硝酸盐氮在线监测仪(型号:TresCon Uno 211)1.不需试剂,4光束测试技术,反应快速2.测试范围广,从0 &hellip 250 mg/l NO33.抗干扰能力强,同时测试硝氮浓度4.有AutoCorr自动修正和在线调零功能,再现性好5.测试含有少量悬浮颗粒的出口水流时不用过滤五、叶绿素&alpha 分析仪(型号:microFlu-chl)1.高灵敏度,快速响应,稳定可靠;低功耗,操作维护简便; 2.量程可选,自动日光补偿;传感器一体化微型设计,坚固耐用,防水优良;3.停电后恢复供电可自动启动转入正常分析状态;4.智能通讯和强大的windows软件功能六、总磷总氮自动监测仪1.自动分档量程,自动切换量程,自动调整分辨率;2.公开试剂配方,所用试剂均为国产试剂,在试剂商店购买方便;3.运行准确可靠,维护成本低,试剂运营费用低;4.数字化通讯,扩展测试其它参数方便、经济;5.产品获国家质检总局计量器具型式批准证书、国家环保总局环保产品认证证书、中国环境监测总站检测报告、中石油环境监测总站检测报告。以上产品各具技术优势,在山东、江苏等地的水质自动监测系统集成中有着广泛的应用,隆力德水质自动监测站设备的先进性、可靠性、稳定性等也得到了实际的验证。
  • 四种方法九类仪器 国家监测网水质氨氮检测情况揭晓
    近日,中国环境监测总站通报了2015年第一轮国家环境监测网实验室水中氨氮能力考核结果。结果显示,364家单位使用的方法共四种,仪器共九种,分别为流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计。其中使用频率最高的为可见分光光度计,比例为65.7%。  原文如下:关于2015年第一轮国家环境监测网实验室水中氨氮能力考核结果的通报(总站质管字[2015]154号)  各省、自治区、直辖市环境监测中心(站)、新疆生产建设兵团环境监测中心站:  为掌握国家网环境监测和质量管理水平,持续监督成员单位质量体系的有效性,保证监测数据质量,根据《关于印发2015年国家环境监测网环境监测质量管理工作要点的通知》(总站质管字[2015]51号),中国环境监测总站开展了2015年第一轮国家环境监测网实验室水中氨氮能力考核工作,现将此次能力考核的结果通报如下:  一、基本概况  本次考核对象为各省(自治区、直辖市)地级城市(含)以上监测站,考核项目为水中氨氮。实际共有360家监测站报名,占全部考核对象的比例为97.6%。另有总站质检室、新疆生产建设兵团第一师等10家非考核范围内的单位报名参加。  考核共发放水中氨氮样品370份,收回结果367份,有3家单位(江西宜春市环境监测站、宁夏吴忠市环境监测站、宁夏中卫市环境监测站)未能在规定时间内提交考核结果。  未报名参加考核以及提交《盲样未能检测情况说明》的单位详见附件6。  二、考核结果  1、结果统计与能力评价  本次考核参照《能力验证结果的统计处理和能力评价指南》(CNAS-GL02),采用四分位数稳健统计方法,对盲样测定结果进行统计。  考核所用的盲样为氨氮样品,每个单位收到1支考核样。样品分为五种浓度水平,各浓度水平的样品编号由国家环境监测网能力考核系统平台自动随机生成,详见附件1。各参加考核单位的结果评价汇总表见附件2。各浓度水平样品的主要稳健统计参数汇总见附件3,Z比分数图见附件4。表1 2015年第一轮水中氨氮能力考核总体情况   本次考核总体情况见表1,考核结果分布图见图1。在收回的364份有效结果中,考核结果为“满意”的单位为321家,占88.2%。  图1 2015年第一轮水中氨氮能力考核结果分布图  2、基本信息统计  (1)检测方法统计  本次考核各参加单位使用的检测方法分布情况见表2。由表2可见,使用《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)的单位最多,比例为97.3%。  表2检测方法分布情况  (2)仪器设备及其类型统计  本次考核各参加单位使用的仪器设备有:流动注射分析仪、便携式可见分光光度计、多参数水质分析仪、可见分光光度计、连续流动注射分析仪、气相分子吸收光谱仪、实验室氨氮自动分析仪、台式氨氮水质分析仪和紫外可见分光光度计等共9种。其中使用可见分光光度计和紫外可见分光光度计的单位最多,分别占65.7%和29.7%,其次是连续流动注射分析仪,所占比例为2.2%。仪器设备分布情况见表3。  表3 仪器设备分布情况  (3)标样来源统计  本次考核的统计结果表明,各参加单位使用的氨氮标样来源主要是环保部标准样品研究所,所占的比例为98.9%。另外还有个别单位的氨氮标样来源于中国计量科学研究院、国家有色金属及电子材料分析测试中心和中国测试技术研究院等。  3、质量体系问题统计  从本次考核的结果报告单中,发现了9类主要质量体系问题,包括测定值有效位数保留不对,数据无效不参与统计、系统填报与盖章版结果报告单填写不一致、相对误差计算错误、质控措施中测定值有效位数保留不对、三级审核信息填写不完整或日期有误、结果报告单未盖章、结果报告单修改不规范、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误、方法检测限填写错误等。  其中,相对误差计算错误一类问题出现的最为普遍,占的比例为26.4%。其次表现为三级审核信息填写不完整或日期有误、方法检测限填写错误、样品基本信息(如检测方法名称、标样厂商、样品编号等)填写错误,各均占3.5%左右。详见表4。  表4 质量体系问题分布情况表  4、各省结果统计  本次考核中所涉及的全国省、自治区、直辖市的考核结果汇总情况见表5。各省辖区内单位的考核结果情况见附件5中的分省报告。  表5 各省(自治区、直辖市)级站考核结果汇总表  三、结论与建议  1、本次水中氨氮能力考核结果满意率为88.2%,与以往的能力考核相比,结果满意率有了一定幅度的提高,表明国家环境监测网各成员单位水中氨氮的检测能力和技术水平整体较好。  2、从不同浓度水平样品的考核结果来看,低浓度样品较高浓度样品的结果满意率偏低。需要进一步加强对低浓度样品的检测能力,提高低浓度样品的检测水平。  3、建议国家环境监测网各成员单位进一步加强实验室的质量管理,规范三级审核等各项管理制度,保障监测数据质量,不断提高实验室质量管理水平,促进质量管理体系有效运行与持续改进。
  • 应用案例 | HT8700大气氨激光开路分析仪用以测量广州塔附近大气氨通量
    项目内容:中国科学院广州地球化学研究所测量广州塔附近的大气氨通量,并进行实验比对项目时间:2023年9月项目地点:广州塔仪器安装项目意义&bull 空气质量监测:氨是一种有害气体,常常与空气污染和城市环境质量相关。通过在广州塔上安装氨激光开路分析仪,可以实时监测城市空气中的氨浓度,有助于评估空气质量,并提供数据支持,以采取必要的措施来改善空气质量。&bull 健康保护:氨的高浓度对人类健康有害,可能导致呼吸问题和其他健康问题。通过监测氨浓度,可以提前发现潜在的危险,采取措施来保护城市居民的健康。&bull 环境保护:氨还可以对周围的生态系统产生不利影响,对水体和土壤造成污染。通过监测氨的浓度,可以采取措施来减少氨的排放,降低对环境的不良影响。&bull 科学研究:广州塔上的氨监测数据可以用于科学研究,例如气象学、环境科学和大气化学。这些数据有助于研究氨在城市大气中的来源、传播和化学反应,从而更好地理解城市大气环境。&bull 污染源追踪:氨的监测可以帮助确定城市内潜在的氨排放源,这有助于政府和监管机构采取措施来减少污染源并加强环境管理。知识分享:通量塔的选址和建设原则在生态学、气象学和环境科学等领域,通量塔是一种用于测量大气层中气体和能量交换的设备。这些通量塔用于监测大气和地表之间的物质通量,例如水蒸气、二氧化碳、热量等,以了解生态系统和大气中的不同过程。通量塔通常包括一系列仪器和传感器,用于采集大气和地表参数的数据。选址和建设原则:&bull 代表性地点:通量塔的选址应考虑到它们所监测的生态系统或气象过程的代表性。选择代表性地点可以确保测量结果对于整个区域或生态系统有意义。&bull 最小扰动:通量塔的建设应尽量减少对周围环境的扰动。这包括减少人工结构对生态系统或气象过程的影响,以确保测量的准确性。&bull 高度选择:通量塔通常会建立在不同的高度,以测量气体和能量通量在大气中的垂直分布。选择适当的高度可以提供更全面的数据。&bull 安全考虑:通量塔的建设和维护应符合安全标准,以确保工作人员和环境的安全。通量塔在环境科学研究中起着重要作用,帮助科学家了解大气和生态系统之间的相互作用,以及气体和能量的交换过程。选择合适的位置和正确的建设原则对于获得准确和可靠的数据非常关键。
  • 大咖云集、共话零碳时代| 宝怡环境亮相第四届绿浙•博园学术年会
    5月23-24日,浙江省环境监测协会第四次会员代表大会暨第四届绿浙&bull 博园学术高端论坛在杭州隆重举办。超过200家环境监测单位齐聚杭州,共话零碳时代的生态环建设新技术和新趋势。大会分为主论坛“绿色当先行 零碳时代”和专题论坛。宝怡环境作为浙江省环境监测协会的合作单位受邀出席,展示了领先的环境监测产品和技术。此次学术年会由浙江省环境监测协会、浙江省辐射防护协会主办,以“绿色当先行,零碳时代”为主题,汇聚了业内众多知名院士、专家、学者以及200多家省内优秀环保单位、相关企业,会议聚焦生态环境监测行业的高质量发展,博采众长,对话零碳时代,为观众打造了一场环境监测思想碰撞和技术孵化的嘉年华。会上,宝怡环境展示了四大明星产品。其中bbe藻类分析仪系列产品具有精确感知、快速监测、精准分析等特点,领先的技术在全球拥有较高的知名度和美誉度,该系列在国内同类产品中稳居市场前列。大数据、AI、云计算等通过用技术快速迭代和发展,为水华预报预警技术插上了腾飞的翅膀。宝怡环境最新研发的水华预报预警智慧云平台作为数字孪生技术的前沿应用,成为现场关注的焦点,获得了专家学者的点赞。DV3000紫外差分气体分析仪是宝怡环境首次在浙江展示的大气监测仪器,这款仪器采用紫外差分技术(UV-DOAS)实时在线测定多达14种气体浓度,包含氨、甲醛、部分苯系物及AQM组分等。DV3000能够方便的改装成走航监测模式,同时结合GPS定位和GIS地理信息,呈现各监测因子浓度的时空分布和变化,提高大气环境综合监管能力和污染溯源快速反应能力,广泛应用于工业园区特征污染监测,无组织排放监测、泄露监测,复合型大气污染中的特征组分溯源监测和专业走航监测等。宝怡环境领先业界的产品和技术吸引了众多观众的关注和咨询,展位前人头涌动,现场气氛热烈。宝怡环境工作人员与参会嘉宾、专家、学者和观众进行了深入的交流互动,工作人员耐心解答用户在仪器使用中的各种问题,探讨零碳时代下智慧监测的技术发展。第四届绿浙&bull 博园学术年会圆满落幕,宝怡环境感谢各位客户一直以来的支持和帮助。浙江是“绿水青山就是金山银山”理念的发源地,是践行绿色低碳发展的先行者和排头兵,宝怡环境将立足新起点,携手各界伙伴开创新辉煌,为推进环保行业的发展做出更大贡献。
  • 亨斯迈聚氨酯(中国)有限公司完成UL94燃烧测试仪安装调试工作
    莫帝斯技术(中国)有限公司,日前已经完成亨斯迈聚氨酯(中国)有限公司,UL94水平垂直燃烧仪的安装调试工作,目前客户已经投入使用该测试仪器,并进行内部测试服务工作。 Firemaster UL94 水平垂直燃烧仪,设计为对设备和器具部件材料的可燃性能试验,众多应用于最终用途的测试指标如易燃性能、燃烧速率、火焰蔓延、燃烧强度及产品的阻燃性能均可被检测。 其可检测的标准为以下: 水平燃烧测试:UL HB、IEC 60695-11-10、IEC 60707、ISO 1210、GB/T 2408 50W 垂直燃烧测试:UL94 V0、V1、V2、IEC 60695-11-10、ISO 1210、GB/T 2408 500W垂直燃烧测试:UL94 5VA、5VB、IEC 60695-11-20、ISO 9770、GB/T 5169.17 薄膜材料垂直燃烧测试:VTM-0、VTM-1、VTM-2、ISO 9773 泡沫材料水平燃烧测试:HF-1、HF-2、HBF、ISO 9772、GB/T 8332 亨斯迈聚氨酯(中国)有限公司介绍:亨斯迈聚氨酯(中国)有限公司是亨斯迈聚氨酯公司在中国的子公司。亨斯迈聚氨酯是世界上最大的二苯基甲烷二异氰酸酯(MDI)的制造商之一。公司同时生产软质和硬质聚醚多元醇、聚酯多元醇、聚醚胺、环氧丙烷和组合聚醚多元醇系统和聚脲系统。 亨斯迈聚氨酯有限公司是亨斯迈集团的业务之一。 亨斯迈聚氨酯进入大中华已经有十多年的历史,是中国化学工业的外国投资方之一。目前,亨斯迈聚氨酯在上海拥有独资的组合聚醚多元醇混拌工厂及合资的MDI制造工厂和集仓储与分发为一体的贸易公司。为了更好地满足中国市场的需求,公司在香港,上海,北京,广州,青岛还设立了办事处。 公司网站地址:www.huntsman.com/pu www.motis-tech.com
  • 德国美墨尔特(Memmert)烘箱在软质泡沫软质泡沫聚氨酯材料检测领域的应用
    软质泡沫聚氨酯材料因其密度小、容重轻,以及优良的抗冲击性能、对温湿度环境的较强适应性等优点,使其用途日渐广泛,在家居和运载工具领域有着较广的应用。材料性能决定了其使用安全及生命周期,在产品出厂放行检测中需要检测的诸多严苛项目之一就是压缩永久变形的测定。 检测规程需要将试样在70℃环境下进行破坏性压缩试验,测量试样的压缩量等参数,以供性能评价参考。 目前与之相关的主要标准有1) ISO1856-2000 Flexible cellular polymeric materials -- determination of compression set;2) GB/T6669-2008 软质泡沫聚合材料 压缩永久变形的测定;3) ASTM D3574 - 17 Standard test methods for flexible cellular materials—slab, bonded, and molded urethane foams; 其中ISO1856及GB/T6669中均要求温度恒定在70℃±1℃,这对测试环境的要求相对较高,因为软质泡沫聚氨酯材料会影响烘箱内的空气对流情况。 德国美墨尔特(Memmert)UF系列烘箱依靠独特的四面加热及精确温度调控技术,营造出较好温度均匀度的测试环境,即便是满载情况,其温度均匀度依然非常完美。是软质泡沫聚合材料检测的绝佳选择。 软质泡沫聚氨酯材料的主要应用领域有各种医疗保健床垫套、枕头、安全座椅、扶手椅,以及装饰材料、保温材料等等。 关于Memmert 全球领先的温控箱体领导品牌德国Memmert(美墨尔特)创始于1933年,近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。 产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、水浴油浴等。2010年9月11日,德国Memmert(美墨尔特)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京及南京设有代表处。
  • 德国美墨尔特(Memmert)烘箱在软质泡沫软质泡沫聚氨酯材料检测领域的应用
    软质泡沫聚氨酯材料因其密度小、容重轻,以及优良的抗冲击性能、对温湿度环境的较强适应性等优点,使其用途日渐广泛,在家居和运载工具领域有着较广的应用。材料性能决定了其使用安全及生命周期,在产品出厂放行检测中需要检测的诸多严苛项目之一就是压缩永久变形的测定。 检测规程需要将试样在70℃环境下进行破坏性压缩试验,测量试样的压缩量等参数,以供性能评价参考。 目前与之相关的主要标准有1) ISO1856-2000 Flexible cellular polymeric materials -- determination of compression set;2) GB/T6669-2008 软质泡沫聚合材料 压缩永久变形的测定;3) ASTM D3574 - 17 Standard test methods for flexible cellular materials—slab, bonded, and molded urethane foams; 其中ISO1856及GB/T6669中均要求温度恒定在70℃±1℃,这对测试环境的要求相对较高,因为软质泡沫聚氨酯材料会影响烘箱内的空气对流情况。 德国美墨尔特(Memmert)UF系列烘箱依靠独特的四面加热及精确温度调控技术,营造出较好温度均匀度的测试环境,即便是满载情况,其温度均匀度依然非常完美。是软质泡沫聚合材料检测的绝佳选择。 软质泡沫聚氨酯材料的主要应用领域有各种医疗保健床垫套、枕头、安全座椅、扶手椅,以及装饰材料、保温材料等等。
  • 海尔欣发布高精度大气氨本底激光开路分析仪新品
    开路气体分析技术:不同于常见的抽取式采样+闭路气体池技术,开路气体分析技术对浓度变化的响应时间可达0.1秒,不存在采样和预处理通道管壁对分子的吸附和滞后现象。低功耗、部署范围广:无需采样泵降低了整机功耗和质量,方便携带,结合太阳能电池板,有利于在无供电电网地区部署,提高了用户选择研究地点的自由度。波长调制技术:采用预设的程序,在目标气体的吸收范围内选取波长进行扫描式复合测量,以此获得更佳的峰型(用于光谱积分反演),排除非目标气体的干扰。信号噪音屏蔽:优化的模拟电子技术,极低噪声激光电流源,探测器前放,结合锁相放大数字信号处理算法,避免了自然环境中的电磁干扰,以及光电子噪声的影响,以此获得更准确的测量结果。中心波长控制器:通过参考光路以及自动反馈将激光器中心波长锁定在特征吸收谱中心,确保获得更准确的特征波谱。稳定的温度控制:通过被动散热和半导体制冷,保证激光器温度的精准控制。在外界不断变化的温度条件下获得更准确的测量结果。稳定的环境气压和温度测量补偿:对环境温度和压力实时精准测量,结合内置的温度和压力补偿算法,确保在环境条件不断变化下获得更准确的测量结果。冬季/夏季两种工作模式:冬季,夏季模式可根据环境温度进行切换,拓展仪器工作温度范围,提高测量准确度。创新点:海尔欣公司自主研发的大气氨激光开路分析仪采用红外激光吸收光谱技术(LDIR),结合开路式多次反射气体池,使得测量有效光程达数十米,实现了对大气氨分子进行10Hz,亚ppb精度的高速测量,该大气氨开路分析仪采用车辆移动平台搭载的形式,形成一整套车载巡检系统。1、避开了传统的闭路氨分析仪器由于采样管路的传输时间和吸附效应,响应速度很慢的缺点,创新性的采用开路测量方案,无需采样,响应速度非常快,由高浓度恢复至零点时间小于1秒,尤其适合车载平台高速运动中收集到瞬时浓度变化,避免漏检氨排放源;2、开路分析仪无需采样泵,依靠大气的自然流动经过光路分析,大大降低了整机功耗(50W)和质量(5kg),因此可使用小型车载电源或电池供电,适合多种巡检车型。海尔欣的分析仪甚至结合太阳能电池板可在无电网覆盖区域部署,提高了用户选择测量点的自由度。
  • “十二五”氨氮等四种污染物将强制减排
    本报北京1月14日电(记者李禾)国家已确定将化学需氧量(COD)、二氧化硫、氨氮、氮氧化物纳入“十二五”约束性指标 2011年减排任务是,上述四种主要污染物排放量与2010年相比,均下降1.5%。这是环境保护部部长周生贤在今天结束的“2011年全国环境保护工作会议”上透露的。  周生贤说,“十二五”时期环保主要目标是:到2015年,单位国内生产总值二氧化碳排放大幅下降,主要污染物排放总量显著减少,生态环境质量明显改善,环境保护体系逐步完善。全国化学需氧量、二氧化硫、氨氮、氮氧化物排放总量比2010年分别削减一定比例。  周生贤强调,今年是“十二五”的开局之年,环保工作依然面临严峻挑战。工业化、城镇化快速发展,经济总量仍将保持高速增长,能源资源消耗还在增加,环境容量有限的基本国情不会改变,治污减排压力巨大 常规环境污染因子恶化势头有所遏制,重金属、持久性有机污染物、土壤污染、危险废物和化学品污染问题日益凸显 环境违法行为时有发生,突发环境事件呈高发势头等。  “因此,需提高并严格执行造纸、纺织、皮革、化工等行业的主要污染物排放标准、产业政策和国家下达的落后产能关停计划 全面启动县建设污水处理厂工程,开展农业源污染减排工程建设 加强燃煤电厂脱硫、脱硝 以京津冀、长三角和珠三角区域为重点,加强城市空气质量达标和分级管理工作,推进颗粒物、挥发性有机物污染防治,严格控制机动车尾气污染等。”周生贤说。  据初步测算,2010年全国化学需氧量排放量较2005年下降12%左右,二氧化硫下降14%左右。“十一五”国家化学需氧量减排目标提前半年实现,二氧化硫减排目标提前一年实现。
  • 纳氏试剂分光光度比色法检测污水中氨氮时的影响因素有哪些?
    纳氏试剂分光光度比色法测定水中氨氮时,虽然步骤较为简单,但实验条件还是有一定的要求,任何一处细节出现偏差,都会对测量结果产生影响。下面结合我公司的氨氮测定仪 6b-50型(v9),对纳氏试剂分光光度法测定水中氨氮含量时影响测定准确度的因素和解决的办法进行了总结,与大家共同探讨。原理介绍纳氏试剂比色法是一种测定饮用水、地面水和废水中铵的方法。其原理是:以游离的氨或铵离子等形式存在的铵氮与纳氏试剂反应生成黄棕色络合物,该络合物的色度与铵氮的含量成正比,可用目视比色和分光光度法测定。目视比色法测定时,最低检出浓度为0.2mg/l,上限浓度为2 mg/l;分光光度法测定时,最低检出浓度为0.05 mg/l,上限浓度为2 mg/l。本方法已定为国家标准分析方法。 仪器准备 6B-50型(v9)氨氮测定仪 江苏盛奥华环保科技有限公司 影响因素1:实验用水及试剂的质量检验氨氮专用试剂主要包含两种:n1-100样 / n2-100样,我司提供的是固体粉末状试剂,需要用户自行加入100ml蒸馏水配置成液体试剂备用。配置过程中如有少量沉淀,去除即可。配置完成后避光、阴凉处或放置冰箱低温1-2度保存。试剂如果变色浑浊过期使用,实验数据是不准确的。因此试剂配置、存放、使用过程中都需要注意,避免造成不必要的麻烦。 影响因素2:实验环境氨是实验室最常用的易挥发性试剂,而氨氮的分析应在无氨的实验室环境中进行,室内不应含有扬尘、石油类及其它的氮化合物,严禁在使用含氨试剂(如测定总硬度:使用氨缓冲溶液)的实验室中做氨氮项目的分析,所使用的试剂、玻璃器皿等也要单独存放,避免交叉污染,影响试剂空白值、样品测定值。影响因素3:玻璃器皿的洗涤所使用的玻璃器皿应先用(1+9)盐酸浸泡后,再用无氨水冲洗数次才能使用,否则,也会造成空白值偏高或平行性较差的情况。影响因素4:滤纸对空白值的影响氨氮实验需将水样过滤后测定,所用滤纸一般都含有铵盐,可能引起过滤空白值升高,所以需做过滤空白对照实验,以扣除滤纸影响。实验表明,不同滤纸之间铵盐含量差别很大,有些含量较高的滤纸虽经多次用水洗涤,仍达不到实验要求,因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次,减少滤纸的影响。我们选用经稀hcl浸泡并洗净的0.45um醋酸乙酯纤维滤膜过滤水样,解决了用滤纸过滤产生的高空白值问题。不仅过滤空白值低,而且重复性好,所以推荐使用0.45um醋酸乙酯纤维滤膜过滤。 影响因素5:反应条件的控制(1)反应时间对实验的影响测定氨氮时,反应时间不宜过长。6B-50型氨氮测定仪实验中,取定量的空白和水样,先后加入n1试剂1ml,n2试剂1ml。摇匀常温下静置10分钟即可倒入比色皿,放入仪器中测量读数。因而,测定水中氨氮时,显色时间不宜过长,进而保证达到分析的精密度和准确度。(2) 反应体系的ph值对实验的影响我司化验员经过多年的反复实验,发现水样ph值的变化对测定结果有明显影响,水样呈中性或碱性,得出的测定结果相对偏差符合分析要求,呈酸性的水样无可比性,所以对于水样应特别注意调节反应体系的ph值,最好将溶液显色控制在ph值为11.8~12.4。准确检测水中氨氮的含量,有利于更加有效地指导生产,确保安全、优质供水。 结 论纳氏试剂分光光度法测定氨氮应注意和解决的常见问题: ⑴试剂的正确配制决定着方法精密度和准确度,特别要注意理解实验原理、正确掌握试剂配制的要领。⑵注意主要试剂性状,选购合格的试剂。⑶降低空白实验值可提高实验精密度,对实验用水、试剂空白和过滤滤纸要注意检查。⑷反应条件、时间、体系ph决定反应平衡和反应生成物的稳定性,控制反应在最佳条件下进行,尽可能提高操作准确度,确保分析结果的精密度、准确度、稳定性和可靠性。
  • 水质监测中氨氮分析带来的汞污染统计
    p  一、汞的危害/pp  汞俗称水银,通常为银白色闪亮的重质液体,主要以汞元素(金属汞)、无机汞(汞盐)和有机汞3种形式存在。汞在常温下即可蒸发,汞蒸气和汞的化合物多有剧毒(慢性),它可以在生物体内积累,很容易被皮肤、呼吸道和消化道等吸收。汞可以破坏中枢神经系统,对口、粘膜和牙齿有不良影响,对人体的损害以慢性神经毒性居多,急性中毒为少数。最危险的汞有机化合物是二甲基汞,仅几微升二甲基汞接触在皮肤上就可以致死。因汞致病最有影响力的疾病为“水俣病”,该疾病曾经在世界范围内造成了极大影响,当时至少有数万人因此受到不同程度的影响,重症病例出现脑损伤、瘫痪、语无伦次和谵妄等。/pp  二、国内外对汞污染防治的法规要求及进展/pp  2013年10月10日,由联合国环境规划署主办的“汞条约外交会议”在日本熊本市表决通过了旨在控制和减少全球汞排放的《关于汞的水俣公约》,包括中国在内的87个国家和地区的代表共同签署公约。/pp  2016年4月25日上午,十二届全国人大常委会第二十次会议举行第一次全体会议。受国务院委托,时任环境保护部部长陈吉宁作关于提请审议关于批准《关于汞的水俣公约》的议案的说明。/pp  2017年7月20日,环保部宣布,《关于汞的水俣公约》将于2017年8月16日在我国正式生效。我国将从5各方面推进汞污染防治措施,第一:建立履约机制。2017年,国务院批准成立了由环境保护部等部委组成的国家履行汞公约工作协调组,形成多部门各负其责、协同推进履约的工作格局。第二:限制淘汰重点行业用汞工艺。第三,控制大气汞排放。第四,限制产品中汞的使用和添加。第五:推进含汞废物回收利用。/pp  2017年9月23日至29日,环境保护部副部长翟青率由环境保护部、外交部、工业和信息化部、国土资源部、商务部、能源局、中科院、清华大学、北京大学等部门和单位派员组成的中国代表团参加《关于汞的水俣公约》第一次缔约方大会,会议在瑞士日内瓦召开,来自163个国家、政府间国际组织和国际机构的近1050名代表出席了会议。/pp  三、环境监测中氨氮分析方法带来的汞污染问题/pp  保护环境离不开环境监测,而非常遗憾的一点在于,我们的一些环境监测分析方法存在较大的污染问题,监测的同时也在向自然界排放污染物,甚至是重毒害物质,如汞等。氨氮是常见的监测项目,也是我国十二五计划明确提出需要被削减的污染物。目前关于氨氮分析方法中应用最为广泛的是《纳氏试剂比色法》,(详见环保部科技标准司公布的HJ标HJ 535-2009或者 GBT 7479-87)。纳氏试剂比色法必须使用“纳氏试剂”,该试剂是含汞的。该试剂有两种配置方式,分别如下:/pp  配法1:二氯化汞-碘化钾-氢氧化钾法。每100毫升该试剂中含氯化汞2.5g,折算为含汞量1.85g(HgCl2分子量:271.5 Hg的分子量:200.6)。按照标准要求,每测定一个样品需要消耗1.5ml纳氏试剂,当中的含Hg量则为0.0277g。/pp  配法2:碘化汞-碘化钾-氢氧化钠法。每100毫升该试剂中含碘化汞10g,折算为含汞量4.41g(HgI2分子量:454.4 Hg的分子量:200.6)。按照标准要求,每测定一个样品需要消耗1.0ml纳氏试剂,当中的含Hg量则为0.0441g。/pp  四、氨氮分析会带来多少的汞污染/pp  根据上述“三”中的描述,由于纳氏试剂有两种配置方法,我们按照各一半的使用预估,每测定一个样品需要消耗0.036g汞(取0.0277g和0.0441g的平均值)。/pp  以下按照行业的氨氮监测频度,试分析1年下来,因为氨氮分析带来的汞排放数据。目前需要对氨氮进行分析监测的机构有:1、政府的各级环境监测站(中心) 2、企业环境监测机构或化验室 3、第三方监测机构 4、疾控中心 5、自来水厂、污水处理厂。/pp  1、政府的各级环境监测站(中心)/pp  根据环保部统计数据,全国环境监测站为2700多家。每家监测机构氨氮测定有多有少,预估每天10个样品,每月按20工作日计算,1年约分析2400个样品。另外样品测定时,还要求测定标准曲线、加标回收、平行样等,还有因结果异常需要复测等,因此在2400个样品的基础上增加20%的量,这样下来1家监测站1年约分析2880个样品。因此,全国环境监测站1年氨氮分析汞排放量约为:/pp style="text-align: center "  2700*10*20*12*(1+20%)*0.036g=279936g?279.9kg/pp  2、企业环境监测机构或化验室/pp  企业检测机构或化验室比较难以准确预估,我们采用间接法计算。按照平均每个政府监测站负责监管当地的15家企业,每家企业每天分析2个样品,每月20个工作日计算,同样考虑因分析监测技术要求带来的20%增量。因此,全国企业检测机构或化验室1年氨氮分析汞排放量约为:/pp style="text-align: center "  2700*15*2*20*12*(1+20%)*0.036g=839808g?839.8kg/pp  3、第三方监测机构/pp  近些年第三方监测机构蓬勃发展,规模差异较大,其中一些知名的第三方监测在很多省份都设有分支机构。我们预估每个省平均80家第三方监测或分支机构(不包含港澳台地区),平均每天监测40个样品,每月按照20工作日计算,同样考虑因分析监测技术要求带来的20%增量。因此,全国第三方监测机构1年氨氮分析汞排放量约为:/pp style="text-align: center "  31*80*40*20*12*(1+20%)*0.036g=1028505g?1028.5kg/pp  4、疾控中心/pp  疾控中心也有氨氮监测的需要,几乎每个县都有疾控中心,布置和环境监测中心差不多,因此全国疾控中心的实验室约为2700家,我们预估每个实验室平均每天监测5个样品,每月按照20工作日计算,同样考虑因分析监测技术要求带来的20%增量。因此,全国疾控中心1年氨氮分析汞排放量约为:/pp style="text-align: center "  2700*5*20*12*(1+20%)*0.036g=139968g?140kg/pp  5、自来水厂、污水处理厂/pp  根据住建部网站信息,截止2015年年末,全国城市污水处理厂1943座,全国县城污水处理厂1599座,总计污水厂为3542座。参照此规模,预估全国自来水厂不少于3500家。因此全国污水厂和自来水厂合计不少于7000家。按照每家每天氨氮测定1个样品,20个工作日计算计算。同样考虑因分析监测技术要求带来的20%增量。因此,全国自来水厂、污水处理厂1年氨氮分析汞排放量约为:/pp style="text-align: center "  7000*1*20*12*(1+20%)*0.036g=72576g?72.6kg/pp  以上5大类总计为:/pp style="text-align: center "  279.9kg+839.8kg+1028.5kg+140kg+72.6kg=2360.8kg?2.3吨/pp  涉及氨氮监测的部门很多,比如水利部还有大量的、分布于各省的水质监测部门,这些部门的氨氮监测也是常规指标,所带来的汞排放也是不小的数字。另外,许多的科研机构、高校等也有氨氮监测需要。/pp  五、小结/pp  一个看起来并不起眼的分析方法,却会带来每年2吨多的汞排放。这是一个让人惊讶的结果。由于汞的降解非常慢,由此带来的环境累计污染是不可小视,很难逆转的。《关于汞的水俣公约》已经在我国正式生效了,毫无疑问,这个条约的执行,环保部应该起着重要作用。在这个全球限制汞排放的大环境下,咱们环保部门制定的监测方法是不是可以更加环保一些,是否可以争取汞的零排放?/pp style="text-align: right "span style="color: rgb(0, 176, 240) "strong(文中内容仅供参考!)/strong/spanbr//p
  • 技术消息:常见氨氮废水的处理方法
    氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
  • “氨氮在线分析仪市场”调研活动第二批话费奖励已发放!
    p  为更好地了解氨氮在线分析仪市场情况,仪器信息网特组织“氨氮在线分析仪市场”问卷调研活动,旨在给用户在使用和选购仪器的过程中做出参考。/pp  继首批获奖名单公布之后,第二批获奖用户名单也已经出炉。共有45位用户成功获得此次话费奖励,快来看看有没有你!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/2051cd7f-ce21-42df-8d85-9226f6fec342.jpg" title="话费充值.png"//pp  此外,有一位获奖用户(15850706006)充值失败,可尽快与我们联系!/p
  • 《水质 氨氮的测定 连续流动分析法》等四项国家环境保护标准征求意见
    贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《水质 氨氮的测定 连续流动分析法》等4项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究提出书面意见,并于2010年10月15日前反馈我部。  联系人:环境保护部科技标准司 谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传真:(010)66556213  附件:1.征求意见单位名单.doc  2.《水质 氨氮的测定 连续流动分析法》(征求意见稿).pdf  3.《水质 氨氮的测定 连续流动分析法》(征求意见稿)编制说明.pdf  4.《水质 总氮的测定 连续流动分析法》(征求意见稿).pdf  5.《水质 总氮的测定 连续流动分析法》(征求意见稿).pdf  6.《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(征求意见稿).pdf  7.《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(征求意见稿)编制说明.pdf  8.《水质 钡的测定 石墨炉原子吸收分光光度法》(征求意见稿).pdf  9.《水质 钡的测定 石墨炉原子吸收分光光度法》(征求意见稿)编制说明.pdf  二○一○年九月十日
  • 聚氨酯生产企业氧指数测定仪首选仪器厂商---莫帝斯燃烧技术
    烟台万华聚氨酯股份有限公司(烟台万华)成立于1998年12月20 日,是山东省第一家先改制后上市的股份制公司。 公司主要从事MDI为主的异氰酸酯系列产品、芳香多胺系列产品、热塑性聚氨酯弹性体系列产品的研究开发、生产和销售,是亚太地区最大的MDI制造企业。目前,公司共有三套MDI装置,产能达到100万吨/年,产品质量和单位消耗均达到国际先进水平。江苏长顺集团有限公司位于张家港市金港镇南沙工业园区长阳路一号长顺大厦,成立于1995年5月18日,是一家致力于低碳环保、科技创新的国际品牌化工企业,为汽车、电子、电器、建筑、家居等行业提供工程塑料材料、高性能复合板材、PVC表皮、聚氨酯系列产品和系统解决方案。自公司发展至今,先后成立了温州长颖贸易有限公司、重庆长润贸易有限公司、青岛长润通贸易有限公司、上海长颖化工有限公司、长泰汽车材料饰件有限公司、中德合资贝内克-长顺汽车内饰材料(张家港)有限公司、长顺保温节能科技有限公司、江苏长华聚氨酯科技有限公司、长能特种聚氨酯材料有限公司和长顺高分子材料研究院有限公司,构建成了科研、生产、销售于一体的产业格局。这两家国内聚氨酯行业的龙头企业,都毫不犹豫的选择了莫帝斯燃烧技术(中国)有限公司的氧指数测定仪,作为生产的品质检测,以及研发工具,莫帝斯仪器得出的测试数据稳定,质量优越,同时操作简单,深受用户好评!莫帝斯燃烧技术(中国)有限公司生产的氧指数测定仪具有以下几大特点:1、选择寿命更长的氧气传感器,避免了用户的频繁更换及后期的无谓消耗;2、数字化显示氧气浓度,便于用户读数3、数字化显示氮气百分比浓度及混合气体总流量数值4、调节步长为为0.1-0.2L/min,便于用户更快、更精确确定读数www.firetester.cnwww.motis-tech.com
  • 多通道近位抽取高精度脱硝氨逃逸在线分析系统技术应用
    p  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的意义/span/strongbr//pp  当前,随着我国经济的持续发展,能源压力日趋紧张,环境污染已严重危害到我国人民的健康和生活质量。近年来河北、山东、北京等地被持续的大范围雾霾天气所笼罩,引发全社会的广泛关注。二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成。为了降低经济快速发展带来的雾霾、臭氧层破坏、温室效应及酸雨现象,我国要求使用燃煤的工厂(主要是火电厂和水泥厂)安装脱硝装置,降低氮氧化物的排放。/pp  国内外应用较多且工艺成熟的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)烟气脱硝,均需要向烟气中喷入还原剂氨,使烟气中的氮氧化物还原成氮。/pp  为了保证氮氧化物充分反应,提高脱硝效率,需要实现还原剂氨注入量的最优化。如果喷氨过多,则会产生氨逃逸,造成更严重的危害:/pp  1.逃逸的氨与烟气中的SOsub3/sub反应生成NHsub4/subHSOsub4/sub,当后续烟道烟温降低时,NHsub4/subHSOsub4/sub就会附着在空气预热器表面和飞灰颗粒物表面。/pp  2.NHsub4/subHSOsub4/sub可以沉积并积聚在催化剂表面,引起催化剂的失活。/pp  3.NHsub4/subHSOsub4/sub在低于150℃时,以液态形式存在,腐蚀空气预热器,并通过与飞灰表面物反应而改变飞灰颗粒物的表面形状,最终形成一种大团状粘性的腐蚀性物质。/pp  4.这种飞灰颗粒物和在空气预热器换热表面形成的NHsub4/subHSOsub4/sub会导致空气预热器的压损急剧增大。/pp  5.逃逸的氨导致飞灰化学性质发生改变,使得飞灰不能作为建材原料而得到利用。/pp  所以,脱硝工艺喷氨量的控制,既要保障脱硝效率最高,又不能过量喷氨造成新的危害,需要对氨逃逸进行实时准确的在线分析。作为脱硝工艺中必不可少的关键监测设备,氨逃逸的准确稳定测量,对提高工业效率和安全生产有着重要的意义。/pp  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的现状/span/strong/pp  目前电力行业脱硝工艺基本上已经装配了氨逃逸在线分析系统,但在实际运行过程中这些氨逃逸在线分析系统往往存在着一些普遍性问题:/pp  1.氨逃逸数据为0或某个固定值,或只有仪表自身噪声信号,没有真正检测出逃逸氨,给性能验收和环保验收带来麻烦。/pp  2.增大或减少喷氨量,氨逃逸数据无变化,没有趋势相关性,无法为电厂控制喷氨流量提供科学的数据参考。为了NOx达标排放可能会喷氨过量,造成氨水浪费和形成大量铵盐对后面设备造成严重腐蚀。/pp  3.传统氨逃逸不能随时通标气进行验证,不能确保数据的准确性。/pp  通过对这些氨逃逸设备实地调研分析,发现这些设备主要采用原位测量方式,将设备的发射端和接收端分别安装在烟道上,采取对射的方式。这种测量方式会有以下几种影响:/pp  1.测量点位置粉尘量大,激光透射率不足,导致无法测量。/pp  2.为了解决透射率不足无法测量的问题,很多原位式分析仪采用斜角安装方式,即在烟道一角采取对射安装。这种方式测量的氨逃逸不具有代表性,不能反映烟道截面的真实状况,同时粉尘对测量仍然会造成影响。/pp  3.测量精度和测量下限与光程相关,光程越长,测量精度和测量下限越好。采用斜角安装方式测量光程短,测量下限和精度不够,无法满足氨逃逸精确测量的需求。/pp  4.现场振动和热膨胀因素,会造成激光对射不准,影响正常使用。/pp  5.无法通标气标定和验证。/pp  正是由于上述原因,原位式脱硝氨逃逸分析仪在实际使用中遇到了众多的困难,为了解决这些问题,国内一些企业将国外进口的分析仪进行改造,自己设计加工样气室,采用抽取式去除粉尘,抽取样气进入样气室测量,但是由于自身不掌握TDLAS核心技术,在改造过程中存在诸多技术问题及测量光程不够等因素,也没有取得良好的测量效果。/pp  strongspan style="color: rgb(0, 112, 192) "多通道近位抽取高精度测量技术应用/span/strong/pp  针对上述问题和现状,北京大方科技有限责任公司基于自身掌握的TDLAS核心技术,将多通道近位抽取及多次反射高精度测量技术应用于氨逃逸在线分析,成功解决上述问题,并得到了广泛应用。/pp  一、采用高精度多次反射长光程技术/pp  鉴于脱硝工程中氨逃逸对环境和设备的巨大危害,环保部对脱硝工艺中氨逃逸量有严格的规范。环保部2010年1月发布的环发[2010]10号《火电厂氮氧化物防治技术政策》以及2010年2月发布的标准HJ562-2010《火电厂烟气脱硝工程技术规范----选择性催化还原法》皆要求SCR氨逃逸控制在2.5mg/msup3/sup(干基,标准状态)以下。因此,脱硝工程中的氨逃逸量极低(ppm量级),这对氨逃逸分析仪的测量精度提出了极高的要求。/pp  目前测量氨逃逸通常采用可调谐二极管激光吸收光谱技术(TDLAS技术),其基本原理是朗伯-比尔定律(Beer-Lambert’s law),依据朗伯-比尔定律,当单色光穿过均匀气体介质时透射光强和入射光强的关系, 如方程(1)、(2)所示:/pp style="margin-left:13px text-indent:21px line-height:150% text-autospace:none"span style="font-size:21px line-height:150% font-family:仿宋" img src="http://img1.17img.cn/17img/images/201710/noimg/f1b1356f-e59a-4815-a181-8722c53bd3d8.jpg" title="公式.png"/ /span/pp  其中,P 为气体的压力;/pp  T 是样品气体的温度;/pp  Xabs 是被测气体在样品气体中的摩尔百分比;/pp  L 为光程长度;/pp  S 为吸收谱线的强度;/pp  fn为吸收谱线的线型函数。/pp  由公式可知光程长度越长,气体的吸收强度越强,所得到信号的信噪比越好,也就是说测量光程越长,测量精度越高。大方科技自主开发多次反射高温样气室,激光在样气室中多次反射,如图1为多次反射技术样气室中光路轨迹仿真图,光程可达30米,极大的提高了测量精度和检测下限。通过光程的提高,很大程度的解决了传统氨逃逸光程短、测量精度不足的问题。/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201710/noimg/5c6248b5-acb0-4782-b0e4-1b81f607f144.jpg" title="图1.png"/ /pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1.大方科技多次反射技术样气室中光路轨迹仿真图/span/pp  二、多通道近位抽取测量技术应用/pp  针对原位式氨逃逸在线分析系统受烟尘和烟道震动影响等因素,大多数氨逃逸在线分析系统已采用抽取式技术路线,将烟气抽出经过预处理后进行测量,很好的解决了上述问题。目前已有的抽取式氨逃逸在线监测系统多采用单点取样,将一根取样探杆沿烟道长边中心位置插入至烟道核心区域,虽然和传统的原位式氨逃逸分析仪安装在烟道角落位置相比,目前单点核心区域抽取更具代表性,但对于大型机组烟道尺寸很大(通常长边可达13米以上)的情况下,烟道内流场分布复杂,截面上氨逃逸浓度也不尽相同,为了更准确的代表烟道中氨逃逸的浓度,需要实现多点测量。如果单点测量是一台通用测量设备,那么多点测量则是一台高端设备,满足高质量、高要求用户的需求。/pp  大方科技在抽取式技术路线基础上,通过产品小型化、外置过滤装置、减震安装装置设计、近位恒温控制、流路控制等成功实现多通道近位测量技术。近位测量实现取样气体从取样探杆出来直接进入分析气室,不需要伴热管线,减少了系统的响应时间,降低氨气吸附的风险,降低伴热管线堵塞及损坏的可能,提高了系统的可靠性和耐用性。取样点的位置和取样探杆的长度可根据现场情况设计,既可实现同一烟道多点同时测量,也可以实现多烟道多通道测量,且每个取样点可独立反吹。通道数量可以1~6任意扩展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/noimg/9f23d8c0-cf6c-42b2-ac42-dc46822639d5.jpg" title="图片2.png"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 图2.大方科技近位抽取氨逃逸在线分析系统主机实物图/span/pp  大方科技率先开展氨逃逸的多点取样测量,成功实现了两点、三点、四点以及网格取样的应用,测量准确有代表性,得到了用户的高度评价。/pp  三、复杂烟气工况高温近位抽取预处理技术应用/pp  由于我国燃煤种类及燃烧工艺的复杂多样性,烟气具有高温、高湿、高腐蚀、高粉尘的特点,且每家的工况环境各异,这给氨逃逸的在线监测带来了不确定性。氨分子极易溶于水且具有极强的吸附性,因此要求整个系统中不能存在冷点,也不能降温除水,需要在高温下完成测量。由于烟气中存在大量的粉尘,要求预处理系统既能够将粉尘过滤掉,避免造成光学器件的污染,又不能堵塞,加大现场的维护量。烟气中含有SO3、NH3等腐蚀性气体,且湿度大,要求整个烟气流路需要做防腐处理。所以,开发适合我国烟气工况,且适应强的氨逃逸在线分析系统,其首要难点之一是烟气预处理系统的开发。/pp  针对上述复杂工况,大方科技结合自身在烟气预处理多年摸爬打滚的经验,成功开发了稳定可靠的近位抽取预处理系统。抽取气体直接进入气室,不需要经过伴热管线,烟气接触的流路全程高温伴热250℃以上无冷点,避免氨气吸附和损失,保证样气真实性。系统滤芯采用碳化硅过滤器,在高温下不会与SO2、NH3等腐蚀性气体发生化学反应,且滤芯采用后置安装,无需专业工具拆卸,更换和清理极其方便。每个通道皆具有自动反吹控制,反吹间隔和反吹时长根据工况设置,有效避免滤芯堵塞。/pp  对于氨逃逸监测而言,复杂的烟气工况环境是造成故障率攀升的主要原因。所以,预处理系统的稳定性和耐用性是氨逃逸监测设备的核心竞争力之一。大方科技近位抽取式预处理技术的应用,极大的提高了系统稳定性,结合多次反射长光程技术的应用,保障了测量结果的准确,为合理喷氨提供了科学的数据支撑。图3为大方科技氨逃逸在线分析系统现场趋势图,红色为喷氨量曲线,黄色为氨逃逸曲线,当系统的喷氨量发生变化时,氨逃逸数据曲线也相应地变化,从图上看喷氨量和氨逃逸曲线趋势一致,相关性高,为系统的安全、经济运行提供有价值的数据参考。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201710/noimg/f84c9423-8972-473b-83c6-2c3ca3349309.jpg" title="图3.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图3.大方科技氨逃逸在线分析系统现场趋势图/span/pp style="text-align: right "span style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "【供稿来源:北京大方科技有限责任公司】/spanbr//span/p
  • 氨排放大国如何应对“坏空气推手”
    p  近日,雾霾再度降临京津冀地区,环保部3月16日发布的空气质量预报显示,京津冀地区未来十天内的空气质量呈前期较差、后期转好态势。/pp  雾霾取代“两会蓝”,治霾话题也再次发酵。追究雾霾成因,最常关注的是燃煤、机动车、工业生产和扬尘。在刚刚结束的今年全国两会上,中国科学院院士、中科院地球环境研究所所长周卫健提出,该所研究团队耗时四年对我国北方雾霾形成机理进行研究发现,农业污染源在细颗粒物(PM2.5)形成过程中起很大作用,其“贡献率可达20%以上”。但在现实中,该因素在研究和治理中被忽视。/pp  据悉,中科院团队在西安、北京两地进行外场观测,获得大量研究数据,氮肥氨气促PM2.5生成等研究成果,已以论文《从伦敦雾到中国霾持续的硫酸盐形成》发表在美国国家科学院院报上。/pp  ——新闻热点——/pp  我国是全球最大的氨排放国/pp  周卫健研究团队发现,在北方雾霾天气中,尤其是在湿度较大的冬季,往往可监测到硫酸盐浓度暴增现象。这些高浓度的硫酸盐,主要是大气中二氧化硫经光化学反应氧化形成的。/pp  研究还发现,与伦敦雾滴的大颗粒相比,“中国霾”粒子比雾滴小得多,属纳米级,pH值偏中性。这是由于二氧化硫转化为硫酸所产生的小粒子呈现酸性,空气中又存在较高浓度的氨气,中和了硫酸形成硫酸盐。/pp  作为大气中唯一的碱性气体,氨气可以同水及酸性物质反应。正是这种独特的化学特性,使氨气扮演了“坏空气推手”的角色。对此,中科院大气物理所研究员王跃思解释说,1体积水能溶解700体积的氨,这意味着当大气湿度增高时,氨更容易与水进行反应,水又吸收了二氧化硫和二氧化氮,变成液相的亚硫酸和亚硝酸。在合适的氧化反应条件下,亚硫酸、亚硝酸就会转化成硫酸、硝酸,与氨发生中和反应,生成颗粒态的硫酸铵、硝酸铵,成为了PM2.5。/pp  据北京大学环境学院团队研究发现,2006年我国氨排放总量为980万吨,超过北美与欧洲的总和。我国在近20年时间里,一直是全球最大的氨排放国。哈佛大学的研究报告显示,从2005年至2008年间,我国每年氨排放量约1020万吨,与此同时,美国、欧盟的数字分别为340万吨、376万吨。/pp  研究发现,我国区域氨气排放源上升快、影响大,可能来源于近海养殖、畜牧业、农业、汽车(三元催化过量)、工业脱硝(还原剂用氨水或尿素过量)等。王跃思说,目前京津冀区域氮沉降每平方公里每年达6.1吨,是发达国家有记录以来的最高水平。氮沉降主要来源就是氨气,氨气的70%都来自于农业、养殖业。/pp  北京市环保局去年启动了“京津冀区域大气氨排放特征与控制对策研究的课题”,研究显示大气中的氨气主要来自生物圈,排泄物当中的尿素和化肥的使用不当被认为是氨气排放的主要来源。/pp  ——现实困难——/pp  氨排放的测量难度非常大/pp  近年来,中科院、北京大学、清华大学、中国农业大学等都在做氨排放清单的研究。但编制排放清单绝非易事,其中每个环节都有很多不确定性因素,最终出来的清单,准确性到底有多高,也很难评估。/pp  氨排放清单编制首先对农业施肥、畜牧业、工业等排放源分类,然后用每一类别的排放因子乘上活动水平,便得出排放总数。以肉牛养殖为例,先测量出每头肉牛排放的氨,再用其乘上全国肉牛总数。/pp  北京大学环境学院教授宋宇说,氨排放因子的测量非常困难,“氨的测量就很困难,氨是寿命较短的气体,测量过程中还有吸附。”/pp  计算也十分复杂。如肉牛在不同生长期,喂的饲料不同,会导致不同氨水平释放。方法不完善,基础数据也可能有问题。我国广大农村以散养为主,目前并没有足够现实数据支撑。在这种情况下,要摸清农村畜禽养殖排放氨的量,难度大。/pp  ——专家建议——/pp  多学科合力攻克雾霾成因/pp  全国政协委员、蓝光集团董事局主席杨铿连续第四年针对雾霾治理提出提案,在今年两会上,他表示,雾霾成因复杂,需要政府环保、科技部门加强对雾霾成因进行系统深入研究。/pp  周卫健也建议,我国雾霾形成机制异常复杂,四年研究依然不能完全解决雾霾课题。应集中多学科的科学家攻克“我国北方雾霾的成因、发展趋势、环境影响与应对”研究项目。/pp  推清洁生产促农业氨减排/pp  其实国家一直倡导农业氨减排。《大气十条》指出,全面推行清洁生产。积极开发缓释肥料新品种,减少化肥施用过程中氨的排放 《北京市2013—2017年清洁空气行动计划》提出,农业氨减排等技术,边研究边应用。/pp  北京市环保科学研究院研究员张增杰等在发表的《农业源氨排放控制对策初步研究》论文中建议,我国应大力推行种养结合模式,调整畜禽养殖布局和规模,提高农田有机肥施用比例,减少化肥的施用 施用化肥时,测土配方,提高缓释肥的使用,控制施用强度等 基于畜禽养殖粪便管理系统的氮物质流,从饲喂、畜禽圈舍、粪污存储、粪肥土地利用4个方面着手采取相应的控制措施。其中畜禽养殖氨控制措施主要包括降低畜禽日粮中的粗蛋白质含量,从源头上减少氮的摄入等 编制粪肥科学还田技术指南,及农业源氨排放控制指定文件等。/pp  重拳治理机动车氨排放/pp  王跃思认为,工业、机动车所占氨排放比重可能比当前认为的高。“工业氨逃逸越来越多,如电厂等在脱硝中喷液态氨,想让氨和氮氧化物反应生成氮气,但控制不好,氮气没生成,氨逃逸出来了。”机动车排放升级到国四标准,柴油发动机要加脱硝装置,但反应过程中会出现反应剂尿素逃逸,尿素很容易分解出氨。“汽油标号越高,硫含量越低,氨排放会相应增多。”这是由于在使用三元催化剂时,想让氮氧化物还原成氮气,事实上很容易还原成氨,与工业合成氨的化学反应接近。/pp  因此,杨铿建议,抓主要污染源,从源头上出重拳治理雾霾。尽快完善机动车尾气排放的专项立法,特别是在雾霾严重地区要加快制定实施细则,重点严抓执行和检查。国五汽柴油标准从今年1月1日起在全国范围内全面执行,该标准实施后,在全国范围内应禁止国三机动车买卖、过户 在有条件的一、二线城市,禁止国四机动车买卖、过户。/pp  杨铿还建议各地成立由公安交通管理、环保部门牵头的专项执法检查小组,以治理“酒驾”力度治理环境污染。对发动机燃烧质量、机动车尾气排放情况进行不定期拉网式检查,对排放不达标机动车上路行驶的,依法惩处。/p
  • 海尔欣受邀参与海螺研究院水泥氨逃逸测试试验
    众所周知,水泥行业三大污染物“粉尘、二氧化硫、氮氧化物”中,氮氧化物超低排放治理难度最大。目前氮氧化物治理主要分为“脱硝技改+SNCR”以及SCR两种方案。而国内现有水泥企业多数采用“脱硝技改+SNCR”控制氮氧化物排放量,但是SNCR技术也存在一大弊端,就是“氨逃逸”问题。日前,海尔欣应海螺建材设计研究院的邀请,参与集团旗下水泥窑炉生产工艺中的氨逃逸排放比对试验,我公司安排专业的技术人员到现场配合客户现场测试,在水泥窑炉高尘,高温等工况条件下,海尔欣的LGM1600便携氨逃逸分析仪依然能够圆满完成测试,为客户获取到宝贵的水泥工况氨逃逸数据,解决了实际生产中的问题。海螺研究院现场测试图海螺简介:安徽海螺建材设计研究院有限责任公司(以下简称“海螺设计院”)创立于1997年,2018年4月16日完成公司化改制,是海螺集团公司的全资子公司,注册资本金1.5亿元,近三年年营业收入均超过5亿元。多年来,通过服务集团工程建设和技术创新,不断积累发展成为拥有水泥工程、轻钢结构、环保专项、工程咨询等4项甲级,建筑工程、非金属矿、新型建材等3项乙级,以及国家级压力管道、消防和防雷等多项工程设计资质的专业化设计研究公司。
  • 会议回顾 | 海尔欣昕甬智测受邀参加第二届Carbon Research青年学者论坛
    第二届Carbon Research青年学者论坛当前我国经济社会发展已进入加快绿色化、低碳化的高质量发展阶段,全面推进美丽中国建设是适应经济社会高质量发展的新需求。《“健康中国 2030"规划纲要》中提到,要把环境健康放在优先发展战略地位,推动环境健康科技创新。环境健康是一体化健康(One Health)的关键环节,保障环境健康是实现“健康中国2030计划"的重要途径之一。近年来,全国多省出台《减污降碳协同增效实施方案》,着力探索减污降碳协同增效的技术方法和工作路径,表明了全国绿色循环低碳和环境健康发展的步履坚实。4月12日-14日,以“减污降碳与环境健康"为主题的第二届Carbon Research青年学者论坛在浙江宁波盛大举行,本次会议为减污降碳与环境健康领域科技工作者展开深入、务实、有效的交流合作提供了广阔的平台。 新闻速递海尔欣昕甬智测携HT8700大气氨激光开路分析仪与HT8850便携式多组分高精度温室气体分析仪参加了此次会议。 4月13日上午,中国科学院大气物理研究所的老师在大会特邀报告上,分享了题为《生态系统气态碳污排放的通量测量技术与方法》的案例应用与相关成果,该项目使用的仪器——HT8700大气氨激光开路分析仪,为“昕甬智测"品牌国产创新产品,是一款高精度、高灵敏度的仪器,专门用于实时监测大气中氨的浓度。HT8700大气氨激光开路分析仪【产品简介】采用量子级联激光吸收光谱技术(QCLAS),应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。HT8700大气氨激光开路分析仪的高频浓度分析特性,使之非常适合于微气象涡动相关(Eddy Covariance)测量技术,结合通量观测系统可准确定量不同生态系统和大气间氨的净交换通量。HT8700大气氨激光开路分析仪在国内院校已有多个合作伙伴,曾展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux),并出口欧盟参与科研项目。与中科院大气物理所合作的稻田氨排放通量系统实验位于宁波咸祥,成果发表于世界SCI期刊《Agricultural and Forest Meteorology》。本次论坛聚焦于减污降碳与环境健康,为推动我国绿色循环低碳和环境健康发展贡献了新的智慧和力量。未来,海尔欣昕甬智测将涌现更多优秀的科技创新成果,为实现美丽中国梦想助力,为构建更加清洁、美丽的生态环境而不懈奋斗!
  • 访谈 | Sievers帮助药企提升效率与合规性,支持新冠相关制药用户提高生产率
    原文英文版刊登于制药杂志《Pharma Focus Asia》,本文有所修改补充。Q1通用电气GE分析仪器和Sievers产品成为苏伊士集团成员已经两年了,跟我们聊一下过渡期的情况吧!这是一个激动人心的过程!加入苏伊士后,我们不仅在生命科学水质检测和清洁验证领域提供核心专业技术,而且在应对全球各行业水资源短缺、水处理生产和过程控制相关的重大挑战中贡献自己的力量。水是所有行业的重要资源,对水资源的可持续管理非常重要。在制药行业,我们生产的精确可靠的水质监控仪表为人所称道——我们的仪器不只是质量控制,而且包括过程控制。在帮助用户更高效、更了解自己工艺过程的同时,我们可以扩展和优化水资源的用途。Q2能跟我们介绍一下Sievers分析仪的历史吗?制药市场的大部分用户都了解Sievers这一品牌。Sievers分析仪于1984年由科罗拉多大学的两名同事成立,如今我们的公司总部仍在科罗拉多州博尔德市。用户可能不太了解,我们旗下使用最广泛的总有机碳TOC分析仪最初是太空站用于监控饮用水质的!我们的业务几经转手——最著名的包括通用电气GE,然后是苏伊士集团——如今已经成长为制药行业领先的总有机碳TOC分析技术之一。Q3除了仪器性能,还有哪些因素会影响总有机碳TOC的分析结果?除准确、易用的分析仪器外,Sievers认证的消耗品、服务和专业支持为用户提供了全套TOC分析的解决方案。例如,在使用Sievers TOC样品瓶和标准品时,用户可充分利用我们的超标结果OOS调查。对于样品、系统适用性或验证失败等问题,我们的质量团队会排查各种原因包括现场的仪器性能,然后在故障分析报告中探讨各种发现情况,实现完整的可追溯性。我们一直希望用户对如何使用仪器以及碰到的各种问题给我们提供反馈。这些用户反馈不仅帮助我们开发和改进新的仪器,也帮助我们不断完善新的消耗品和服务,从而实现完整的总有机碳TOC检测方案。近期,我们推出了清洁验证用的预酸化样品瓶,这一产品是专门针对用户检测棉签擦拭样本需求开发的,它保证了检测的一致性,降低了样品制备的相关风险,帮助用户降低清洁验证样本检测的失败率。可以说,我们针对具体应用的产品和支持在业界是无与伦比的。Q4总有机碳TOC分析广泛应用于制药的方方面面。制药企业进行TOC分析的场景和方法有哪些发展趋势?无论在质控实验室、生产、研发,还是在工程设施中,Sievers总有机碳TOC分析仪都可以满足用户的合规性和工艺流程要求。TOC分析的常见应用包括超纯水监控、实时检测、清洁验证(及清洁确认和监控)、浸出物/萃取物检测。我们发现很多企业将TOC分析从超纯水检测扩展到了对工艺流程的了解、控制和故障排除等应用。很多用户通过使用TOC分析实现了令人叹为观止的生产效率的提升。为了对制药用水进行在线监控和实时检测(RTT,real-time testing)——Sievers加深了对在线应用工艺流程的理解,因此用户可以通过检测数据实时采取纠正措施以确保水的质量。我们产品提供超高的精度和可靠性,没有其他TOC检测技术带来的假正和假负读数现象。用户希望得到持续在线的质量保证,满足过程控制和实时检测等方面的监管要求。这正是我们帮助用户取得成功和提高效率的法宝。我们发现的另一趋势是用户越来越多地使用我们仪器的Turbo模式绘制水质检测的实时曲线,以进行水系统故障诊断或清洁验证。Turbo模式可用于在线进样、离线吸样或实验室自动进样(使用自动进样器),实现快速分析并识别TOC的瞬时漂移。这种控制和速度也正是用户提高生产率的途径。总体而言,用户有提高效率并将实验室检测转移到在线检测的趋势和愿望,因此我们进行在线检测的开发并尽可能实现自动化。在将我们的仪器从实验室转移到在线检测的过程中,使用Sievers膜电导检测技术可以实现过程分析技术(PAT)的无缝衔接。Q5我们经常听说数据可靠性和数据安全,这些概念在制药行业分析仪器的设计中有多重要?满足用户需求极为重要,我们会确保我们的仪器和软件完全符合21 CFR Part 11部分和最新版数据可靠性准则的规定。尤其当我们看到FDA陆续给药企发送有关数据可靠性的警告信,我们就确信业界对此要求是非常严格的。我们在思考各政府组织机构对数据可靠性的定义时,考虑的是数据全生命周期的完整性、一致性和准确性。尽管如此,这些概念在具体执行过程中还存在诸多不清晰的地方,所以各药企纷纷陷入困境。Sievers的产品致力于帮助药企位于满足数据可靠性的前沿。例如,根据市场反馈,我们开发了全新的软件验证支持包,用于TOC分析仪软件的验证,专门解决数据可靠性问题。该验证支持包在业内独一无二,提供了从仪器到数据存储的完整的验证解决方案。Q6您提到Sievers的仪器不仅用于质量控制实验室,还有在线和实时检测应用。苏伊士如何紧跟不断变化的需求并确保成功实现不同应用?由于时间和资源有限,药企希望优化工艺流程,提高生产率和自动化水平,有效排除故障。我们在质控、生产、研发、工程及制药的其他领域都了解到了这一需求。是的,我们确实发现越来越多用户希望进行实时检测和在线清洁验证等应用,但他们并不一定知道如何高效实现。作为仪器制造商,我们了解到用户的成功远非一台仪器一蹴而就。我们引以为荣的是,自己的团队能够提供专业知识,帮助用户进行方法开发以及实施新应用的可行性。我们针对确效(包括仪器和软件)、实时检测和清洁验证等应用开发验证支持包,帮助用户探索验证过程,实现高效、合规的部署。Q7对未来Sievers产品在制药领域的应用有哪些期望?从我们公司的历史可以发现,Sievers产品因专业和创新而生。不久的将来,大家会看到一些开拓性的创新产品,丰富我们对制药业提供的解决方案,同时也会帮助用户对质量控制的流程进行更多优化——并且保持合规性!我们不断与用户保持沟通,了解他们最紧迫的需求,为他们遇到的分析挑战创造更好的解决方案。我们会向用户展示我们最新的创新成果,敬请期待!Q8针对当前全球的疫情情况,Sievers如何帮助COVID-19疫苗开发商提高生产效率?很多生物技术和制药企业,正在为开发COVID-19疫苗、诊断试剂盒和治疗药品进行全天候的工作,其中有很多企业是我们的用户。Sievers TOC分析仪是确保药物安全、质量和效力的关键工具,我们的TOC技术用于新疫苗和治疗方法的开发,还用于维持对患者生命至关重要的药物生产,苏伊士Sievers分析仪团队一直在全力支持他们。我们在制药行业的专业知识和经验推动了我们与客户的紧密合作,这在当前充满挑战的时期尤为重要。Sievers的销售和服务团队一直与他们密切合作,帮助他们扩大用于临床试验和诊断检测的药物以及试剂盒的生产,包括新的分析仪的安装、固/软件升级、仪器的重新验证以及预防性维护更新。为了帮助药企应对这一全球挑战,我们增加了仪器的生产和库存,同时采取措施确保所有员工的安全操作。我们密切与客户合作,满足药品生产和患者安全的关键需求。我们团队的努力与Sievers分析仪保护公共健康的愿景直接契合。希望疫情尽快平息,大家一起渡过难关!Dave Kremer是苏伊士水务技术与方案(SUEZ Water Technologies & Solutions) - 分析仪器业务(原通用电气GE分析仪器)的全球销售负责人。在GE期间,他负责Sievers分析仪在生命科学和工业行业的全球产品管理和应用。GE分析仪器变更为苏伊士以后,Dave担任销售和业务开发的全球负责人。加入GE之前,Dave还在科德角公司(Associates of Cape Cod)担任过高级管理职务,该公司是全球内毒素产品和制药质量控制的领军企业。Sievers分析仪,原隶属于GE发电集团旗下水处理与工艺过程处理部门,2017年10月起,与GE水处理与工艺过程处理部门一起转至苏伊士(SUEZ)集团旗下。Sievers分析仪是全球领先的总有机碳(Total Organic Carbon, TOC)分析仪生产商,我们的设计和制造旨在帮助用户更简单、更快速和更精确地进行分析测量和控制。Sievers解决方案包括TOC分析仪和传感器、标准品(获得ISO准则34和ISO/IEC 17025认证),以及定制化的支持服务,可快速实施、降低成本、提高用户应对挑战的能力,并帮助持续维持您的系统性能。 除TOC分析仪,我们也提供超纯水硼分析仪。Sievers分析仪现隶属于苏伊士水务技术与方案业务集团。
  • 得利特知识讲堂:常见的氨氮废水处理方法
    得利特技术组最近给同事们讲解了 一系列小知识 ,我们进行了整理。本次给大家带来常见的氨氮废水处理方法。氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3-N)以及亚硝态氮(NO2-N)等多种形式存在,而氨态氮是主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。常见氨氮废水处理方法:1、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下:Mg2++NH4﹢+PO43-=MgNH4P04化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理 化学沉淀法去除效率较好,且不受温度限制,操作简单 形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本 如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用 药剂使用量大,产生的污泥较多,处理成本偏高 投加药剂时引人的氯离子和余磷易造成二次污染。2、吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。3、催化氧化法催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。4、生物法传统生物法是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。传统生物法去除氨氮需要经过两个阶段,第一阶段为硝化过程,在有氧条件下硝化菌将氨转化为亚硝酸盐和硝酸盐 第二阶段为反硝化过程,在无氧或低氧条件下,反硝化菌将污水中的硝酸盐和亚硝酸盐转化为氮气。传统生物法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于300mg/L。适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。5、膜分离法膜分离法是利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。6、离子交换法离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。沸石是一种三维空间结构的硅铝酸盐,有规则的孔道结构和空穴,其中斜发沸石对氨离子有强的选择吸附能力,且价格低,因此工程上常用斜发沸石作为氨氮废水的吸附材料。离子交换法具有投资小、工艺简单、操作方便、对毒物和温度不敏感、沸石经再生可重复利用等优点。但处理高浓度氨氮废水时,再生频繁,给操作带来不便,因此,需要与其他治理氨氮的方法联合应用,或者用于治理低浓度氨氮废水。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制