当前位置: 仪器信息网 > 行业主题 > >

麦冬高异黄酮

仪器信息网麦冬高异黄酮专题为您提供2024年最新麦冬高异黄酮价格报价、厂家品牌的相关信息, 包括麦冬高异黄酮参数、型号等,不管是国产,还是进口品牌的麦冬高异黄酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合麦冬高异黄酮相关的耗材配件、试剂标物,还有麦冬高异黄酮相关的最新资讯、资料,以及麦冬高异黄酮相关的解决方案。

麦冬高异黄酮相关的论坛

  • 【求助】麦冬中多糖,皂苷,黄酮的薄层方法

    我是新人,最近在实验中遇到了些麻烦,还要大家帮助一下啦麦冬中主要成分为多糖,皂苷,黄酮具体怎样用薄层方法鉴别这三种物质具体用什么展开剂,比例多少,显色剂是什么先谢谢大家了

  • 【求助】异黄酮薄层层析显色?

    谁知道对异黄酮展开效果好点的展层剂和比较专一的显色剂 请高手指点一下 或者谁有更好的异黄酮定性的方法 请指点一下 最近提取到新的物质 初步怀疑是这个异黄酮 想确定一下 谢谢高手指点

  • 【“仪”起享奥运】薄层色谱法鉴别麦冬与山麦冬的具体操作

    [size=16px]薄层色谱法鉴别麦冬与山麦冬的具体操作如下: 供试品溶液的制备:分别取麦冬、山麦冬的粉末,经过加热回流、萃取、挥干等步骤,制备成供试品溶液。 标准品溶液的制备:取麦冬对照药材。按照与供试品溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]同的方法制备成标准品溶液。 薄层鉴别:将标准品溶液和供试品溶液分别点于同一硅胶G薄层板上,以特定的展开剂进行展开,然后喷以显色剂,并加热至斑点显色清晰。[/size][font=-apple-system, Arial, Helvetica, sans-serif][size=16px][size=16px]麦冬与山麦冬在薄层色谱法下存在明显的差异。利用薄层色谱进行鉴别时,[/size][/size][/font][font=-apple-system, Arial, Helvetica, sans-serif][size=16px][size=16px]不同种类的麦冬薄层色谱图均有所区别[/size][/size][/font][font=-apple-system, Arial, Helvetica, sans-serif][size=16px][size=16px]。具体来说,麦冬和山麦冬的薄层色谱图中,在与对照药材色谱相应的位置上,会显现出不同颜色的斑点,从而可以进行有效的区分。[/size][/size][/font][size=16px] 结果判断:观察薄层板上的斑点颜色和位置,若麦冬、山麦冬在与麦冬对照药材相应的位置上呈现相同的墨绿色斑点,则可以进行鉴别。 [/size] [font=-apple-system, Arial, Helvetica, sans-serif][size=16px][color=#333333] [/color][/size][/font]

  • 【我们不一YOUNG】麦冬入食

    麦冬,这株看似普通的草本植物,在中医药学领域却拥有着举足轻重的地位。它又名麦门冬、沿阶草,种子形如纺锤,两端略尖,色泽淡雅,呈现为淡黄色或黄白色,并带有细腻的纵纹。这一自然的形态,不仅展示了麦冬的朴素之美,更蕴含了深厚的中医药理。  麦冬被誉为传统中医药材宝库中的“不老草”,它以其微甜清香的口感和滋养生命的特性,深受人们的喜爱。然而,正如世间万物皆有度,麦冬虽好,却并非人人皆宜。  对于孕妇与经期女性而言,麦冬的性寒凉特性可能会对体内的气血平衡产生影响。孕妇身体敏感,每一个微小的变化都可能对胎儿造成影响 而经期女性则更需要注重腹部的保暖与气血的顺畅。因此,这两类人群在食用麦冬时需格外谨慎,以免对身体造成不必要的负担。  过敏体质者同样需要警惕麦冬的潜在风险。对于某些对麦冬过敏的人来说,食用后可能会引发皮肤瘙痒等不适症状。过敏反应不可小觑,一旦出现,应及时就医治疗。  此外,感冒发热病人在身体虚弱、需要恢复的时候,也应避免食用麦冬。虽然麦冬具有滋阴润肺的功效,但在感冒发热时,身体更需要的是休息和调理,而非额外的滋补。  体寒之人同样不宜多食麦冬。体寒者本身阳气不足,食用寒凉性质的麦冬可能会加重体寒症状,如手脚冰凉、面色苍白等。因此,体寒之人在饮食上应选择温性食物,以调和身体。  最后,正在服用药物的人群也应避免食用麦冬。因为麦冬中的某些成分可能与药物发生相互作用,影响药物的效果或产生不良反应。在不确定的情况下,最好咨询医生或药师的意见,以确保用药安全。  在选购麦冬时,我们同样需要细心甄别。优质的麦冬应具有自然的色泽和形态,口感轻柔甘甜,无苦涩感。同时,产地也是影响麦冬品质的重要因素。来自四川、浙江等地区的麦冬,因得益于其独特的自然环境,往往品质上乘。因此,在购买时,我们可以关注包装上标注的产地信息,以选择更为优质的麦冬。  此外,存放麦冬的环境也需注意。应将其置于干燥通风处,避免潮湿导致变质。对于散装麦冬,建议使用密封容器保存,以保持其新鲜度和风味。综上所述,麦冬虽好,但并非人人适宜。在享受其美味和药用价值的同时,我们也应根据自身体质和实际情况合理选择食用。只有这样,我们才能在品味麦冬的甘甜之余,更好地呵护身体健康。

  • 食品中异黄酮的功能

    [color=#3e3e3e]异黄酮的功能与人体自然分泌的雌激素相似,能缓解更年期症状,大豆和豆制品是最佳来源,如豆粉、豆浆、豆豉、豆腐、豆皮等。[/color]

  • 化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检测方法

    化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检测方法1 适用范围  本方法规定了用高效液相色谱法定性检测化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的方法。  本方法适用于化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的定性测定。2 方法提要  样品在经过提取后,经高效液相色谱仪分离,二极管阵列检测器检测,经与平行操作的补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮对照品及补骨脂对照药材比较,以保留时间和紫外光谱图定性,鉴别补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的存在。本方法对补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检出限和取样品0.5 g时的检出浓度见表1。 表1 4种补骨脂特征成分的检出限和检出浓度化合物检出限(ng)检出浓度(μg/g)补骨脂素0.30.6异补骨脂素0.30.6新补骨脂异黄酮0.30.6补骨脂二氢黄酮0.30.63 试剂和材料  除另有规定外,所用试剂均为分析纯,水为实验室用一级水。3.1 乙腈,色谱纯。3.2 补骨脂素,纯度≥99%。3.3 异补骨脂素,纯度≥99%。3.4 新补骨脂异黄酮,纯度≥98%。3.5 补骨脂二氢黄酮,纯度≥99%。3.6 补骨脂,中国食品药品检定研究院,供鉴别用。3.7 补骨脂特征性成分混合标准溶液(=0.1 μg/mL):分别称取补骨脂素(3.2)、异补骨脂素(3.3)、新补骨脂异黄酮(3.4)、补骨脂二氢黄酮(3.5)对照品各5 mg(精确到0.1 mg),置500 mL量瓶中,用甲醇溶解并稀释至刻度,摇匀,配制成质量浓度各为10 μg/mL的标准溶液。精密量取各标准溶液0.1 mL置10 mL量瓶中,加甲醇稀释至刻度,摇匀,即得0.1 μg/mL的混合标准溶液。3.8 补骨脂标准储备溶液:取补骨脂对照药材0.2 g,置50 mL三角瓶中,加30 mL 70%乙醇回流提取1h,滤过,滤液置100 mL量瓶中,加70%乙醇稀释至刻度,摇匀,即得。4 仪器4.1 高效液相色谱仪:具二极管阵列检测器。4.2 分析天平:感量为0.1 mg。4.3 移液器。4.4 涡旋振荡器。4.5 超声波清洗仪(功率不低于200W)。4.6 高速离心机:转速不小于10000 r/min。

  • 超高效液相色谱法(UPLC)检测大豆异黄酮

    超高效液相色谱法(UPLC)检测大豆异黄酮

    大豆异黄酮是从植物中提取,与雌激素有相似结构,因此又称植物雌激素,大豆异黄酮的雌激素作用影响到激素分泌、代谢生物学活性、蛋白质合成、生长因子活性,是天然的癌症化学预防剂。主要成分:大豆甙(Daidzin),大豆甙元(Daidzein),染料木甙(Genistin),染料木素(Genistein),黄豆甙(Glycitin),黄豆甙元(Glycitein)。迪马科技用户采用Endeavorsil C18超高效液相色谱柱成功实现8分钟内6种大豆异黄酮的良好分离,对于大豆异黄酮的分离和检测具有实际意义。UPLC色谱分析条件*:色谱柱:Endeavorsil C18 50 × 2.1 mm, 1.8 μm(Cat.#.:87002)流动相:A:0.2%的磷酸水溶液,B:乙腈时间(min)02467A(%)9085706090B(%)[align=cente

  • QuEChERS法测定麦冬中35个农药残留物

    [align=right][b]SGL-GC/MS-010[/b][/align][b]摘要:[/b]本研究建立了麦冬中35个禁用农药残留物的测定方法。参照《中国药典》2020年版通则2341第五法4.2 快速样品处理法(QuEChERS法)操作步骤,采用岛津的SHIMSEN QuEChERS产品对麦冬样品进行净化,SH-I-17Sil MS色谱柱进行分离,岛津串联质谱[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX检测分析。对空白样品加标后(添加浓度以灭线磷计:0.005 mg/kg),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为42.43%-115.21%,RSD为0.41%-8.78%,回收率高,重现性好。该方法为麦冬中35个禁用农药残留物的测定提供参考。[b]关键词:[/b]SHIMSENQuEChERS 禁用农药 麦冬 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX[b]1. 实验部分1.1 实验仪器及耗材[/b]仪器配置:Shimadzu [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX;色谱柱:SH-I-17Sil MS(30×0.25mm,0.25μm;P/N:R221-75916-30);SHIMSEN QuEChERS提取盐包:无水硫酸镁与无水乙酸钠混合粉末(4:1)7.5 g (P/N:380-00151);SHIMSEN QuEChERS净化管:含无水硫酸镁900 mg,PSA 300 mg,C18 300 mg,硅胶300 mg,GCB 90 mg(P/N:380-00134)SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱:SH-I-17Sil MS(30×0.25mm,0.25μm;P/N:R221-75916-30)程序升温:初始温度60℃保持1 min, 以30℃/min升温到120℃,再以10℃/min升温到160℃,以2℃/min升温到230℃,最后以15℃/min升温到300℃ 保持6 min。载气:He载气控制方式:恒压,146 kPa进样口温度:250 ℃进样时间:1 min进样量:1 μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]电离模式:电子轰击电离(EI);离子源温度: 250 ℃接口温度:250 ℃检测器电压:调谐电压+0.7 Kv溶剂延迟:3 min数据采集模式:MRM; 各化合物MRM参数如下:[img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_1.png[/img][img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_2.png[/img][font=arial, &][size=12px][/size][/font][b]1.3 供试品溶液的制备[/b]取供试品溶液粉末(过三号筛)3 g,精密称定,置50 mL聚苯乙烯具塞离心管中,加入1%冰醋酸溶液15 mL,涡旋使药粉充分浸润,放置30分钟,精密加入乙腈15 mL,涡旋使混匀,置振荡器上剧烈振荡(500次/分)5分钟,加入无水硫酸镁与无水乙酸钠的混合粉末(4:1)7.5 g,立即摇散,再置振荡器上剧烈振荡(500次/分)3分钟,于冰浴中冷却10分钟,离心(每分钟4000转)5分钟,取上清液9 mL,置预先装有净化材料的分散固相萃取净化管中(无水硫酸镁900 mg,PSA 300 mg,C18 300 mg,硅胶300 mg,GCB 90 mg)中,涡旋使充分混匀,离心(每分钟4000转)5分钟,精密吸取上清液5 mL,置氮吹仪上于40℃水浴浓缩至约0.4 mL,加乙腈稀释至1.0 mL,精密加入0.30 mL内标溶液(磷酸三苯酯:0.1 μg/mL),混匀,滤过,即得。供试品溶液制备流程图见下图1。[img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_3.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图1 样品提取流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]2. 结果及讨论2.1 混合标准品溶液的色谱图[/b][img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_4.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]35个禁用农药混合标准品溶液TIC色谱图(以灭线磷浓度计:200 ng/mL)[/b][/align][font=arial, &][size=12px] [/size][/font][b]2.2 麦冬中35个禁用农药残留物的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测添加回收结果[/b]将麦冬空白样品进行加标(添加浓度以灭线磷计:0.005 mg/kg)后,按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为42.43%-115.21%,RSD为0.41%-8.78%,回收率高,重现性好。[img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_5.png[/img][img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_6.png[/img][img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_7.png[/img][img=QuEChERS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-010_8.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]本研究建立了麦冬中35个禁用农药残留物的测定方法。参照《中国药典》2020年版通则2341第五法4.2 快速样品处理法(QuEChERS法)操作步骤,采用岛津的SHIMSEN QuEChERS产品对麦冬样品进行净化,SH-I-17Sil MS色谱柱进行分离,岛津串联质谱[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX检测分析。对空白样品加标后(添加浓度以灭线磷计:0.005 mg/kg),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为42.43%-115.21%,RSD为0.41%-8.78%,回收率高,重现性好。该方法为麦冬中35个禁用农药残留物的测定提供参考。

  • 【原创大赛】HPLC法测定黄芪水提物中的毛蕊异黄酮苷含量

    【原创大赛】HPLC法测定黄芪水提物中的毛蕊异黄酮苷含量

    [align=center][b]HPLC法测定黄芪水提物中的毛蕊异黄酮苷含量[/b][/align][b]黄芪中的主要有效成分除皂苷外就是异黄酮类化合物。异黄酮类成分具有调节免疫、抗肿瘤、抗突变、抗氧化、抗炎、抗突变抗辐射、抗心肌缺血、抗心律失常、抗病毒、抗细胞凋亡、保肝、防止动脉粥样硬化等作用[sup][/sup],其代表成分就是毛蕊异黄酮 7-O-β-D 吡喃葡萄糖苷(即毛蕊异黄酮苷)。2010版药典才开始将毛蕊异黄酮苷收录为黄芪中有效成分含量测定项。本章实验借鉴药典中的测定方法,对不同工艺条件下获得的黄芪水提物中的毛蕊异黄酮苷含量进行考察,以期为优化芪龙胶囊和黄芪配方颗粒中黄芪的提取工艺参数提供科学基础和理论依据。[b]1 材料和仪器1.1 样品 [/b] 收集9组黄芪水提取物样品,黄芪饮片为济南济成堂中药饮片有限公司提供(批号18033101)。[b]1.2 试剂 [/b]毛蕊异黄酮苷对照品(成都瑞芬思生物科技有限公司批号M-020-170926),乙腈为色谱纯(天津市科密欧化学试剂有限公司);甲酸(天津市科密欧化学试剂有限公司);超纯水。[b]1.3 仪器 [/b]液相色谱系统,包括日本岛津公司LC-20AT型液相色谱仪,LC-20AT岛津输液泵,CTO-20A柱温箱,SIL-20A自动进样器,SPD-20A紫外-可见光检测器;超声波清洗机KS-300E(宁波科生仪器厂);电子天平MS205DU(梅特勒/瑞士)。[b]2 方法学考察2.1 色谱条件及系统适应性试验[/b]DiamonsiL(钻石)C18柱(250*4.6 mm,5 mm)。以乙腈为流动相A,0.2%甲酸溶液为流动相B,梯度洗脱,A相:0→20 min A为20→40%;20→30 min A保持40%;30→40 min A保持20%。检测波长260 nm;流速为1 mL/min;柱温35 ℃进样量为10 μL。毛蕊异黄酮苷对照品溶液以及黄芪水提物样品色谱图见图4-1与图4-2。[/b][align=center][img=,690,365]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131706005051_4964_3237657_3.png!w690x365.jpg[/img][/align][align=center]图4-1 毛蕊异黄酮苷对照品色谱图[/align][align=center][img=,690,384]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131706118782_6652_3237657_3.png!w690x384.jpg[/img][/align][align=center]图4-2 黄芪水提物样品色谱图[/align][b]2.2 供试品溶液的制备[/b]精密称定1/50重量的黄芪水提物样品(折合黄芪药材2 g)置于锥形瓶中,精密加入50 mL甲醇,超声30 min,过滤,将滤液放至水浴锅上蒸干,残渣用甲醇溶解,并定容至25 mL,用0.22 μm的微孔滤膜过滤,即得。[b]2.3 对照品储备溶液的制备[/b]精密称取黄芪甲苷标品5.10mg至10 mL容量瓶中,用甲醇溶解后定容,摇匀,即得浓度为0.51 mg/mL的对照品储备溶液。[b]3 结果3.1 线性关系考察[/b]精密吸取 2. 3 项下对照品储备溶液 4,2,1,0.5,0.25 mL至10 mL容量瓶中,用甲醇定容,得到浓度为204.00,102.00,51.00,25.50,12.75 μg/mL的对照品溶液。按“2.3”项下色谱条件分别进样10 μL,利用自动积分功能测定峰面积积分值,并以峰面积积分值与浓度进行线性回归。如图3,得回归方程为:Y =25445X + 44225(r[sup]2[/sup]= 0.9994)提示毛蕊异黄酮苷在12.75~204.00 μg/mL范围内线性关系良好。毛蕊异黄酮苷对照品标准曲线如图4-3所示。[align=center][img=,690,406]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131706302801_395_3237657_3.png!w690x406.jpg[/img][/align][align=center]图4-3 毛蕊异黄酮苷标准曲线[/align][b]3.2 精密度实验[/b]按2. 2 项下方法制备供试品溶液,精密吸取供试品溶液10 μL,重复进样 6 次,记录色谱图峰面积,测定毛蕊异黄酮苷含量,计算得相对标准偏差RSD为1.6% ,提示该方法精密度良好。[b]3.3 重复性实验[/b]取同一黄芪样品 6份,按“2. 2”项下方法制备供试品溶液,在拟定分析条件下,精密吸取供试品溶液10 μL,测定毛蕊异黄酮苷含量,计算得RSD为1.1%,提示该方法重复性良好。[b]3.4 稳定性实验 [/b]按2. 2 项下方法制备供试品溶液,分别在0 h、3 h、6 h、9 h、24 h、48 h后,准确吸取 10 μL 进样分析,测定毛蕊异黄酮苷含量,计算得 RSD 为 0.6%,提示黄芪供试品溶液在48h内稳定性良好。[b]3.5 加样回收率实验[/b]精密称取 6 份毛蕊异黄酮苷含量已知的黄芪水提物样品,每份折合黄芪药材 0. 5 g,分别准确加入样品中毛蕊异黄酮苷含量的50%,50%,100%,100%,150%,150%重量的毛蕊异黄酮苷标品,按2. 2 项下方法制备供试品溶液,准确吸取 10 μL 进样分析,测定毛蕊异黄酮苷含量,计算回收率,结果见表4-1。方法平均回收率为108.48%,表明该方法具有较好的回收率。[align=center]表4-1 毛蕊异黄酮苷加样回收率测定结果[/align] [table][tr][td] [align=center]样号[/align] [/td][td] [align=center]样品中的量/mg[/align] [/td][td] [align=center]加入量[/align] [align=center]/mg[/align] [/td][td] [align=center]测得量/mg[/align] [/td][td] [align=center]回收率[/align] [align=center]/%[/align] [/td][td] [align=center]平均值/%[/align] [/td][td] [align=center]RSD[/align] [align=center]/%[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]0.52 [/align] [/td][td] [align=center]1.64 [/align] [/td][td] [align=center]111.54 [/align] [/td][td=1,6] [align=center]108.85 [/align] [/td][td=1,6] [align=center]2.9 [/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]0.52 [/align] [/td][td] [align=center]1.64 [/align] [/td][td] [align=center]112.08 [/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]2.22 [/align] [/td][td] [align=center]109.20 [/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]2.24 [/align] [/td][td] [align=center]111.02 [/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]1.59 [/align] [/td][td] [align=center]2.72 [/align] [/td][td] [align=center]104.57 [/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]1.06 [/align] [/td][td] [align=center]1.59 [/align] [/td][td] [align=center]2.72 [/align] [/td][td] [align=center]104.67 [/align] [/td][/tr][/table][b]3.6 毛蕊异黄酮苷的含量测定结果[/b]取9组黄芪水提物按照“2.2”项下操作,制备供试品溶液,准确吸取 10 μL 进样分析,测定毛蕊异黄酮苷的含量。结果见表2。[align=center]表4-2 9组黄芪水提物中毛蕊异黄酮苷含量测定结果[/align] [table][tr][td] [align=center]批号[/align] [/td][td] [align=center]峰面积[/align] [/td][td] [align=center]含量(mg/g)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]1123989.50 [/align] [/td][td] [align=center]0.53 [/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]2707047.50 [/align] [/td][td] [align=center]1.31 [/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]1947171.50 [/align] [/td][td] [align=center]0.93 [/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]3573103.75 [/align] [/td][td] [align=center]1.73 [/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]1824562.00 [/align] [/td][td] [align=center]0.87 [/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]2767419.00 [/align] [/td][td] [align=center]1.34 [/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]2077551.50 [/align] [/td][td] [align=center]1.00 [/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]1677225.50 [/align] [/td][td] [align=center]0.80 [/align] [/td][/tr][tr][td] [align=center]9[/align] [/td][td] [align=center]1725416.00 [/align] [/td][td] [align=center]0.83 [/align] [/td][/tr][/table][b]3.7 毛蕊异黄酮苷转移率测定正交试验结果[/b]水提的毛蕊异黄酮苷转移率考察正交试验与水提的出膏率考察正交试验设计相同,即以水作为提取溶剂,把影响药材提取效果的用水量(A)、提取时间(B)、提取次数(C)确定为考察因素,以上三个考查因素各分3个水平考察,见表4-3。[align=center]表4-3水提实验因素水平表[/align] [table][tr][td=1,2] [align=center]水平[/align] [/td][td=3,1] [align=center]因素[/align] [/td][/tr][tr][td] [align=center]A(用水量/倍)[/align] [/td][td] [align=center]B(提取时间/h)[/align] [/td][td] [align=center]C(提取次数/次)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]1[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]8[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]3[/align] [/td][/tr][/table][b] [/b]毛蕊异黄酮苷转移率=各实验组黄芪提取物中毛蕊异黄酮苷含量/原黄芪药材中毛蕊异黄酮苷含量×100%。原药材中毛蕊异黄酮苷的含量按照药典的方法测得的结果为0.1425mg/g。跟据实验数据,得到水提实验中设定的不同工艺条件下的毛蕊异黄酮苷的转移率,其中因素D为误差项,作直观分析表和方差分析表,见表4-4,4-5。[align=center]表4-4 毛蕊异黄酮苷转移率考察L[sub]9[/sub](3[sup]4[/sup])正交试验表[/align] [table][tr][td] [align=center]批号[/align] [/td][td] [align=center]A[/align] [/td][td] [align=center]B[/align] [/td][td] [align=center]C[/align] [/td][td] [align=center]D[/align] [/td][td] [align=center]毛蕊异黄酮苷[/align] [align=center]转移率/%[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]37.21[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]91.77[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]65.58[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]121.62[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]61.36[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]93.85[/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]70.08[/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]56.28[/align] [/td][/tr][tr][td] [align=center]9[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]57.94[/align] [/td][/tr][tr][td] [align=center]K1[/align] [/td][td] [align=center]194.56[/align] [/td][td] [align=center]228.91[/align] [/td][td] [align=center]187.34[/align] [/td][td] [align=center]156.51[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]K2[/align] [/td][td] [align=center]276.83[/align] [/td][td] [align=center]209.41[/align] [/td][td] [align=center]271.33[/align] [/td][td] [align=center]255.70[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]K3[/align] [/td][td] [align=center]184.30[/align] [/td][td] [align=center]217.37[/align] [/td][td] [align=center]197.02[/align] [/td][td] [align=center]243.48[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]优水平[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]R[/align] [/td][td] [align=center]92.53[/align] [/td][td] [align=center]19.50[/align] [/td][td] [align=center]83.99[/align] [/td][td] [align=center]99.19[/align] [/td][td] [align=center] [/align] [/td][/tr][/table][b] [/b][align=center]表4-5 毛蕊异黄酮苷转移率考察方差分析表[/align] [table][tr][td] [align=center]方差来源[/align] [/td][td] [align=center]离差平方和[/align] [/td][td] [align=center]自由度[/align] [/td][td] [align=center]F[/align] [/td][td] [align=center]显著性[/align] [/td][/tr][tr][td] [align=center]A[/align] [/td][td] [align=center]1715.05[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1.50[/align] [/td][td] [align=center]-[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]64.09[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]0.04[/align] [/td][td] [align=center]-[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]1407.78[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]1.13[/align] [/td][td] [align=center]-[/align] [/td][/tr][tr][td] [align=center]方差来源[/align] [/td][td] [align=center]离差平方和[/align] [/td][td] [align=center]自由度[/align] [/td][td] [align=center]F[/align] [/td][td] [align=center]显著性[/align] [/td][/tr][tr][td] [align=center]D [/align] [/td][td] [align=center]1950.20[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][/tr][/table]注:F[sub]0.1[/sub](2,2)=9,F[sub]0.05[/sub](2,2)=19,*为有显著性,-为无显著性。从正交试验结果可知:水提实验中,各因素对毛蕊异黄酮苷转移率的影响大小顺序为:A(用水量)C(提取次数)B(提取时间);每个因素3水平之间的趋势为A[sub]2[/sub]A[sub]1[/sub]A[sub]3[/sub],B[sub]1[/sub]B[sub]3[/sub]B[sub]2[/sub],C[sub]2[/sub]C[sub]3[/sub]C[sub]1[/sub],直观分析得提取工艺为A[sub]2[/sub]B[sub]1[/sub]C[sub]2[/sub],即加水8倍量,提取2次,每次1h。表4-5的方差分析结果表明: A、B、C三因素的对毛蕊异黄酮的转移率影响都无统计学差异(PC(提取次数)B(提取时间);每个因素3水平之间的趋势为A[sub]2[/sub]A[sub]3[/sub]A[sub]1[/sub],B[sub]1[/sub]B[sub]3[/sub]B[sub]2[/sub],C[sub]2[/sub]C[sub]3[/sub]C[sub]1[/sub],直观分析得提取工艺为A[sub]2[/sub]B[sub]1[/sub]C2,即加水8倍量,提取2次,每次1h。表4-7的方差分析结果表明:A、B、C三因素对综合评分的影响都无统计学差异(P0.05)。[b]4 讨论[/b]本章实验借鉴药典中测定黄芪药材中毛蕊异黄酮苷含量的方法,利用紫外-可见光检测器的高效液相色谱仪测定黄芪水提物中毛蕊异黄酮苷的含量。与药典中方法测得的结果相比,本实验测得的结果除色谱峰分离度稍差外,其他方法学考察指标显示良好。从毛蕊异黄酮苷转移率测定正交试验结果来看,第4组实验毛蕊异黄酮苷转移率最高,这也是正交结果分析中最佳提取工艺,即加水8倍量,提取2次,每次1小时。本结果与上一章实验中第四组黄芪水提物中黄芪甲苷的转移率最高结果一致,但其他组别毛蕊异黄酮苷的转移率高低顺序与上一章黄芪甲苷的转移率高低顺序并不一致,这说明毛蕊异黄酮苷和黄芪甲苷对提取工艺的要求并不完全一致。同一种原药材,加工成不同功效的药物,那么发挥药效的物质也有可能不同,因此相应的提取工艺也是需要根据药效物质适时调整的。另外,用水量在设置的三个因素中对毛蕊异黄酮苷的转移率影响最大,但仍无统计学差异(P0.05),说明用水量、提取次数、提取时间三种工艺的改变对黄芪水提物中毛蕊异黄酮苷的含量无显著性影响。从综合评分计算正交试验结果来看,第4组实验综合评分最高,这也是正交结果分析中最佳提取工艺,即加水8倍量,提取2次,每次1小时。用水量在设置的三个因素中对综合评分影响最大,但仍无统计学差异(P0.05),说明用水量、提取次数、提取时间三种工艺的改变对黄芪水提工艺的综合评分无显著性影响。综合出膏率、黄芪甲苷和毛蕊异黄酮苷的含量得出综合评分来优选黄芪水提的最佳提取工艺,能够从化学成分的角度来客观全面地评价和研究黄芪水提的关键环节,这也为芪龙胶囊和黄芪配方颗粒水提环节工艺的优化提供借鉴和指导。[align=center] [/align][align=center]参考文献[/align] 陈建真,吕圭源, 叶磊, 等.黄芪黄酮的化学成分与药理作用研究进展. 医药导报, 2009, 28(10): 1314-1316. 赵四清,周日宝, 陈胜璜, 等.不同的产地加工方法对中药材金樱子质量的影响. 湖南中医学院学报, 2005, 25(3): 21-22.

  • 【原创大赛】超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量

    【原创大赛】超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量

    [align=center][b]超高效液相色谱-串联质谱法测定大豆中大豆异黄酮的含量[/b][/align][align=center]户江涛[/align][align=center](农业农村部豆类产品质量安全风险评估实验室(佳木斯),黑龙江省农垦科学院测试化验中心,黑龙江佳木斯 154007 )[/align]摘要:采用超高效液相色谱-串联质谱法建立了检测大豆中大豆异黄酮含量的分析方法。试样经90%甲醇水提取后,6种大豆异黄酮在C[sub]18[/sub]色谱柱上以0.1%甲酸水溶液和乙腈为流动相,进行液相色谱分离;质谱检测采用电喷雾正离子化模式和多反应监测模式(MRM)。结果表明,6种大豆异黄酮分别在0.01~0.5 mg/L(D、GL、G)和0.002~0.1 mg/L(De、GLe、Ge)范围内线性关系良好,相关系数(R)为0.9993~0.9998,定量限(LOQ)为0.0001 g/kg。在大豆空白样品添加浓度分别为0.01、0.05、0.2 g/kg(De、GLe、Ge)和0.2、1、2 g/kg(D、GL、G),6种大豆异黄酮的平均回收率为86.6%~96.2%,相对标准偏差(RSD)为1.07%~5.93%(n=6)。本方法简便、灵敏、抗干扰,适用于大豆中大豆异黄酮含量检测。关键词:超高效液相色谱-串联质谱;大豆;大豆异黄酮[align=center]Determination of soybeanisoflavone in soybean by ultra performance liquid chromatography-tandem massspectrometry[/align][align=center]HU Jiangtao[/align][align=center]([i]Laboratory of Qualityand Safety Risk Assessment for Soybean products, Ministry of Agriculture andRural Affairs, Testing and Analysis Center of Heilongjiang Academy of LandReclamation Sciences, Jiamusi 154007,China[/i])[/align][b]Abstract:[/b]A methodwasdeveloped for the determination of soybeanisoflavone in soybean by ultra performance liquid chromatography-tandem massspectrometry(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS). The samples were extracted by 90% methanol-water, then 6 soybean isoflavones were separated on aWaters BEH C[sub]18[/sub] column with gradient elution with the mobile phase of0.1% formic acid and acetonitrile, and finally detected by positive eletrosprayionization-mass spectrometry(ESI[sup]+[/sup]-MS/MS) in multiple reactionmonitoring(MRM) mode. The results showed the linearities of 6 soybean isoflavones were good in the concentrationrange of 0.01~0.5 mg/L(D、GL、G)and 0.002~0.1 mg/L(De、GLe、Ge), the correlation coefficients were 0.9993~0.9998. The limitof quantification(LOQ) of soybean isoflavone was 0.0001 g/kg. At the spiked levels of 0.01、0.05、0.2 g/kg(De、GLe、Ge)and 0.2、1、2 g/kg(D、GL、G) in the blank soybean samples, the mean recovery of soybeanisoflavone was 86.6%~96.2%, andthe relative standard deviation(RSD) was 1.07%~5.93%(n=6).This method is simple,sensitive, anti-jamming and suitable for simultaneous determination of soybean isoflavone in soybean.[b]Key words: [/b]ultra performance liquid chromatography-tandem massspectrometry (UPLC-MS/MS) soybean soybean isoflavone大豆异黄酮(soybean isoflavone)是一族化合物的统称,是大豆植物体内的一种次生代谢产物,是大豆主要活性成分之一,其母核为3-苯并吡喃酮,主要包括大豆苷、大豆黄苷、染料木苷及其相应苷元[sup][/sup]。研究表明,大豆异黄酮除具有天然抗氧化作用外[sup][/sup],还具有降低胆固醇含量、预防多种癌症及改善妇女更年期综合征等多方面生物功效[sup][/sup]。大豆异黄酮主要存在于大豆籽实中,其总含量约为0.4~5 g/kg,其中大豆苷、大豆黄苷和染料木苷这三种含量约占总量的97%~98%,而其对应的苷元含量仅占2%~3%左右[sup][/sup]。目前,大豆异黄酮的检测方法主要有高效液相色谱法(HPLC)[sup][/sup]、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[sup][/sup]、紫外分光光度法[sup] [/sup]、质谱法(HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[sup][/sup])等。紫外分光光度法[sup] [/sup]只能测定大豆异黄酮总量,且灵敏度不高;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[sup][/sup]需要对异黄酮进行衍生,前处理复杂;目前,大豆异黄酮检测现有的国家标准GB/T 26625-2011[sup] [/sup]采用的是高效液相色谱法(HPLC),在实际检测过程中发现,由于紫外检测器灵敏度不高,存在个别样品中异黄酮相应苷元检测不到的情况;同时大豆提取液中含有蛋白、脂肪等杂质影响色谱柱柱效,以至于不能满足分离度要求,严重干扰低含量组分峰面积积分定量。而[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法质谱检测器灵敏度高,通过选定大豆异黄酮的特征离子,能有效去除上述杂质干扰,定量更加准确可靠。目前,国内外采用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法检测大豆中大豆异黄酮含量的文献很少[sup][/sup]。本文对大豆中大豆异黄酮检测的前处理方法借鉴GB/T 26625-2011[sup][/sup],提取液改用UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测定。该方法前处理过程简便、灵敏度高、分析时间短、抗干扰能力强,适用于大批量大豆样品中大豆异黄酮含量的检测。[b]1 实验部分[/b]1.1 材料与试剂大豆苷(daidzin,记为D,以下同)、大豆黄苷(glycitin,GL)、染料木苷(genistin, G)、大豆素(daidzein,De)、大豆黄素(glycitein, GLe)、染料木素(genistein,Ge)(纯度≥99%,Dr.Ehrenstorfer公司);甲醇、乙腈、甲酸(色谱纯,Fisher公司);实验用水为Millipore纯水仪制备。1.2 仪器与设备Acquity UPLC型超高效液相色谱仪(Waters公司);XEVO TQ-S三重四级杆质谱仪(Waters公司);KQ-500DE型超声波仪(昆山市超声仪器有限公司);涡旋混合器(IKA公司);CR21GⅢ型高速离心机(HITACHI公司)。1.3 大豆异黄酮标准储备液的配置分别称取适量的D、GL、G、De、GLe、Ge标准品,用甲醇配置成质量浓度为1mg/mL标准储备液,于-18℃冰箱保存(有效期6个月),待用;使用时用10%甲醇水逐级稀释成所需浓度的混合标准工作液,现用现配。1.4 样品前处理提取:称取粉碎均与后的试样1.0g(精确到0.01g)于50mL聚乙烯离心管中,加入10.0 mL90%甲醇水,涡旋混合30 s后置于60℃超声波清洗器中提取30 min,在离心机中以15000 r/min离心5 min,将上清液转移至100 mL容量瓶中,残渣再加入10.0 mL90%甲醇水溶液按上述步骤提取后,合并两次上清液于100 mL容量瓶中,用10%甲醇水溶液定容至刻度,摇匀。a)De、GLe、Ge的测定:取1 mL过0.22um有机系微孔滤膜,供UPLC/MS/MS分析测定;b)D、GL、G的测定:由于D、GL、G含量较高,需要将a)中过完滤膜的待测液用10%甲醇水稀释50倍后,供UPLC/MS/MS分析测定。1.5 液相色谱及质谱条件液相色谱:色谱柱:Waters BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm);柱温:30℃;流速:0.5 mL/min;进样量:1μL;流动相A:乙腈;流动相B:0.1%的甲酸水溶液。梯度洗脱程序:0~0.5min,10% A;0.5~3. 0 min,10%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1.1min,100% A~10% A,4.1 ~5.0min 10% A。质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.2 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[align=center]表1大豆异黄酮的质谱参数[/align][align=center]Table 1 MRM parameters of soybean isoflavone[/align] [table][tr][td] [align=center]Analyte[/align] [/td][td] [align=center]Cone/V[/align] [/td][td] [align=center]Parent ion/(m/z)[/align] [/td][td] [align=center]Daughter ion/(m/z)[/align] [/td][td] [align=center]Collision energy/V[/align] [/td][/tr][tr][td] [align=center]D[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]417[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]255﹡[/align] 137[/td][td] [align=center]27[/align] [align=center]18[/align] [/td][/tr][tr][td] [align=center]G[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]433[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]271﹡[/align] 153[/td][td] [align=center]21[/align] [align=center]50[/align] [/td][/tr][tr][td] [align=center]GL[/align] [align=center] [/align] [/td][td] [align=center]30[/align] [align=center] [/align] [/td][td] [align=center]447[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]285﹡[/align] 270[/td][td] [align=center]25[/align] [align=center]46[/align] [/td][/tr][tr][td] [align=center]De[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]255[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]137﹡[/align] 181[/td][td] [align=center]30[/align] [align=center]26[/align] [/td][/tr][tr][td] [align=center]Ge[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]271[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]153﹡[/align] 215[/td][td] [align=center]30[/align] [align=center]25[/align] [/td][/tr][tr][td] [align=center]GLe[/align] [align=center] [/align] [/td][td] [align=center]25[/align] [align=center] [/align] [/td][td] [align=center]285[/align] [align=center][sup] [/sup][/align] [/td][td] [align=center]242﹡[/align] 168[/td][td] [align=center]27[/align] [align=center]35[/align] [/td][/tr][/table]﹡quantitativeion[b]2 结果与讨论[/b]2.1 色谱及质谱条件的优化流动相的选择:对比了酸性体系(0.1%甲酸水溶液)与非酸性体系(纯水、乙酸铵溶液)分别与甲醇、乙腈的流动相体系组合,结果发现目标物在酸性体系中比非酸性体系响应更高、峰形更好;同时大豆提取液中含有蛋白、脂肪等杂质可能会残留在色谱柱上,影响色谱柱的使用寿命,而乙腈比甲醇体系洗脱能力更强,可以有效去这些杂质。综合考虑目标物信号强度、色谱分离效果以及除杂等因素,本研究采用0.1%甲酸水溶液+乙腈流动相体系。质谱的选择:根据6种大豆异黄酮的分子量,用10%甲醇水配置1.0 mg/L 大豆异黄酮标准溶液直接注射到质谱中,在正离子模式下分别对各种组分进行母离子及对应子离子全扫描,最终确定的质谱条件见表1。2.2 质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)与色谱法(HPLC)的比较国家标准《GB/T 26625-2011粮油检验大豆异黄酮含量测定高效液相色谱法》[sup][/sup]中规定的大豆异黄酮检测方法为HPLC法。对同一大豆样品分别采用本文UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法(MRM色谱图见图1、2)和GB/T 26625 HPLC法检测,结果表明这两种方法测定的大豆异黄酮总含量值基本一致。由于De、GLe、Ge这三种苷元在大豆中含量很低,用HPLC法检测时,紫外检测器灵敏度不高,存在个别样品中上述三种组分检测缺失的情况;同时在实际大批量样品检测中发现,随着进样次数的增加,色谱柱柱效下降,大豆提取液中存在的蛋白、脂肪等杂质对含量低的目标物峰干扰越来越大,定量困难。研究发现,同浓度的大豆异黄酮在质谱检测器上的响应值要远远超过紫外检测器,同时质谱法可以通过选定大豆异黄酮的特征离子,有效地去除杂质的干扰,其目标物分离度不受色谱柱进样次数增加的影响,定量更加准确可靠。[align=center][img=,690,651]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050912587968_4111_3299836_3.jpg!w690x651.jpg[/img][/align][align=center]图1 大豆异黄酮标准溶液(0.01mg/L)MRM色谱图[/align][align=center]Fig.1 MRM chromatograms of soybean isoflavone standard solution at 0.01 mg/L[/align][align=center][/align][align=center][img=,690,653]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050913342201_5843_3299836_3.jpg!w690x653.jpg[/img][/align][align=center]图2 大豆样品中大豆异黄酮MRM色谱图[/align][align=center]Fig.2 MRM chromatograms of soybean isoflavone in soybean[/align]2.3线性范围和定量限吸取不同体积的大豆异黄酮标准储备液(1.3),用10%甲醇水分别配置0.002、0.005、0.01、0.05、0.1(De、GLe、Ge)和0.01、0.05、0.1、0.2、0.5(D、GL、G)的大豆异黄酮上机混合标准溶液,以各自定量离子的峰面积为Y对应质量浓度X(mg/L)做标准曲线,得到的线性方程和相关系数见表2。结果表明,大豆异黄酮标准溶液在各自浓度范围内线性良好,相关系数R为0.9993~0.9999。以10倍信噪比(S/N)计算,大豆异黄酮上机液最低定量浓度为0.001 mg/L,通过公式(1)计算得到大豆中大豆异黄酮含量,最终确定本方法大豆异黄酮的定量限(LOQ)为0.0001 g/kg。糠氨酸质量分数计算公式:[align=center][img=,207,87]https://ng1.17img.cn/bbsfiles/images/2019/08/201908050915166414_5621_3299836_3.jpg!w207x87.jpg[/img] ………………(1)[/align] 式中:X为试样中大豆异黄酮含量,以g/kg计;C为大豆异黄酮上机浓度(mg/L);V为定容体积(V=100)。表2 大豆异黄酮标准溶液的线性方程和相关系数[align=center]Table 2 Linear equation and correlation of soybean isoflavone in 10% methanol-water standard solutions[/align] [table][tr][td] [align=center]Analyte[/align] [/td][td] [align=center]Linear range/(mg/L)[/align] [/td][td] [align=center]Linear equation[/align] [/td][td] [align=center]R[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]D[/align] [align=center]GL[/align] [align=center]G[/align] [align=center]De[/align] [align=center]GLe[/align] [align=center]Ge[/align] [/td][td] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.01~0.5[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [align=center][sup]0.002~0.1[/sup][/align] [/td][td] [align=center]Y=2393.6x+479.38[/align] Y=1885x+139.66 [align=center]Y=1470.9x+187.97[/align] [align=center]Y=4287.9x+442.79[/align] [align=center]Y=3521.7x-103.62[/align] [align=center]Y=1993x+122.79[/align] [/td][td] [align=center]0.9995[/align] [align=center]0.9999[/align] [align=center]0.9993[/align] [align=center]0.9998[/align] [align=center]0.9997[/align] [align=center]0.9998[/align] [/td][td] [/td][/tr][/table]2.4回收率和精密度大豆中De、GLe、Ge含量较低,而D、GL、G含量较高,故本方法准确度实验分为高低浓度梯度组进行加标。称取大豆试样1.00 g,分别添加0.01、0.05、0.2 g/kg(De、GLe、Ge)和0.2、1、2 g/kg(D、GL、G),每个水平重复6次,同时做该大豆的空白本底实验。按照1.4前处理方法处理后上机检测,计算回收率(扣除空白),结果表明:不同添加浓度下,De、GLe、Ge的平均回收率为91.7%~96.2%,相对标准偏差(RSD,n=6)为2.78%~5.93%;D、GL、G的平均回收率为86.6%~93.8%,相对标准偏差(RSD,n=6)为1.07%~3.77%。[b]3 结语[/b]本文建立了超高效液相色谱-串联质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)测定大豆中大豆异黄酮含量的分析方法。该方法灵敏度高,线性范围宽,能同时覆盖大豆中多梯度浓度大豆异黄酮组分含量的测定。同时该方法具有较高的准确度和精密度,前处理步骤简单,分析速度快,可有效避免由于色谱柱柱效下降对最终检测结果的影响,特别适合大批量样品的检测。田娟娟, 宋宏哲, 张飞, 等. 水剂法纯化大豆异黄酮的研究. 大豆通报, 2005, 6:19-22. Hagen M K, Ludke A, Araujo A S, et al.Antioxidant characterization of soy derived products in vitro and the effect ofa soy diet on peripheral markers of oxidative stress in a heart disease model .Canadian Journal of Physiology and Pharmacology, 2012,90(8):1095-1103. 徐春华, 张治广, 谢明杰, 等. 大豆异黄酮的抗氧化和抗肿瘤活性研究研究 . 大豆科学, 2010, 29(5): 870-873. 李俏俏, 王清路, 薛金艳, 等. 大豆异黄酮对绝经女性血清中脂类物质的影响的研究 . 大豆科学, 2009, 28(1):172-174. 胡润芳, 张玉梅, 陈宇华, 等. 大豆异黄酮含量的初步研究. 东南园艺, 2017, 6:9-11. 刘琴, 朱媛媛, 白兴梁. 不同种类大豆中大豆异黄酮含量及抗氧化性比较. 北京工商大学学报(自然科学版), 2012, 30(6): 45-51. 袁凤杰, 姜莹, 董德坤, 等. 中国大豆核心种质异黄酮含量分析.中国粮油学报, 2011, 26(2):5-8. Tepavcevic V, Atanackovic M,Miladinovic J,et al. Isoflavone composition,total polyphenolic content,and antioxidant activity in soybeans of different origin. MedFood,2010,13(3):657-664 GB/T 26625-2011《粮油检验大豆异黄酮含量测定高效液相色谱法》. Liggins J,Bluck J C. Deidzein and genistein content of fruits and nuts. Journal ofNutritional Biochemistry,2000,11(6):326-331. 鞠兴荣, 袁建, 汪海峰. 三波长紫外分光光度法测定大豆异黄酮含量的研究. 食品科学, 2001, 22(5):46-48.

  • 【原创大赛】保健食品中四项大豆异黄酮的液相色谱测定体会

    【原创大赛】保健食品中四项大豆异黄酮的液相色谱测定体会

    寒冷的冬天,整个人都是懒洋洋的,尽管有很多试验经历、色谱柱使用体会、很多的原创素材,都懒的起笔。2013年马上来临,趁着2012年的第五届原创大赛,赶快记录一篇原创,分享自己更多的使用体会与试验经历给大家探讨。这次检测的是大豆异黄酮,说起这个,估计很少人接触,而我已经跟它已经认识了好几年。异黄酮是一类物质,有苷和苷元之分,可是接触了很久都不知道苷和苷元有什么区别,为什么这个叫苷,另外一个就叫苷元。而且保健品中有很多叫甙,我也搞不清楚甙和苷有什么区别。大豆异黄酮的测定,目前存在的标准方法:GB/T 23788-2009保健食品中大豆异黄酮的测定方法 高效液相色谱法NY/T 1252-2006大豆异黄酮http://ng1.17img.cn/bbsfiles/images/2012/12/201212281607_416709_1608710_3.jpg实验过程:色谱柱:Topsil 液相色谱柱(C18,5um,4.6*250mm)检测波长:260nm流动相:乙腈+0.1%磷酸水溶液,梯度洗脱流速:1.0mL/min进样量:20ul先晒晒标准上的图谱http://ng1.17img.cn/bbsfiles/images/2012/12/201212281611_416712_1608710_3.jpg以下是我测定的色谱图,根据出峰顺序依次是大豆苷、染料木苷、大豆素、染料木素。标准色谱图http://ng1.17img.cn/bbsfiles/images/2012/12/201212281614_416716_1608710_3.jpg保健食品样品色谱图http://ng1.17img.cn/bbsfiles/images/2012/12/201212281615_416718_1608710_3.jpg总结:1、总体来说,4个组分的保留时间和色谱峰都能与标准对应重现2、色谱峰的理论塔板数都很好,这根柱子已经用了一段时间,具体测了多少样品就不清楚了3、以前检测测的是大豆素和染料木素,同时测定4个还是第一次,效果还算满意你测试过大豆异黄酮吗?有经验赶快讨论吧

  • 22.9 高效液相色谱法同时测定黄芪中的五种异黄酮类成分

    22.9 高效液相色谱法同时测定黄芪中的五种异黄酮类成分

    【作者】 王晓辉; 刘涛; 李清; 陈晓辉; 毕开顺;【Author】 WANG Xiaohui,LIU Tao,LI Qing,CHEN Xiaohui,BI Kaishun(School of Pharmacy,Shenyang Pharmaceutical University,Shenyang 110016,China)【机构】 沈阳药科大学药学院; 沈阳药科大学药学院 辽宁沈阳110016; 辽宁沈阳110016;【摘要】 对蒙古黄芪中5种异黄酮类成分的含量进行了反相高效液相色谱法测定。色谱柱为D iam ons il C18柱,流动相为乙腈-水系统,梯度洗脱,检测波长230nm,柱温35℃。毛蕊异黄酮-7-O-β-D-葡萄糖苷在20.12~201.2m g/L、芒丙花素-7-O-β-D-葡萄糖苷在4.62~46.2m g/L、9,10-二甲氧基紫檀烷-3-O-β-D-葡萄糖苷在4.86~48.6m g/L、毛蕊异黄酮在9.24~92.4m g/L、芒丙花素在6.92~69.2m g/L时峰面积与浓度呈良好的线性关系,相关系数分别为0.999 2,0.999 7,0.999 7,0.999 5和0.999 5。5种成分的加样回收率均高于94%,相对标准偏差(RSD)小于3.2%(n=9)。该法简便快速,重复性良好,结果准确可靠,可用于黄芪药材中5种主要异黄酮类成分的含量测定。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207301613_380608_2379123_3.jpg

  • 液质联用山麦冬负离子模式

    赛默飞[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],在负离子模式下,优化山麦冬皂苷B时,标准要求母离子是721,实际优化781,求大神指点

  • 【“仪”起享奥运】气相色谱-质谱联用技术分析测定川麦冬块根及须根中可溶性糖组分的方法

    目的 建立基于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用技术([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])分析测定川麦冬块根及须根中多种可溶性糖组分的方法,并结合多元统计分析其可溶性糖组分差异。 方法 采用优化后甲氧基化-三甲基硅烷化两步衍生法结合[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]法测定18批川麦冬块根及须根中多种可溶性糖组分,结合主成分分析(principal component analysis, PCA)、正交偏最小二乘法判别分析(orthogonal partial least squares discrimimation analysis,OPLS-DA)和聚类热图分析等模型统计分析其组分差异,并根据含量换算块根及须根样品甜度值。 结果 在川麦冬块根和须根样品中鉴定了18种可溶性糖组分,对其中14种进行定量分析,川麦冬块根和须根样品中可溶性糖组分组成基本一致,14种可溶性糖总量平均值也基本一致(块根88.76 mgg[size=12px]-1[/size] [i]vs.[/i]须根85.66 mgg[size=12px]-1[/size]),但各组分含量存在一定差异,其中须根中D-(-)-果糖含量较高,而块根中D-(+)-蔗糖较高。多元统计分析结果显示,通过可溶性糖组分测定可显著区分块根和须根。通过换算,块根和须根的甜度值差异较小。 结论 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]法灵敏度高、精密度好、准确度高,能够将多种结构相似的可溶性单糖和二糖区分开,实现川麦冬块根和须根中多种可溶性糖的准确定性和定量,为麦冬不同部位的可溶性糖组分研究及其进一步开发利用提供了依据。

  • 脉动与甲醇

    宿舍买了酒精炉子,每次做实验都轮流用脉动瓶子做掩护从实验室顺些酒精。实验室酒精消耗量大增。今天做完实验,A拎着瓶子往外走,走到门口,老师拦住A,指着瓶子问:里面是什么?A淡定的说:脉动。老师淡定的说:喝一口。A愣了一下,拧下瓶盖真喝了一口,直接送医院了,现在还在输液。。

  • U-1901型双光束紫外-可见分光光度计!测异黄酮的吸光度!

    准确称取干燥后至恒重的异黄酮标准品0.0096g溶于95%的乙醇溶液中,定容100 mL,摇匀。再分别取0、2、4、6、8、10、12 mL用95%乙醇定容于100 mL容量瓶中,然后于260nm处分别测定其吸光度值,并绘制标准曲线。1.3提取后样品含量的测定准确量取一定量样品于容量瓶中,加入95%乙醇定容,摇匀。用紫外可见分光光度计测其吸光度。根据标准曲线和稀释倍数计算出样品中总异黄酮的质量我想请问一下!测吸光度的是用光度测定还是定量测定?校零用的是95%的乙醇么?如果我借用别人测的标准曲线,又该如何测,可以直接跳过标准品的测定直接测待测样品的么?

  • 【原创大赛】中药山麦冬横切面显微结构图

    【原创大赛】中药山麦冬横切面显微结构图

    [font='微软雅黑',sans-serif]山麦冬:百合科植物湖北麦冬或短亭山麦冬的干燥块根[/font][font='微软雅黑',sans-serif]时间:[/font]2017.7.27[font='微软雅黑',sans-serif]显微镜:[/font]Nikon ECLIPSE 80i[font='微软雅黑',sans-serif]相机:[/font]Nikon DS Fi1[font='微软雅黑',sans-serif]放大倍数:[/font]10×10[font='微软雅黑',sans-serif]解说:本图主要是皮部、韧皮部和木质部的放大图片。皮部的[/font]1 [font='微软雅黑',sans-serif]列石细胞围成了一个完美的圆圈,韧皮部束[/font]11[font='微软雅黑',sans-serif]个位于木质部束的星角间[/font][font='微软雅黑',sans-serif],本图整体给人一种美的感觉[/font][font='微软雅黑',sans-serif][img=,640,480]https://ng1.17img.cn/bbsfiles/images/2020/09/202009111033353441_3917_4173587_3.jpg!w640x480.jpg[/img][/font]

  • GC-MSMS法测定麦冬中35个农药残留物(4.3方式1)

    [align=right][b]SGL-GC/MS-009[/b][/align][b]摘要:[/b]本研究建立了麦冬中35个禁用农药残留物的测定方法。参照《中国药典》2020年版通则2341第五法4.3 方式1操作步骤,采用岛津的SHIMSEN分散型净化材料的净化管对麦冬样品进行净化,SH-I-17Sil MS色谱柱进行分离,岛津串联质谱[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX检测分析。对空白样品加标后(添加浓度以灭线磷计:0.02 mg/kg),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为66.71%-100.95%,RSD为0.48%-11.68%,回收率高,重现性好。该方法为麦冬中35个禁用农药残留物的测定提供参考。[b]关键词:[/b]SHIMSEN分散型净化材料的净化管 禁用农药 麦冬 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX[b]1. 实验部分1.1 实验仪器及耗材[/b]仪器配置:Shimadzu [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX;色谱柱:SH-I-17Sil MS(30×0.25mm,0.25μm;P/N:R221-75916-30);SHIMSEN分散型净化材料的净化管:无水硫酸镁1200 mg,PSA 300 mg,C18 100 mg(P/N:380-00174);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱:SH-I-17Sil MS(30×0.25mm,0.25μm;P/N:R221-75916-30)程序升温:初始温度60℃保持1 min, 以30℃/min升温到120℃,再以10℃/min升温到160℃,以2℃/min升温到230℃,最后以15℃/min升温到300℃ 保持6 min。载气:He载气控制方式:恒压,146 kPa进样口温度:250 ℃进样时间:1 min进样量:1 μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]电离模式:电子轰击电离(EI);离子源温度: 250 ℃接口温度:250 ℃检测器电压:调谐电压+0.7 Kv溶剂延迟:3 min数据采集模式:MRM; 各化合物MRM参数如下:[img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_1.png[/img][img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_2.png[/img][font=arial, &][size=12px][/size][/font][b]1.3 供试品溶液的制备1.3.1样品提取[/b]取供试品粉末(过三号筛)5 g,精密称定,加氯化钠1 g,立即摇散,再加入乙腈50 mL,匀浆处理2分钟(转速不低于每分钟12000转),离心(每分钟4000转),分取上清液,沉淀再加乙腈50 mL,匀浆处理1分钟,离心,合并两次提取的上清液,减压浓缩至约3-5 mL,放冷,用乙腈稀释至10.0 mL,摇匀,即得。样品提取流程图见下图1。[img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_3.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图1 样品提取流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.2 样品净化[/b]量取上述制备的供试品溶液3 mL,置于装有分散型净化材料的净化管(无水硫酸镁1200 mg,PSA 300 mg,C18 100 mg)中,涡旋使充分混匀,再置震荡器上剧烈振荡(500次/分)5分钟使净化完全,离心,精密量取上清液1 mL,精密加入0.3 mL内标溶液(磷酸三苯酯:0.1 μg/mL),混匀,滤过,即得。样品净化流程图见下图2。[img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_4.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图2 样品净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]2. 结果及讨论2.1 混合标准品溶液的色谱图[/b][img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_5.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]35个禁用农药混合标准品溶液TIC色谱图(以灭线磷浓度计:200 ng/mL)[/b][/align][font=arial, &][size=12px] [/size][/font][b]2.2 麦冬中35个禁用农药残留物的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测添加回收结果[/b]将麦冬空白样品进行加标(添加浓度以灭线磷计:0.02 mg/kg)后,按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为66.71%-100.95%,RSD为0.48%-11.68%,回收率高,重现性好。[img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_6.png[/img][img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_7.png[/img][img=[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]MS法测定麦冬中35个农药残留物]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-009_8.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]本研究建立了麦冬中35个禁用农药残留物的测定方法。参照《中国药典》2020年版通则2341第五法4.3 方式1操作步骤,采用岛津的SHIMSEN分散型净化材料的净化管对麦冬样品进行净化,SH-I-17Sil MS色谱柱进行分离,岛津串联质谱[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 NX检测分析。对空白样品加标后(添加浓度以灭线磷计:0.02 mg/kg),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,结果显示,加标回收率为66.71%-100.95%,RSD为0.48%-11.68%,回收率高,重现性好。该方法为麦冬中35个禁用农药残留物的测定提供参考。

  • vivitro心脏瓣膜脉动流测试试验技术

    ViVitro?SuperPump脉动泵是一种数字控制的液压活塞,可产生生理性心脏血流,其可靠性、功能性和多功能性无与伦比,AR系列数字技术可提供最大程度的精确控制。SuperPump脉动血泵与ViVitro或独立生产的附件配合使用,为任何类型的心血管设备提供可靠的心脏血流。ViVitro?SuperPump脉动泵在世界各地的众多研究中得到了应用。访问我们的引文数据库获取当前的应用程序和文章列表。SuperPump脉动泵为操作员提供了最大程度的精确控制。泵可以通过预先配置的波形或可定制的ViViTest软件输入进行控制。[img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307131015501983_6955_1602049_3.png[/img]

  • 【求助】蠕动泵脉动大怎么解决

    用蠕动泵运输液体,本来基线很稳定的,上下波动不大,可是最近,发现蠕动泵的脉动很大,基线不平稳,开始变成锯齿状。不知道该怎么解决。

  • 脉动流测试台涂层支架断裂疲劳试验测试台

    ViVitro?SuperPump脉动泵是一种数字控制的液压活塞,可产生生理性心脏血流,其可靠性、功能性和多功能性无与伦比,AR系列数字技术可提供最大程度的精确控制。SuperPump脉动血泵与ViVitro或独立生产的附件配合使用,为任何类型的心血管设备提供可靠的心脏血流。ViVitro?SuperPump脉动泵在世界各地的众多研究中得到了应用。访问我们的引文数据库获取当前的应用程序和文章列表。SuperPump脉动泵为操作员提供了最大程度的精确控制。泵可以通过预先配置的波形或可定制的ViViTest软件输入进行控制。[img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311201339447925_9467_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311201339447906_207_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311201339447828_2715_1602049_3.png[/img]

  • 【分享】脉动真空灭菌器常见故障的排除

    XGI.P型脉动真空灭菌器采用可编程序控制器进行程序控制,实现了灭菌消毒的自动化,且由于使用了功能强、可靠性高的可编程序控制器,省去了过去有继电器控制而常常引起触点接触不良,而造成故障频繁发生的现象。我公司自使用该设备几年来,通过定期进行保养维护,极大地降低了设备的故障发生率,现将该设备常见的故障检修情况介绍如下: 故障一:在程序“真空”阶段,真空泵持续工作20min,无法进入灭菌状态。 分析与检修: 在程序“真空”阶段,“真空”指示灯亮,真空泵启动,这时内柜压力开始下降,脉动充气电磁阀V1与排气电磁阀V2交替启闭,进行脉动真空,即抽真空时V2开启,充气时V1开启,脉动幅值由电接点真空压力表P2的信号控制,待脉动次数达到3次时,“灭菌” 指示灯燃亮,“真空”指示灯熄灭,真空泵停止运转。现该设备在“真空”阶段,内柜压力已达到负0.07MPa,且无充气动作,测充气电磁阀V1不动作,可编程序控制器0504端无信号输出,观察脉动幅值压力表P2的指针已达到预置下限,进入充气状态,将压力表下限触点与控制触点短接,此时,脉动充气电磁阀V1开始动作,向柜内充气,待柜内压力达到预置的上限时,排气电磁阀V2开始动作,但当柜内压力下降到P2下限值时,充气电磁阀V1仍不能动作,故怀疑此故障是由电接点真空压力表触点接触不良引起的。关闭设备总电源,轻轻将压力表上盖打开,发现压力表触点有积碳打火点,致使触点接触不良。用细砂纸轻轻打磨,并用酒精擦洗干净,用万用表测量触点接触良好,最后将压力表上盖安装妥当,重新开启电源,在真空阶段,动作正常,脉动结束后成功进入程序“灭菌”状态。 故障二:在灭菌状态,灭菌计时器不计时。 分析与检修: 该机在完成三次脉动真空程序后,“灭菌”指示灯亮,内柜压力逐渐升高,温度也随之提高,当内柜温度达到记录仪下限指针132℃时,灭菌计时器开始得电计时,当计时时间达到预置值时,程序自动转入下一工作状态。内柜压力已达到0.2Mpa,但温度记录仪温度显示为127℃后不再上升,内柜温度记录仪下限指针设置为132℃,由于内柜压力已达到额定值,故此时内柜的温度实际已达到灭菌条件。拆下机器左侧裙板,观察内柜排水管路无气体排出,怀疑是疏水阀故障,缓慢调节疏水阀调节螺杆,排水管无气体排出,可能是疏水阀锈蚀引起堵塞,将柜内气体排出打开柜门,待柜体温度下降后,卸下疏水阀,打开发现阀内锈蚀严重,已无法再次使用,更换新品后试机,当内柜压力达到额定值时,仔细调节疏水阀调节螺杆,使排水管路有少量气体排出,温度开始逐渐上升达到132℃,灭菌计时器开始计时。此故障的产生是由疏水阀堵塞,而使排水管路积水造成的,管路积水后,其温度低于内柜温度,而温度记录仪的测量传感器探头就安装在柜体下侧的排水管路中,因此造成此次故障的发生。 故障三:做B-D试验不合格。 分析与检修: 当灭菌器内柜密封性能差,产生轻微漏气时会出现灭菌包内温度滞后现象,致使灭菌包内温度达不到标准要求。观察抽真空过程中,内柜压力下降缓慢,较之过去所用时间长,说明柜内有漏气现象。仔细检查内柜门封条、真空泵密封盖及电磁阀均无异常现象,最后发现内柜底部排水管与冷凝器之间单向阀密封不良,阀芯内部一圆紫铜片变形,使硅胶垫圈在抽真空时不能完全复位,产生轻微漏气,将铜片拆下整平,重新安装就位试机,经检测达到灭菌要求。 通过以上三例故障不难看出,做好设备的日常维护,可减少此类故障的发生。日常维护包括以下内容:定期检查真空泵、压力表、安全阀、疏水阀等重要部件。定期压紧真空泵盘根防止漏汽,轴承油杯加满黄油减少磨损,经常打开疏水阀进行清理以防止堵塞。由于灭菌器是压力容器,应按压力容器管理部门的要求定期对整体进行检验,其附件如电接点压力表触点要定期测量检查,保证触点接触良好,定期对安全阀进行开闭试验,以防动作失灵,且压力表、安全阀属强制检定计量器具,必须送计量测试部门定期检定,以确保数值测量准确,保障设备及人身安全。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制