当前位置: 仪器信息网 > 行业主题 > >

丁二酸洛沙平

仪器信息网丁二酸洛沙平专题为您提供2024年最新丁二酸洛沙平价格报价、厂家品牌的相关信息, 包括丁二酸洛沙平参数、型号等,不管是国产,还是进口品牌的丁二酸洛沙平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丁二酸洛沙平相关的耗材配件、试剂标物,还有丁二酸洛沙平相关的最新资讯、资料,以及丁二酸洛沙平相关的解决方案。

丁二酸洛沙平相关的资讯

  • 转基因SCoAL是个啥?你也被钓鱼了吗?
    p & nbsp & nbsp & nbsp & nbsp 春节前后,一篇题为《触目惊心:中国平民体内发现美国转基因的SCoAL基因!》的文章在微信里广为流传。 br/ & nbsp & nbsp & nbsp & nbsp 文章表示,上个月,英国学术期刊《雪莱遗传学通讯》发表了一篇学术文章,在对中国平民进行基因组学研究时发现了在转基因作物中用来促进生长的基因SCoAL,并提醒该基因对健康有害。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/7dbb7e38-502c-4dcf-bb88-295452caaac9.jpg" title=" 12134.jpg" width=" 600" height=" 979" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 979px " / /p p & nbsp & nbsp & nbsp & nbsp 耸人听闻的说法,夹杂着对转基因的攻击,煽动读者情绪,这篇奇文在多个微信公众号里都创下了10万+的阅读量,更有许多读者在留言里控诉“美国人用心恶毒”或“中国政府不作为”。 br/ & nbsp & nbsp & nbsp & nbsp “无中生有、妖言惑众!”中国农科院生物技术所所长林敏一听到记者提到这篇文章,立刻表示,“这是一篇我们分析过的钓鱼文,里面有很多一眼就能看出的破绽。” br/ & nbsp & nbsp & nbsp & nbsp 所谓钓鱼文,是一种精心安排的陷阱。这类文章针对特定的人群,以戏耍为目的,故意说一些奇异的、误导性的言论,让被“钓”的人先是相信,但之后才意识到自己上当了,就像鱼上当咬钩一样。 br/ & nbsp & nbsp & nbsp & nbsp 制作精良的钓鱼文虽然在网络交锋中是一种高效的手段,但却有被当成网络谣言从而引起社会恐慌的可能。 br/ & nbsp & nbsp & nbsp strong & nbsp 主要论据漏洞百出 /strong br/ & nbsp & nbsp & nbsp & nbsp 这篇文章的主要论据是:遗传学家斯坦因教授对中国工薪阶层的数十位志愿者进行全基因组测序,在超过半数志愿者的25号染色体上发现了名为“SCoAL”的基因。SCoAL基因编码丁二酸合成酶。该酶会在人体内合成化学物质丁二酸。高浓度的丁二酸会抑制DNA复制。不仅如此,丁二酸的合成过程将会大量消耗人体中最重要的能源分子三磷酸腺苷。 br/ & nbsp & nbsp & nbsp & nbsp “人类进化到现在,哪里来的25号染色体?”林敏介绍道,“学过初中生物的人都知道,人类有23对染色体,其中22对常染色体形态和大小一样,称为常染色体,男女都有;第23对染色体叫性染色体,男性个体细胞的性染色体对为XY,女性则为XX,所以一共是24种染色体。” br/ 而这篇流传甚广的微信文章却给人类安上了25号染色体,就是一个故意留下的破绽。 br/ & nbsp & nbsp & nbsp & nbsp 而所谓的SCoAL基因,在基因数据库里根本找不到。华大基因生物信息工程师dave xu在知乎上回答表示:NCBI(美国国立生物技术信息中心)查无此基因。 br/ & nbsp & nbsp & nbsp & nbsp 那文章里所说的对人体危害极大的丁二酸又是什么东东? br/ & nbsp & nbsp & nbsp & nbsp 林敏告诉记者:“丁二酸又称琥珀酸,其实是一种常见的天然有机酸,作为三羧酸循环的中间代谢产物存在于人体、动物、植物和微生物中。所有的生命现象都会有这种产物,并不是转基因作物独有的。 br/ & nbsp & nbsp & nbsp & nbsp strong “学术期刊”子虚乌有 /strong br/ & nbsp & nbsp & nbsp & nbsp 文章声称研究发表于《雪莱遗传学通讯》,作为一名在科技新闻界工作多年的记者,对此“学术期刊”的名字却是毫无印象,不免有些羞愧。于是赶紧去问度娘,百度“雪莱遗传学通讯”发现所有的搜索结果都只有一个出处,即这篇流传甚广的《触目惊心:中国平民体内发现美国转基因的SCOAL基因》,其他再无任何学术文章与该《通讯》有关。 br/ & nbsp & nbsp & nbsp & nbsp 稍有点外国文学常识的人都会知道,雪莱是一位英国著名诗人,他最耳熟能详的诗句就是“如果冬天来了,春天还会远吗?” br/ & nbsp & nbsp & nbsp & nbsp “我们都知道雪莱是个诗人,却从来没有听说过一位名叫雪莱的遗传学家或者生物学家,也从来没有听说过一本以‘雪莱’来命名的遗传学期刊。”林敏说。 br/ & nbsp & nbsp & nbsp & nbsp 而且雪莱这种译名跟安徒生一样,都是专用的,如果已经有一位著名诗人叫雪莱了,即便确实有一位科学家也叫“Shelley”这个英文名,翻译到中国来一般也会另取译名,比如叫个“雪莉”或者“休莱”啥的,毕竟中国汉字博大精深,想要不重复还是很好办到的。 br/ & nbsp & nbsp & nbsp & nbsp 一篇以记者口吻表述的科学类报道,里面却不断出现“祸国害民昏官和卖国贼”“臭狗屁”等词语,还包含了“在平民阶层中发现”、“拿中国人当典型的二等公民”“对工薪阶层做实验”、“主管部门置若罔闻”等煽动性叙述,看着就很不靠谱。 br/ & nbsp & nbsp & nbsp & nbsp 更搞笑的是,文中采访的遗传学家来自“泰斯特罗莎”医学中心,正在中国进行“QB”计划。这些看起来有些古怪的说法,其实并不是专业术语,都是日本动漫里的词汇。 br/ & nbsp & nbsp & nbsp & nbsp 喏!泰斯特罗莎就是这个动漫人物↓↓↓ br/ & nbsp & nbsp & nbsp & nbsp strong 基因转移到人体,没那么容易 br/ /strong & nbsp & nbsp & nbsp & nbsp “吃了转基因食品之后,基因会不会转到人身上,这也是一个基本常识问题。” br/ & nbsp & nbsp & nbsp & nbsp 林敏告诉科技日报记者,“从生物学的基本知识来讲,任何食品都不可能通过肠胃消化系统来把基因嵌入到人体基因组上的。” br/ & nbsp & nbsp & nbsp & nbsp 据林敏介绍,转基因的过程非常复杂,科学家在实验室特殊的条件下,用特别的技术手段,把外源基因转化到作物染色体上非常困难,转化效率通常也非常低。何况人体还有生殖屏障,因此,不可能通过消化道把转基因食品的外源基因转移到人体的染色体上。 br/ & nbsp & nbsp & nbsp & nbsp “最简单的例子,千百年来人吃了那么多猪肉,也没有变成猪嘛!”林敏风趣地说。 br/ & nbsp & nbsp & nbsp & nbsp 还有很多人认为转基因作物出现才几十年,就算目前没有证据表明转基因对人体有害,但还有待观察。 br/ & nbsp & nbsp & nbsp & nbsp 对此,林敏认为这种观点也非常具有迷惑性。“本来就没有绝对安全的食品,不管是转基因食品,还是传统食品。对于食品而言,安不安全只有剂量关系,离开剂量谈安全都是不科学的。其实,某些传统食品也带有致癌致病因子,我们的作物改良的目的之一就是减少这些有害成分,提高营养品质。” br/ & nbsp & nbsp & nbsp & nbsp 林敏表示,现代农业系统里已经没有多少天然食物了,转基因育种不过是是农业育种技术不断发展过程的新技术途径,目前它是最为有效的途径之一,但也许以后还会有更好地作物改良的方法,譬如基因组编辑育种。 br/ & nbsp & nbsp & nbsp & nbsp “目前批准上市的转基因食品都是经过严格的安全性评估的。它的安全风险与传统食品是一样的,完全可以放心食用。”林敏强调。 br/ & nbsp & nbsp & nbsp & nbsp strong 中科院遗传与发育研究所生物学研究中心高级工程师点评如下: /strong br/ & nbsp & nbsp & nbsp & nbsp 文章《触目惊心:中国平民体内发现美国转基因的SCoAL基因!》内容很多,第一,先看核心的信息,第二,然后看其重点表述的逻辑,第三,再分析其推论或给出的观点。 br/ & nbsp & nbsp & nbsp & nbsp 先看这个基因: 有生物化学基础的会感觉SCoAL很面熟,分解为S、CoA、L,结合文章提出的丁二酸,在生物化学里则更多称之为琥珀酸,按照酶分子命名法可以大致拼出:succinate-CoA ligase,读作琥珀酸-乙酰辅酶A连接酶,有时连接酶也是合成酶,因此调整下就是succinate-CoA synthetase,这个酶是有的,简称是SCoAS,只要是有线粒体的生物都必须有这个酶及相应的基因。就是说不需要转基因,不但我们的食物,而且我们人类都天然的有这个基因和对应的蛋白质分子。可见这个文章的作者是起码有大学生物化学以上的相关知识水平。 br/ & nbsp & nbsp & nbsp & nbsp 再看他表述的逻辑:尽管题目很有迷惑性,但仔细阅读,他通篇没有说这个基因是通过食用转基因而到了人体内的。因此,他没有恶意造谣,而是典型的恶作剧。 br/ & nbsp & nbsp & nbsp & nbsp 还有,他在提及的丁二酸纯品的化学性质,这个说法没有生物学意义。比如,我们的基因化学成分就是DNA,而DNA上富含磷酸根,那是不是就说我们的基因有强烈腐蚀性啊?当然不是这样。 br/ & nbsp & nbsp & nbsp & nbsp 作者在“斯坦因教授曾向国内主管部门提议重视这一基因的危险性并对转基因作物进行限制。然而对方对他的建议置若罔闻,并声称丁二酸是“人体正常的代谢产物,不会对健康造成危害”。”没有做相反议论,这也恰是正确的表述,尽管所谓有关部门回应未必是事实。 br/ 最后,看文章的议论和观点部分,文风大变,经过搜索比对,确定是作者用移花接木的来自一个叫张宏良的反转基因文章。跟前面的SCoAL基因毫无关系。 br/ & nbsp & nbsp & nbsp & nbsp 除了大家说的之外,还有& quot 北京进行研究工作的遗传学家维克多· 斯坦因教授。对应victor Stein,则为电子游戏里的疯子科学家”。 br/ & nbsp & nbsp & nbsp & nbsp 人类有23对,46条染色体。按照由大到小命名到22号,然后是性染色体,X染色体和Y染色体。没有25号染色体。所以,基本知识和逻辑清楚的读者,看完这一句就清楚是钓鱼文章。 /p
  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。 样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。 色谱条件 色谱柱:Venusil® MP C18 5&mu m 100Å 4.6× 250mm 流动相:水(磷酸调pH至3.0):乙腈=90:10 波 长:215nm 流 速:1mL/min 柱 温:30℃ 进样量:20ul 色谱图 图1 0.1ug/ml标准溶液色谱图 图2 淀粉空白样品色谱图 图3 10mg/kg淀粉添加样色谱图 订货信息 名称 规格 订货号 Venusil MP C18 5µ m;100Å ;4.6*250 mm VA952505-0 1.5mL样品瓶 短螺纹透明带书写处,100/PK 1109-0519 1.5mL样品瓶盖 100/PK 0915-1819 微孔滤膜(Nylon) 13mm,0.45&mu m,200个/包 AS021345 一次性注射器 2ml无针头,100支/包 LZSQ-2ML 乙腈 4L/瓶,色谱纯 AH015-4
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图 添加回收结果 回收率 88%~89%(添加水平:10、50、100 mg/kg) 相对标准偏差(n=5) 定量下限 5.0 mg/kg * 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息: 货号 名称 规格 样品前处理 37177 针头式过滤器 Nylon 13 mm,0.22 μm 100/pk 37180 针头式过滤器 Nylon 13 mm,0.45 μm 100/pk 色谱柱及保护柱 99503 耐100%纯水流动相反相液相色谱柱Platisil ODS C18 250 × 4.6 mm, 5 μm 标准品 46672 顺丁烯二酸酐[108-31-6] 1 g 46671 顺丁烯二酸[110-16-7] 1 g HPLC溶剂 缓冲盐 离子对试剂 50102 甲醇 HPLC级 4 L 50108 无水乙醇 HPLC级 4 L 50133 磷酸 HPLC级 50 mL 通用色谱产品 52401B 瓶架/蓝色 50 孔 52401A 瓶架/白色 50孔 5323 样品瓶(棕色/螺纹 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25 μL
  • Socorex瓶口分液器---用于美沙酮的准确分配
    盐酸美沙酮(简称美沙酮)为μ阿片受体激动剂,药效与吗啡类似,具有镇痛作用,并可产生呼吸抑制、缩瞳、镇静等作用。具有作用时间较长、不易产生耐受性、药物依赖性低的特点,是二战期间德国合成的替代吗啡的麻醉性镇痛药。20世纪60年代初期发现此药具有治疗海洛因依赖脱毒和替代维持治疗的药效作用。2000年8月17日,中国国家药品监督管理局安全监管司根据《戒毒药品管理办法》的规定,下达了戒毒用美沙酮口服液的追加计划。美沙酮口服吸收良好,服药后30分钟起效,4小时血药浓度达高峰,作用持续时间24~36小时。主要用于创伤、术后、癌症引起的重度疼痛的镇痛治疗、阿片类依赖的脱毒治疗和阿片类依赖的替代维持治疗。阿片类药物通常包括阿片、吗啡、罂粟碱等,主要对镇痛、止咳、止泻、麻醉、解痉等有效。美沙酮是一种常见的治疗阿片类药物成瘾的方法,例如可卡因。它先在美国进行测试和使用,现在广泛被认为是一种有效的治疗方法。为了符合每个患者的成瘾水平,液体疗法准确的剂量是非常重要的。在试验期内,美沙酮以每日剂量(通常在 20-50 mg之间)分发给患者,直至分发给足够的个体剂量。此后,患者可以通过服用液体或凝胶胶囊中的药物替代品来继续治疗。为了平衡其强烈的苦味,纯美沙酮通常与葡萄糖或糖浆混合,提高了患者的接受度并易于分发。在整个分发过程中,避免以任何方式错误稀释或错误剂量等错误的发生。此外,出于法律方面的考虑(该产品仍为管制药物),必须对医疗中心使用的美沙酮的确切用量进行准确监控和登记,以避免被盗或可能被非法使用。Socorex Calibrex™ 530瓶口分液器,特别适用于此类精细液体的分发,其具有广泛的体积范围(0.1-100 mL)。Socorex Calibrex™ 瓶口分液器可通过滑动光标轻松调节体积,刻度上的体积读数清晰,避免设置错误。提供变口适配器,因此,Calibrex™ 瓶口分液器可以安装在任一装有美沙酮溶液的瓶子上。流量控制阀也提供了巨大的优势,回流功能可以在分装过程中直接在瓶子中回收液体,避免代价高昂的损失。流量控制阀Socorex Calibrex™ 瓶口分液器具有独特的 PFA 涂层活塞,可避免由于试剂瓶中中可能出现糖浆结晶而造成的堵塞,从而实现长期无故障的操作。正确的维护对于设备运行至关重要,如果不定期清洁仪器也可能会造成阻塞。Socorex 建议遵循操作说明中所述的关键维护步骤,例如分装、拆卸、清洁和校准,为Calibrex™ 瓶口分液器提供较长的使用寿命。此外,瓶口分液器模块化设计,拆卸组装方便,便于清洁维护,可121℃ 高压蒸汽灭菌,避免了交叉污染。
  • 毒淀粉马来酸-顺丁烯二酸检测解决方案
    阅读清晰版请下载:毒淀粉马来酸-顺丁烯二酸检测解决方案.pdf 关键词: 毒淀粉 马来酸-顺丁烯二酸 检测 解决方案 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 海能仪器对“毒淀粉”中顺丁烯二酸(酐)推出的检测解决方案
    顺丁烯二酸又称马来酸,是一种重要的化工原料,曾经作为酸处理剂,在牙齿保健方面有广泛的应用,另一个方面,顺丁烯二酸作为淀粉处理剂,能有效的提高淀粉的粘度和稳定性,近年来业界发现有少量技术能力较低的企业,为了提高淀粉的性能,在食用淀粉中加入大量的顺丁烯二酸淀粉酯,但是由于技术条件的限制,造成淀粉中大量的顺丁烯二酸残留,从而留下巨大的安全隐患,台湾所谓的&ldquo 毒淀粉&rdquo 事件就由此而发,目前,我国国家标准中仍未将顺丁烯二酸酐列为食品添加剂。 方法简介 由于顺丁烯二酸在水中良好的溶解性(788g/L),其前处理基质组分也不复杂,所以,其前处理提取方式较为简单,另顺丁烯二酸在紫外检测器中具备相应良好响应(其定量限可达250ug/mL),总体说明:此方法前处理操作简单,灵敏度高,稳定性好,适用于淀粉及其制品中顺丁烯二酸(酐)含量的测定。 实验部分 主要仪器与试剂: 仪器:海能LC7000高效液相色谱仪 配置:LC7011二元高压泵 LC7020紫外/可见检测器 LC7031 柱温箱 7725i手动进样器 Hanon-Clarity色谱工作站 试剂:顺丁烯二酸标准品(浓度99.5%以上)、乙腈(色谱纯)、超纯水、磷酸(分析纯) 色谱条件 色谱柱: C18,250 mm × 4.6 mm,5 &mu m 流动相:乙腈-0.1%磷酸溶液(3∶97) 流速:1.0 mL/min 柱温:30 ℃ 进样量:15 &mu L 波长: 215 nm 标样制备: 称取0.05g顺丁烯二酸标准品(精确到0.1mg),用超纯水定容在25mL容量瓶中,得到2mg/mL的标准液 样品前处理 称取5 g样品(精确到0.01 g)于50 mL比色管中(样品磨碎后称取),加入40 mL的超纯水,超声提取12 min后用超纯水定容至50 mL,放入冰箱至-5摄氏度环境中静置5min,放入离心机离心5 min后,用0.45um水滤膜过滤后进样测试。 图例 以下是使用海能LC7000高效液相色谱系统在淀粉中加入顺丁烯二酸标准品测试的结果,谱图中的主峰为顺丁烯二酸,与其他的杂质分离度良好,响应值高,完全适合在实验室中做批量测试应用。
  • 月旭科技“毒淀粉”中顺丁烯二酸(酐)的测定方案
    近日,相关媒体报道台湾当地很多经典小吃,如粉圆、黑轮、板条、芋圆、地瓜圆等食品中被检测出含有违法添加物&ldquo 顺丁烯二酸&rdquo 。该物质又称马来酸酐(简称顺酐),主要用于工业粘着剂,若加入食物中可增加食物弹性及保质期,人体吸入后会引起咽炎、喉炎和支气管炎,同时也会对人体肾脏造成极大的损伤。 月旭科技采用Ultimate® AQ-C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐含量的高效液相色谱检测方法。该方法灵敏度高、准确度好且前处理简便,适用于淀粉及其制品中顺丁烯二酸(酐)和顺丁烯二酸酐含量的测定。 样品前处理 准确称取2.50g样品(精确至0.01g)于50mL比色管中(淀粉食品用均质机粉碎后称取),加入50mL体积分数为5%的乙醇水溶液,涡旋5min,超声提取30min后,定容至50mL,摇匀,4000r/min离心5min后,过0.22µ m滤膜进行上机测定。 色谱条件 色谱柱:月旭Ultimate® AQ-C18(5µ m, 4.6× 250mm) 流动相:乙腈:0.1% H3PO4水溶液 = 2:98 流速:1.0mL/min 柱温:30oC 进样量:20µ L 标样浓度:10µ g/ml 检测器:214nm 溶剂空白色谱图 顺丁烯二酸标准品色谱图 不含顺丁烯二酸空白样品色谱图 空白样品加标色谱图 回收率结果考察(n = 5) 订货信息
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 欧盟科学家在非聚碳酸酯婴儿奶瓶中发现BPA
    2012年2月16日消息,欧盟委员会联合研究中心(JRC)公布了一项针对塑料婴儿奶瓶释放化学物质的监测研究的最终结果。研究结果发现,在一个由聚酰胺制成的产品中发现了双酚A(BPA)的存在。   研究人员对277种从欧盟和美国市场购买的婴儿奶瓶的化学品迁移进行了测试。这些奶瓶由替代BPA的非聚碳酸酯材料制成,自2011年3月1日塑料BPA禁令生效后开始使用,材料包括聚酰胺、聚苯醚砜、聚丙烯和硅。   结果表明,总体上来说所有奶瓶都会释放低含量的化学物质,这与11月发布的初步研究结果比较相似。然而,其中一款标签为“无BPA”的聚酰胺奶瓶中检测到了BPA。此外,聚丙烯和硅有机树脂制成的奶瓶中也发现会释放几种未包含在肯定列表中的化学物质,甚至有几种不允许在此类产品中使用,如邻苯二甲酸盐。   研究人员得出的结论为,该结果应在未来关于塑料婴儿奶瓶的风险评估中再次进行考虑,同时建议官方食品控制实验室对目前使用的替代材料进行强化测试,并告知风险管理的结果。
  • 盐酸环丙沙星栓国家标准公示
    我委拟修订盐酸环丙沙星栓国家标准(具体修订内容见附件),现公示征求意见,公示期自上网之日起三个月。该标准适用于生产该品种的所有企业。请各有关单位认真复核。若有异议,请来函与我委联系,来函需加盖公章并附相关说明及充分的实验数据 公示期满未回复意见即视为同意。   附件:2013052810270971000.pdf     电子信箱: liuling@ chp.org.cn。   传真:010-67156318   地址:北京市崇文区体育馆路法华南里11号楼国家药典委员会   邮编:100061   国家药典委员会   2013年5月28日
  • 迪马科技推出鱼丸等复杂基质中顺丁烯二酸的检测SPE解决方案
    2013年5月29日,迪马科技发布了使用Platisil ODS C18液相色谱柱开发的《迪马&ldquo 毒淀粉&rdquo 中顺丁烯二酸(酐)检测解决方案》。迪马科技应用实验室在该方法基础上,对市面上销售的鱼丸、火腿肠等含淀粉食品建立了鱼丸、火腿肠等复杂基质中顺丁烯二酸的SPE检测方法。 方法优势 采用固相萃取净化,对复杂样品基质如鱼丸、火腿肠中顺丁烯二酸进行净化,达到除油、除蛋白等杂质的目的,同时提高检测灵敏度,回收率满足检测要求,批次重现性良好。 样品前处理 鱼丸、火腿肠等含淀粉类食品 (1) 取1 g样品,加入10 mL提取液 和1 mL三氯甲烷,振荡提取2 min,8000 rpm下离心2 min,收集上清液; (2) 下层残渣依次用10 mL、10 mL提取液重复提取两次,合并三次提取液,待净化。 *提取液:2%甲酸水溶液 SPE柱净化&mdash &mdash 顺丁烯二酸检测专用柱(Cat.#65814) (1)活 化: 依次加入5 mL甲醇,5 mL 2%甲酸水溶液,流出液弃去; (2)上 样: 将待净化液加入小柱,流出液弃去; (3)淋 洗: 依次加入5 mL 2%甲酸水溶液、5 mL甲醇,流出液弃去; (4)洗 脱: 加入10 mL 5%氨水甲醇溶液洗脱,收集洗脱液; (5)重新溶解: 将洗脱液在45 ℃下减压蒸干,用流动相定容至1 mL,供HPLC分析。 分析条件 色谱柱: Platisil ODS,250 x 4.6 mm,5 &mu m(Cat.# 99503) 流 速: 1.0 mL/min 检测器: UV 214 nm 柱 温: 30℃ 进样量: 20 &mu L 流动相: A:0.1%磷酸水溶液,B:甲醇,A:B=98:2 添加回收结果 含淀粉食品中顺丁烯二酸添加回收结果 目标物 样品基质 添加水平(mg/kg) 回收率(%) 顺丁烯二酸 火腿肠 5.0 87.11 鱼丸 5.0 87.55 图2 火腿肠中顺丁烯二酸(添加水平为 5 mg/kg)色谱图 图3 火腿肠中顺丁烯二酸(空白)色谱图 图4 鱼丸中顺丁烯二酸(添加水平为 5 mg/kg)色谱图 图5 鱼丸中顺丁烯二酸(空白)色谱图 注:淀粉中顺丁烯二酸的检测同样可使用上述方法,经过固相萃取净化后,可提高方法检出限。 鱼丸等复杂基质中顺丁烯二酸的检测SPE解决方案相关产品信息:
  • 工业和信息化部办公厅关于印发2023年《贝类罐头》等第一批行业标准制修订和外文版项目计划的通知
    各有关单位:根据工业和信息化标准制修订工作总体安排,工业和信息化部编制完成了2023年第一批行业标准制修订和外文版项目计划。现印发给你们,请认真组织落实。具体要求如下:一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。二、有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。三、部机关相关司局、相关地方行业主管部门要做好行业标准制修订、外文版研制过程的管理工作,确保标准的质量和水平。四、计划执行过程中,如需对标准项目进行调整,按有关规定办理。工业和信息化部办公厅2023年4月17日(联系电话:010-68205240)附件下载相关标准如下:序号计划编号项目名称标准类别制修订代替标准项目周期(月)1.2023-0202T-HG工业用乙酸钴产品修订HG/T 2032-1999182.2023-0203T-HG工业用乙酸锰产品修订HG/T 2034-1999183.2023-0205T-HG纤维素材质深层过滤滤芯产品制定244.2023-0206T-HG邻苯二胺产品修订HG/T 3310-2017185.2023-0207T-HG塑料 阻燃聚苯醚专用料产品修订HG/T 2232-1991186.2023-0211T-HG抗菌和抗病毒涂料产品修订HG/T 3950-2007187.2023-0214T-HG抗氧剂 2-甲基-4,6-二[(辛基硫基)甲基]苯酚(1520)产品制定188.2023-0215T-HG硫化剂 N,N'-间苯撑双马来酰亚胺(MPBM)产品制定189.2023-0216T-HG塑料屏蔽料用导电炭黑产品制定2410.2023-0242T-YS铝及铝合金彩色涂层板、带材产品修订YS/T 431-20091811.2023-0243T-YS铝塑复合管用铝及铝合金带、箔材产品修订YS/T 434-20091812.2023-0246T-YS熔融态铝及铝合金产品修订YS/T 1004-20141813.2023-0250T-YS选矿药剂 仲辛基黄药产品修订YS/T 355-19941814.2023-0281T-QB母婴用品质量追溯体系规范管理制定2415.2023-0282T-QB轻工业企业数字化供应链管理通则管理制定2416.2023-0283T-QB轻工智慧园区评价通则管理制定2417.2023-0284T-QB日用化学用品质量追溯体系规范管理制定2418.2023-0285T-QB食用植物油产品质量追溯体系规范管理制定2419.2023-0292T-QB厨房家具产品修订QB/T 2531-20101820.2023-0294T-QB储水式电热水器内胆产品修订QB/T 4101-20101821.2023-0296T-QB家用和类似用途净饮机产品修订QB/T 4991-20161822.2023-0297T-QB家用和类似用途前置过滤器产品修订QB/T 4695-20141823.2023-0298T-QB家用和类似用途嵌入式制冷器具产品修订QB/T 4683-20141824.2023-0299T-QB家用和类似用途软水机产品修订QB/T 4698-20141825.2023-0301T-QB使用环保天然制冷剂生产家用和类似用途房间空调器的特殊要求产品修订QB/T 4975-20161826.2023-0302T-QB使用可燃性制冷剂房间空调器运输的特殊要求产品修订QB/T 4976-20161827.2023-0307T-QB异麦芽酮糖醇产品修订QB/T 4486-20131828.2023-0308T-QB贝类罐头产品修订QB/T 1374-20151829.2023-0309T-QB混合水果罐头产品修订QB/T 1117-20141830.2023-0310T-QB炊饭机产品修订QB/T 4027-20101831.2023-0312T-QB食品包装纸产品修订QB/T 1014-20101832.2023-0313T-QB金属管切割器产品修订QB/T 2350-19971833.2023-0316T-QB工业氯化镁产品修订QB/T 2605-20031834.2023-0317T-QB食盐用水质量控制技术规范管理制定2435.2023-0318T-QB植脂末产品修订QB/T 4791-20151836.2023-0320T-QB黑糖产品修订QB/T 4567-20131837.2023-0321T-QB黄方糖产品修订QB/T 4566-20131838.2023-0322T-QB黄砂糖产品修订QB/T 4095-20101839.2023-0323T-QB金砂糖产品修订QB/T 4563-20131840.2023-0324T-QB精幼砂糖产品修订QB/T 4564-20131841.2023-0325T-QB块糖产品修订QB/T 4562-20131842.2023-0326T-QB全糖粉产品修订QB/T 4565-20131843.2023-0327T-QB糖霜产品修订QB/T 4092-20101844.2023-0328T-QB制糖综合利用加工助剂 固定化酵母产品修订QB/T 4568-20131845.2023-0329T-QB非接触食物搪瓷制品 通用要求产品修订QB/T 1855-19931846.2023-0333T-BB包装容器 聚对苯二甲酸乙二醇酯(PET)瓶坯产品修订BB/T 0060-20121847.2023-0334T-BB纸管产品修订BB/T 0032-20061848.2023-0363T-HG工业溴化钙产品制定2449.2023-0364T-HG工业溴化锌产品制定2450.2023-0365T-HG工业用钴锰复合水溶液产品制定2451.2023-0366T-HG分子筛对挥发性有机物(VOCs)动态吸附容量测定方法方法制定2452.2023-0371T-HG化工研发中试安全风险管控指南管理制定2453.2023-0372T-HG硫化促进剂 二异丙基黄原四硫醚(DIPT)产品制定1854.2023-0373T-HG紫外线吸收剂 2-(2'-羟基-5'-叔辛基苯基)苯并三氮唑(UV-329)产品制定1855.2023-0374T-HG胶乳伸缩管产品制定1856.2023-0375T-HG橡胶胶丝 试验方法方法修订HG/T 2487-20111857.2023-0376T-HG橡胶配合剂 沉淀水合二氧化硅 干燥样品灼烧减量的测定方法修订HG/T 3066-20081858.2023-0377T-HG橡胶配合剂 沉淀水合二氧化硅 水悬浮液pH 值的测定方法修订HG/T 3067-20081859.2023-0449T-QB家用和类似用途馒头机产品制定2460.2023-0453T-QB家用和类似用途自动炒菜机产品制定2461.2023-0455T-QB商用电动洗碗机产品制定2462.2023-0462T-QB瓦楞纸箱生产线产品制定2463.2023-0474T-QB食盐中 pH 值的测定方法制定2464.2023-0475T-QB制盐工业通用检测方法 色度的测定方法制定2465.2023-0476T-QB制盐工业通用检测方法 锶的测定方法制定2466.2023-0477T-QB制盐工业通用检测方法 碳酸盐、碳酸氢盐、氢氧化物的测定方法制定2467.2023-0478T-QB制盐工业通用检测方法 微量溴的测定方法制定2468.2023-0479T-QB制盐工业通用检测方法 硒的测定方法制定2469.2023-0480T-QB单一溶剂型凹版通用塑料复合油墨产品制定2470.2023-0481T-QB油墨剥离力的测定方法方法制定2471.2023-0482T-QB蔗渣浆产品制定2472.2023-0484T-QB焙烤食品用糖浆产品制定2473.2023-0485T-QB焙烤食品预拌(混)粉产品制定2474.2023-0486T-QB焙烤用植物蛋白上色液产品制定2475.2023-0487T-QB蛋黄酥产品制定2476.2023-0488T-QB绿豆糕产品制定2477.2023-0489T-QB杏仁饼产品制定2478.2023-0490T-QB杂粮谷物糕团产品制定2479.2023-0491T-QB氨基酸、氨基酸盐及其类似物 第13部分:β-丙氨酸产品制定2480.2023-0492T-QB氨基酸、氨基酸盐及其类似物 第14部分:L-谷氨酸产品制定2481.2023-0493T-QB氨基酸、氨基酸盐及其类似物 第15部分:L-盐酸鸟氨酸产品制定2482.2023-0494T-QB氨基酸、氨基酸盐及其类似物 第16部分:L-瓜氨酸产品制定2483.2023-0495T-QB包埋型 益生菌产品制定2484.2023-0496T-QB蛋黄球蛋白粉产品制定2485.2023-0497T-QB冻干食品通则基础制定2486.2023-0498T-QB发酵法丁二酸产品制定2487.2023-0499T-QB发酵液中麦角硫因的测定方法制定2488.2023-0500T-QB非变性 II 型胶原蛋白产品制定2489.2023-0501T-QB胍基丁胺产品制定2490.2023-0502T-QB核苷(酸)及其衍生物 第1部分:尿嘧啶核苷产品制定2491.2023-0503T-QB褐藻胶裂解酶制剂产品制定2492.2023-0504T-QB麦芽糖淀粉酶制剂产品制定2493.2023-0505T-QB膜过滤乳(膜分离乳)产品制定2494.2023-0506T-QB葡萄糖氧化酶制剂产品制定2495.2023-0507T-QB漆酶制剂产品制定2496.2023-0508T-QB食品中 2'-岩藻糖基乳糖的测定 离子色谱法方法制定2497.2023-0509T-QB食品中茶多糖分子量及其分布的测定 凝胶色谱法方法制定2498.2023-0510T-QB食品中茶褐素的测定-分光光度法方法制定2499.2023-0511T-QB食品中壳寡糖的测定 离子色谱法方法制定24100.2023-0512T-QB食品中乳铁蛋白的测定 酶联免疫吸附法方法制定24101.2023-0513T-QB食品中透明质酸钠的测定高效液相色谱法方法制定24102.2023-0514T-QB食品中维生素 B12 的测定预包被微孔板式微生物法方法制定24103.2023-0515T-QB熟制与生干山龙眼果(夏威夷果、澳洲坚果)和仁产品制定24104.2023-0516T-QB速溶支链氨基酸粉产品制定24105.2023-0517T-QB脱油蛋黄粉产品制定24106.2023-0518T-QB预制菜 第1部分:预制凉菜产品制定24107.2023-0519T-QB预制菜 第2部分:食用高汤产品制定24108.2023-0520T-QB预制菜 第3部分:佛跳墙产品制定24109.2023-0521T-QB植物基食品通则基础制定24110.2023-0522T-QB自热火锅产品制定24111.2023-0523T-QB自热米饭产品制定24112.2023-0524T-QBα-乳白蛋白产品制定24113.2023-0525T-QB风味面团产品制定24114.2023-0526T-QB聚葡萄糖产品制定24115.2023-0527T-QB醪糟产品制定24116.2023-0528T-QB乳清蛋白肽(水解乳清蛋白)产品制定24117.2023-0529T-QB乳酸菌发酵葡萄糖制品产品制定24118.2023-0530T-QB食品中低聚糖的测定 第1部分:母乳低聚糖含量的测定方法制定24119.2023-0531T-QB食用发酵微藻 第1部分:蛋白核小球藻产品制定24120.2023-0532T-QB食用菌剂体外模拟消化道的活菌率检验方法方法制定24121.2023-0533T-QB微生态制剂术语和分类基础制定24122.2023-0534T-QB玉米发酵核苷酸酱产品制定24123.2023-0535T-QB番茄调味类罐头产品制定24124.2023-0536T-QB鱼胶罐头产品制定24125.2023-0537T-QB坚果与籽类食品设备 术语基础制定24126.2023-0538T-QB坚果与籽类食品设备 型号编制方法基础制定24127.2023-0539T-QB可微波食品接触用复合膜、袋产品制定24128.2023-0540T-QB食品包装用聚烯烃阻隔复合膜、袋产品制定24129.2023-0541T-QB食品包装用流延聚苯乙烯多层复合片产品制定24130.2023-0542T-QB鱼松产品制定24131.2023-0543T-AH高分子复合板桩产品制定24132.2023-0552T-BB包装制品中淀粉粘合剂含量的测定(酶化-重量法和酶化-比色法)方法制定24133.2023-0553T-BB热收缩标签产品制定24
  • 火眼“金”睛:测定水中丁基黄原酸的在线监测解决方案
    黄金抗腐蚀性强,极为稳定,是首饰业、电子业、现代通讯、航天航空业等部门的重要材料,因为稀有而逐渐成为了珍稀品,甚至成为了一个国家的财富象征。“点石成金”的神奇药水丁基黄原酸盐“点石成金”的故事众所周知,仙道点铁石而成黄金,化腐朽为神奇。跟传说的手指一点而成金不同的是,21世纪的今天,“点石成金”靠神奇药水---丁基黄原酸盐。丁基黄原酸盐为黄色粉末固状,俗称“丁基黄药”,是一种重要的金属硫化矿捕集药剂,被广泛应用于各种重金属硫化矿(如PbS、ZnS、CuS等)和部分贵金属硫化矿(如Au2S3、Ag2S等)的浮选捕收。Tips:浮选捕收剂的目的是通过在被浮矿物表面选择性吸附形成疏水层,从而使疏水性矿粒附着气泡上浮至泡沫产品中,成为精矿,实现了真正的“千淘万漉不辛苦,吹尽狂沙始到金”。浮选捕收剂的结构示意图浮选捕收剂与矿物作用的原理图“危害健康”的有毒药水丁基黄原酸盐丁基黄原酸盐也是会对身体造成伤害的有毒药水,金矿在提炼过程会产生大量的毒副产品,如部分丁基黄原酸盐随废水排入地表水,污染饮用水源和土壤。此外,金矿提炼过程中还伴随着如铅、汞、镉等重金属污染,严重者会导致该地三十年内寸草不生!Tips:丁基黄原酸盐对人体和畜禽的危害主要表现在伤及神经系统和肝脏器官,对造血系统也有不良影响。谱育科技全新工业污染物监测方案根据《水质 丁基黄原酸的测定 吹扫捕集/气相色谱-质谱法》(HJ 896-2017)中的描述:水样中需加入硫代硫酸钠、氢氧化钠、氟苯及磷酸对丁基黄原酸进行衍生(衍生方程式如下),通过测定二硫化碳,间接测定水中丁基黄原酸的浓度。C4H9OCSSK(Na) + HCl→CS2↑+ C4H9OH + K(Na)Cl谱育科技EXPEC 2100 水中挥发性有机物在线监测系统可以实现对丁基黄原酸的在线监测。吹扫捕集-气相色谱-质谱法测定水中的丁基黄原酸我国在《集中式生活饮用水地表水源地特定项目标准限值》(GB 3838-2002)中对生活饮用水中丁基黄原酸的含量进行了严格限定。谱育科技可为您提供吹扫捕集-气相色谱-质谱法 对水中的丁基黄原酸进行分析,该方法具有灵敏度高、重复性好、无人化操作等优点。方案特点★ 丁基黄原酸在0.2-4μg/L线性相关系数R2>0.999,连续6针进样的重复性RSD为8.24%;★ 丁基黄原酸的检出限为0.03μg/L,达到实验室检测水平;★ EXPEC 2100产品提供高精度压力控制,保证卓越的保留时间稳定性和峰面积稳定性;★ 搭配EXPEC 2100可实现无人化操作,可以实现对水中挥发性有机物的在线监测。EXPEC 2100水中挥发性有机物在线监测系统可实现对丁基黄原酸的全自动在线监测,助力实现“既要金山银山,也要绿水青山”这一美好愿望。
  • 北京大学王初课题组发展沙门氏菌中的衣康酸修饰组学鉴定新方法
    近日,北京大学化学与分子工程学院、北大-清华生命科学联合中心王初课题组在Chemical Science上杂志上发表了题为“Chemoproteomicprofiling of itaconations in Salmonella”的论文,并且被选为“Pick of the week”文章。在这项工作中,研究学者发展了新型衣康酸修饰化学探针工具,并结合定量化学蛋白质组学技术,首次实现了在病原微生物沙门氏菌中衣康酸修饰位点的大规模直接鉴定,并且进一步揭示了衣康酸通过共价修饰关键代谢蛋白从而对细菌生长过程的抑制作用。  衣康酸是近些年来被发现具有显著抗炎抗菌活性的代谢物分子,它在病原菌侵染或者脂多糖刺激的炎症巨噬细胞中会大量产生,浓度可达到毫摩级别,并广泛参与到抗炎信号通路中。由于衣康酸具有共轭不饱和双键结构,它可以通过迈克尔加成反应共价修饰蛋白质中的半胱氨酸残基,通过影响底物蛋白的活性和功能从而调节宿主炎症反应过程。因此衣康酸修饰蛋白的大规模鉴定对理解其炎症和抗菌调节机理具有重要的意义。在宿主巨噬细胞层面,此前王初课题组分别发展了基于非天然糖的竞争性探针和生物正交的衣康酸探针,并结合定量化学蛋白质组学技术对炎症巨噬细胞中的衣康酸修饰进行系统的分析,揭示了衣康酸可以修饰ALDOA,LDHA、GAPDH和RIPK3等蛋白,调节糖酵解和细胞坏死等通路。这些研究为理解衣康酸在巨噬细胞炎症反应中的作用机制提供了丰富的数据支持。然而,在病原菌层面,衣康酸对于细菌的调控机制还不是特别清楚。目前普遍认为衣康酸可以竞争性抑制细菌中某些特有的代谢酶(例如异柠檬酸裂解酶、丙酰辅酶A羧化酶等),来影响细菌代谢。近些年也有研究发现衣康酸可以通过与鸟苷三磷酸酶GTP酶Rab32作用,限制囊泡内病原菌复制,协助宿主防御沙门氏菌。细菌还会适应宿主产生的衣康酸,通过改变自身代谢,促进细菌表面生物膜的形成增强自身的耐受能力。衣康酸和病原菌之间具有复杂的作用,而衣康酸对细菌中蛋白的共价修饰和功能影响还研究甚少。在本工作中,作者结合新型衣康酸修饰探针和定量化学蛋白质组学技术,首次在病原菌中对衣康酸修饰的蛋白进行了鉴定。  作者首先发现此前在巨噬细胞中表现良好的生物正交探针ITalk并不能在沙门氏菌中产生明显的标记,因此本工作设计并合成了几种不同结构的衣康酸生物正交探针,并评估筛选了它们在沙门氏菌蛋白质组中标记的效果。作者发现,带有酰胺连接的短链C3A探针标记效果更好,并且和衣康酸具有明显的竞争。在进一步的小分子水平反应、蛋白组水平标记和抗菌功能验证后,作者确认了C3A能模拟衣康酸的作用效果。  结合基于还原二甲基化标记的定量化学蛋白质组学技术,作者利用C3A探针在沙门氏菌蛋白质组中大规模鉴定了衣康酸修饰蛋白,作者设置了三组标记样品,得到两个比值,一个为扣除非特异性吸附,另外一个为衣康酸竞争组,一共鉴定到1230个蛋白,其中扣背景比值大于10、竞争比值大于1.5的高置信衣康酸修饰靶标蛋白有197个,这些蛋白被定义为衣康酸修饰蛋白。这些蛋白中包括很多在沙门氏菌中参与重要代谢过程的功能蛋白酶,其中最为显著的一个蛋白是异柠檬酸裂解酶 (ICL)。  结合TOP-ABPP技术,作者进一步对衣康酸修饰位点进行大规模直接鉴定,通过两次生物学重复实验,鉴定到781个蛋白上的1319个修饰位点,通过与修饰蛋白进行比对,作者发现其中129个蛋白被鉴定到位点,其中61个蛋白含有一个以上修饰位点,35个蛋白含有两个以上修饰位点。作者选取了一些具有重要功能的蛋白进行了位点突变实验,通过突变后探针标记信号的消失证实了这些修饰位点的可靠性。  作者在异柠檬酸裂解酶ICL,共鉴定到5个修饰位点,而突变实验显示主要标记位点在该蛋白的活性位点Cys195上。作者进一步对ICL上存在的衣康酸修饰进行了深入的生化实验验证,通过基因敲除回补实验以及纯蛋白酶活实验,验证了衣康酸是通过对ICL活性位点195位半胱氨酸上的共价修饰影响酶活,产生的抑菌作用。有趣的是,作者还发现了ICL中第318位半胱氨酸也会被衣康酸修饰,而该位点的突变会影响ICL的热稳定性和活性。  总之,本工作首次报道了适用于沙门氏菌标记的衣康酸生物正交探针,并结合化学蛋白质组策略实现了衣康酸修饰位点的直接鉴定,不仅在沙门氏菌中提供了一个丰富的衣康酸修饰蛋白的数据库,还揭示了衣康酸通过共价修饰从而抑菌的新机制,这对于进一步理解衣康酸的抗菌功能有着重要意义。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命科学联合中心的王初教授,其指导的前沿交叉研究院北大清华生命联合中心2016级博士研究生张艳玲为本文的第一作者。王初课题组博士毕业生秦为,研究生刘东阳和博士后刘源等合作者为本课题做出了贡献。该工作受到科技部蛋白质重点专项、基金委国家杰出青年基金、重大研究计划培育项目等项目经费的支持。  原文链接:  https://pubs.rsc.org/en/content/articlelanding/2021/sc/d1sc00660f  文献引用:DOI: 10.1039/d1sc00660f
  • 新品发布!喜瓶者全自动酸蒸清洗机,解决痕量样品瓶皿清洗难题
    痕量分析用于测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况,主要用于测定Pb、As、Hg、Cd、Cr、Ni等痕量元素,常用方法有化学光谱法、中子活化分析法、质谱法、分光光度法、原子吸收光谱法、极谱法等多种方法。主要应用于化学、材料科学、生物医学、环境科学、表面科学等领域。洁净的样品反应容器是获得正确分析结果的前提。痕量分析所使用的微波消解罐、超级微波消解管、常压消解罐、玻璃器皿(试管、烧杯、容量瓶等)等的痕量清洗,对于实验人员来说,始终是一个非常繁琐而又非常重要的挑战。而酸蒸清洗很好地解决了这个问题。酸蒸超净清洗是一种自动、密闭、酸蒸汽清洗方法。通过内置可控温加热系统,利用酸蒸汽安全高效地对所有可溶于酸中的任何痕量金属污染物进行超净清洗,并将其留在液体酸中,绝不会接触正在清洗的反应容器。传统的清洗方式酸缸浸泡,有极大的弊端1、效率低 效果差,常常要浸泡24小时以上,需多买一套消解管周转,成本极高;2、酸缸存放困难,大量酸气渗出,污染实验室环境;3、 为避免交叉污染,需定期换酸,酸消耗量大,且危险;4、酸泡之后,还需手工冲洗和干燥,繁琐且二次污染。之后有了微波空消的清洗方式,虽摆脱了长时间酸缸浸泡,但清洗效果一般,且也有一定缺陷。1、每个消解管清洗需耗纯酸5mL;2、 高温高压条件下运行,减少一半消解管寿命,成本极高;3、 空消之后,还需手工冲洗和干燥,繁琐且二次污染;4、因脏酸始终在消解管内循环,清洗效果有限。然而现在使用全自动酸蒸清洗机进行清洗,逐渐被被各大实验室所接受:1、效率高,一批可处理多达66个55mL消解管;2、热蒸汽的高效淋洗,一般只需2-5小时,AC400清洗最快只需30分钟;3、一批只需100-300mL酸;4、程序控制,清洗重复性好;5、全自动型号还进行超纯水预清洗。以及在酸蒸清洗之后,自动纯水冲洗和热空气干燥,一条龙式流程。 全自动酸蒸清洗机,解决了痕量分析中样品反应容器的清洗难题,为实验的准确性于便捷性提供助力。喜瓶者,让清洗工作更幸福!
  • 英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色
    在繁忙的现代社会中,我们时常被各种压力与期望所裹挟,似乎总是需要不断前行,不断超越。然而,在这快节奏的生活中,有一个声音逐渐响起:“躺平”。它倡导人们放慢脚步,回归简单,享受生活的本质。诚然,躺平带给我们的是一份宁静与快乐,但与此同时,我们也不应忘记,创新是推动社会进步的重要力量,它让我们的世界更加出色。英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色躺平,并不意味着放弃努力,而是让我们在追求生活品质的同时,更加注重内心的平和与满足。它鼓励我们放下过多的物质追求,专注于精神层面的富足。在躺平的状态下,我们可以有更多的时间去陪伴家人,去品味一杯清茶,去阅读一本好书,去欣赏大自然的美丽。这些简单而纯粹的快乐,让我们在忙碌的生活中找到了一丝宁静与满足。英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色然而,躺平并不等于停滞不前。在享受生活的同时,我们也需要不断地创新,不断地探索。创新是推动社会发展的重要动力,它让我们能够突破传统的束缚,发现新的可能。无论是科技领域的突破,还是文化艺术的创新,都离不开人们的努力与探索。正是这些创新,让我们的世界变得更加丰富多彩,更加出色。躺平与创新并不是互相排斥的。我们可以选择在一个相对轻松的状态下,去思考问题,去寻找灵感。躺平让我们有更多的时间去思考,去反思,从而更好地激发我们的创新潜能。同时,创新也需要我们保持一颗平静的心态,不被外界的压力所干扰,专注于自己的目标与追求。因此,躺平与创新是可以并行不悖的,它们共同构成了我们丰富多彩的生活。在探讨躺平哲学与创新精神的交融之际,英国肖氏SHAW公司以其对工业测量技术的持续创新,为我们提供了一个生动的案例。其推出的SUPER-DEW3在线露点仪,不仅是公司技术实力的集中体现,更是对创新精神的完美诠释。SUPER-DEW3在线露点仪,凭借其较高精度、可重复的肖氏Shaw传感器和先进的数字电子技术,实现了对露点的精准测量。这款仪器在测量范围、精度、分辨率以及重复性等方面均展现出了卓越的性能。测量范围覆盖了从-100℃/0℃至0-6000ppm(v)的广泛区间,精度高达+2℃(+3.6°F)DP,分辨率可达0.1℃或0.1ppm(v),重复性优于+0.3℃(+0.54°F)DP。这些出色的技术参数,使得SUPER-DEW3在线露点仪在工业测量领域中独树一帜。除了卓越的技术品质,SUPER-DEW3在线露点仪还具备了一系列先进的技术特点。它能够适应各种复杂的工业环境,拥有广泛的操作温度范围;响应时间快速,能够迅速响应露点的变化;采样流量灵活可调,方便用户根据实际需求进行设置。这些特点使得SUPER-DEW3在线露点仪成为了工业领域中准确测量、控制和监控露点的首选工具。英国肖氏SHAW公司在设计SUPER-DEW3在线露点仪时,充分考虑了用户的使用体验。该仪器采用了面板安装的方式,外壳达到了IP54防护等级,为用户提供了安全可靠的安装选择。同时,其防水、防尘等特性也确保了仪器在各种恶劣环境下的稳定运行。此外,SUPER-DEW3还具备用户友好的操作界面和输出信号。用户可以通过独立的4~20 mA线性输出信号,方便地将测量数据接入到各种控制系统中进行实时监测和控制。这种以人为本的设计理念,使得SUPER-DEW3能够更好地满足用户的需求,提高工作效率和安全性。英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色英国肖氏SHAW在线露点仪SUPER-DEW3的技术参数概览如下:型号:SUPER-DEW3-P 英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色测量范围:-100℃/0℃, 0-6000ppm(v)多种测量范围可选,用户可根据需求选择精度:+2℃ (+3.6°F) DP分辨率:0.1℃, 0.1°F DP 或 0.1ppm(v)重复性:优于+0.3℃ (+0.54°F) DP操作温度:-20℃ ~ +60℃ (-4°F ~ 140°F)存储温度:-20℃ ~ +70℃ (-4°F ~ +158°F)响应时间:湿到干:-20℃~-60℃小于120秒,干到湿:-120℃~-20℃小于20秒采样流量:2 ~ 5 升/分钟,最大:25 升/分钟输出信号:独立4~20 mA 线性输出在躺平与创新的共鸣中,我们找到了生活的平衡与前进的动力。进口露点仪英国肖氏SHAW的SUPER-DEW3在线露点仪正是这一理念的生动体现。它以其良好的性能和先进的技术特点,为工业测量领域带来了深刻的变革。更多英国肖氏SHAW在线露点仪SUPER-DEW3|躺平很快乐,创新更出色请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、露点仪的代表处、肖氏SHAW露点仪售后服务保障。
  • 在长沙如何成为焦点?我们亲身经历了 | 鼎泰环游记
    01风华正茂,挥斥方遒 正如词里所写:“独立寒秋,湘江北去,橘子洲头。看万山红遍,层林尽染̷̷鹰击长空,鱼翔浅底,万类霜天竞自由。” 秋天的长沙,值得好好欣赏一番。鼎泰环游的这一站,来到了湖南,一场以创新理念为主题的大会刚刚落幕。时代在不断地变化发展,而创新则是永恒的主题。 “风华正茂̷̷挥斥方遒。”在长沙样品前处理技术创新大会上,各行业行业资深专家、800位分析检测从业人员,意气风发,共同探讨食品、环境、工业等领域的最新样品前处理技术。02样品前处理创新理念由长沙色谱学会主办的“2019年湖南省样品前处理技术创新大会”于11月1日在湖南长沙成功举行。本次大会以“样品前处理创新理念”为主题,与会人员共同交流实验室前处理过程中遇到的相关问题及最前沿的前处理创新手段,为实验室的整体效率的提高、人力成本的控制提供有效解决办法。湖南长沙03鼎泰,产品就是焦点 本次样品前处理技术创新大会,鼎泰高科携带DTI系列全自动石墨消解仪系列、DTZ-80全自动均质器、 DTS-240全自动固相萃取仪、DTN-240全自动氮吹浓缩仪、DTC超声波清洗机以及其他实验室设备参展。 在展会现场,鼎泰产品吸引了众多人参观,特别是全自动石墨消解仪新升级二代,感兴趣的参展人员纷纷上前咨询。鼎泰★焦点展览会上,鼎泰高科的工作人员热情地为参展群众作产品介绍。04鼎泰,用实力说话 鼎泰高科一直专注于样品前处理设备及实验室通用设备的研发、生产、销售与服务,以打造适合实验要求的仪器设备为目标。全自动石墨消解仪DTI-II全自动一站式完成样品消解的自动加酸、升降温消解、样品混匀、赶酸、样品冷却、定容,整机耐腐蚀处理,性能稳定、操作方便,帮助无机样品前处理实验人员高效地实现实验方案,被广泛应用于环境、食品、地矿等行业。全自动固相萃取仪DTS-240能够在无人值守的情况下自动化运行固萃方法,自动完成固萃全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱、柱切换等)实现批量样品处理。在食品、环境、农业、医药卫生、商品检验、石油化工等行业发挥重要作用。全自动均质器DTZ-80全自动操作模式,一键式启动,从均质处理到清洗刀头全自动完成,清除了人为操作的差异,显示提高样品处理效率。智能操作系统 。安全环保,全密闭设计,主动排风系统,净化实验室环境。全自动浓缩仪DTN-240利用水浴加热和氮吹的共同作用对样品进行浓缩,可同时处理24个样品。运行过程中可通过操作屏幕实时监控浓缩状态。氮吹针可随液面自动下降,提高浓缩效率;浓缩结束后,氮吹针自动升起,精准高效。SinapTec超声波破碎仪 Lab120
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 东西分析推出液相色谱检测淀粉中顺丁烯二酸检测方法
    针对近日媒体爆出的台湾毒淀粉事件,东西分析推出&ldquo LC5510 测定淀粉中的顺丁烯二酸&rdquo 的解决方案,可登陆仪器信息网下载资料,下载地址:http://www.instrument.com.cn/netshow/SH100293/down_241900.htm 关于我们:北京东西分析仪器有限公司成立于2002年(其前身是成立于1988年的北京东西电子研究所),到现在已拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,中国分析仪器制造行业著名企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。公司以雄厚的科研技术实力为后盾,以严格的质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的产品。在食品安全、农产品安全、饲料分析检测方面公司有专门的研发中心和分析应用中心,多年的配套解决经验,可为客户提供全套的解决方案和符合国标的分析方法验证,具有广泛的客户群。
  • 《关于化纤工业高质量发展的指导意见》(附全文)
    两部委关于化纤工业高质量发展的指导意见工业和信息化部 国家发展和改革委员会关于化纤工业高质量发展的指导意见工信部联消费〔2022〕43号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化、发展改革主管部门:化纤工业是纺织产业链稳定发展和持续创新的核心支撑,是国际竞争优势产业,也是新材料产业重要组成部分。为贯彻落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“十四五”制造业高质量发展规划》有关要求,推动化纤工业高质量发展,形成具有更强创新力、更高附加值、更安全可靠的产业链供应链,巩固提升纺织工业竞争力,满足消费升级需求,服务战略性新兴产业发展,现提出以下意见:一、总体要求(一)指导思想坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,完整、准确、全面贯彻新发展理念,以高质量发展为主题,以深化供给侧结构性改革为主线,以科技创新为动力,以满足纺织工业和战略性新兴产业需要为目的,统筹产业链供应链的经济性和安全性,加快关键核心技术装备攻关,推动产业高端化智能化绿色化转型,实现高质量发展。(二)基本原则创新驱动,塑造优势。坚持创新在化纤工业发展中的核心地位,面向科技前沿、面向消费升级、面向重大需求,完善创新体系,塑造纺织工业发展新动能、新优势。优化结构,开放合作。优化区域布局,加强国际合作,推进数字化转型,依法依规淘汰落后产能和兼并重组,培育龙头企业,促进大中小企业融通发展,巩固提升产业竞争力。绿色发展,循环低碳。坚持节能降碳优先,开展绿色工厂、绿色产品、绿色供应链建设,加强废旧资源综合利用,扩大绿色纤维生产,构建清洁、低碳、循环的绿色制造体系。引领纺织,服务前沿。增加优质产品供给,优化高性能纤维生产应用体系,培育纤维知名品牌,拓展纤维应用领域,从原料端引领纺织价值提升,服务战略性新兴产业发展。(三)发展目标到2025年,规模以上化纤企业工业增加值年均增长5%,化纤产量在全球占比基本稳定。创新能力不断增强,行业研发经费投入强度达到2%,高性能纤维研发制造能力满足国家战略需求。数字化转型取得明显成效,企业经营管理数字化普及率达80%,关键工序数控化率达80%。绿色制造体系不断完善,绿色纤维占比提高到25%以上,生物基化学纤维和可降解纤维材料产量年均增长20%以上,废旧资源综合利用水平和规模进一步发展,行业碳排放强度明显降低。形成一批具备较强竞争力的龙头企业,构建高端化、智能化、绿色化现代产业体系,全面建设化纤强国。二、提升产业链创新发展水平(一)筑牢创新基础。打通理论研究、工程研发、成果转化全链条,形成企业为主体、市场为导向、产学研深度融合的科技创新体系。发挥高校、科研院所原始创新主力军作用,开展前瞻性纤维材料研究。增强国家级、省级先进功能纤维创新中心服务能力及企业技术中心创新能力。加强关键装备、关键原辅料技术攻关,推动生物基化纤原料、煤制化纤原料工艺路线研究和技术储备,增强产业链安全稳定性。(二)优化区域布局。落实区域发展战略,在符合产业、能源、环保等政策前提下,鼓励龙头企业在广西、贵州、新疆等中西部地区建设化纤纺织全产业链一体化基地,与周边国家和地区形成高效协同供应链体系。引导化纤企业参与跨国产业链供应链建设,鼓励企业完善全球产业链布局。(三)培育优质企业。鼓励企业通过兼并重组优化生产要素配置,加快业务流程再造和技术升级改造。支持龙头企业集聚技术、品牌、渠道、人才等优质资源,增强供应链主导力,为服装、家纺、产业用纺织品行业提供共性技术输出和产业链整体解决方案。促进大中小企业融通发展,培育专精特新“小巨人”企业和单项冠军企业。三、推动纤维新材料高端化发展(一)提高常规纤维附加值。实现常规纤维高品质、智能化、绿色化生产,开发超仿真、原液着色等差别化、功能性纤维产品,提升功能纤维性能和品质稳定性,拓展功能性纤维应用领域,推进生物医用纤维产业化、高端化应用。加强生产全流程质量管控,促进优质产品供给,满足消费升级和个性化需求。专栏1 纤维高效柔性制备和品质提升1.纤维高效柔性制备技术装备提升。突破功能纤维原位聚合、多组分高比例共聚、在线添加及高效柔性化纺丝以及锦纶6熔体直接纺丝成形等技术,提升纳米纤维宏量制备、智能纤维设计制备水平。2.差别化、功能性品种开发。开发新型功能性聚酯、高品质化学单体及超仿真、阻燃、抗菌抗病毒、导电、相变储能、温控、光致变色、原液着色、吸附与分离、生物医用等功能性纤维品种。3.关键材料辅料助剂研发。研发功能纤维用关键材料、辅料以及阻燃剂、改性剂、母粒、催化剂、油剂等添加剂。 (二)提升高性能纤维生产应用水平。提高碳纤维、芳纶、超高分子量聚乙烯纤维、聚酰亚胺纤维、聚苯硫醚纤维、聚四氟乙烯纤维、连续玄武岩纤维的生产与应用水平,提升高性能纤维质量一致性和批次稳定性。进一步扩大高性能纤维在航空航天、风力和光伏发电、海洋工程、环境保护、安全防护、土工建筑、交通运输等领域应用。专栏2 高性能纤维关键技术突破和高效低成本生产1.高性能碳纤维。攻克48K以上大丝束、高强高模高延伸、T1100级、M65J级碳纤维制备技术,突破高精度计量泵、喷丝板、牵伸机、收丝机、宽幅预氧化炉、高低温碳化炉、宽口径石墨化炉等装备制造技术,研发自动铺放成型和自动模压成型等复合材料工艺技术装备,开发碳纤维复合材料修补及再利用技术。2.芳纶。研发对位芳纶原料高效溶解、纺丝稳定控制、高温热处理、溶剂回收等关键技术,大容量连续聚合、高速纺丝、高稳定高速牵引、牵伸等设备制造技术。攻克间位芳纶纤维溶剂体系、纺丝原液高效脱泡、高速纺丝等关键技术,开发高强、高伸长间位芳纶产业化技术。3.其他高性能纤维。提升耐热、抗蠕变、高强度、高耐切割、耐腐蚀、耐辐射超高分子量聚乙烯纤维,细旦、异形截面聚苯硫醚纤维,细旦、防火防核用聚酰亚胺纤维等生产技术水平。突破芳香族聚酯纤维、聚对苯撑苯并二噁唑纤维、聚醚醚酮纤维等单体合成与提纯、高速稳定纺丝等关键技术。开发玄武岩纤维规模化池窑、多品种差异化浸润剂等技术装备,研发第三代连续碳化硅纤维制备技术,突破氧化铝纤维、硅硼氮纤维、氧化锆纤维等制备关键技术。4.高性能纤维创新平台。推进高性能纤维及复合材料创新平台建设,围绕高性能纤维及复合材料行业共性关键技术和工程化问题,形成基础化工原材料-高性能纤维/高性能聚合物-复合材料及制品成型加工-产品检测及评价-产品应用的全产业链。(三)加快生物基化学纤维和可降解纤维材料发展。提升生物基化学纤维单体及原料纯度,加快稳定、高效、低能耗成套技术与装备集成,实现规模化、低成本生产。支持可降解脂肪族聚酯纤维等可降解纤维材料关键技术装备攻关,突破原料制备和高效聚合反应技术瓶颈,加强纤维可降解性能评价,引导下游应用。专栏3 生物基化学纤维和可降解纤维材料技术攻关与产业化1.生物基化学纤维原料。突破莱赛尔纤维专用浆粕、溶剂、交联剂以及纤维级1,3-丙二醇、丁二酸、1,4-丁二醇、呋喃二甲酸、高光纯丙交酯等生物基单体和原料高效制备技术。2.生物基化学纤维。提升莱赛尔纤维、聚乳酸纤维、生物基聚酰胺纤维、对苯二甲酸丙二醇酯纤维、聚呋喃二甲酸乙二醇酯纤维、海藻纤维、壳聚糖纤维等规模化生产关键技术。研究离子液体溶剂法(ILS法)、低温尿素法等纤维素纤维绿色制造技术。3.可降解纤维材料。攻克PBAT(己二酸丁二醇酯和对苯二甲酸丁二醇酯共聚物)、PBS(聚丁二酸丁二酯)、PHBV(聚羟基丁酸戊酸酯)、FDCA基聚酯(呋喃二甲酸基聚酯)、PHA(聚羟基脂肪酸酯)、PCL(聚己内酯)等制备技术。有序开展聚3-羟基烷酸酯(PHA)、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)等材料产业化推广应用。四、加快数字化智能化改造(一)加强智能装备研发应用。推进大集成、低能耗智能物流、自动落筒、自动包装等装备研发及应用,提升纤维自动化、智能化生产水平。加快涤纶加弹设备自动生头装置及在线质量监测系统的研发及应用,提高涤纶、氨纶、锦纶的纺丝、卷绕装备智能化水平。(二)推进企业数字化转型。推动人工智能、大数据、云计算等新兴数字技术在化纤企业的应用,提升企业研发设计、生产制造、仓储物流等产业链各环节数字化水平。应用数字技术打通企业业务流程、管理系统和供应链数据,实现组织架构优化、动态精准服务、辅助管理决策等管理模式创新,提升企业经营管理能力。(三)开展工业互联网平台建设。鼓励重点企业打造主数据、实时数据、应用程序、标识解析、管理信息系统、商务智能一体化集成的工业互联网平台,支撑企业数字化转型与产业链现代化建设。推动产业链上下游企业通过工业互联网平台实现资源数据共享,加强供需对接,促进全产业链协同开发和应用。专栏4 智能制造协同创新与系统化解决方案1.构建智能制造标准体系。开展化纤工业智能装备、互联互通、智能车间、智能工厂等标准研究制定,优先在涤纶、锦纶、氨纶、再生纤维素纤维、再生涤纶等行业加强智能制造标准体系建设。2.提升智能制造关键技术水平。提升智能原料配送、智能丝饼管理、生产数据分析、智能立体仓库等技术水平。提升三维设计与建模、数值分析、工艺仿真、产品生命周期管理(PLM)、集散式控制(DCS)、制造执行(MES)、企业资源管理(ERP)、数据采集与视频监控(SCADA)等工业控制软件和系统水平。3.提高智能化服务水平。采用云服务、智能分析等技术,收集分析客户反馈信息,在解决客户问题的同时,反馈并指导企业改善产品设计、生产、销售等环节,提高客户满意度。五、推进绿色低碳转型(一)促进节能低碳发展。鼓励企业优化能源结构,扩大风电、光伏等新能源应用比例,逐步淘汰燃煤锅炉、加热炉。制定化纤行业碳达峰路线图,明确行业降碳实施路径,加大绿色工艺及装备研发,加强清洁生产技术改造及重点节能减排技术推广。加快化纤工业绿色工厂、绿色产品、绿色供应链、绿色园区建设,开展水效和能效领跑者示范企业建设,推动碳足迹核算和社会责任建设。(二)提高循环利用水平。实现化学法再生涤纶规模化、低成本生产,推进再生锦纶、再生丙纶、再生氨纶、再生腈纶、再生粘胶纤维、再生高性能纤维等品种的关键技术研发和产业化。推动废旧纺织品高值化利用的关键技术突破和产业化发展,加大对废旧军服、校服、警服、工装等制服的回收利用力度,鼓励相关生产企业建立回收利用体系。(三)依法依规淘汰落后。严格能效约束,完善化纤行业绿色制造标准体系,依法依规加快淘汰高能耗、高水耗、高排放的落后生产工艺和设备,为优化供给结构提供空间。加大再生纤维素纤维(粘胶)行业和循环再利用化学纤维(涤纶)行业规范条件的落实力度,开展规范公告,严格能耗、物耗、环保、质量和安全等要求。专栏5 绿色制造和循环利用1.推广清洁生产技术与装备。推广聚酯装置余热利用技术,PTA余热发电技术,再生纤维素纤维生物法低浓度废气处理技术,再生纤维素纤维生产-回收碱液及提取半纤维素技术,锦纶-6、锦纶长丝、干法氨纶节能减排技术。推进生产技术密闭化、连续化、自动化,有机溶剂减量化。推广使用低(无)VOCs含量原辅材料,提升污染治理水平。2.突破循环利用技术。开展废旧纺织品成分识别及分离研究,提升丙纶、高性能纤维回收利用关键技术,突破涤纶、锦纶化学法再生技术,腈纶、氨纶再生技术,棉/再生纤维素纤维废旧纺织品回收和绿色制浆产业化技术。推进瓶片直纺再生涤纶长丝高品质规模化生产。3.建设绿色制造体系。鼓励纺纱、织造、服装、家纺等产业链下游企业参与绿色纤维制品认证,推进绿色纤维制品可信平台建设,提升绿色纤维供给数量和质量。培育一批绿色设计示范企业、绿色工厂标杆企业和绿色供应链企业。六、实施增品种提品质创品牌“三品”战略(一)优化供给结构。以技术为核心,以需求为导向,开发性能和品质优异的产品,为消费者提供个性化、时尚化、功能化、绿色化产品,持续扩大中高端产品有效供给。开展纤维流行趋势研究和发布,向下游企业和消费者推广技术含量高、市场潜力好的纤维新品种。推广再生化学纤维、生物基化学纤维、原液着色化学纤维等绿色纤维,引导绿色消费。(二)强化标准支撑。加快功能性、智能化、高技术纤维材料领域的标准制定,支撑行业品种、品质和品牌提升。完善国标、行标、团标、企标协调发展的化纤标准体系,充分发挥团体标准引导产业发展、激发创新活力的作用。加强标准化人才队伍培养,提升企业从纤维到面料(复合材料)直至终端制品的标准研制和检测能力。推进国际标准化工作,推动技术、标准和认证体系的国际合作与互认。(三)推进品牌建设。利用国际纺织纱线展等平台,借助发布会、新媒体网络等手段,扩大“中国纤维流行趋势”和“绿色纤维”等工作影响力,提升消费者对中国纤维和企业的认知度。鼓励企业建立品牌培育管理体系,加强品牌管理团队建设,培育功能性纤维品牌,发挥纤维品牌在服装、家纺等终端产品中的增值作用。七、保障措施(一)强化政策支持引导。准确定位化纤工业鼓励和限制领域,加大对高性能纤维、生物基化学纤维、再生化学纤维及可降解纤维材料等领域支持力度。鼓励科研院所、高校、企业联合申报国家专项,加快技术研发和成果转化,支持企业建设国家级重点实验室等创新平台。(二)加大财政金融支持。统筹现有渠道,加大对化纤技术创新、绿色发展、数字化转型、公共服务等方面支持力度。引导银行业金融机构按风险可控、商业可持续原则,加大对化纤企业贷款支持力度。发挥国家产融合作平台作用,构建产业信息对接合作服务网络。推进高技术型化纤企业上市融资,支持符合条件的化纤企业发行债券融资。(三)完善公共服务体系。充分发挥政府、集群、企业、协会等机构合力,提升公共服务水平和能力。培育产业技术基础公共服务平台,提升试验检测、成果转化及产业化等支撑能力,构建知识产权保护运用公共服务平台,激发创新活力。引导企业建设数字化服务平台,创新服务方式。(四)优化人才队伍结构。依托重大科研和产业化项目,培养学术、技术和经营管理领军人物。支持行业开展杰出人才评选等活动,壮大高技能人才队伍。支持行业培养具备技术、经贸、管理等知识的复合型人才,建立化纤人才智库,鼓励科技人员参与国际合作。(五)发挥行业协会作用。支持行业协会协调推动指导意见贯彻落实,开展实施效果评估,为政府部门提供支撑。鼓励行业协会加强信息发布,引导企业资金投向,促进行业规范发展。鼓励行业协会加强行业自律、平台建设、品牌培育、技术交流、人才培训等方面工作,促进行业健康发展。工业和信息化部国家发展改革委2022年4月12日
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 张学礼:合成生物学促进微生物细胞工厂构建
    细胞工厂操作系统 图片来源:百度图片   自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   生物制造瓶颈   石油资源是目前运输燃料和整个化工产业的基础。然而,石油资源是不可再生的,并且以其为基础的化工炼制是一个高能耗、高污染的过程。   而从另一个角度看,天然产物在药物开发方面有着广泛的应用,很多产物具有抗肿瘤、消炎、抗寄生虫、抗氧化防衰老等功效,一直是新药来源的重要组成部分。   天然产物的生产目前主要从药用植物中直接提取分离。然而,植物生长周期长、产物含量低,导致这种生产方式对野生植物资源造成严重破坏。   如何以一种可持续、绿色清洁的方式生产燃料、大宗化学品和天然产物,对于保障社会经济可持续发展至关重要。   生物质是一种可再生的清洁资源。通过生物制造技术,生物质可以被转化为燃料、大宗化学品和天然产物,从而替代石油化工炼制和植物资源提取。生物制造的核心技术是构建高效的微生物细胞工厂,将生物质原材料转化为各种终端产品。   然而,自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   合成生物学助力   合成生物学技术的发展极大地提升了细胞工厂的构建能力。通过以下四个方面的改造,可以快速构建出生产各种化学品的高效细胞工厂:   最优合成途径的设计:生产目标化学品的合成途径可能不存在于单一生物中,通过计算机模拟设计,可以将不同的生化反应组装到一个细胞中,形成一条完整的合成途径。在此基础上,根据基因组代谢网络和调控网络模型,设计出目标化学品的最优合成途径,使其合成过程中能量供给充足、氧化还原平衡,碳代谢流最大程度地流入产品合成。另一方面,自然界中可能不存在某步关键的生化反应,导致合成途径不能被打通。通过计算机模拟设计,可以人工合成出一个全新的蛋白,使其催化该步生化反应,从而进一步拓展化学品的合成种类。   合成途径的创建:目标产品合成途径由一系列生化反应及相关的编码基因组成,其中某些基因是外源生物的。传统的PCR(聚合酶链式反应)扩增方法周期长,而且很多外源基因在宿主细胞中的表达及翻译效率很低。DNA合成技术的发展很好地解决了这一问题。基于芯片的高通量、高保真DNA合成技术显著降低了合成时间、合成成本和错误率 单个酶的大量合成和高通量筛选相结合,能有效解决外源基因的表达和翻译问题。另外,标准化的结构元件和调控元件文库,如启动子、核糖体结合位点和信使RNA稳定区文库,为合成途径的创建提供了坚实的物质基础。多片段DNA组装技术,如酵母体内同源重组技术,则能快速高效地实现功能模块组装和合成途径创建   合成途径的优化:合成途径创建完之后,通常效率都很低,远远达不到产业化生产的要求,因此需要对合成途径进行优化,提高其效率。高效的合成途径很多时候不仅仅只受限于某个单一的限速反应步骤,而且需要多个酶的协同平衡。基于标准化调控元件文库,可以对合成途径各个基因的表达进行精确调控,从而获得多个基因协调表达的状态。多重基因组自动改造技术则可以同时对染色体上的多个基因进行改造,结合高通量筛选技术,可以快速高效地鉴定出最优的调控组合。另外,通过人工合成的蛋白骨架,既可以使合成途径相邻的两个酶聚集在物理空间比较近的区域,提高两个生化反应的速率,也可以获得这些酶的最优组合比例。   细胞生产性能的优化:合成途径优化完之后,可以获得一个初步的人工细胞。需要进一步提高人工细胞的生理性能和生产环境适应能力,才能将其转变为实际生产可用的细胞工厂。进化代谢和全局扰动等技术的发展可以有效地提高细胞的生产性能。在此基础上,使用各种高通量组学分析技术可以解析细胞性能提升的遗传机制,并可用于新一轮细胞工厂的构建。   产业化初见成效   使用上述的合成生物学技术,科学家们成功构建出一系列高效的细胞工厂。在燃料化学品方面,生产长链醇(丙醇、异丁醇、异戊醇)、脂肪酸酯、脂肪醇、烷烃、烯烃等燃料的细胞工厂相继面世。   另外,利用二氧化碳和钢厂废气为原料生产乙醇、脂肪醇等燃料的细胞工厂也被成功开发。在大宗化学品方面,科学家们成功开发出生产C3(乳酸、聚乳酸、1,3-丙二醇、1,2-丙二醇、3-羟基丙酸、丙烯酸、丙氨酸)、C4(丁二酸、苹果酸、富马酸、1,4-丁二醇、异丁烯、丁二烯)、C5(异戊二烯、戊二胺、戊醇、木糖醇)和C6(己二酸、葡萄糖酸、甘露醇)等化学品的细胞工厂,其中很多已实现产业化生产,并被进一步用于塑料、纤维、尼龙、橡胶等一系列终端产品的生产。   在天然产物方面,生产青蒿素、紫杉醇、银杏内酯、丹参酮、吗啡、白藜芦醇、莽草酸、番茄红素、虾青素、辅酶Q10等产物及其关键前体化合物的细胞工厂也被成功开发。   随着合成生物学各种新技术的不断发展,微生物细胞工厂的构建技术也将越发完善。其必将极大地推动石油化工制造和药物生产的产业升级,为人类社会的可持续发展作出巨大的贡献。
  • 60个站点形成网络提升陆地碳汇估算精度
    通过优化大气二氧化碳观测站点选址,中国科学院青藏高原研究所副研究员汪宜龙和研究员田向军联合多名合作者,提出了大气二氧化碳浓度观测的地面站点布设方案。研究认为,在我国建立60个大气二氧化碳观测站点很有必要,同化观测数据时,利用大气反演的方法估算我国陆地碳汇量的准确性将达到欧美先进水平。该成果近日发表在《科学通报》。论文第一作者汪宜龙介绍,陆地生态系统碳汇是中国实现碳中和的重要支撑,厘清中国陆地生态系统碳汇的大小和时空分布对于了解碳汇现状和预估未来碳汇潜力至关重要,也为中国制定减排增汇政策措施、实现碳中和目标起到关键支撑作用。大气反演法是一种测量碳汇的方法,是基于大气二氧化碳浓度观测数据与大气传输模型,结合人为源二氧化碳排放清单,评估陆地碳汇的重要手段。目前,我国高标准的地面二氧化碳观测站点较稀疏,是大气反演估算中国陆地生态系统碳收支的瓶颈。如何扩展、优化现有观测网络,通过科学经济方法选址,新增大气二氧化碳观测站点,提高中国陆地碳汇的估算精度是亟需解决的问题。该研究采用最优化思路,遍历所有模型网格,在现有站点基础上找到最优的新增站点位置,通过反复迭代,最终选取52个新增站点,连同现有8个站点构成中国大气二氧化碳浓度地面站点观测网络。研究结果表明,在现有站点基础上,亟需在植被生长季生产力较高的东南、东北、华北和青藏高原地区增设二氧化碳观测站点。若在我国建设30个观测站点,可将碳汇估算的不确定性从10亿吨碳每年降低至3亿吨碳每年;建设60个观测站点,可将不确定性进一步降低至2亿吨碳每年。研究人员还进一步证明该观测网络具有广泛适用性,当反演使用不同输入和配置时,该观测网络仍对中国碳汇有较高的估算精度。该研究中提出的站点位置包含了现有卫星覆盖度较低的区域和地形复杂区域,与卫星观测资料形成有效互补。这些站点将成为“天-空-地”综合碳观测系统的重要组成部分,服务于中国二氧化碳收支反演和精准核算。
  • 杭州大微产品新应用:费列罗系列食品中沙门氏菌的检测
    由于旗下巧克力产品健达奇趣蛋涉嫌关联欧洲多起儿童感染沙门氏菌病例,意大利巧克力生产商费列罗(Ferrero rocher)决定暂时关闭其位于比利时东南部阿尔隆镇的一家工厂。4月7日,FDA发布公告,费列罗北美公司也将召回Kinder Happy Moments Chocolate Assortment和Kinder Mix Chocolate Treats两款产品,因为它们可能也被沙门氏菌污染。4月9日,费列罗中国官方微博发布声明,称此次召回只涉及在比利时工厂生产的特定批次健达产品(主要为健达惊喜蛋Kinder Surprise,而非在国内销售的健达奇趣蛋Kinder Joy),由中国生产以及进口至中国内地(包括在途与官方渠道在售)的全线健达产品,均与涉事的生产工厂无任何关联,不在此次召回范围内。这并不是近期唯一一起沙门氏菌感染食品事件。3月29日,FDA宣布,Liberty Fruit公司生产销售的水果因涉嫌沙门氏菌污染而被紧急召回;2月22日,FDA宣布,Vadilal Industries公司自愿召回可能被沙门氏菌污染的两批冷冻奶油苹果浆;2月17日,FDA宣布,雅培旗下奶粉导致四名婴儿感染坂崎克罗诺杆菌和新港沙门氏菌。中国海关发布公告提醒国内消费者,“暂不通过任何渠道购买”以及“立即暂停食用”美国雅培公司旗下相关婴幼儿产品;沙门氏菌到底是什么?为什么在食品污染事件中频频出现?沙门氏菌(salmonella)是一种常见的食源性致病菌,沙门氏菌广泛分布于自然界,且在自然界中生存力较强。资料统计,我国细菌性食物中毒中70%~80%是由沙门氏菌引起。沙门氏菌常潜伏在肉、蛋、奶等动物性食物中,食入被沙门氏菌污染的食物即可导致食物中毒。沙门氏菌食物中毒在世界各国发生的细菌性食物中毒中位居榜首,也是导致全球腹泻病的四大病因之一。由于该菌不分解食物中的蛋白质,不产生靛基质,污染食物后无感官性状的变化,因此,被污染的食品从表面上根本看不出来。威斯康星大学麦迪逊分校的微生物学家Steven C. Ricke在接受《Knowable》杂志的采访时这样说:“理想的情况是对每一个出厂的成品都进行检测,如果发现沙门氏菌和弯曲杆菌就立刻采取措施消灭病菌。”在《食品安全国家标准 预包装食品中致病菌限量》(GB 29921-2021)中规定,在预包装食品中,沙门氏菌不得检出。在《食品安全国家标准 食品微生物学检验 沙门氏菌检验》(GB 4789.4-2016)中规定了食品中沙门氏菌采用生化实验结合血清学鉴定的检测方法。在沙门氏菌的检测流程中存在大量人工操作,费时费力,人工成本高。更低的花费和更少的人工操作,使自动化成为一种更优选择。杭州大微专注微生物检测,秉承“关注食品安全,服务人类健康”的信念,致力于食品行业的微生物安全及检测自动化。DW-JURAY系列微生物样品自动重量稀释仪该仪器可自动完成对任意重量样品的准确稀释,根据稀释比例自动加入稀释液,使工作简易化。内置高稳定性天秤,支持在实验室不同工作台随时搬运和多点工作。符合国家食品安全微生物检验国家标准GB4789系列。广泛用于食品、药品、化妆品等样品的前处理自动稀释。DW-4型拍击式均质器该仪器是微生物实验室进行“样品匀液”制备的最佳工具,可实现快速操作和自定义设置,DW-4的创新设计使检测人员从“固体和办固体样品”中提取微生物的过程变得简单、高效!DW-M80型自动微生物鉴定系统该系统通过生化反应原理(包括酶底物反应/糖利用反应/同化反应/氨基酸实验等)捕获微生物生化表型特征,利用数值编码鉴定原理,对微生物进行鉴定。系统符合食品安全微生物检验国家标准「GB 4789.4沙门氏菌检测」所要求的生化鉴定分析方法,还可对沙门氏菌样品做致病菌耐药性分析。大微简介:杭州大微生物技术有限公司是微生物检测仪器研发、生产及销售的高新技术企业,总部位于杭州良渚国际生命科技小镇。创立于2008年,已获6项国家专利和4项软件著作权,致力于推动中国工业微生物检测实践的“快速、简单、自动化”和标准化! “杭州大微”品牌DW系列微生物仪器:微生物样品前处理自动化系列、厌氧及微需氧微生物培养系列、微生物鉴定分型溯源系列、微生物快速检测系列。“杭州大微”品牌产品广泛应用于:食品安全、制药工业、疾病防控、环境卫生及医疗等大健康领域。
  • 厦门市检验检测认证协会立项《建筑及市政工程用材料氯离子无酸快速检测方法》团体标准
    各有关单位:根据《团体标准管理规定》和《厦门市检验检测认证协会团体标准管理办法》等文件规定,结合行业发展需要,经专家审核,厦门市检验检测认证协会批准《建筑及市政工程用材料氯离子无酸快速检测方法》团体标准立项,现予以公示。项目见附录。为使立项标准的制定具有广泛性和科学性,欢迎有参与该团体标准编制工作意向的单位或个人与协会秘书处联系。联系人:杨美玲;电话:13950070210;邮箱:649909177@qq.com附录:立项的团体标准目录序号项目名称项目承担单位1建筑及市政工程用材料氯离子无酸快速检测方法厦门艾思欧标准砂有限公司厦门市检验检测认证协会二○二三年十二月二十九日 关于《建筑及市政工程用材料氯离子无酸快速检测方法》团体标准立项的公告.pdf
  • 2014年化学领域重要成果回顾
    2014已经翻过,来自世界各地的化学工作者们在过去的一年中做出了哪些精彩的发现?美国化学会主办的化学化工领域著名新闻媒体《化学化工新闻》从年内诸多报道中精选出十项重要的科研成果,与我们一同分享化学学科各个领域的重要进展。   No.1 元素周期表:氧化态的新纪录在铱的化合物中实现   氧化态表示化合物中某种原子被氧化的程度。在2014年之前,已知的化合物中氧化态最高为+8,仅存在与钌、铱、氙等少数元素的化合物中,而其中的铱尤为特别,因为理论上它还可以被继续氧化,达到+9的氧化态。今年,来自德国、加拿大和我国复旦大学、清华大学的研究人员通过紧密合作,成功地将理论预测变成了现实。他们从铱的单质出发,通过气相反应,成功制备出了四氧化铱正离子(IrO4+)。在这种离子中,铱元素的氧化态达到了+9,这是迄今氧化态的最高纪录。   No.2 显微镜技术:第一张氢键的显微镜照片受到质疑   左:低温下铜表面的8-羟基喹啉的原子力显微镜照片,黑色区域显示存在氢键 右:二(4-吡啶基)乙炔的四聚体的原子力显微镜照片。尽管这种分子相互之间不存在氢键作用,图片上仍然显示出类似的&ldquo 氢键&rdquo 结构。   氢键是分子间的一种特殊的相互作用,它的强度介于共价键和范德华力之间。氢键广泛参与到许多重要的现象&mdash &mdash 特别是生命现象中,因此对于氢键的研究具有重要的意义。在2013年,来自我国的一个研究组曾利用原子力显微镜观察到8-羟基喹啉这种分子之间的氢键,这是首次直接观察到氢键,因此引起了广泛关注。然而在今年,来自芬兰和荷兰的研究人员在《物理评论快报》上发表论文,对于这项研究提出质疑。他们利用原子力显微镜观察了二(4-吡啶基)乙炔这种分子的四聚体。在四聚体中,相邻两个分子的氮原子之间没有任何氢键作用,但是他们也观察到了类似的&ldquo 氢键&rdquo 结构。因此,他们认为此前报道的氢键图像可能仅仅是原子力显微镜扫描样品过程中产生的假象。这项研究提醒相关人员,在利用显微技术观察纳米尺度的物体时必须加倍小心。   No.3 材料科学:石墨烯出乎意料的新性质   石墨烯是由碳原子组成的只有一个原子厚度的薄膜,通常被称为二维材料。自从2010年诺贝尔物理奖得主、英国曼彻斯特大学的安德烈· 海姆和康斯坦丁· 诺沃肖洛夫在2004年首次成功分离石墨烯以来,石墨烯的研究成为了一个相当热门的领域,人们希望这种新型材料能够在许多应用中取代传统材料。   在2014年,关于石墨烯的一些新的研究让人们对这种新型材料有了更加深入的认识。其中一项研究表明,石墨烯的化学性质可能并不像人们此前认为的那样稳定。目前制备石墨烯常用的一种方法是先将石墨氧化得到氧化石墨,再将其还原。来自美国的研究人员发现,用这种方法制备的石墨烯在紫外线照射和二氧化钛纳米颗粒催化的条件下能够迅速分解成二氧化碳和水。另一项研究则表明,尽管此前研究人员认为各种原子或者分子很难通过石墨烯,质子却可以很好地穿过它。因此石墨烯有可能被用于燃料电池中传导质子的薄膜。   No.4 计算化学:通过模型促进实验   &ldquo 从头计算的纳米反应器&rdquo 预测的乙炔聚合的过程   在2014年,研究人员朝着计算化学的终极目标&mdash &mdash 利用理论来发现新的化学反应&mdash &mdash 又迈出了坚实的一步。来自美国斯坦福大学的研究人员开发出一种被称为&ldquo 从头计算的纳米反应器&rdquo (ab initio nanoreactor)的计算化学新体系。在虚拟的环境中,这种&ldquo 纳米反应器&rdquo 将反应物的分子混合并压缩到一起,之后运用量子力学方法计算反应过程和反应产物。利用这种方法,研究人员预测出了一些化学反应的产物,这些化学反应由于需要高温高压,目前尚不能在实验室中验证。虽然这种新的计算化学体系还需要进一步的改进,它仍然是计算化学领域的一项重要进展。   No.5 有机合成:盐能够影响根岸偶联反应的进行   无机盐对于根岸偶联反应的影响:左上:当有机锌试剂与两个脂肪烷基相连时,无论有无无机盐存在,反应均无法进行 右上:当有机锌试剂与两个芳香基相连时,反应不需要添加无机盐即可进行:下:当有机锌试剂与一个脂肪烷基或芳香基和一个卤素原子相连时,反应必须在有无机盐存在的情况下才能发生。   根岸偶联反应( Negishicross-coupling)由日本化学家、2010年诺贝尔化学奖获奖者之一根岸英一发现,指卤代烷与有机锌试剂在过渡金属催化下形成新的有机化合物的反应。根岸偶联反应自从1977年被发现以来,已被用于合成许多重要的有机物。来自加拿大的研究人员经过十余年的研究发现,诸如氯化锂这样的无机盐能够显著影响根岸偶联反应的进行。根据有机锌试剂结构的不同,反应在一些情况下必须在有无机盐存在的情况下才能进行,另外一些情况下不需要无机盐参与就可以顺利完成,还有一些情况下,无论是否存在无机盐,反应都不能发生。研究人员解释说,根岸偶联反应要想正常进行,有机锌试剂与溶剂的极性必须匹配,而添加无机盐可以帮助实现这一目标。这项研究可以帮助研究人员更好地控制反应的进行,减少不必要的副产物的产生。   No.6 纳米技术:制备高纯度的碳纳米管   处在铂表面的多环芳香烃被加热时会发生折叠形成碳纳米管。通过这种方法,研究人员可以很好地控制碳纳米管的尺寸。   单壁碳纳米管被认为在许多领域都有着潜在应用,但长久以来,制备高纯度的碳纳米管是一项亟需解决的难题。目前常用的方法通常只能得到许多尺寸与手性各不相同的碳纳米管的混合物,从而影响到碳纳米管的导电性能。今年,两个研究小组分别在高纯度碳纳米管的制备方法上取得重大突破。北京大学李彦教授及合作者用钨-钴合金的纳米晶体作为&ldquo 种子&rdquo ,在高温下引导碳纳米管的生长。利用这种方法,他们将碳纳米管的纯度从55%提高到了92%。来自德国和瑞士的研究人员则利用多环芳香烃作为合成碳纳米管的原料。在高温下,这些芳香烃分子发生折叠和延伸,形成碳纳米管。通过这种手段,他们能够每次得到单一的一种碳纳米管。   No.7 合成生物学:细菌接受了扩展的遗传密码   上:人工合成的d5SICS-dNaM碱基对的化学结构 下:如果DNA的碱基从2对4种扩充到3对6种,密码子可能的组合将从64增加到216,因此有可能将一些新的氨基酸分子引入到蛋白质中。   腺嘌呤(A)和胸腺嘧啶(T)以及鸟嘌呤(G)和胞嘧啶(C)是我们熟知的DNA中的两对四种碱基。地球上的所有生物都利用这四种碱基来编组遗传密码从而控制蛋白质的合成。在2014年,来自美国斯克里普斯研究所的科学家们将含有d5SICS和dNaM这一对并非天然存在的碱基的DNA引入了活的细菌体内,并发现含有新碱基的DNA能够在细菌体内正常复制。这一对新的碱基不像A-T和G-C碱基对通过氢键相互作用,而是通过疏水作用相结合。虽然含有新的碱基对的DNA已被证实能够在体外指导蛋白质合成,在生物体内的复制还是首次报道。如果含有新碱基对的DNA能够在生物体内被转录为信使RNA,未来我们将有可能利用它来合成新的蛋白质结构。   No.8 结构生物学:首次仅凭电子显微镜确定蛋白质结构   酵母菌的线粒体核糖体大亚基的超高分辨率电子显微镜照片。蓝色、红色和黄色标出的结构分别表示与细菌的核糖体相同的结构、与哺乳动物线粒体核糖体相同的结构和酵母菌独有的结构。   精确测定蛋白质等生物大分子的结构向来是X射线衍射的专利,但是在今年,来自英国剑桥分子生物学实验室的几位研究人员首次仅仅凭借电子显微镜就确定了蛋白质的结构。通过改进电子显微镜技术,他们成功获得了酵母菌的线粒体核糖体大亚基的图像,分辨率为3.2埃(1埃是1纳米的十分之一,1米的百亿分之一,原子半径一般在1埃左右)。由于不需要像X射线衍射那样需要复杂繁琐的纯化和结晶过程,新的电子显微镜技术有望帮助研究人员更好地了解生物大分子的结构。   No.9 高分子科学:具有手性的新型塑料   来自美国康奈尔大学的研究人员开发出一种新型的含有金属钴的化合物,它能够催化丁二酸酐和环氧丙烷这两种分子相互反应得到聚合物。环氧丙烷分子具有手性,也就是说它实际上具有两种不同的结构,它们像人的左右手一样互为镜像却不能重叠。当环氧丙烷与丁二酸酐在这种新型催化剂作用下生成高分子时,手性得到了保持,也就是说我们可以得到两种互为镜像的高分子。有趣的是,这两种高分子材料各自的熔点都是79 oC,但按照1:1的比例互相混合后,由于特殊的相互作用,熔点却升高至120 oC,而且结晶速度也大大加快,这些都非常有利于塑料制品的生产加工。另外这种新型的塑料能够被生物降解,而且丁二酸酐和环氧丙烷都是常见的化工原料,因此很有希望在不久的将来获得大规模的应用。   No.10 太阳能电池:钙钛矿型太阳能电池继续取得进展   左:钙钛矿型太阳能电池的结构示意图,从下至上分别为透明电极、二氧化钛层、具有钙钛矿型结构的导体层和另一电极 右:钙钛矿型太阳能电池纵截面的电子显微镜照片。   太阳能电池一直被视为重要的可再生能源形式。目前已经商业化的硅太阳能电池能够将25%左右的太阳能转化为电能,但是造价昂贵。基于高分子等材料的太阳能电池较为廉价,但是转化效率只有10%左右。近年来,一种新型太阳能电池&mdash &mdash 钙钛矿型太阳能电池(perovskitesolar cells)受到了研究人员的广泛关注。钙钛矿型太阳能电池并非使用钙钛矿(CaTiO3),而是指用来转化太阳能的物质具有通式为ABX3的化学组成,并且晶体结构与钙钛矿类似,它兼具了成本低廉和能量转化效率高的优点。目前钙钛矿型太阳能电池最常用的材料为(CH3NH3)PbI3。今年早些时候,有报道表明钙钛矿型太阳能电池的转化效率已经达到16%,而在今年年底,已经有研究人员实现20%的转化率。由于含铅化合物具有一定的毒性,美国西北大学的研究人员提出用锡代替铅得到的类似化合物同样可以用于生产钙钛矿型太阳能电池。同样在今年,来自英国牛津大学的研究人员发表论文称,碳纳米管和高分子形成的复合材料能够有效提高钙钛矿型太阳能电池的稳定性。   (部分配图引自原报道:http://2014.cenmag.org/top-chemistry-research-of-2014/)
  • 你的朋友都收藏啦!卡拉洛尔残留测定前处理方法
    卡拉洛尔的危害及检测目的卡拉洛尔又名咔唑心安,化学名4- (3-异丙胺基-2-羟丙氧基) 咔唑,属β肾上腺受体阻断剂,在兽医临床中常用于消除动物紧张,特别是在运输过程中防止因应激导致的动物死亡。β肾上腺受体阻断剂目前已成为临床上常见的七类兽药残留之一,其代表性药物卡拉洛尔常在动物屠宰前数小时内注射使用,因此相对其他兽药可能对消费者造成的健康风险更高。因此我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最da残留限量》中明确规定了卡拉洛尔在猪靶组织中的残留限量。本文阐述了如何将卡拉洛尔从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据行标SN/T 4144-2015,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡拉洛尔应用范围:猪肉、鱼肉、虾肉、肝脏、肾脏、脂肪、奶、鸡蛋和蜂蜜高效液相色谱-质谱/质谱法方法原理:试样中的卡拉洛尔用甲醇(脂肪用乙酸乙酯-正己烷溶解提取)提取,提取液经MCX柱净化(脂肪用GPC净化)后,供液相色谱-质谱/质谱仪测定,外标法峰面积定量。前处理仪器:凝胶净化色谱仪;电子天平(感量0.01 g 和0.1 mg);组织捣碎机;涡旋混匀器;氮吹仪;均质机(10000 r/min);离心机(6000 r/min);具塞塑料离心管(50 mL)。检测仪器:LC-MS/MS+ESI源 样品的制备与保存1.肌肉(猪肉)、内脏(肝脏、肾脏)、脂肪和水产品(鱼肉、虾肉):取代表性样品约500 g,用组织捣碎机捣碎,装入洁净容器作为试样,密封并做好标识,于零下18 ℃下保存。2.奶、蜂蜜、鸡蛋:取代表性样品约500 g,搅拌均匀后装入洁净容器内密封并做好标识,于4 ℃下保存。 前处理方法1.提取肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,用均质器(10000 r/min)均质2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇均质提取一次。离心合并有机相,用水定容至50 mL,待净化。 奶、蜂蜜、鸡蛋称取5 g试样(精确至0.01 g)于50 mL具塞离心管中,加入15 mL甲醇,涡旋提取2 min,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用15 mL甲醇涡旋提取一次。离心合并有机相,用水定容至50 mL,待净化。 脂肪称取2 g试样(精确至0.01 g)于50 mL具塞离心管中,加入20 mL乙酸乙酯-环己烷(1+1)溶解并混匀,5500 r/min离心3 min,将有机相转移至50 mL容量瓶中,残渣再用20 mL乙酸乙酯-环己烷(1+1)溶解提取一次。离心合并有机相,用乙酸乙酯-环己烷(1+1)定容至50 mL,待净化。 2.净化肌肉(猪肉)、内脏(肝脏、肾脏)、鱼肉、虾肉、奶、蜂蜜、鸡蛋MCX柱(60 mg/3 mL)依次用甲醇3 mL和水3 mL活化,加入5.0 mL待净化液,用3 mL水淋洗,用抽空3 min。用5 mL 5 %三乙胺-甲醇洗脱,收集洗脱液,于40 ℃氮气浓缩吹干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 脂肪凝胶渗透色谱条件凝胶色谱净化系统:Accuprep(J2);凝胶净化柱:Bio-Beads S-X3(38 μm~75 μm),400 mm×25 mm(内径);流动相:乙酸乙酯-环己烷(1+1);流速:5 mL/min;收集时间:7 min~17 min。净化过程:取10 mL待净化液于GPC样品管中,用GPC柱净化,收集洗脱液,于40 ℃旋转蒸发至干,残渣用50 %乙腈水溶液1.0 mL溶解后,加2 mL乙腈饱和正己烷脱脂,下层清液过0.45 μm滤膜,供液质测定。 国标解读及注意事项1.卡拉洛尔标准物质用乙腈配成100 μg/mL的标准储备液,在0 ℃~4 ℃ 避光保存。2.本方法使用甲醇提取两次目标化合物,阳离子交换柱富集净化,相当于0.5 g试料进行上机检测(其中脂肪样品用乙酸乙酯-正己烷提取两次,再用GPC柱净化,相当于0.4 g试料进行上机检测)。3.MCX固相萃取过程中需要控制流速,使溶液一滴一滴地流下,以保证离子交换的效果。洗脱过程中洗脱溶剂少量多次加入,可以增加洗脱率。4.在GPC净化过程中配合紫外检测器使用,可以准确监测目标化合物及杂质的流出情况。 参考文献SN/T 4144-2015 出口动物源性食品中卡拉洛尔残留量的测定 液相色谱-质谱/质谱法 图1 肌肉、内脏和水产中卡拉洛尔残留量测定的前处理流程图图2 奶、蜂蜜和鸡蛋中卡拉洛尔残留量测定的前处理流程图图3 脂肪中卡拉洛尔残留量测定的前处理流程图
  • 哪种洗瓶机适合您实验室 —实验室洗瓶机还是酸蒸清洗机
    随着实验室清洗自动化程度的提高,越来越多的实验室选择购买实验室洗瓶机,市场上实验室洗瓶机品种也琳琅满目,那如何挑选哪种洗瓶机适合您的实验室呢?下面小编带您来看一看市面上的洗瓶机分为两大类,一类是用于常规清洗的实验室洗瓶机,应用重点在于清洗常规污染物,其作用是把脏的器皿清洗干净,例如清洗瓶子里的油污、农药、色素、蛋白质、灰尘等;一类是用于去除无机痕量金属元素残留的酸蒸清洗机,由于全清洗仓无金属材质,应用重点在于去除 铜、锌、铅、锰、铁、铬、镍等无机痕量金属离子,满足ICP-MS、原子吸收、原子荧光等痕量检测需求。 谈到这里有人会问,常规实验室洗瓶机难道不能洗干净金属离子本底么,答案是如果器皿内金属离子含量非常高,用常规实验室洗瓶机是能清洗掉一部分的,但洗瓶机本身材质为不锈钢,本身会有金属离子溶出,清洗完成后金属离子本底不能满足ICP-MS、原子吸收、原子荧光等ppt\ppb\ppm级别痕量检测需求,不能代替酸蒸清洗机去除痕量金属离子本底;同理,酸蒸清洗机也不能代替实验室洗瓶机洗干净普通污染物,瓶子里的油污、农药、色素等得用碱性清洗剂配合大流量及高温的水喷淋清洗才能清洗干净,大多数酸蒸清洗机是用酸蒸汽熏蒸器皿,只能去除无机金属离子本底,对普通污染物几乎没有作用,即便是目前具有120L/h水喷淋流量的语瓶酸蒸清洗机Acide3000,喷淋水的作用是2-3秒高效冲洗器皿,把酸熏蒸凝集的酸及离子本底迅速冲洗干净,也不能达到清洗常规污染物的水平。所以实验室洗瓶机和酸蒸清洗机不能互相替代,对于国家级及省级的无机元素实验室来讲,可以选择购买实验室洗瓶机及酸蒸清洗机(全自动清洗系统),其他科室选择只购买实验室洗瓶机;对地市级实验室来讲大多是综合实验中心,可以选择购买包含实验室洗瓶机及酸蒸清洗机(全自动清洗系统)。 实验室洗瓶机、酸蒸清洗机专业生产厂商——天津语瓶仪器技术有限公司(版权所有) 服务热线:022-87185626
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制