当前位置: 仪器信息网 > 行业主题 > >

氯乙酸苄酯

仪器信息网氯乙酸苄酯专题为您提供2024年最新氯乙酸苄酯价格报价、厂家品牌的相关信息, 包括氯乙酸苄酯参数、型号等,不管是国产,还是进口品牌的氯乙酸苄酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯乙酸苄酯相关的耗材配件、试剂标物,还有氯乙酸苄酯相关的最新资讯、资料,以及氯乙酸苄酯相关的解决方案。

氯乙酸苄酯相关的资讯

  • 生态环境部公开征求《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》等5项国家生态环境标准意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法》等5项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年1月20日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)  3.《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》编制说明  4.固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿)  5.《固定污染源废气 氯代甲基醚和二氯甲基醚的测定 气相色谱法(征求意见稿)》编制说明  6.固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)  7.《固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)》编制说明  8.环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)  9.《环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)》编制说明  10.环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)  11.《环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)》编制说明  生态环境部办公厅  2023年12月15日  (此件社会公开)
  • 欧盟化学品管理局就氯乙酸钠等7种化学物质的动物测试征求意见
    据欧盟化学品管理局(ECHA)消息,近日该局就氯乙酸钠等7种化学物质的动物测试开始征求意见,来自第三方机构的科学资料以及相关研究资料应在11月28日之前提交至该局。   原文链接:   http://echa.europa.eu/consultations/test_proposals/test_prop_cons_en.asp
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。   对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。   检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • 新版工业冰乙酸国家标准即将实施
    近日,应国家标准化管理委员会邀请,国泰公司参加了国家工业冰乙酸质量标准修订工作,国泰公司工作人员结合醋酸质量管理工作的先进做法,针对工业冰乙酸标准在实施过程中存在的问题提出大量修改建议并得到采纳,该公司醋酸产品多项质量指标被确定为国家工业冰乙酸质量标准。   新版工业冰乙酸国家标准(标准号GB/T1628-2008)已在全国发行并将从2009年2月1日起实施,国泰公司名列参加起草的单位行列。国泰公司醋酸质量指标进入国家标准,标志着兖矿集团醋酸产品质量管理和分析试验研究工作走在了国内同行业的前列。
  • 冷烫液、染发剂巯基乙酸等超标
    冷烫液、染发剂质量监测抽查结果播报视频链接 哈尔滨市工商局2009年第三季度头发用冷烫液定向监测合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测结论 名称 型号 批次 哈尔滨市南岗区华尔姿美容美发用品商行 哈尔滨市南岗区巴陵街99号 小四郎冷烫液 ------ 120m×2+10ml 20111017 广州市白云区小四郎化妆品厂 合格 哈尔滨市南岗区伯村兴辉美容美发用品商店 哈尔滨市南岗区光芒街49号 艾尼尔丝蛋白光速烫 ------ 120×2+25ml 20100918 广州市美度化妆品有限公司 合格 哈尔滨市南岗区华尔姿美容美发用品商行 哈尔滨市南岗区巴陵街99号 艾斯迪尔植物修复电发水 艾斯迪尔 120ml×2 20080321 广州市星海岸精细化工有限公司 合格 简爱形象设计 哈尔滨市南岗区和兴路 黄金水能烫(热塑升级版) ------ 100ml×2 20111011 广州市嘉倩化妆品有限公司 合格 22-4号 乐强剪业哈尔滨市道里区北安街124号 安妮丝茵多澜烫发水 ------ 100ml×2 20090417 广州茵多澜精细化工有限公司 合格 广仔发型设计室 哈尔滨市道里区红霞街25号 JOVIAL乔薇尔烫发液(氨基酸生化烫) JOVIAL 1剂110ml、2剂100ml 20081214 吴江兴博隆日用化学品有限公司 合格 时尚理容中心 哈尔滨市和平路41号 阿丽德新星波浪烫发液 ------ 100ml×2 20081112 韩国一珍化妆品株式会社 合格 哈尔滨市工商局2009年第三季度头发用冷烫液定向监测不合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测 不合格项 名称 型号 批次 结论 哈尔滨市南岗区梦之美美发用品店 哈尔滨市南岗区光芒街72-2号 宝露美瞬间计时烫 ----- 120ml×2 20090321 广州市白云区卡淇日用化妆品厂 不合格 巯基乙酸含量超标 哈尔滨市南岗区伯村兴辉美容美发用品商店 哈尔滨市南岗区光芒街49号 世纪畅想闪电生化烫 ------ 120ml×2 20111027 广州白云雅力化妆品厂 不合格 巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供 四海美容美发用品商行 哈尔滨市南岗区光芒街59-1号 超速智能生化烫 ----- 100ml 20090309 广州姿采化妆品厂 不合格 巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供 哈尔滨市南岗区丽丽美容美发用品商行 哈尔滨市南岗区巴陵街99号 欧莱雅生化抛光烫 欧莱雅 120ml×2 20081018   不合格 执行标准错误、PH值超标 哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行 哈尔滨市南岗区光芒街74-1号 DIWEI生化中性烫 DIWEI 120ml×2 20111219 广州白云区荻薇日用化妆品厂 不合格 巯基乙酸含量超标 哈尔滨市南岗区华威美发用品商店哈尔滨市南岗区光芒街51-3号 荻薇烫发水 ------ 120ml×2 20090314 广州白云区黄石荻薇日用化妆品厂 不合格 巯基乙酸含量超标 毫末时尚造型 哈尔滨市道里区通江街9号 BEAVER维妮B.H.T智能电发水 BEAVER A剂100ml、B剂110ml、C剂60ml 20111022 广州博氏化妆品有限公司 不合格 巯基乙酸含量超标 秀色形象设计 哈尔滨市道里区经纬六道街15号 晨彩冷烫液(3D幻魅烫) ----- 120ml×2 20111201 鹤山金辉美发美容用品有限公司 不合格 巯基乙酸含量超标 型男塑女时尚沙龙 哈尔滨市道里区红霞街7号 瑞缤梨菲酸性冷烫精 瑞缤 A剂82ml、B剂18ml、C剂100ml 20080411 吴江兴博隆日用化学品有限公司 不合格 巯基乙酸含量低 张昕美发 哈尔滨市南岗区花园街256号 宝美奇蓝波曲线烫发剂 ------ 100ml×2 ------ 美国强保罗米契尔公司、洛杉矶比佛利山庄、进口商:肯信贸易(上海)有限公司 不合格 巯基乙酸含量超标、无生产日期 芙蓉理容名店 哈尔滨市南岗区花园街371号 沸蓝露新兰全能冷烫精 沸蓝 100ml×2 20120406 吴江兴博隆日用化学品有限公司 不合格 巯基乙酸含量超标 好心情专业烫染形象店 哈尔滨市法院街33号 博柔3D立体电发剂 博柔 120ml×2 20110108 广州至尚日用化妆品厂 不合格 巯基乙酸含量超标、生产企业与许可证号不符合 四海美容美发用品商行 哈尔滨市南岗区光芒街59-1号 浩鑫欧米伽速效生化烫 浩鑫 120ml×2 20120103 广州市浩鑫精细化工有限公司 不合格 查无XK16-108 6006许可证 哈尔滨市南岗区丽丽美容美发用品商行 哈尔滨市, 南岗区巴陵街99号 莎萱梅香元素香水烫 ------ 120ml×2 20120308 广州市白云区莱丹精细化工厂 不合格 生产企业与许可证号不符合、超项生产 哈尔滨市南岗区超越美容美发用品商店 哈尔滨市南岗区光芒街49号1栋1单元一层1号 可立雅半胱胺植物电发水 ------ 120ml×2 20090102 广州柏仙奴化妆品有限公司 不合格 执行标准错误、超项生产 哈尔滨市南岗区华顺泰美容美发用品商店 哈尔滨市南岗区光芒街59-1号 雅丝兰黛生化烫 ------ 120ml×2 20120318 (中外合资)谊发精细化工有限公司 不合格 执行标准错误、超项生产 哈尔滨市南岗区经典美容美发用品商行 哈尔滨市南岗区光芒街80号 花粉生化烫 ------ 120ml×2 20111129 中国广州市鑫锦化妆品有限公司 不合格 超项生产 哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行 哈尔滨市南岗区光芒街74-1号 莎圣纳米无氨香水烫 莎圣 110ml×2 20081008 广州奥雅化妆品有限公司 不合格 超项生产 哈尔滨市南岗区经典美容美发用品商行 哈尔滨市南岗区光芒街80号 鑫锦烫发水 鑫锦 120ml×2 201204 中国广州市鑫锦化妆品有限公司 不合格 超项生产 哈尔滨市南岗区华威美发用品商店 哈尔滨市南岗区光芒街51-3号 香薰香水烫 ------ 120ml×2 20090108 广州市白云区新莉雅化妆品厂、雅丹尔美发用品有限公司 不合格超项生产 哈尔滨市南岗区华顺泰美容美发用品商行 哈尔滨市南岗区光芒街59-1号 黑人头贵族香熏香水烫 ------ 110ml×2 20120608 广州市白云区石井新莉雅化妆品厂、雅丹尔美发用品有限公司 不合格 超项生产 哈尔滨市南岗区梦之美美发用品店 哈尔滨市南岗区光芒街72-2号 威拉基因再生疗发冷烫液 ------ 120ml×2 20120328 广州市景红达精细化工有限公司 不合格 超项生产、许可证附表未提供 哈尔滨市南岗区超越美容美发用品店 哈尔滨市南岗区光芒街49号1栋1单元一层1号 国色天香氨基酸低温快速生化烫 ------ 120ml×2 20120525 广州市景红达精细化工有限公司 不合格 超项生产、许可证附表未提供 哈尔滨市工商局2009年第三季度染发剂定向监测合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测结论 名称 型号 批次 哈尔滨家乐福超市有限公司新阳店 哈尔滨市道里区新阳路365号 三精植物染发 三精 50g×2 20090218 样品名称 品牌 规格 生产 生 产 企 业 检测 不合格项 名称
  • Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”
    Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”胡金胜食品安全国家标准修订2021年3月26日,国家卫生健康委员会食品安全国家标准审评委员会秘书处发函,对组织起草的《食品添加剂使用标准》等12项食品安全国家标准(征求意见稿)公开征求意见。备受关注的GB 2760时隔多年再次修订,变更的内容涉及到多个常用的食品添加剂,其中防腐剂“脱氢乙酸及其钠盐” 使用规定的修改引发了热议。左右滑动查看GB 2760中脱氢乙酸及其钠盐修订细节 脱氢乙酸及其钠盐作为一种广谱食品防腐剂,毒性较低,对霉菌和酵母菌的抑制能力强,按标准规定的范围和使用量使用是安全可靠的。然而通过汇总近些年来全国各地食品安全监督抽检结果,我们不难发现脱氢乙酸及其钠盐超限量、超范围使用的情况屡有发生。由于脱氢乙酸及其钠盐能被人体完全吸收,并能抑制人体内多种氧化酶,长期过量摄入脱氢乙酸及其钠盐会危害人体健康。随着GB 2760征求意见稿的发布,针对食品添加剂脱氢乙酸及其钠盐,收窄了使用范围,降低了最大使用量,释放了监管部门将进一步加强监管的信号。由于政策信息传递的延迟及生产工艺革新的滞后,部分食品企业可能会面临因脱氢乙酸及其钠盐超限量、超范围使用而被监管部门处罚的风险。 目前,食品检测实验室参照GB 5009.121-2016开展脱氢乙酸的测定也会遇到一系列的难题,其中最突出的问题就是脱氢乙酸峰型拖尾,影响定性和定量结果的准确性。脱氢乙酸属于非羧基酸类,分子结构存在烯醇互变,导致在普通C18 上峰型容易出现拖尾。相关文献显示,通过调节缓冲盐pH(调酸或调碱)和有机相比例可以在一定程度上抑制脱氢乙酸的拖尾,但是在食品安全监督抽查中对于实验室方法的偏离及变更有着较为严格的审核流程,这也是实验室体系管理难以回避的问题。 基于此,赛默飞实验室筛选了一款特色色谱柱—Acclaim Organic Acid,在不变更标准色谱条件的前提下,开展了一系列的验证工作,完美解决了脱氢乙酸峰型拖尾的问题,并且在实际样品分析过程中有着出色的表现。Acclaim Organic Acid有机酸分析专用柱,极性嵌入,专利封端技术,可耐受 100% 水相,PEEK 柱管,可有效消除硅胶表面残余硅羟基及金属柱管内壁与有机酸分子次级作用导致的拖尾。 实验谱图及数据色谱条件液相色谱仪:Vanquish™ Core HPLC 液相色谱系统色谱柱:Acclaim Organic Acid, 5 μm, 4.0×250 mm (P/N: 062902)柱温:30 ℃;进样量:5 µL;流动相:A为20 mM 乙酸铵溶液,B为甲醇洗脱程序:A:B=90:10,等度洗脱流速:0.8 mL/min检测波长:293 nm采样频率:5 Hz采集时间:15 min 分离谱图 脱氢乙酸标准品溶液5.00 μg/mL,保留时间为7.107 min,不对称因子为1.04,理论塔板数为13830。脱氢乙酸在 Acclaim Organic Acid 色谱柱上获得了出色的峰型和优异的灵敏度。图1. 脱氢乙酸标准品溶液色谱图(5.00 μg/mL) 脱氢乙酸标准工作液线性范围为0.50-50.0 μg/mL,线性方程y=0.6283x-0.0141,线性相关系数r2=0.99990,线性关系良好。图2. 脱氢乙酸线性方程图及标准曲线点叠加色谱图(0.50-50.0 μg/mL)以脱氢乙酸峰高为 S,选取 4-6 min 基质噪音的平均值为 N,采用 Chromeleo 数据处理软件计算信噪比 S/N,脱氢乙酸线性低点 0.50 μg/mL信噪比S/N为181.8。实验室可根据实际情况设置合适的线性最低点,以满足方法检出限的要求。图3. 脱氢乙酸线性低点 0.50 μg/mL 色谱图及信噪比脱氢乙酸标准品溶液 1.00 μg/mL 重复进样,保留时间RSD为0.04%,峰面积RSD为0.28%,不对称因子RSD为0.34%,重现性良好。图4. 脱氢乙酸标准品溶液 1.00 μg/mL 6次重复进样叠加谱图在实际样品分析中,面对各种复杂基质的干扰,Acclaim Organic Acid 表现出了非常出色性能。以下谱图分别展示了Acclaim Organic Acid 应用于鸡蛋挂面、猪肉脯、肉松面包、法式小面包及芒果汁中脱氢乙酸的测定。样品前处理方法采用标准推荐的直提法,其中芒果汁样品基质复杂,对流动相比例和柱温进行了适当调整。图5. 鸡蛋挂面中脱氢乙酸的测定图6. 猪肉脯中脱氢乙酸的测定图7. 肉松面包中脱氢乙酸的测定图8. 法式小面包中脱氢乙酸的测定图9. 芒果汁中脱氢乙酸的测定 本试验基于Vanquish™ Core HPLC液相色谱系统,采用Acclaim Organic Acid有机酸分析专用柱,对多种食品基质中脱氢乙酸的测定开展了验证。实验结果表明,Acclaim Organic Acid能够完美解决脱氢乙酸峰型拖尾的问题,有效排除各种复杂样品基质的干扰,为食品实验室准确定性和定量分析脱氢乙酸,提供了一个高效便捷的方法。 那么,有请我们的主角闪亮登场… … 此处应有掌
  • SCIEX公司宣布乳制品中氟乙酸筛查的新方法
    生命科学分析技术和解决方案的全球领导者SCIEX公司,于2015年5月20日宣布其应用团队正在积极开发针对氟乙酸(MFA)的筛查方法(注MFA也被称为&ldquo 1080&rdquo 。)   2008年,三聚氰胺食品安全事件在中国乳制品市场爆发出时,SCIEX公司与业界科学家合作并在第一时间提供了三聚氰胺和三聚氰酸的检测方法。2013年,新西兰牛奶样品被检测出含有低含量化合物&ldquo 双氰胺&rdquo (又为DCD), 对此,SCIEX公司也开发了相应的检测方法。近期,另一个重大食品安全事件最近正在亚太地区发酵。新西兰全国养殖协会和一些乳品公司于2014年年底收到来源不明的恐吓电子邮件,声称部分牛奶和婴幼儿配方奶粉已被人工添加了具高毒性的氟乙酸。新西兰政府将此次事件定义为&ldquo 生态恐怖主义&rdquo 。警方报告说,该威胁邮件旨在迫使新西兰停止使用含有氟乙酸成分的农药。这种农药广泛运用于保护植物免受啮齿动物,哺乳动物的和昆虫的侵害 摄入人体内后可能会引起食物中毒,心脏异常,肌肉抽搐,痉挛和昏迷等不良反应。该农药在许多其他国家已被禁止使用。   新西兰是世界上最大的牛奶生产国和出口国之一,该事件威胁到全球食品安全。在事件爆发后,新西兰乳制品业、政府以及上下游产业合作伙伴一起,开始研发可快速检测1080的方法。出于对检测效率的考虑,科学界需要一种快速和易于实施的检测方法。   SCIEX公司致力于帮助应对全球食品安全问题。对此,公司投入大量人力物力,已经初步开发了利用QTRAP® 4500系统在牛奶和婴幼儿配方奶粉筛查1080的方法。 该方法包括一种不需要衍生作用的简化样品制备过程,大大消减了试验的时间,并且可以在食品基质中检测到低于10纳克/毫升的1080成分,同时满足优异的精准度和再现性。在初步的研究中,我们发现该方法的定量动态范围可覆盖0.1至100纳克/毫升,实现在广泛的浓度范围内进行精准的定量分析。目前SCIEX正在计划进一步的实验来提高灵敏度,简化样品制备并加入内部标准品来纠正低回收率和基质效应的问题。   &ldquo 氟乙酸威胁可能会损害全球食品安全,因此,我们的专家团队以最快的速度开发了这样一个容易使用的方法 。利用这个方法,实验室的科学家能在短时间内快速地对大量样品进行污染物筛查。&ldquo 来自SCIEX公司的高级业务总监文森特· 派斯如是说。&ldquo 作为全球食品检测团队的一部分,快速开发新的分析解决方案来应对食品安全事件是我们的使命。&rdquo   登陆SCIEX官网可了解详情并下载应用报告。
  • 国家药监局发布《化妆品中氯倍他索乙酸酯的测定》化妆品补充检验方法
    根据《化妆品监督管理条例》,国家药监局批准《化妆品中氯倍他索乙酸酯的测定》化妆品补充检验方法,予以发布。此条例起草单位为湖北省药品监督检验研究院;主要起草人为李丽霞、刘红、杨飘飘、曹全胜;验证单位为浙江省食品药品检验研究院、深圳市药品检验研究院、北京市药品检验研究院。本方法规定了化妆品中氯倍他索乙酸酯的测定方法,适用于液体(水、油)类、膏霜乳类、凝胶类、泥类和贴膜类化妆品中氯倍他索乙酸酯的定性和定量测定。样品以乙腈为溶剂提取,采用高效液相色谱仪分离,质谱检测器检测。根据保留时间和特征离子对的相对丰度比定性,定量离子对峰面积定量,以标准曲线法计算含量。附:化妆品中氯倍他索乙酸酯的测定.docx
  • 爱拓发布ATAGO(爱拓)便携式过氧乙酸检测仪新品
    过氧乙酸消毒剂是一种强氧化剂,为无色液体,有强烈刺激性气味,具有酸性腐蚀性,必须稀释后使用。过氧乙酸可分解为乙酸、氧气,与还原剂、有机物等接触会发生剧烈反应,有燃烧爆炸的危险。临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。ATAGO(爱拓)全新推出“过氧乙酸检测仪 PAL-Peracetic Acid (COVID-19)”仅需少量样品,3秒就能快速检过氧乙酸浓度!钛电极,耐用性更好,抗腐蚀性更高!型号PAL-Peracetic Acid (COVID-19)货号1557测量范围10-1000ppm电源2 x AAA 碱性电池 国际防护等级IP 65尺寸和重量5.5 x 3.1 x10.9cm,100g创新点:临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。 ATAGO(爱拓)便携式过氧乙酸检测仪
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 色谱检测新标准来啦——HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱
    有机酸极易富集在大气颗粒物上,不仅对城市环境和人体健康造成诸多影响,还关系到全球大气系统能量平衡。有机酸在一定条件下可明显增加酸雨强度,降低城市大气能见度,影响区域和全球的气候。最常见的有机酸为甲酸、乙酸和乙二酸,对其含量的检测不仅是未来环保规范的迫切需要,同时也为大气颗粒物中化合物的示踪及其来源解析提供依据,是大气颗粒物环境治理工作的重要需求。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,生态环境部组织制定了《HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱法》,规范环境空气颗粒物中甲酸、乙酸和乙二酸的测定方法。本文内容非商业广告,仅供专业人士参考。
  • 环境部征求意见 《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》
    有机酸对水体、大气、土壤、建筑物、人体等都可能产生危害,在环境空气颗粒物中,有机酸的来源有以下几种方式。有机酸颗粒物排放源在有机物含量测定研究中,人们发现甲酸和乙酸的比值与人类污染对大气有机酸的贡献量有一定的联系,因而可以用来判断大气有机酸的主导来源是自然源还是人类污染源。多数已知的有机酸来源可以同时向大气中释放数种低分子有机酸,因此,通过测定多种低分子有机酸,可以在不同来源的有机酸贡献量之间建立多元方程,从而计算出不同来源对大气有机酸的贡献比例。因此,开展关于有机酸在大气化学中的监测研究是非常有必要的,该结果对于了解大气颗粒物中有机物的变化规律与来源解析具有重要的科学意义。目前有机酸含量的测定方法主要有电位滴定法、分光光度法、酶分析法、毛细管电泳法、气相色谱法、液相色谱法、质谱法和离子色谱法等。有机酸分析方法的比较而目前国内标准中,有机酸的分析标准有:国内有机酸测定相关标准综合考虑有机酸含量、对颗粒物源解析支撑作用以及离子色谱的检测能力,本次制定的标准最终确定了甲酸、乙酸、乙二酸三种目标化合物。在方法验证报告中,本标准使用了9家单位的11台离子色谱仪,详情如下:单位序号仪器厂家仪器型号性能状况(计量/校准状态、量程、灵敏度等)备注A赛默飞ICS-5000+良好氢氧根体系B赛默飞AQUION良好氢氧根体系C赛默飞ICS-5000良好氢氧根体系/碳酸盐体系D瑞士万通940Professional良好碳酸盐体系赛默飞Integrion HPIC良好氢氧根体系E赛默飞ICS-2000良好氢氧根体系F赛默飞ICS-5000+良好氢氧根体系瑞士万通925型良好碳酸盐体系G青岛普仁PIC-10良好碳酸盐体系H瑞士万通940良好碳酸盐体系I青岛盛瀚CIC-D100良好碳酸盐体系在颗粒物源解析领域,离子色谱仪以前主要用于颗粒物中水溶性阴阳离子的测定,如果此标准发布,那么离子色谱仪在颗粒物源解析领域将发挥更大作用。不过从参与验证的仪器来看,国产仪器还需要多多努力。除离子色谱仪外,此标准涉及的仪器还包括大气采样器、超声波清洗仪。征求意见稿全文如下:《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》(征求意见稿).pdf
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。   此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。   市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准
    工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准(见附件1)。其中,化工行业32项、石化行业13项、黑色冶金行业9项、有色金属行业51项、机械行业71项、汽车行业43项、船舶行业8项、轻工行业141项、纺织行业35项、包装行业2项、电子行业16项、通信行业165项。批准《水处理剂混凝性能的评价方法》等53项行业标准外文版(见附件2)。其中,化工行业16项、有色金属行业4项、稀土行业3项、建材行业8项、机械行业7项、轻工行业2项、纺织行业3项、通信行业10项。现予公布。以上化工行业标准(含外文版)由化学工业出版社出版,石化行业标准由中国石化出版社出版,黑色冶金行业标准、有色金属行业标准(含外文版)及稀土行业标准外文版由冶金工业出版社出版,建材行业标准外文版由中国建材工业出版社出版,机械行业标准(含外文版)由机械工业出版社出版,汽车行业标准及包装行业标准由北京科学技术出版社出版,船舶行业标准由中国船舶工业综合技术经济研究院组织出版,轻工行业标准(含外文版)由中国轻工业出版社出版,纺织行业标准(含外文版)由中国纺织出版社出版,电子行业标准由中国电子技术标准化研究院组织出版,通信行业标准(含外文版)由人民邮电出版社出版,通信行业工程建设标准由北京邮电大学出版社出版。附件:1.586项行业标准编号、名称、主要内容等一览表.doc   2.53项行业标准外文版名称及主要内容等一览表.doc工业和信息化部 2023年4月21日
  • 福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》等3项团体标准征求意见稿
    福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》、《非即食薯类粉》团体标准征求意见稿《非即食薯类粉》团体标准征求意见函.pdf《食品中安赛蜜的测定 液相色谱法》团体标准征求意见函.pdf《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸的测定》团体标准征求意见函.pdf
  • 三聚氰胺HPLC检测方法之固相萃取(SPE)法
    1. 依据:GB/T 22388&mdash 2008 2. 原理:试样用三氯乙酸溶液-乙腈提取,经阳离子交换固相萃取柱净化后,用高效液相色谱测定,外标法定量。 3. 试剂与材料:除非另有说明,所有试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1甲醇:色谱纯; 3.2乙腈:色谱纯; 3.3氨水:含量为25%~28%; 3.4三氯乙酸; 3.5柠檬酸。 3.6辛烷磺酸钠:色谱纯; 3.7甲醇水溶液:准确量取50 mL 甲醇和50 mL 水,混匀后备用; 3.8三氯乙酸溶液(1%):准确称取10 g 三氯乙酸于1 L 容量瓶中,用水溶解并定容至刻度,混匀后备用; 3.9氨化甲醇溶液(5%):准确量取5 mL 氨水和95 mL 甲醇,混匀后备用; 3.10离子对试剂缓冲液:准确称取2.10 g 柠檬酸和2.16 g 辛烷磺酸钠,加入约980 mL 水溶解,调节pH 至3.0 后,定容至1L 备用。 3.11三聚氰胺标准品:CAS 108-78-01,纯度大于99.0%; 3.12三聚氰胺标准储备液:准确称取100 mg(精确到0.1 mg)三聚氰胺标准品于100 mL 容量瓶中,用甲醇水溶液(3.7)溶解并定容至刻度,配制成浓度为1 mg/mL 的标准储备液,于4℃避光保存。 3.13 阳离子交换固相萃取柱:混合型阳离子交换固相萃取柱,基质为苯磺酸化的聚苯乙烯-二乙烯基苯高聚物,60 mg,3 mL,或相当者。 3.14 定性滤纸。 3.15 微孔滤膜:0.2 &mu m,有机相。 3.16 氮气:纯度大于等于99.999% 4. 仪器和设备 4.1 高效液相色谱(HPLC)仪:配有紫外检测器或二极管阵列检测器。 4.2 分析天平:感量为0.00001 g和0.01 g。 4.3 离心机:转速不低于10000 r/min。 4.4 天津恒奥超声波提取器。HS,HU系列 4.5 天津恒奥固相萃取装置。HSE-12D 4.6 天津恒奥氮吹仪。HGC,HSC系列 4.7 天津恒奥涡旋振荡器。HMS-350 4.8 天津恒奥真空泵。HPD-25 4.9 天津恒奥精密气体稳流调节阀。 4.10 具塞塑料离心管:50 mL。 5. 样品处理 5.1 提取 称取(液态奶、奶粉、酸奶、冰淇淋和奶糖等)2 g(精确至0.01 g)试样于50 mL具塞塑料离心管中,加入15 mL三氯乙酸溶液(3.8)和5 mL乙腈,超声提取10 min,再振荡提取10 min后,以不低于10000 r/min离心30 min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至25 mL,移取5 mL滤液,加入5 mL水混匀后做待净化液。 注:若样品中脂肪含量较高,可以用三氯乙酸溶液饱和的正己烷液-液分配除脂后再用SPE柱净化。 5.2 活化 依次用3 mL 甲醇、5 mL 水活化(3.13)阳离子交换固相萃取柱。旋转固相萃取装置前的精密气体稳流调节阀使洗液流速不超过1 mL/min 5.3 上样 将5.1中的待净化液转移至固相萃取柱(5.2)中。 5.4 淋洗 依次用3 mL水和3 mL甲醇洗涤,抽至近干后, 5.5 洗脱 用6 mL氨化甲醇溶液(3.9)洗脱,用试管收集洗脱液。整个固相萃取过程流速不超过1 mL/min。5.6 浓缩 洗脱液于50℃下用氮气吹干,残留物(相当于0.4 g样品)用1 mL流动相定容,涡旋混合1 min,过微孔滤膜后,供HPLC测定。 6. 高效液相色谱测定 HPLC 参考条件 a) 色谱柱:C8柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者; C18柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者。 b) 流动相:C8柱,离子对试剂缓冲液(3.2.10)-乙腈(85+15,体积比),混匀。 C18柱,离子对试剂缓冲液(3.2.10)-乙腈(90+10,体积比),混匀。 c) 流速:1.0 mL/min。 d) 柱温:40℃。 e) 波长:240 nm。 f) 进样量:20 &mu L。 7. 分析 用GB/T 22388&mdash 2008标准检测方法分析,使用天津恒奥的设备测得样品的回收率结果如下: 添加水平(mg/Kg) 回收率 空白 2 116% 4 108% 6 92% 8 96% 由上表可以看出:使用天津恒奥设备处理样品,不仅可以提高分析样品的速度而且还可以得到满意的回收率。
  • 均为首次发布 最新5项国家生态环境标准公开征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法》等5项国家生态环境标准征求意见稿,并公开征求意见,于2024年1月20日前将意见建议书面反馈至生态环境部。5项国家生态环境标准内容如下:一、固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)本标准为首次发布。本标准主要起草单位:黑龙江省哈尔滨生态环境监测中心。本标准验证单位:黑龙江省生态环境监测中心、江苏省南京环境监测中心、吉林省长春生态环境监测中心、辽宁省鞍山生态环境监测中心、黑龙江省齐齐哈尔生态环境监测中心和黑龙江省大庆生态环境监测中心。本标准规定了测定固定污染源有组织排放废气中卤代乙酸的气相色谱法。本标准适用于固定污染源有组织排放废气中一氯乙酸、一溴乙酸、二氯乙酸、三氯乙酸、一溴一氯乙酸、一溴二氯乙酸、二溴乙酸、一氯二溴乙酸和三溴乙酸等9 种卤代乙酸的测定。当采集固定污染源有组织排放废气,采样体积为 10 L(标准状态下干烟气)时,一氯乙酸的方法检出限为 0.002 mg/m3,测定下限为 0.008 mg/m3;其他8 种卤代乙酸的方法检出限均为 0.001 mg/m3,测定下限均为 0.004 mg/m3。二、固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿)本标准为首次发布。本标准主要起草单位:黑龙江省哈尔滨生态环境监测中心。本标准验证单位:黑龙江省生态环境监测中心、江苏省南京环境监测中心、吉林省长春生态环境监测中心、辽宁省鞍山生态环境监测中心、黑龙江省齐齐哈尔生态环境监测中心和黑龙江省大庆生态环境监测中心。本标准规定了测定固定污染源有组织排放废气中氯甲基甲醚和二氯甲基醚的气相色谱法。本标准适用于固定污染源有组织排放废气中氯甲基甲醚和二氯甲基醚的测定。当采集固定污染源有组织排放废气体积为 10 L(标准状态下干烟气),吸收液体积为50 ml 时,氯甲基甲醚和二氯甲基醚的检出限均为 0.003 mg/m3,测定下限均为0.012 mg/m3。三、固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)本标准为首次发布。本标准主要起草单位:上海市环境监测中心、上海市化工环境保护监测站。本标准验证单位:上海市浦东新区环境监测站、上海市普陀区环境监测站、上海市宝山区环境监测站、上海市金山区环境监测站、上海纺织节能环保中心、上海金艺检测技术有限公司。本标准规定了测定固定污染源废气中硫化氢的亚甲基蓝分光光度法。本标准适用于固定污染源有组织排放废气中硫化氢的测定。采样体积为 10 L,吸收液体积为 10 ml 时,方法检出限为0.007 mg/m3,测定下限为0.028 mg/m3。四、环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)本标准为首次发布。本标准主要起草单位:江苏省南京环境监测中心。本标准验证单位:江苏省环境监测中心、四川中测标物科技有限公司、中国测试技术研究院化学研究所、江苏省无锡环境监测中心、江苏省苏州环境监测中心和江苏康达检测技术股份有限公司。本标准规定了测定环境空气、无组织排放监控点空气和固定污染源废气中三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的气相色谱-质谱法。本标准适用于环境空气、无组织排放监控点空气中三氟甲烷、六氟乙烷和六氟化硫的测定;适用于固定污染源废气中三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定。环境空气和无组织排放监控点空气进样量为 400 ml(标准状态)时,目标化合物的方法检出限为 0.03 μg/m3~0.05 μg/m3,测定下限为 0.12 μg/m3~0.20 μg/m3;固定污染源废气进样量为 1.0 ml(标准状态)时,目标化合物的方法检出限均为 0.2 mg/m3,测定下限均为0.8 mg/m3。详见附录 A。五、环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)本标准为首次发布。本标准主要起草单位:天津市生态环境科学研究院、中国环境监测总站、上海市环境监测中心。本标准验证单位:天津市生态环境监测中心、苏州国家高新技术产业开发区(虎丘)环境监测站、深圳市生态环境监测站宝安分站、北京市怀柔区生态环境监测站、内蒙古自治区呼伦贝尔生态环境监测站、天津市东丽区生态环境监测中心。本标准规定了测定环境空气及各类恶臭污染源(包括水域)以不同形式排放的臭气的动态稀释嗅辨法。本标准适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气样品中臭气的测定。本标准测定方法是嗅觉器官测定法,不受臭气物质种类、种类数目、浓度范围及所含成分浓度比例的限制。附:1、征求意见单位名单.pdf2、固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿).pdf3、《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》编制说明.pdf4、固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿).pdf5、《固定污染源废气 氯甲基醚和二氯甲基醚的测定 气相色谱法(征求意见稿)》编制说明.pdf6、固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿).pdf7、《固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)》编制说明.pdf8、环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿).pdf9、《环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)》编制说明.pdf10、环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿).pdf11、《环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)》编制说明.pdf
  • GB/T 5750生活饮用水安全测定——皖仪科技离子色谱发挥多维竞争优势
    饮用水安全问题直接关系着居民身体健康。为提高居民饮用水质量,切实保障人民饮用水安全,保护人民生命财产安全,促进经济绿色健康发展,由国家卫生健康委员办公厅牵头,各级疾病预防控制中心组织《GB/T 5750生活饮用水标准检验方法》的修订工作,并于2023年4月1日正式施行,是继《GB5749-2006生活饮用水卫生标准》的又一里程碑式标准。历时6年,这项标准参考了2006年以来国内外文献以及欧盟、美国等国际组织的水质检定指标和检测方法,从样品采集和保存要求、试剂配制和使用要求到实际水样测定以及干扰去除等方面开展实验研究,建立检验方法。检测指标要求共分13章(详见表1),97项检测指标,其中常规指标为39项,4项消毒剂常规指标,54项扩展指标。涉及离子色谱仪的指标如表2所示,其中无机非金属指标部分增加高氯酸盐指标;有机物指标丙烯酸新增离子色谱检测方法;农药指标草甘膦新增离子色谱检测方法;消毒副产物指标一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸新增离子色谱检测方法。表1 GB/T 5750生活饮用水检测指标GB/T 5750-2023 生活饮用水标准检验方法GB/T 5750.1生活饮用水标准检验方法 第1部分 总则GB/T 5750.2生活饮用水标准检验方法 第2部分 水样的采集GB/T 5750.3生活饮用水标准检验方法 第3部分 水质分析质量控制GB/T 5750.4生活饮用水标准检验方法 第4部分 感官性状和物理指标GB/T 5750.5生活饮用水标准检验方法 第5部分 无机非金属指标GB/T 5750.6生活饮用水标准检验方法 第6部分 金属和类金属GB/T 5750.7生活饮用水标准检验方法 第7部分 有机物综合指标GB/T 5750.8生活饮用水标准检验方法 第8部分 有机物指标GB/T 5750.9生活饮用水标准检验方法 第9部分 农药指标GB/T 5750.10生活饮用水标准检验方法 第10部分 消毒副产物GB/T 5750.11生活饮用水标准检验方法 第11部分 消毒剂指标GB/T 5750.12生活饮用水标准检验方法 第12部分 微生物指标GB/T 5750.13生活饮用水标准检验方法 第13部分 放射性指标表2 离子色谱相关检测指标GB/T 5750-2023 生活饮用水标准检验方法标准号标准名称离子色谱检测参数GB/T 5750.5生活饮用水检验标准 第5部分 无机非金属指标氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐GB/T 5750.6生活饮用水检验标准 第6部分 金属和类金属锂、钠、钾、镁、钙GB/T 5750.8生活饮用水检验标准 第8部分 有机物指标丙烯酸GB/T 5750.9生活饮用水检验标准 第9部分 农药指标草甘膦GB/T 5750.10生活饮用水检验标准 第10部分 消毒副产物指标亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸说明:上表中加粗的内容为新增的离子色谱检测项目。安徽皖仪科技股份有限公司在离子色谱发展与应用方面深耕多年,针对GB/T 5750中离子色谱检测项目,从色谱系统、色谱柱、耗材和软件产品等方面提供全方位的应用方案,为用户提供可靠解决办法,对于GB/T 5750新增离子色谱相关检测项目,皖仪科技提供解决方案如下:1.1 无机非金属指标-高氯酸盐测离子色谱应用方案高氯酸盐作为一种工业添加剂,在航空航天、烟花 、军火制造橡胶、染料涂料等方面具有广泛应用。作为国际上广泛关注的环境污染物,高氯酸盐具有干扰人体内碘的吸收、抑制甲状腺调节荷尔蒙分泌和新陈代谢能力的毒理学特征,其暴露水平对胚胎发育 、哺乳期妇女和少年儿童发育有较大影响。我国饮用水中高氯酸根污染具有地域性特征,对饮用水中高氯酸根检测具有重要意义。皖仪科技提供全方位的高氯酸根离子色谱测试解决方案,其典型测试谱图如图1所示,我们的方案将为您提供:1.完全满足GB/T 5750中离子色谱测试高氯酸根要求,且检出限远远低于标准要求检出限,最低检出限小于1μg/L;2.搭配皖仪科技诺谱HS-5A-I色谱柱,低浓度淋洗液等度条件下即可完成分离,不仅满足高氯酸盐分析,还可同步实现氟离子、氯离子等多种离子测试,更全面,更高效。图1 离子色谱法测定高氯酸根谱图1.2 有机物指标-丙烯酸离子色谱应用方案丙烯酸,一种有机化合物,是重要的化工基础原料,广泛应用于树脂、合成纤维、建材、涂料,水处理等领域。丙烯酸有毒且易溶于水,对水生物有极高毒性,进入水体后会导致有机物的分解率降低,从而破坏水体系统。皖仪科技提供全方位的丙烯酸离子色谱测试解决方案,其典型测试谱图如图2所示,我们的方案有以下优势:1.完全满足GB/T 5750中离子色谱测试丙烯酸要求,有更高的灵敏度,更低的检出限,最低检出限小于1.5μg/L;2.更完善的仪器与全套耗材配置,根据各地水质特点提供对应前处理配置方案。图2 离子色谱法测定丙烯酸谱图1.3 农药指标-草甘膦离子色谱应用方案草甘膦,化学名称为N-(磷酸甲基)甘氨酸,化学式为C3H8NO5P,是一种有机膦类除草剂,是一种内吸传导型广谱灭生性除草剂。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,草甘膦在2A类致癌物清单中。在生活饮用水中可能会有残留,从而对人体造成危害。离子色谱检测具有操作简单,灵敏度高,分离度好,解决柱后衍生或质谱检测方法操作复杂的问题。皖仪科技提供全方位的草甘膦离子色谱测试解决方案,其典型测试谱图如图3所示,我们的方案将为您提供:1.完全满足GB/T 5750中草甘膦测试要求,有更高的灵敏度,更低的检出限,更快的分析速率;2.搭配皖仪科技诺谱HS-5A-P3型色谱柱,等度淋洗液条件下即可完成分离;3.碳酸根体系/氢氧根体系均可实现,多种色谱柱灵活选择。图3 离子色谱法测定草甘膦谱图1.4 消毒副产物指标-五种卤乙酸离子色谱应用方案卤乙酸是饮用水氯化消毒产生的非挥发性消毒副产物,由于其可能有致癌影响而广受关注。卤乙酸共有九种,美国消毒和消毒副产物法规定第一阶段其中五种卤乙酸在饮用水中含量之和最大值不能超过60g/L。这五种卤乙酸分别为:一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸。二氯乙酸和三氯乙酸对人体具有致癌、致突变及致畸影响,因此日常监测其浓度具有重要的意义。皖仪科技提供全方位的五种卤乙酸色谱测试解决方案,其测试谱图如图4所示,我们的解决方案有以下独特优势:1.可以完全满足GB/T 5750中关于五种卤乙酸检测要求,可同时检测一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸,方便快捷、高效,且分离度较高;2.选用皖仪科技诺谱HS-5A-P3色谱柱,响应高,可以一柱多用,结合梯度淋洗的方式进样还可以同时检测多种阴离子。3.可大体积直接进样,mg/L级别常规离子不会对μg/L级别消毒副产物产生干扰,结果准确可靠。4.灵活的进样方式满足不同参数不同进样体积的要求,既可实现常规离子分析也可实现五种卤乙酸等痕量离子的分析。图4 离子色谱法测定五种卤乙酸谱图从国内外离子应用领域来看,离子色谱检测未来应用场景更加丰富,在环境、食品、医药、农药、化工、矿业等多领域有着更广泛的应用。其检测场景也会更复杂,如微电子半导体行业的发展,对离子色谱有更高灵敏度要求;高纯试剂中超痕量杂质的检测需求降低本体基质干扰的要求;基于糖类、氨基酸的检测需求更高灵敏度的脉冲积分模式的安培检测器,等等。针对以上,皖仪科技离子色谱为您准备全套的方案和完善的仪器配置,为您的检测保驾护航。皖仪科技IC6200系列一体式离子色谱仪:采用全新的外观设计,完善的子机及配件,为您提供全PEEK的高性能色谱泵,多种类型的进样器,KOH、MSA、Na2CO3/NaHCO3的淋洗液发生器,电导和安培检测器,配置灵活,满足您的各类搭配需求。IC6200皖仪科技IC6300系列智能型离子色谱:采用全新的设计理念和加工工艺,为您带来不一样的仪器体验。集成度高,更加人性化的模块型设计,让检测器、色谱泵、淋洗液发生器不再是一个笨重的仪器。在这里,你可以拥有等度泵,也可以拥有梯度泵,检测器插拔式设计,电导、安培就像U盘一样自由插拔更换,同时为您提供移动平板,让您拥有远程操控的现代化体验。预留六通阀、十通阀组件,可升级在线富集、在线基体消除等功能。IC6300皖仪科技IC6600系类多功能离子色谱仪:全新的模块化设计,具有极大的灵活性,功能更全面,操作更简便。一机多能,不仅可以满足双通道同时检测,可升级柱后衍生、在线富集、在线基体消除等功能,其完美卓越的性能将色谱分析带入一个新的更高境界。IC6600皖仪科技离子色谱坚持“客户导向”,加速拓展前沿技术布局,持续推进产品发展,不断拓宽产品线,并拓展产品在新行业中应用,依托产品能力、解决方案能力、服务能力多维竞争优势,为食品、环境、医药等领域提供个性化解决方案,以专业实力为万千伙伴创造发展价值,保障更长远的合作伙伴关系。本篇文章由安徽皖仪科技股份有限公司离子色谱产品应用工程师冯秒、离子色谱产品应用经理龚婷婷和安徽诺谱新材料科技有限责任公司应用工程师吴欣欣共同撰写。 冯秒 龚婷婷 吴欣欣
  • 国标在手-消毒副产物检测不用愁!
    国标在手-消毒副产物检测不用愁!关注我们,更多干货和惊喜好礼上周五(2020.4.24),生态环境部标准《HJ 1050-2019 水质 氯酸盐,亚氯酸盐,溴酸盐,二氯乙酸和三氯乙酸的测定 离子色谱法》已经开始实施啦。消毒副产物(DBPs)的监测,正式从生活饮用水、矿泉水,扩展到环境地表水,地下水,生活污水和工业废水领域。这一系列标准方法,为水质中DBPs的全方位监测提供了技术支撑,为中国大地提供了全方位的水质安全保障。新冠病毒来袭,勤洗手、戴口罩、定时通风和消毒,成了老幼皆知、妇孺共守的日常习惯。“宅在家里消消毒,买菜回来消消毒,出入小区消消毒。”一场疫情,让消毒剂成了普通人大战新冠病毒的必备武器。但也有人担心,大量使用的消毒剂作为生活废水排放是否会引发健康风险?如何保证饮用水的安全引起了大家的广泛关注。其实对于饮用水问题,大家不用如此焦虑,无论是废水还是饮用水的排放,我国都有严格的卫生标准和规范。众所周知,无论取自何处的源水,都有被病毒,细菌和寄生虫卵等多种微生物污染的可能。为了防止通过饮水传染疾病,对饮水进行化学消毒是国际上公认和普遍采取的消毒工艺。 飞飞:国内水质采用何种消毒方式?赛老师:化学消毒方式(氯剂、二氧化氯和臭氧消毒)是主流消毒方式。 飞飞:消毒副产物是什么?如何产生的呢?赛老师:采用化学消毒工艺时,消毒剂不可避免的会与饮用水中的一些天然有机物或者无机物反应生成不同消毒副产物(DBPs)。 飞飞:DBPs主要包括哪些物质?有什么危害?赛老师:DBPs主要是三卤甲烷,卤代乙酸和卤氧化物等,大多具有较强的致癌性、致突变和致畸性。溴酸盐被国际癌症研究机构认定为2B级潜在致癌物质。 飞飞:DBPs有什么监测手段?赛老师:可采用GC、HPLC、IC进行监测。其中极性较强的卤代乙酸和卤氧化物,采用IC法具有操作简便、灵敏度高、选择性强等优势。 国标中消毒副产物限量多少? 高“三致”危害,必然有严格的限量规定。《GB 8537-2018食品国家安全标准 饮用天然矿泉水》将溴酸盐含量限定为10ppb。《GB 5749-2006生活饮用水卫生标准》对居民饮用水中卤氧化物和卤代乙酸进行了严格限定。 DBPszui大允许浓度BrO3-10ppbDACC50ppbTACC100ppbClO2-0.7ppmClO3-0.7ppm国标中的消毒副产物检测方法对于卤氧化物的测定,《GB/T 5750-2006》《GB/T 8538-2016》以及正式实施的《HJ 1050-2019》均推荐抑制电导-离子色谱法;对于卤代乙酸的测定,《GB/T 5750-2006》推荐衍生化气相色谱法,正式实施的《HJ 1050-2019》推荐与卤氧化物同时一次进样完成分离测定。 赛默飞消毒副产物监测方案方案壹抑制型电导-离子色谱法测定水中亚氯酸盐,氯酸盐,溴酸盐,二氯乙酸和三氯乙酸常规7种阴离子和5种消毒副产物分离色谱图优势赛默飞-抑制电导-离子色谱法(IC-CD)测定卤氧化物和卤代乙酸,具有以下优势:1. 样品无需前处理,过滤后即可上机测试;2. 无需柱前或柱后衍生化操作,直接测定;3.特色高选择性离子交换色谱柱(IonPac AS27),提供强极性离子形态和价态的差异化分离;4.特色高容量离子交换色谱柱(IonPac AS27),提供高样品基质兼容能力,兼容生活污水及工业废水等复杂基质;5.水质中5种消毒副产物的检出限可达0.43-1.53ppb;6.满足HJ 1050-2019 、GB/T 5750.10-2006、GB/T 8538-2016的检测要求;Thermo Scientific™ Dionex™ Integrion 离子色谱仪“只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图赛默飞Integrion高压离子色谱只加水技术,提供简单、方便、高效和高灵敏度的分析选择。方案贰 离子色谱-质谱法(IC-MS)测定水中卤代乙酸和卤氧化物 质谱利用质荷比进行化合物的定性筛选,是理想特异性检测器,离子色谱串联质谱法(IC-MS/MS)比抑制电导-离子色谱法具有更高的选择性、灵敏度和更少的假阳性。对于消毒副产物的检出限,IC-MSMS法可低至0.01-0.27ppb。赛默飞IC-MSMS方案,除满足碘乙酸、二氯乙酸、三氯乙酸及卤氧化物等热门DBPs的定性定量监测外,还可扩展完成所有氯代和溴代卤乙酸的分析测定。碘乙酸,二氯乙酸,三氯乙酸和卤氧化物9种卤代乙酸优势赛默飞提供du家的离子色谱和质谱自由平台,在IC-MSMS联用方面具有独特的技术优势:1.离子交换分离端兼顾抑制电导-离子色谱法所有技术优势;2.联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;3.质谱检测器的HESI II离子源探针盐耐受能力强,稳定性好;4.质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;5.Chromeleon 变色龙统一软件操作平台,实现离子色谱和质谱的同时控制。离子色谱串联质谱(IC-MSMS)抑制器脱盐原理图总结从抑制电导-离子色谱法到高端的离子色谱串联质谱(IC-MSMS),赛默飞提供了水质中卤代乙酸和卤氧化物的完整分析解决方案。消毒剂使用Tips:1. 按照说明书,合理使用消毒剂,避免和减少消毒剂的滥用。2. 各类消毒剂应单独使用,不要混合使用。3. 消毒产品只能用在说明书标识的对象上,不可超范围使用。4. 严格按照说明书浓度配制消毒剂,保证说明书最少消毒时间。5月7日赛默飞将云集国内外大咖 携HPIC高压离子色谱助您加速启程 探索离子世界扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 北京绿绵巨贸推出应对三聚氰胺的高通量前处理仪器
    食品安全是受到全社会普遍关注的问题,特别是随着工业、商业的发展以及人类对环境日益突出地影响,食品安全控制领域不断地面对新的课题和挑战,对食品检测的快速性、高效性和精确性也不断提出新的要求,需要检测的食品样品也越来越多样和复杂。为此,食品检测样品的前处理工作已显得尤其关键。北京绿绵巨贸公司是一家提供专业的样品前处理设备的公司,拥有GPC净化系统、样品精确定量浓缩系统、SPE及吹扫捕集仪等全部的样品前处理仪器。 绿绵巨贸公司所推出的J2固相萃取仪是具有高通量的样品前处理装置,可一次处理多达48个样品,是传统SPE及全自动SPE所不能实现的,其方便灵巧的操作模式,大批量的处理能力,为实验室样品前处理工作提供了无法取代的支持和帮助,尤其提高了用户应对大批量工作和突发事件的能力,特别是在近来应对&ldquo 三聚腈胺&rdquo 的检测中,其便捷高效的半自动SPE装置又发挥了极其突出的作用,以下是厦门疾控中心对&ldquo 三聚腈胺&rdquo 的检测方法,其中应用了北京绿绵巨贸公司代理的美国J2公司的半自动SPE装置,收到了良好的效果。 北京绿绵巨贸科贸有限公司 地址:北京市朝阳区北辰西路69号峻峰华亭D-1209 邮编:100029 电话:010-58772760/1/2/3 传真:010-58772765 正压固相萃取仪在检测食品中三聚氰胺的应用 厦门疾病预防控制中心 骆和东 食品中三聚氰胺的污染事件是近来社会关注的热点。从去年出口美国的宠物饲料中被检测出三聚氰胺到现在发现我国几十种品牌的奶制品均受三聚氰胺的污染。无不引起人们对食品安全的担扰,也引发了一股开发研究三聚氰胺检测方法的热潮。 三聚氰胺是一种重要的氮杂环有机化工原料,水溶液显弱碱性,能溶于甲醇、乙酸等,微溶于水和乙醇,不溶于乙醚、苯等,而且在传统C18柱上保留很差。利用此特性,人们普遍采用离子对试剂液相色谱法和液质联用方法进行检测。但由于食品基质复杂,使得样品的前处理甚为关键。我们采用三氯乙酸提取,MCX固相萃取小柱净化,辅以J2加压固相萃取仪操作,建立一套快速、准确、重现性良好的样品外理方法。 材料与方法 1.1主要仪器与试剂:Agilent HP1100高效液相色谱仪、配四元梯度泵、在线真空脱气机、自动进样器、柱温箱、二极管阵列检测器、J2 SCIENTIFIC 加压固相萃取仪、超声波清洗器、离心机、固相萃取小柱:OASIS MCX,6mL,500mg。三聚氰胺标准品,纯度99%。 1.2样品处理 1.2.1提取 准确称取经粉碎混匀后样品5.0g,加入50mL 1%三氯乙酸溶液及2 mL 2%乙酸铅溶液,混匀后超声提取30min,高速离心后取上清液待净化。 1.2.2净化 将MCX固相萃取小柱(6mL,500mg)置于J2固相萃取仪样品架上,分别加入5mL甲醇、5mL水活化,再准确移取5.0mL离心液上柱。活化及上样时,将样品架升至顶部通过调节面板旋钮来调节N2气流大小,控制流速不超过1mL/min。然后再用5mL水、5mL甲醇洗涤SPE 柱,弃去洗脱液,将小柱升至顶部调节气阀旋钮自动加压吹干小柱,用5%氨水甲醇溶液5mL洗脱,收集洗脱液用氮吹仪吹干,用甲醇-水(2:8,V/V)定容至1.0mL,过0.45&mu m滤膜,上机测定。 1.3液相色谱测定:略 2.结果与讨论 2.1样品提取与净化 三氯乙酸具有沉淀乳及其制品中蛋白质的作用,而且有助于三聚氰胺的溶解.由于三聚氰胺呈弱碱性。(弱阳离子化合物),采用阳离子交换柱进行净化可达到去除杂质,提高检测灵敏度、重现性和回收率的效果。图1为奶粉样品直接提取后进样测定所得的色谱图,存在许多杂质峰,而图2为提取并经固相萃取小柱净化后的色谱图,杂质峰的干扰基本去除。 图1:奶粉样品直接提取测定的色谱图 图2:奶粉样品提取并经固相萃取柱净化的色谱图 2.2 J2加压固相萃取仪的应用 J2加压固相萃取仪具有高效、简便的特点。它可通过该装置中的气流调节阀来控制小柱流速的大小,并可直接吹干小柱,保证每个小柱在活化洗脱过程中具有良好的重现性。并且可配套不同规格的固相萃取小柱(如1mL,3mL,6mL等)使用,一次操作可同时处理48个样品。我们在奶粉中添加(2.0~50.0) ug/mL等不同浓度的三聚氰胺,进行加标回收和重现性实验,回收率在95~99%之间。相对标准偏差均小于3%。 3.结论: J2固相萃取仪的加压操作是通过在固相萃取小柱的上方施加一定压力空气或N2来实现。这样可加快过滤速度,控制柱子活化、淋洗、洗脱全过程的流速,使溶液易于进入固定相孔隙,有利于样液与固定相更紧密接触,从而提高萃取效果。它克服常规的手动固相萃取操作费时、不能确保稳定的流速、不同人员操作结果偏差较大的问题,通过简单的控制消除人为操作的误差,保证在短时间内同时处理几十个样品并具有良好的重现性。
  • 禾工发布三聚氰胺检测方法和整套仪器配置
    固相萃取(SPE)方法介绍 1、固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1)、可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2)、批次重复性好。 3)、回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 五、HPLC-UV检测方法(GB/T&hellip &hellip ..) 一、 检测方法 1、试剂与材料: 除另有规定外,试剂为分析纯,水符合GB/T6682规定的三级水,色谱用水符合一级水的规定。 1.1 乙腈:色谱纯 1.2 甲醇:色谱纯 1.3 氨水:浓度25%~28% 1.4 混合型阳离子交换固相萃取小柱:60mg/3mL 1.5 三氯乙酸溶液10g/L :称取10g三氯乙酸加水至1000mL。 1.6 乙腈水溶液:乙腈:水为50:50 1.7 盐酸溶液:0.1mol/L 1.8 氨水-甲醇溶液:量取5mL 氨水,溶解于100mL 甲醇中。 1.9 乙酸锌溶液219 g/L:取219g乙酸锌用300mL 水溶解后,定溶至1L。 1.10 20%甲醇溶液:200mL 甲醇,溶解于800mL 水中。混匀。 1.11 缓冲液:10mmol/L辛烷磺酸钠,10mmol/L柠檬酸,调pH3.0。 1.12 标准溶液: 1.12.1 标准贮备液1mg/mL :称取100.0mg 与小烧杯中,加少量乙腈: 水40:60 溶解并转入100mL 容 量瓶中定容。 1.12.2 标准工作液10&mu g/mL :准确吸取标准贮备液1mL 于100mL 容量瓶中,用乙腈: 水40:60定容。 2 仪器设备 实验室常用仪器及: 2.1 液相色谱仪 2.2 超声波振荡器 3 操作步骤 3.1 试样提取: 称取5g试样(精确到0.01g)与150mL 三角瓶中,加入50mL三氯乙酸溶液(1.5)或乙腈水溶液溶解 样品,放于超声波振荡器中超声萃取30min。取出加入5mL 乙酸锌溶液(1.9),前者采用三氯乙酸溶液 (1.5)、后者采用盐酸溶液(1.7)将试样转入100mL 容量瓶中定容至刻度,混匀后用滤纸过滤。 3.2 净化 分别用3mL 水,3mL 甲醇活化混合型阳离子交换固相萃取小柱后。取2mL 滤液上柱,然后分别用3mL 甲醇和3mL 水淋洗,将淋洗液全部抽干后,用3mL 氨水-甲醇(1.8)洗脱,洗脱液于50℃水浴中旋转蒸发至干。用20%甲醇溶液定容至1mL ,漩涡震荡1min,过0.45um滤膜过滤,上机测定。 3.3 测定 3.3.1 色谱条件 色谱柱:极性 C8柱(4.6mmi.d.× 250mm,5&mu m)或C18柱(4.6mmi.d.× 250mm,5um); 流 速:1.0mL /min; 进样量:50&mu l; 柱 温:35℃; 波 长:240nm. 流动相:C8柱使用的为缓冲液(3.11):乙腈=95:5; C18柱使用的为缓冲液(3.11):乙腈=90:10; 3.3.2 标准曲线绘制 分别吸取标准工作液(3.12.2)0.5、2.0、4.0、7.5、10.0mL于50mL 容量瓶中,用乙腈: 水40:60 分别定容混匀,该标准系列浓度分别为0.10、0.40、0.80、1.50、2.00&mu g/mL。将该标准系列溶液分别 注入仪器中,测定峰高(或峰面积)。以标准系列浓度为横坐标,峰高(或峰面积)为纵坐标绘制标准 曲线。或计算回归方程。3.3.3 测定 分别吸取试液(3.2)注入仪器中,测定峰高(或峰面积)。由标准曲线查得试液中三聚氰胺的浓度或通过回归方程计算出试液中三聚氰胺的浓度。 4 结果表示 4.1 试样中三聚氰胺的含量X,以质量分数毫克每千克(mg/kg)表示 式中: Cs&mdash 试液中三聚氰胺的浓度,(&mu g/mL ); V&mdash 试液体积,(100mL ); m&mdash 试样的质量,(g); n&mdash 稀释倍数; 6.2 平行测定结果用算术平均值表示,结果保留小数点后两位有效数字。 六、HPLC-DAD检测方法(GB/T&hellip &hellip ..) (婴幼儿配方奶粉和牛奶中三聚氰胺的高效液相色谱筛选法) 一、检测方法 1、方法来源 本方法是在参考FCC三聚氰胺检测方法[Updated FCC Development MelamineQuantitation(HPLC&mdash UV),April2,2007],FDA三聚氰胺检测方法 [GC-MS Screen for the Presence of Melamine ,(Adapted from FDA/ORA Forensic Chemistry Center SOP T015) Revised April 10, 2007]的基础上,综合制定而成的 婴幼儿配方奶粉和牛奶中三聚氰胺高效液相色谱筛选方法。 2、试剂 1.1 磺基水杨酸:分析纯; 1.2 柠檬酸:分析纯; 1.3 辛烷磺酸钠:高效液相色谱离子对试剂; 1.4 乙腈:色谱纯; 1.5 盐酸:分析纯; 1.6 超纯水:18.2M&Omega ; 1.7 60g/L磺基水杨酸:称取60g磺基水杨酸用水定容至1L; 1.8 0.1N HCl:量取8.3mL盐酸用水稀释至1L; 1.9 标准储备液:精密称取三聚氰胺0.0100g,用甲醇配制成浓度为1mg/mL 标准储备液。 2.0 标准使用液:将标准储备液用甲醇逐级稀释至适宜浓度。 3、仪器 高效液相色谱,附二极管阵列检测器 4、样品处理 2.1 配方奶粉:称取0.5g样品,加入0.1N HCl约15mL,涡旋混匀,超声提取30min后加入60g/L磺基 水杨酸3~4mL,用0.1N HCl定容至25mL,混匀后离心,上清液经0.45&mu m的微孔滤膜过滤后进样。 2.2 牛奶:称取15g左右样品,加入60g/L磺基水杨酸3~4mL,用0.1N HCl 定容至25mL,混匀后离心, 上清液经0.45&mu m的微孔滤膜过滤后进样。 5、参考色谱条件 4.1 色谱柱:ODS C8,250mm× 4.6mm 4.2 流动相:缓冲液:乙腈=85:15,等度洗脱 4.3 缓冲液:10mM柠檬酸+10mM辛烷磺酸钠,调pH为3.0 4.4 流 速:1.0mL/min 4.5 柱 温:40 ℃ 4.6 波 长:240nm 6 计算公式 式中:X&mdash 样品中三聚氰胺含量,mg/kg; C&mdash 从标准曲线上查出的含量,&mu g/mL; V&mdash 定容体积,mL; M&mdash 称样量,g 7 定量限 本方法的定量限为1mg/kg 8 参考色谱图和光谱图 高效液相色谱仪三聚氰胺检测配置 1) STI 5000型液相色谱仪系统 1 P5000 型高压恒流输液泵 1台 2 UV5000紫外检测器 1台 3 Rheohyne 7725i 手动进样阀 1支 4 三聚氰胺分析专用液相色谱柱 1支 5 25/50ul微量注射器 1支 6 N2000色谱工作站(SP1版) 1套 7 液相启动工具包 1套 2) 液相附助设备 1 KQ-2200 超声波清洗器 3L 1台 2 HP-01袖珍式真空泵 0.80MP 1台 3 FB-10T溶剂过滤器 1000mL 1台 4 HG-330色谱柱温箱 室温-100℃ / 0.1℃ 1台 6 有机过滤膜 &phi 50× 0.45mm 1盒 7 水系过滤膜 &phi 50× 0.45mm 1盒 8 有机针式过滤器 &phi 13× 0.45mm 1盒 9 水系针式过滤器 &phi 13× 0.45mm 1盒 10 RO DI反渗透超纯水机 15L/H  1台 VERTEX系列液相色谱仪主要指标 一、P5000高压恒流输液泵 技术指标 产品说明 等度泵 流速精度:0.1% 流速范围:0.001~10ml/min/0.001ml增量 最高耐压:6000psi(0~10ml/min) 压力脉冲:1% 特点说明 双柱塞串联式往复泵,自动脉冲抑制系统 输液泵开机自检,自动判断故障 泵头各部件单独设计,便于拆装维护 内置高低压报警和保护功能 多种泵头选择:微量泵、分析泵、半制备/制备泵 自动检测泵头类型,智能修正参数设置 程序化溶剂压缩因子,能自动补偿流量 梯度由内部软件实现自动控制,可编辑、存贮60个梯度方法,能运行复杂的梯度程序 可以通过外部接点闭合控制。 独特优点: 独特的柱塞杆自动清洗装置,使P5000系列高压输液泵不需要花钱购买在线清洗装置,也无须担心盐类晶体的析出对柱塞杆造成损伤; 专利设计的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,可设定溶剂相应的压缩因子,泵头可以自动排空,无须手动排空即可输液;可延长密封圈使用寿命; P5000型输液泵使用的&ldquo 自吸式单向阀&rdquo ,是世界上最好的单向阀,阀球能在溶剂通过单向阀后回流之前回到阀座将之密封,保障了泵流量超常的稳定。 优秀的单向阀设计与先进的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,使P5000输液泵在0-10ml/min的流量范围内都能耐压6000Psi,且压力波动远小于10Psi,成为国内外压力波动最小的泵之一。 拥有用户至关重要的两大功能 ①自动排空 ②自动清洗 二元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min(等度), 0.001~10ml/min(梯度)/0.001ml增量 延迟体积:150uL 最高耐压:6000psi(0-10ml/min) 压力脉冲:1% 比例精度:± 0.2%, 2ml/min 四元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min,0.001ml增量 延迟体积:400uL 最高耐压:6000psi(具高低压保护功能) 压力脉冲:1% 外置4流路在线真空脱气机 制备泵 流速精度:0.1% 流速范围:0.2~80ml/min(等度), 0.2~100ml/min(梯度),0.001ml增量 延迟体积:150uL 压力脉冲:1.5% 比例精度:± 0.2%, 5ml/min 自吸式单向阀-世界上最为优秀的单向阀 高压输液泵所使用的ASI自吸式单向阀是目前世界上最好的单向阀,它产生的流量有非常好的可重复性与准确性,这意味着单向阀能保持非常好的重复性。下图是Waters公司的单向阀与ASI公司的单向阀的使用比较,显而易见,ASI的自吸式单向阀的性能效果要优于Waters的单向阀。(Data Certified by: Baseline Services, Mercerville, NJ May 21, 1997, Bodman Chromatography Aston, PA May 21, 1997)
  • 水中的PM2.5?——饮用水中的消毒副产物
    清华大学环境学院国家环境模拟与污染控制重点实验室陈超课题组,曾在对全国饮用水系统中亚硝胺类消毒副产物进行普查时发现,中国是世界上亚硝胺检出情况最多样的国家,其中亚硝基二甲胺(NDMA)的浓度最高。流行病学研究表明,亚硝胺与消化道癌症密切相关,它也被认为“像极了当年空气污染中被忽视的PM2.5。”亚硝胺(亚硝基二甲胺,NDMA)是一类新型的饮用水消毒副产物,其中NDMA是亚硝胺类消毒副产物的典型代表。而除了亚硝胺外,饮用水中的消毒副产物还有多种不同类别。这些消毒副产物是怎么产生的?总有机碳(TOC)与消毒副产物之间是什么样的关系?有机物的监测在饮用水处理过程中起到什么样的作用?下面小编来为大家普及一下。?什么是消毒副产物?消毒副产物(DBPs)是自来水厂原水中天然来源的有机物(NOM)在水厂的氯消毒过程中,交互作用而产生的。NOM被作为总有机碳(TOC)来代表性的测量。DBPs,例如三卤甲烷(THMs),随着水流经水系统的分配管路和接触时间的增加而持续生成。中国的GB 5749-2006《生活饮用水卫生标准》早在2006年就已改版升级,其中包括了总三卤甲烷(THMs)的限定指标,对于特殊的三卤甲烷做了单独的限定,同时对卤乙酸(HAAs)和其它特殊的消毒副产物也做了限定,但还没有将亚硝胺类物质纳入其中。升级后的标准可以帮助减少消毒副产物对身体健康带来的危害,同时也使TOC水平和与之相关的消毒副产物的水平成为评价一个水厂的重要因素。你知道吗消毒副产物的研究历程水的消毒历程中曾有各种副产物被发现1974年美国人发现用Cl2消毒不仅可以引起嗅觉和味觉上的反应,还可以产生三氯甲烷1976年美国环保署调查发现总三氯甲烷(TTHMs)存在于氯消毒后的饮用水中1983年Christman等发现卤乙酸(HAAs)普遍存在于氯化消毒后的饮用水中1983年发现臭氧消毒副产物溴酸盐1989年发现消毒副产物卤代呋喃酮1990年发现消毒副产物卤乙腈(HANs)1997和2000年先后发现卤代硝基甲烷消毒副产物1998年发现消毒副产物亚硝基二甲胺2000年发现二氧化氯消毒副产物2002年发现卤乙酰胺(HAcAms)消毒副产物2006年前后发现UV消毒副产物*数据来源于网络TOC如何涉及到DBPs?饮用水原水(未净化的水)中的TOC来源于自然界中的植被腐烂,包括水中的藻类、沉积物和颗粒物。水源水中TOC的浓度随着地区的不同,水体类型的不同,甚至是水源季节性的不同而不同。例如,经常在天气炎热季节时发生的藻类的开花,可以大量增加水源水中的有机物。TOC也在原水当中,随着水源地的迁移而增加,例如,水源地在沼泽附近、陆地径流或河道水之间的迁移。自然界原生的碳化合物自身没有危害,但这些碳化合物和消毒剂结合后会产生消毒副产物,这些消毒副产物就涉及到了人身健康。一些对实验室动物的研究表明DBPs可以致癌。THMs,这些一级消毒副产物,可以由TOC和自然界天然的溴化物在加氯消毒过程中交互作用形成。(见图一)图一、由TOC、溴化物、氯形成THMs典型的消毒包括一级消毒和二级消毒,一二级消毒能够在处理过程中产生消毒副产物。许多自来水厂的消毒副产物在进水口到除色除味工序的预氯化过程中产生,絮凝沉淀和过滤工艺不会完全除去消毒副产物,并且在前面发生的二级消毒到进入管网系统过程中会产生额外的的消毒副产物。消毒副产物的水平会在管网系统中从一点到另一点发生显著的变化,在水流经管网系统的过程中还会持续生成。DPB的水平在地表水系统中通常比较高,因为地表水中通常含有相对较高浓度的TOC,它是DBP的前体物质,需要有更强的消毒。大多数自来水厂在他们的水处理工艺中去除颗粒物是没有问题的,但在去除DOC(可溶解性的有机物)上就有困难了。DOC是TOC最主要的组成部份,占据了TOC组成物质的绝大部分。TOC由可溶解的有机物和不可溶解的颗粒有机物组成。DOC可以通过将水用0.45微米的前处理系统过滤后,用TOC分析仪准确测得。一些自来水厂已经走在了前面,他们开始用TOC和DOC浓度来描述他们的全部生产工艺。这需要完成对自来水厂内所有点和全部的处理流程的TOC或DOC的分析,确定哪里的TOC或DOC的浓度发生或没有发生显著下降。中国饮用水质量标准综述最新版GB 5749-2022《生活饮用水卫生标准》将于2023年4月1日取代2006版标准正式开始实施。新标准规定的部分指标限值更加严格,对许多特殊的消毒副产物做了严格限定。新标准中对总三卤甲烷的限定仍延续为1 mg/L,对一些特殊的三卤甲烷的限定更低。如:对三氯甲烷的限定是0.06 mg/L,对三溴甲烷的限定是0.1 mg/L。对总卤代乙酸没有做总量控制,但对特殊的二氯乙酸的限定为0.05 mg/L,对三氯乙酸的限定为0.1 mg/L。新标准进一步将检出率较高的一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷、二氯乙酸、三氯乙酸6项消毒副产物指标从非常规指标调整到常规指标,以加强对上述指标的管控。同时,考虑到氨(以N计)的浓度对消毒剂的投加有较大影响,将其从非常规指标调整到常规指标。并新增亚硝基二甲胺为水质参考指标。新标准中在中国被控制的DBPs,以及它们的限定指标见表一。表一、中国饮用水标准控制污染物(GB 5749-2022)指标限值总三卤甲烷(mg/L)(THMs)该类化合物中各种化合物的实测浓度与其各自限值的比值之和不超过1三氯甲烷(mg/L)一氯二溴甲烷(mg/L)二氯一溴甲烷(mg/L)三溴甲烷(mg/L)0.060.100.060.10卤乙酸(mg/L)未做总量控制二氯乙酸(mg/L)三氯乙酸(mg/L)0.050.10溴酸盐(mg/L)(使用臭氧消毒的工厂)0.01亚氯酸盐(mg/L)(使用二氧化氯消毒的工厂)0.70结论中国正在解决清洁水质这一国家优先事项,因此饮用水行业会面对法规的挑战。为了将DBP的水平控制在标准的限定以下,一个自来水厂应该全面了解他们水厂的水源和管网内的DBP前体的情况特征。自来水厂内大部份的维护工作应包括全厂TOC水平的监测,明白厂内处理工艺如何会遇到TOC问题。知道自来水厂内哪里的TOC正在被去除和没有被去除,能够帮助一个水厂对处理工艺做合适的改进,防止今天的TOC变为明天的DBPs。◆ ◆ ◆联系我们,了解更多!
  • 涨知识|饮用水消毒后就绝对安全了吗?
    导读众所周知,消毒是水处理过程中必不可少的环节。在消毒过程中,水中的天然和人工合成有机物会与消毒剂反应生成消毒副产物(DBPs)。其中,卤乙酸(HAAs)是水氯化消毒过程中产生的主要消毒副产物,在已知的9种卤乙酸中,我国目前对二氯乙酸(DCAA)和三氯乙酸(TCAA)进行了监管。2022年3月15日,GB 5749-2022《生活饮用水卫生标准》正式发布,并将于2023年4月1日实施。该标准为强制性国家标准,且将二氯乙酸和三氯乙酸指标由2006版的非常规指标调整为常规指标,这意味着该项目检测频次的增加,同时对分析仪器和广大分析工作者也提出了更高的要求。现在,岛津带来检测方案,助您轻松应对! 常见的消毒副产物消毒可以减少细菌、病毒等病原微生物的侵害,有效降低传染疾病的传播,大大地提高了人们的健康水平。消毒是水处理过程中必不可少的环节,常用的消毒剂包括液氯、次氯酸钠、氯胺、二氧化氯和臭氧等。自然界的水源水中一般会存在多种天然有机物,随着生活污水、工业废水等对水体的污染,还会增加人工合成有机物,这些物质在消毒过程中会与消毒剂反应生成消毒副产物(DBPs)。1974年发现了氯化消毒副产物三卤甲烷(THMs),继而证实THMs具有致畸性、致癌性。此后,消毒副产物可能引发的健康问题也开始引起人们的重视。 常见的消毒副产物有氯酸盐、亚氯酸盐、溴酸盐、三卤甲烷和卤代乙酸(HAAs)等。其中卤代乙酸是水氯化消毒过程中产生的消毒副产物,与低沸点、易挥发的三卤甲烷相比,卤代乙酸具有沸点高、致癌风险更大的特点。 国内外相关标准目前,水处理消毒副产物中已知的卤乙酸有9种,包括一氯乙酸(MCAA) 、二氯乙酸(DCAA) 、三氯乙酸(TCAA ) 、一溴乙酸(MBAA) 、二溴乙酸(DBAA) 、三溴乙酸(TBAA) 、溴氯乙酸(BCAA) 、一溴二氯乙酸(BDCAA) 和一氯二溴乙酸(CDBAA)。 其中,美国国家环境保护局(US EPA)对五种卤乙酸(MCAA、DCAA、TCAA、MBAA和DBAA)进行了监管,日本厚生劳动省的自来水水质标准规定了三种卤乙酸(MCAA、DCAA和TCAA)的含量限值。2007年7月, 我国颁布了《生活饮用水卫生标准》(GB 5749-2006) ,该标准为强制性国家标准,标准新增了二氯乙酸和三氯乙酸指标,限值分别为0.05和0.1 mg/L。2022版《生活饮用水卫生标准》已于近期发布,标准将二氯乙酸和三氯乙酸指标由2006版的非常规指标调整为常规指标,限值不变。 表1.不同国家和组织饮用水中卤乙酸限值表岛津解决方案岛津采用超高效液相色谱三重四极杆串联质谱仪开发了生活饮用水中二氯乙酸和三氯乙酸的检测方法,该方法样品前处理简单,1 L水样,加入5 μL甲酸,摇匀过滤后即可上机进样。岛津超高效液相色谱三重四极杆串联质谱仪 l 高效快速分离二氯乙酸和三氯乙酸均可得到良好的色谱峰形和质谱响应,5 min内即可完成一个样品分析。图1. 2 ng/mL DCAA和TCAA标准溶液的MRM色谱图 l 高灵敏度,宽线性范围精准测定饮用水中二氯乙酸和三氯乙酸含量,满足标准限值要求。根据检出限MDL=3 S/N,DCAA和TCAA检出限分别为0.03和0.02 ng/mL。在0.2-200 ng/mL的浓度范围内,DCAA和TCAA的相关系数均大于0.999。图2. DCAA和TCAA的标准曲线 l “精”“准”可靠对2 ng/mL的标准品溶液连续测定6次,考察峰面积重复性。结果显示:两个组分峰面积相对标准偏差分别为3.62%和3.75%,重复性良好。 取自来水样品6份,分别加入适量甲酸及DCAA和TCAA标准溶液,配制成DCAA和TCAA加标浓度分别为0.5 ng/mL和10 ng/mL的0.0005%甲酸水溶液,每种浓度平行测定6次。DCAA和TCAA的回收率分别在99.43 %~105.43%、96.80%~102.44%之间,具体结果见表2。 表2. DCAA和TCAA回收率测试结果 (n=6)结语近年来,LC-MS/MS承担了越来越多的检测项目,其优异的分离性能,高灵敏高通量的检测能力具有很大的优势。岛津一直致力于“为了人类和地球的健康”这一愿景,不断开发新方法,服务于大众,为人民生活健康安全保驾护航。 本文内容非商业广告,仅供专业人士参考。
  • 蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法(BJS202103)解读
    链霉素和双氢链霉素(DHSTR)属于氨基糖苷类抗生素,对革兰氏阴性菌有明显的抗菌活性效果,可以预防和治疗多种动物疾病。由于链霉素和双氢链霉素能够有效地治疗蜜蜂的幼虫病,在养蜂行业应用普遍,但由于管理和使用的不科学,会造成蜂产品中该类物质的残留。长期食用链霉素和双氢链霉素超标的蜂产品,会对健康产生一定的危害,尤其是听觉神经。因此,国内和国际对蜂产品中链霉素、双氢链霉素的限量均有相关的规定。我国《绿色食品蜂产品》(NY/T 752-2012)中规定了蜂蜜中链霉素的最大残留限量为20μg/kg;英国食品标准署规定蜂蜜中链霉素的限量为50μg/kg;德国规定蜂蜜中链霉素的限量为20μg/kg。在山东省食品药品检验研究院组织的蜂蜜风险监测中,链霉素检出率较高。因此,建立蜂蜜中链霉素、双氢链霉素残留量的先进、高效、准确的检测方法,对保障公众的饮食健康具有重要意义。研制背景  原有蜂蜜中链霉素和双氢链霉素的检验标准有三项,这三个标准存在如下问题:(1)在流动相或提取剂中使用离子对试剂,离子对试剂的使用会污染色谱柱,且与质谱检测器不兼容,易造成离子源污染和信号抑制,甚至造成其他目标物无法检测;(2)净化方式均采用双柱串联,检测成本较高,步骤繁琐、耗时、检测效率低;(3)对花粉含量较高的蜂蜜,净化时易造成固相萃取柱的阻塞;(4)采用液相色谱法测定链霉素,需衍生化,重现性差,对同时含有链霉素和双氢链霉素的样品无法准确定量。因此,各检验机构无法利用原有方法进行蜂蜜中链霉素和双氢链霉素的检测。检验方法的不完善造成2018年-2021年,蜂产品的国家风险监测方案将链霉素和双氢链霉素两项目取消。方法简介  本方法适用于蜂蜜中链霉素和双氢链霉素的测定。方法采用含三氯乙酸的磷酸盐缓冲溶液提取试样中的链霉素和双氢链霉素,经离心和过滤后,HLB固相萃取柱净化,混合型两性离子键合的SIELC Obelisc R色谱柱分离,液相色谱-串联质谱仪进行检测,外标法定量。  本标准与原有检测标准相比,具有以下优势:(1)摒弃了离子对试剂,与质谱检测器更好地兼容;(2)突破常规的双柱串联固相萃取方式,采用单柱净化模式,提高了检测效率,节约了检验成本。技术要点  蜂蜜含有大量的果糖和葡萄糖,为了达到去除杂质的目的,需要在前处理过程中对目标物进行净化、富集。固相萃取因简单、快速、高效等特点被广泛应用于蜂蜜中链霉素和双氢链霉素的净化。HLB固相萃取柱在去除糖类、蛋白等杂质上有一定的优势,虽不能直接保留目标物,但是借助一定的提取溶剂,两种化合物均能得到很好地保留。  链霉素和双氢链霉素属于碱性化合物,易溶于水,难溶于甲醇、乙腈等有机溶剂,因此可采用缓冲液进行提取。链霉素和双氢链霉素极性大,文献多采用提取溶液中添加离子对试剂或三氯乙酸的方法,以增加两种目标物在固相萃取柱上的保留。若前处理过程中离子对试剂去除不彻底,对色谱柱和质谱检测器将会有一定程度的污染,因此,本标准选择添加三氯乙酸的方法。研究发现,含20 g/L三氯乙酸的缓冲液pH在6~7之间时,回收率较高且比较稳定,之后再增加溶液的pH,回收率逐渐下降。  在实际样品测定中,用2%TCA(pH 6.8)提取后,不同蜂蜜样品之间回收率差别较大,且回收率偏低。对提取后的样品处理液进行pH值测定,发现pH在3.5~6.2之间,这是引起回收率偏低的重要原因。蜂蜜样品含有多种有机酸,而提取液无缓冲能力,经提取后样品处理液的pH值会发生变化。为解决此问题,研究人员在提取液中加入10 mmol/L~50 mmol/L磷酸盐。研究结果表明,50mmol/L磷酸盐缓冲效果较好,样品处理液的pH值稳定在6.2~ 6.7。综合以上因素,50 mmol/L磷酸盐缓冲液(含20 g/L三氯乙酸,pH 6.8)作为最终的提取溶剂。  研究人员进一步对洗脱溶剂中甲酸的浓度和洗脱体积对链霉素和双氢链霉素回收率的影响进行了考察,甲酸-乙腈-水(2: 5:93,v/v/v)溶液1.0 mL为最佳洗脱条件。操作注意事项  蜂蜜在存放过程中很容易析出结晶,为保证分析结果的准确性和代表性,对无结晶的实验室样品,直接将其搅拌均匀;对有结晶的样品,检验前,在密闭情况下,置于不超过60℃的水浴中温热,振荡,待样品全部融化后搅匀,分出0.5 kg作为待测试样用于检验。  在标准溶液配制过程中还需注意,若采用非本标准中形式的标准物质,需进行分子量折算后再进行标准品称量;若经常使用,建议将标准储备液分装成小包装,每次将小包装解冻使用。此外,氨基糖苷类药物易与玻璃器皿发生吸附,实验过程中尽量使用塑料器皿;提取溶液的pH值将影响目标物在固相萃取柱上的保留效果,因此需采用pH计准确调节pH值至指定范围。  SIELC Obelisc R色谱柱是在硅胶表面修饰了羧酸类的官能团,醇类会酯化硅胶表面键合的羧酸,影响物质的保留时间与重现性,因此色谱柱使用过程不能接触甲醇。建议严格按照色谱柱使用说明进行色谱柱的活化与维护。方法应用  BJS 202103《蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法》已于2021年1月发布实施,已列入2022年全国食品安全风险监测计划中,在全国范围内得到广泛应用。本方法的发布实施可以为企业和监管部门提供技术支持,对市场监管具有重要意义。□山东省食品药品检验研究院 薛 霞
  • 谱育:饮用水新国标涉及农药、消毒副产物等检测指标新增,首次纳入LC-MS/MS、GC-MS质谱法
    1956年起我国首次制定了《饮用水水质标准》,共16项指标,经过时代变迁;人口增加后1985年又提升了该标准并改名为《生活饮用水卫生标准》,共计35项内容;随着工业化时代的到来,2006年生活饮用水卫生标准又增加了许多项目达到了106项,连续使用了长达15年的标准自2018年起由中国疾控预防控制中心环境与健康相关产品安全所起草,经过4年的修订最终于2022年4月实施最新一版97项的生活饮用水卫生标准。其中,指标数量、指标分类方法、指标限值、指标名称、指标分类、完善饮用水水源水质的要求、删除涉及饮用水管理方面的内容都有修订。仪器信息网特别建立“《生活饮用水标准检验方法》——质谱篇” 话题,聚焦质谱技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界质谱专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的质谱产品、技术解决方案。本文邀请到杭州谱育科技发展有限公司有机质谱解决方案工程师付景分享对生活饮用水检测相关的技术及解决方案。仪器信息网: 自2006年版《生活饮用水标准检验方法》实施以来,时隔17年,2023新版标准于今年实施,本次涉及多方面的修改,该标准方法的变动背后由哪些因素推动? 付景:总的来说,主要是通过高自动化和高通量的质谱分析方法,以人为本的制标理念,优化原有标准,给饮用水生产部门和各相关行业厂商提出了更高的要求,使得我们的饮用水更加安全健康。新增了76个方法,删除了30+方法,首次纳入LC-MS/MS、GC-MS质谱方法。增加仪器分析方法,吸纳先进样品处理技术,方法灵敏度显著提高,方法抗干扰能力增强,增加了高通量的分析方法,体现以人为本理念。解决了环氧氯丙烷、丙烯酰胺、挥发酚的方法灵敏度不足,方法便利性不足如衍生化处理、单指标分析、余氯、总氯,挥发酚、氰化物方法自动化不足,以及质谱技术应用不足的问题。1) 农药指标的变化主要是因为长期农药滥用的因素推动。农业部的公开数据显示,2015年的中国农药利用率仅仅36.6%,剩下的农药在以各种形式影响着水质、大气、土壤,威胁生态环境和人体健康。中国近20年来最滥用的农药就是有机氯农药和有机磷农药,而中国使用最广泛的有机氯农药主要是滴滴涕和六六六,这些化合物性质十分稳定,它随着径流进入水体,污染水环境。另外,尿素类杀虫剂也是使用最广泛的杀虫剂之一,它主要通过抑制几丁质的合成,来抑制昆虫蜕皮以控制害虫繁衍。饮用水源受到农业生产中杀虫剂污染是苯基尿素类农药人体暴露的主要来源。国际食品法典委员会和日本均规定了最大残留限量,但2006版检测方法中还未对苯基杀虫剂进行具体的规定,故而新增多个指标。2) 消毒副产物的变化主要是因为原检测一氯二溴甲烷、二氯乙酸等6项消毒剂副产物指标方法虽成本低,但检出限高,不能满足现在的卫生限值测定要求,而且将此指标由原来的非常规指标提升为常规指标,说明对饮用水中的消毒剂副产物的监测更加重视了。仪器信息网:系列标准检测方法涉及哪些主要的变化?为什么关注这部分内容的检测? 付景:标准的变化主要涉及这几项:1) 相比旧GB/T 5750.8指标的修订与新增:修订指标包括四氯化碳、1,2 二氯乙烷等24个有机物检验方法。目前水质方法均采用气相色谱法检测丙烯酰胺,该法需对丙烯酰胺进行衍生,操作繁琐,而且衍生不完全,容易造成丙烯酰胺的损失,而其他食品中的丙烯酰胺对取样量又要求比较大,不符合水质中痕量丙烯酰胺的测定要求。于是新方法采用采用活性炭柱富集,甲醇洗脱的前处理方法结合液相色谱三重四极杆质谱仪检测丙烯酰胺。其他的有机物如微囊藻毒素等也都从色谱方法转为了质谱方法,主要是为了简化实验流程和提高检出能力,这标示着我国对有毒有害有机物的水环境防治更加重视。2) 相比旧GB/T 5750.9指标的修订与新增:修订了滴滴涕、林丹等12个新指标;还增加了9个检验方法;草甘膦在2006版标准中使用液相色谱搭配荧光检测器方法进行检测,但新标准根据草甘膦和氨甲基磷酸溶于水后的离子性质,无需前处理直接用离子色谱仪测定,操作简便快捷,结果重现性好,准确度高。将灭草松、2,4-滴、呋喃丹、甲萘威、莠去津、五氯酚6个指标都用也行色谱串联质谱法来做,免除了旧方法的衍生步骤,简化工作流程,提高工作效率。3) 相比旧GB/T 5750.10指标的修订与新增:修订了三氯甲烷、三溴甲烷、二氯一溴甲烷、 一氯二溴甲烷、二氯甲烷、二氯乙酸、三氯乙酸、2,4,6-三氯酚8个指标;新增了一氯乙酸、一溴乙酸、二溴乙酸、氯溴甲烷、二溴甲烷5个指标;还增加了1个五种卤乙酸离子色谱检验方法;原本三氯乙醛的方法成本低,但是检出限高,不能满足卫生限值测定要求,而同样的三氯乙醛在原本的离子色谱间接检测法的测定下,因还有其他多种消毒副产物的影响,会出现假阳性的情况。4) 相比旧GB/T 5750.11指标的修订:增加了两个游离总氯和总氯的检验方法。整体方法灵敏度要求提高,对于农药、挥发酚等指标,2006版检验标准落后现在检测技术,2023版充分发挥现代高通量高灵敏度仪器的性能,提高工作效率,降低检测成本仪器信息网:我国生活饮用水检测技术标准的发展历程如何?您认为近些年该领域里程碑式的标准有哪些? 付景:1956年起我国首次制定了《饮用水水质标准》,共16项指标,经过时代变迁;人口增加后1985年又提升了该标准并改名为《生活饮用水卫生标准》,共计35项内容;随着工业化时代的到来,2006年生活饮用水卫生标准又增加了许多项目达到了106项,连续使用了长达15年的标准自2018年起由中国疾控预防控制中心环境与健康相关产品安全所起草,经过4年的修订最终于2022年4月实施最新一版97项的生活饮用水卫生标准。其中,指标数量、指标分类方法、指标限值、指标名称、指标分类、完善饮用水水源水质的要求、删除涉及饮用水管理方面的内容都有修订。 2006版标准和新标准是里程碑式的标准,2006版的是最全面,覆盖物质范围最广,使用范围最广的标准;2022版则是有效考量国内外饮用水检测现状,综合修订成的一份最符合当下中国饮用水检测的高效率,高检出能力的一个标准。仪器信息网:在5750中目前贵公司重点关注哪些内容?公司针对该部分有哪些特色的应用方案或产品?主要基于哪些技术?付景:谱育科技重点关注质谱相关的检测。修订后的GB/T5750-2023检测方法中,质谱法因其具有灵敏度高,抗干扰能力强,多组分可同时检测等优点,在气质联用、液质联用以及元素分析等检测方法中得到大量的采用。谱育科技推出了液相色谱三重四极杆质谱仪EXPEC 5210、气相色谱三重四极杆质谱仪EXPEC 5231和电感耦合等离子体质谱仪SUPEC 7000为基础的饮用水检测实验室整体方案,涵盖金属和类金属指标、有机物指标、农药指标以及消毒副产物指标。EXPEC 5210是谱育科技在“国家重大科学仪器设备开发专项”支持下,研制的具有自主知识产权的三重四极杆串联质谱仪,是国产第一台液相色谱三重四级杆质谱仪。除此之外,谱育科技还研发生产了EXPEC 5310和EXPEC 5700产品,EXPEC 5700是最新一代的液相色谱三重四级杆质谱产品,适用于科研场景,可以应对更高灵敏度的挑战。与此同时,谱育科技还供应与其搭配的固相萃取仪、氮吹平行浓缩仪等一系列前处理设备实现快速高效的前处理分析,降低人力成本。5750标准首次引入的液相色谱三重四级杆质谱方法主要分布在以下四个细分检测标准中,涉及如下检测方法,1)有机物指标5750.8:丙烯酰胺、微囊藻毒素、11种PFAS、39种PPCPs、5种EDCs、戊二醛、8种环烷酸;2)农药指标5750.9:9种农残、11种苯甲酰脲3)消毒副产物指标5750.10:溴酸盐、氯酸盐、亚氯酸盐、二氯乙酸、三氯乙酸4)无机盐指标5750.5:高氯酸盐。而上述多种化合物都可以通过一针进样或几针进样实现高通量快速质谱检测,采用EXPEC 5210通用型号检测即可完全满足标准限值要求。EXPEC 5231 是谱育科技全新打造的具有自主知识产权的气相色谱-三重四极杆质谱联用仪(GC-MS/MS),也是国产第一台气相色谱三重四级杆质谱仪。用该设备搭配谱育EXPEC 216多功能进样器中固相微萃取微萃取装置的在新标准增加的土溴素和二甲基异莰醇上有ppt级检出,完全满足标准要求。SUPEC 7000型ICP-MS也是在“国家重大科学仪器设备开发专项”支持下研发的,攻克了多个质谱核心技术难点,打造了性能优越的SUPEC 7000。低至 ng/L 的检出限更适合做饮用水中痕量元素的检测,且基于质谱技术可以做到一针进样检测所有元素,比起原有ICP-OES方案大大提高了通量,降本增效。与其搭配使用的谱育自主研发产品SUPEC 790系列超级微波则能够实现高通量的前处理,超级微波比起传统微波消解更快、更均匀、效果更好。除此之外,谱育科技还有专业在线spe系统搭载EXPEC 5210液相色谱三重四级杆质谱仪设备,能够实现样品的在线全自动分析,该方案用在线固相萃取的方式取代原本繁复的手动固相萃取,节省时间的同时消除人为误差。具有更省事、省钱、省时、省力、准确的特点。谱育科技还有全自动水质分析实验室,由中央控制系统统一控制,样品皮带传送,机械臂夹取,可定制化前处理设备和分析设备,进行多个指标的全自动全流程检测,自动完成数据分析报告。样品前处理、目标物分离和质谱检测一体化、自动化,可减少人为误差,保证结果一致性。实现无人全自动实验室。仪器信息网:您如何评价当前质谱技术在生活饮用水检测领域的应用现状?未来质谱技术在该领域的发展将呈现怎样的趋势?付景:质谱技术以它的高通量和高灵敏度成为了生活饮用水检测领域的必然趋势,但当前在饮用水领域的应用还非常局限,地方水厂因资金或消息滞后原因,大部分还使用色谱或其他分析方法来检测,非常耗费时间、人力、物力,而进口厂家的质谱产品因其价格昂贵在饮用水相关客户中普及程度也一般,几乎都是高校、国家、省级、省会城市在采购,但为了保障人们的饮水安全,国产仪器厂商有普及质谱技术的义务,通过高性能低价格的质谱产品,打开中国饮用水检测市场,为中国饮用水检测打好国产设备检测地基。未来质谱技术会向多元化、易用化、高灵敏度高分辨率化发展。随着质谱技术的发展,多种质谱技术的发明使得不同物质的检测方式更加细分,检测效果更好,除了常见的三重四级杆质谱仪之外,MALDI-TOF、高分辨质谱、二维质谱、不同离子源的发展也会更加有势头;质谱技术会向易用化、小型化、普及化发展,加入标准后,为保证全国人民的饮水安全,区县级也要保证水质的准确检测,各大仪器厂商会推出大家接受得起的质谱,简化质谱分析流程,让大家都可以实现准确分析;因未知化合物对水体的影响、新污染物的体系化,质谱关注度逐渐向高分辨质谱的非靶向检测发展,需要提高分辨率来识别未知化合物,同时,随着人们生活水平的提升,对饮用水健康安全的要求,使得质谱技术往更高灵敏度的方向发展,要求准确检测更痕量物质。杭州谱育科技发展有限公司有机质谱解决方案工程师 付景
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制