当前位置: 仪器信息网 > 行业主题 > >

苯硫酚钠

仪器信息网苯硫酚钠专题为您提供2024年最新苯硫酚钠价格报价、厂家品牌的相关信息, 包括苯硫酚钠参数、型号等,不管是国产,还是进口品牌的苯硫酚钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯硫酚钠相关的耗材配件、试剂标物,还有苯硫酚钠相关的最新资讯、资料,以及苯硫酚钠相关的解决方案。

苯硫酚钠相关的资讯

  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 3种禁用2种受限,如何应对美国TSCA法规新管控?
    导读 近期,多批输美货物遇到了“入关难”的问题,企业被要求应对美国有毒物质控制法(Toxic Substances Control Act,简称TSCA)后方可入关。究其原因:2021年1月6日,美国环境保护局(US EPA)在联邦公报发布了TSCA中五种具有持久性、生物累积性和毒性(Persistence, Bioaccumulation, and Toxicity,简称PBT)物质的最终规则40 CFR 751.401-751.413,最终规则对物质、混合物或物品中的十溴二苯醚、异丙基化磷酸三苯酯、六氯丁二烯、五氯苯硫酚、2,4,6-三叔丁基苯酚共五种PBT物质提出了管控要求,因为这些物质随着时间的推移会在环境中积累,可能对接触的人体产生潜在的危险。以上规则已于2021年2月5日正式生效,并于2021年3月8日逐步实施。 表1 五种PBT物质简要信息下面先随着小编来了解下美国TSCA法规相关内容吧! 美国TSCA法规介绍 • 管控目的美国TSCA法规, 由美国国会于1976年颁布,1977年生效,由美国环保署(EPA)负责具体政策的落实和执行。该法案旨在综合考虑美国境内流通的化学物质对环境、经济和社会的影响,预防对人体健康和环境的“不合理风险”。 • 管控范畴TSCA法规适用于天然生成和化学反应产生的化学物质本身、混合物中的化学物质和物品中有意释放的化学物质。需要注意的是,TSCA法规定义的化学物质还包括了微生物。也就是说,TSCA法规并不是将管控对象分为“有毒物质”和“无毒物质”,而是把化学物质分为“现有化学物质”和“新化学物质”两大类,某些特定用途的化学品并不属于TSCA法规的管控范畴,具体如表2所示。 表2 不属于TSCA法规管理的化学物质 如表2所示,TSCA法规主要管理的是工业用化学物质,而烟草和烟草制品、核材料、军火等8大类化学物质由于其用途的特殊性,由特定法规负责管理,例如食品、食品添加剂、药品和化妆品统一由美国联邦食品药品和化妆品法规管理。 • 管控影响TSCA法案是美国有效管理商业用途化学物质的首要法规,该法规适用于中国企业在美国的分公司,也适用于从中国进口化学品的美国公司。因此,TSCA合规是企业进行正常贸易的先决条件,为此,企业需要尽快了解法规的管控要求,制定适合自己企业的管控方案,通过测试或者供应链调查来确定产品的符合性。 1月份公布的TSCA中五种PBT物质规则,直接影响了众多输美企业出口的电子电器、纺织品等产品,根据TSCA法规及美国海关要求,相关货物入关时必须随货提供TSCA遵循或豁免声明。若企业违反该规定,将可能面临禁止入关、扣留货物、滞留费用、罚款、进口黑名单等后果。 岛津应对之道 美国EPA公布的5种PBT物质如何检测呢?烧脑!烧脑!… … 别紧张!岛津有完整的检测解决方案,为您排忧解难。 方案1. Py-GCMS快速筛查六氯丁二烯、五氯苯硫酚和异丙基化磷酸三苯酯PS材质固体标准品色谱图(100 mg/kg)( 1. 六氯丁二烯、2. 五氯苯硫酚、3. 异丙基化磷酸三苯酯 ) 岛津Py-Screener系统 岛津Py-Screener系统基于EGA/PY-3030D + GCMS-QP2020 NX,并提供包含样品制备工具、分析方法包、专用数据处理软件、软件操作向导、维护耗材、清晰文字指导和视频指导,是一套从样品制备、分析、数据处理到仪器维护保养的完整的解决方案。 方案2. GCMS定量检测六氯丁二烯、异丙基化磷酸三苯酯和十溴二苯醚标准溶液色谱图(浓度0.1 μg/mL)( 1. 六氯丁二烯、2. 异丙基化磷酸三苯酯、3. 十溴二苯醚) GCMS-QP2020 NX • 搭载全新大容量超高效真空系统• 超强抗干扰性能和超高灵敏度 更多应用敬请参考岛津公司推出的《美国TSCA法规中5种PBT物质检测解决方案》。本文内容非商业广告,仅供专业人士参考。
  • 3种禁用2种受限,如何应对美国TSCA法规新管控?
    导读 近期,多批输美货物遇到了“入关难”的问题,企业被要求应对美国有毒物质控制法(Toxic Substances Control Act,简称TSCA)后方可入关。究其原因:2021年1月6日,美国环境保护局(US EPA)在联邦公报发布了TSCA中五种具有持久性、生物累积性和毒性(Persistence, Bioaccumulation, and Toxicity,简称PBT)物质的最终规则40 CFR 751.401-751.413,最终规则对物质、混合物或物品中的十溴二苯醚、异丙基化磷酸三苯酯、六氯丁二烯、五氯苯硫酚、2,4,6-三叔丁基苯酚共五种PBT物质提出了管控要求,因为这些物质随着时间的推移会在环境中积累,可能对接触的人体产生潜在的危险。以上规则已于2021年2月5日正式生效,并于2021年3月8日逐步实施。 表1 五种PBT物质简要信息下面先随着小编来了解下美国TSCA法规相关内容吧! 美国TSCA法规介绍 • 管控目的美国TSCA法规, 由美国国会于1976年颁布,1977年生效,由美国环保署(EPA)负责具体政策的落实和执行。该法案旨在综合考虑美国境内流通的化学物质对环境、经济和社会的影响,预防对人体健康和环境的“不合理风险”。 • 管控范畴TSCA法规适用于天然生成和化学反应产生的化学物质本身、混合物中的化学物质和物品中有意释放的化学物质。需要注意的是,TSCA法规定义的化学物质还包括了微生物。也就是说,TSCA法规并不是将管控对象分为“有毒物质”和“无毒物质”,而是把化学物质分为“现有化学物质”和“新化学物质”两大类,某些特定用途的化学品并不属于TSCA法规的管控范畴,具体如表2所示。 表2 不属于TSCA法规管理的化学物质如表2所示,TSCA法规主要管理的是工业用化学物质,而烟草和烟草制品、核材料、军火等8大类化学物质由于其用途的特殊性,由特定法规负责管理,例如食品、食品添加剂、药品和化妆品统一由美国联邦食品药品和化妆品法规管理。 • 管控影响TSCA法案是美国有效管理商业用途化学物质的首要法规,该法规适用于中国企业在美国的分公司,也适用于从中国进口化学品的美国公司。因此,TSCA合规是企业进行正常贸易的先决条件,为此,企业需要尽快了解法规的管控要求,制定适合自己企业的管控方案,通过测试或者供应链调查来确定产品的符合性。 1月份公布的TSCA中五种PBT物质规则,直接影响了众多输美企业出口的电子电器、纺织品等产品,根据TSCA法规及美国海关要求,相关货物入关时必须随货提供TSCA遵循或豁免声明。若企业违反该规定,将可能面临禁止入关、扣留货物、滞留费用、罚款、进口黑名单等后果。 岛津应对之道 美国EPA公布的5种PBT物质如何检测呢?烧脑!烧脑!… … 别紧张!岛津有完整的检测解决方案,为您排忧解难。 方案1. Py-GCMS快速筛查六氯丁二烯、五氯苯硫酚和异丙基化磷酸三苯酯PS材质固体标准品色谱图(100 mg/kg)( 1. 六氯丁二烯、2. 五氯苯硫酚、3. 异丙基化磷酸三苯酯 ) 岛津Py-Screener系统 岛津Py-Screener系统基于EGA/PY-3030D + GCMS-QP2020 NX,并提供包含样品制备工具、分析方法包、专用数据处理软件、软件操作向导、维护耗材、清晰文字指导和视频指导,是一套从样品制备、分析、数据处理到仪器维护保养的完整的解决方案。 方案2. GCMS定量检测六氯丁二烯、异丙基化磷酸三苯酯和十溴二苯醚标准溶液色谱图(浓度0.1 μg/mL)( 1. 六氯丁二烯、2. 异丙基化磷酸三苯酯、3. 十溴二苯醚) GCMS-QP2020 NX • 搭载全新大容量超高效真空系统• 超强抗干扰性能和超高灵敏度 更多应用敬请参考岛津公司推出的《美国TSCA法规中5种PBT物质检测解决方案》。 本文内容非商业广告,仅供专业人士参考。
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 科学岛团队在贵金属自组装阵列研究方面取得新进展
    近期,中科院合肥物质院固体所纳米材料与器件技术研究部团队在贵金属自组装阵列的研究中取得了新进展,合成了以多孔Au@AuAg纳米棒为阵列基元的高通量传感器,并探究了其在近红外波段(NIR)的表面增强拉曼散射(SERS)性能,相关研究成果发表在Journal of Materials Chemistry C 上。   生物化学分子的不当使用会导致严重的环境问题,因此迫切需要寻求一种低成本的可以检测环境中生物化学分子的传感器。基于SERS研发检测的传感器因其高灵敏度和特异性而受到广泛关注,但其受到低利用率和高成本的限制,无法进一步实际应用。   鉴于此,研究人员将喷墨打印技术与等离子体金属纳米颗粒相结合,开发了一种高通量、高灵敏度的NIR-SERS生化传感器(HNIR-SERS传感器)。首先利用压印技术制造了网格基板,其中分离的区域呈典型的立方排列;再将多孔Au@AuAg纳米棒(NRs)作为组装单元,通过喷墨打印将其组装在基板上,形成HNIR-SERS传感器。研究发现,这种新型HNIR-SERS传感器可以在一个衬底中实现多生化分子的高灵敏度检测。例如,该HNIR-SERS传感器能够有效检测4-氨基苯硫酚(4-ATP)和罗丹明6G (R6G), 4-ATP的增强因子高达108。该工作为实现高通量、低成本的NIR-SERS传感器提供了一种有效的方法,为推动NIR-SERS传感器在拉曼检测芯片中的实际应用提供了依据。   上述工作得到了国家杰出青年科学基金、国家自然科学基金、重大专项和中科院仪器专项等项目的支持。图1. 多孔Au@AuAg纳米棒的(a)合成示意图、(b)SEM图、(c)TEM图、(d)STEM-HAADF及其元素分布图。图2. (a)HNIR-SERS传感器的制备示意图;(b-d)多孔Au@AuAg纳米棒阵列的SEM图。图3. (a)加入10-6 M浓度的4-ATP处理后的多孔Au@AuAg纳米棒及其前驱体的拉曼光谱图;(b) HNIR-SERS传感器的拉曼测试示意图;(c) HNIR-SERS传感器在加入10-8 M浓度的不同待测分子后的拉曼光谱图;(d) HNIR-SERS传感器在加入不同浓度梯度的4-ATP的拉曼光谱图。
  • 宁夏化学分析测试协会发布《草本葡萄酒多糖含量的测定 乙醇沉淀-苯酚硫酸法》等3项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《草本葡萄酒多糖含量的测定 乙醇沉淀-苯酚硫酸法》等3项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年10月12日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com序号团标名称1草本葡萄酒多糖含量的测定 乙醇沉淀-苯酚硫酸法2草本葡萄酒可滴定酸含量的测定 电位滴定法3草本葡萄酒中总糖和还原糖含量测定 宁夏化学分析测试协会2023年9月12日关于团标征求意见函 -9.12.pdf团标表格7-专家意见表.doc意见稿-草本葡萄酒多糖测定.pdf意见稿-草本葡萄酒可滴定酸测定.pdf意见稿-草本葡萄酒总糖测定.pdf
  • 宁夏化学分析测试协会立项《草本葡萄酒中多糖含量的测定 乙醇沉淀—苯酚硫酸法》等3项团体标准
    各会员及相关单位:宁夏化学分析测试协会对团体标准申报材料进行审核后,经研究决定,对《草本葡萄酒中多糖含量的测定 乙醇沉淀—苯酚硫酸法》等3项团体标准批准立项(附件1),现予以公示。欢迎与该团体标准有关的科研、生产单位加入该标准的编制工作,有意者请与协会秘书处联系。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com 附件1序号拟立项团标名称申请单位1草本葡萄酒中多糖含量的测定 乙醇沉淀—苯酚硫酸法北方民族大学2草本葡萄酒中可滴定酸含量的测定 电位滴定法北方民族大学3草本葡萄酒中总糖和还原糖含量的测定 改良滴定法北方民族大学 宁夏化学分析测试协会 2023年5月11日
  • 天津检验检疫局通过防腐剂五氯苯酚残留检测能力验证
    五氯苯酚(PCP)作为纺织品、皮革制品、木材、织造浆料和印花色浆中普遍采用的一种防霉防腐剂,与日常生活息息相关。天津检验检疫局工业产品安全技术中心近日顺利通过了国家认监委关于五氯苯酚的检测能力验证。  五氯苯酚的主要作用是防霉、防腐、防虫及杀菌等。经动物试验证明,五氯苯酚是一种强毒性物质,对人体具有致畸和致癌性。同时,五氯苯酚在燃烧时会释放出二恶英类化合物,会对环境造成持久的损害。  天津检验检疫局工业产品安全技术中心危险品实验室作为国家级重点实验室,日前通过了2010年国家认证认可监督管理委员会组织的CNCA-10-A19“木制品和家具产品中木材防腐剂五氯苯酚残留量的检测”能力验证。这项资质认证的顺利通过,将提高该局对出入境相关商品的检测效率,维护国家和人民的切身利益。
  • 山西苯胺泄漏事件进展:又发现挥发酚超标
    据中国之声《新闻纵横》1月9日报道,山西长治天脊煤化工集团苯胺泄漏事故发生进入第10天。从事故责任人初步处理意见发布,到环境监测信息公布,直至向公众道歉,这两天,事故应急处理指挥部举动频频。  在山西长治,天脊煤化工集团究竟是一家怎样的企业?公众更想知道,这次污染事故是不是偶发?作为污染的制造者,会为此承担怎样的责任?  沿天脊集团厂区东墙向南,不出两公里,微子镇王都庄村的房屋和玉米地隔河相望。听记者在打听"天脊集团",有村民主动到话筒前说起来。  村民:你看房子上的灰,红瓦都成黑的了。白衣服搭那一会就成黑的衣服了。  村民们说,这些灰都是附近的大型煤化工企业天脊集团带来的,而比灰尘更让他们苦恼的,是水污染给庄稼带来的影响。  村民:庄稼就呛死了,庄稼收影响很大。有的树也死了,很厉害。  经过村民的指点,记者才发现,在村子房屋和玉米地之间的,并不是自然河道,而是一条深达三四米的整齐渠道,下面流淌的水泛着微黄色,站远些也能闻到刺鼻气味。村民们说不清里面排的是什么,但顺着渠道向上走,可以发现它直通天脊集团罐区外墙。村民们说,这就是天脊常年排废水的地方。  村民:"环保事故应急水池"仅为应付检查 污水常年"直达"浊漳河  从村边的渠道向南走,一个方形水泥池显得很醒目,"环保事故应急水池"的牌子挂在朝向路口的方向。正从王都庄村走出来的岳爱斌说起这个池子时笑起来。  岳爱斌:地下管道就是我们修的。秋天上冻后才完工。就是应付领导检查,来了有蓄水池。实际哗哗,每天都流,都是流的臭水,你没见那臭水……等不检查的时候,这些污水就顺着渠道去了黄牛蹄水库,从黄牛蹄水库往下就到辛安村,从辛安村到了浊漳河往河南方向走了。  他解释说,平时这个水池是不用的,无论寒暑,臭水都从村口一泻而下,一路留到浊漳河。尽管在排污渠和浊漳河汇流处已经没有这么明显的气味,但辛安庄村口的人们也对这条排污渠有着类似的抱怨。  记者:化肥厂的水常年在这儿流?  辛安庄村民:对,常年!  记者:是天脊集团的?  辛安庄村民:就是污水嘛!  苯胺泄漏涉事企业仍未停产 2012年废气超标近半年  按照天脊集团公开的阐述,他们的企业环评是合格的,日常排放物是达标的。只是这个24小时机器轰鸣的厂区,想进入也是十分困难的。  天脊集团保安:你们去接待中心,让他们带你们进,接待记者的。其他一般人员车辆都不可以进。  记者:企业还在正常生产是么?  天脊集团保安:是。  但有更多来山西省环保厅发布的公开资料显示,天脊煤化工集团股份有限公司在2012年第一、二季度全省环保不达标生产重点企业名单中都榜上有名,也曾因废气污染物超标排放,被环保部门责令停止违法行为并处罚款。去年第二季度,天脊集团更被发现废气排放超标2.4倍。  在潞城市的东半部,几乎到处都有"天脊"的影子,天脊医院、天脊宾馆、天脊游泳馆,天脊的巨大生产设备日夜运转,似乎也证明着它对这个地方的巨大影响。  媒体曝苯胺泄漏12月26日已发生 山西未主动上报  因为这次苯胺泄漏事故,天脊集团党委书记王俊彦在新闻通气会上公开致歉,但记者再联系他试图采访,又有了另外的说法。  记者:您好,请问是王书记么?  王俊彦:不是吧。  记者:您是王俊彦书记么?  王俊彦:什么事儿?  记者:我是中央人民广播电台的记者。是想请问您一下咱们厂子苯胺泄漏的事情,这两天有什么处理的进展么?  王俊彦:哦,你问这个,这个我们向上面汇报了,上面领导们也下来调查了解了,再一个,情况也越来越好了。  王书记迅速挂断电话,只留下"越来越好"的说法。昨天下午,山西省召开全省安全生产紧急电视电话会议,省政府发布消息说潞安天脊煤化工董事长王光彪、长治市市长张保就本次环境污染事件作刻检查,表示痛定思痛,全面整改,诚恳接受上级部门的处分和处理。  在潞城市中华东大街上,"天脊集团欢迎您"的巨型标语横跨马路上方,到这座小城的记者这几天突然多起来。  山西省代省长李小鹏昨天表示要严格事故问责,无论涉及到哪一层、涉及到什么人,都要依法依纪依规严肃追究责任。 李小鹏代表山西省政府责令潞安天脊煤化工集团全面停产整顿。今天,事故发生已过十天,有媒体说泄漏事故12月26日已经发生,山西并未主动上报,有媒体问,明明泄漏的是苯胺,下游检出的挥发酚从何而来?天脊集团的污染隐患是否能借此根除?公众期待答案。  邯郸主水源地岳城水库检测报告完成 苯胺污染却出现苯胺、挥发酚同时超标  1月5日接到山西方面苯胺泄露事故的通报后,昨天(8日),邯郸市终于完成了主要水源地岳城水库的全面检测报告。经环保部专家论证,岳城水库水质符合饮用水水源标准。  水源地没有被污染,总算让人松了口气。刚才我们的记者也指出,在昨天的检测中,距离岳城水库三四公里外的三个点位,检测出苯胺、挥发酚超标。山西天脊集团发生的是苯胺泄露事故,那么挥发酚是哪来的?目前上游的污染物究竟到了哪里?  邯郸市环保局总工程师侯日升昨天明确:根据检测结果,岳城水库没有检测出目标污染物。  侯日升:最后监测结果是库区内水样中,苯胺、挥发酚未检出,但是上游的三个点位,挥发酚和苯胺都超标,苯胺超标5倍左右,挥发酚超标6到13倍。  与环保局的说法稍有出入,国家环境应急专家组专家张晓健透露,在岳城水库的上游以及水库内的一些点位,检测出了目标污染物之一挥发酚。  张晓健:整个库里边,水库的主体,苯胺所有的点都没有检出,挥发酚有检出,但是属于国家的二类水源,地表水三类都可以作为饮用水水源。  据介绍,1月4日邯郸方面在漳河上游发现死鱼,环保部门立即取样检测,1月5日凌晨,检测结果表明挥发酚严重超标,而山西方面1月5日向邯郸通报泄漏的污染物却是苯胺。  张晓健:当时死鱼肯定是有问题了,但是什么污染物不清楚,所以测了很多,最后发现挥发酚指标超标一百多倍,在跨省界面,所以就跟山西交涉,山西最后就答复了是苯胺。  专家:苯胺污染源确定为山西天脊集团 挥发酚来源尚未找到  一起苯胺泄漏事故,为何检测出挥发酚超标?张晓健分析,苯胺超标的污染源可以确定是山西天脊集团,但特征污染物中挥发酚的来源尚未找到。  张晓健:挥发酚是个指标,测定实际很多中酚都能够表征为挥发酚。这次事故最后的原因还没确定,还有一个挥发酚的排放,是山西天脊,还是有其他排放源?因为这个地方上游有很多焦化企业,都有可能,现在正对所有企业进行排查。  12月31日从上游泄漏的污染物目前到了哪里?经环保部专家论证,污染物主体没有进入岳城水库。  张晓健:第一个,肯定是流到了河北河南的境内了,但是第二点来说,这些污染物大部分,污染物主体没有进入岳城水库。  张晓健认为:山西苯胺泄漏事故符合重大污染事故的标准,可启动赔偿机制,但事故定性还需要最终的调查结论。本次泄漏事件对地下水的影响尚待评估。  张晓健:重大污染事件是这样,一个是跨省边界,这个肯定有了,第二影响到地级市的正常供水,这个也有。地下水和地表水都是水,还互相充,地下水是地表水补充进去的,所以肯定会受到影响,但是这个影响会有多大,后期现在也在开始进行这种评估。  邯郸市自来水公司总工程师胡新春承诺,将采取最严格的水质管理制度,保证居民喝上放心水。  胡新春:举个例子,比如对挥发酚,由原每月一次,改为每四小时一次,另外对铁西水厂的常规检验,由每天一次增至每小时一次。
  • 三部委联合印发《优先控制化学品名录(第二批)(征求意见稿)》
    p  为落实《中共中央 国务院 关于全面加强生态环境保护 坚决打好污染防治攻坚战的意见》关于“评估有毒有害化学品在生态环境中的风险状况,严格限制高风险化学品生产、使用、进出口,并逐步淘汰、替代”的要求,在《优先控制化学品名录(第一批)》的基础上,生态环境部会同工业和信息化部、卫生健康委组织编制了《优先控制化学品名录(第二批)(征求意见稿)》。/pp  《优先控制化学品名录(第二批)(征求意见稿)》 共计2,4,6-三叔丁基苯酚、异丙基化磷酸三苯酯、五氯苯硫酚、苯并[a]芘等7种类多环芳烃类物质、五氯苯等3种氯苯类物质、氰化物、苯、甲苯、磷酸三(2-氯乙基)酯、邻苯二甲酸二(α-乙基己基)酯等4种邻苯类物质、1,2-二氯丙烷、1,1-二氯乙烯、2,4-二硝基甲苯、邻甲苯胺、铊及其化合物、多氯二苯并对二噁英和多氯二苯并呋喃、全氟辛酸及其盐类和相关化合物、六氯丁二烯、五氯苯酚及其盐类和酯类等19种类化学物质, 涉及石化、塑料、橡胶、制药、纺织、染料、皮革、电镀、有色金属冶炼、 采矿等行业。/pp  详情如下:/pp  附件:a href="https://www.instrument.com.cn/download/shtml/949508.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "1.优先控制化学品名录(第二批)(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949509.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "2.各化学物质环境风险分析说明/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949510.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "3.《优先控制化学品名录(第二批)(征求意见稿)》编制说明/span/a/p
  • EFSA审查对甲苯氟磺胺的最大残留限量
    2013年7月4日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就审查对甲苯氟磺胺(Tolylfluanid)的最大残留限量发布了意见。  目前欧盟地区禁用对甲抑菌灵,然而食品法典委员会制定了其最大残留限量,因此欧盟食品安全局专家组对其开展了消费风险评估。  经过相应评估,欧盟专家组认为食品法典委员会提供的数据不太充分,可能会对消费者构成急性食用风险。因此还需要做进一步的风险评估。  更多详情参见:  http://www.efsa.europa.eu/en/efsajournal/pub/3300.htm
  • 气相色谱质谱联用法检测染料中含氯苯酚
    前言含氯苯酚化合物是一类典型的内分泌干扰物,对生物体的内分泌系统存在影响且具有遗传毒性。纺织品中的含氯苯酚化合物往往会通过汗液和体温的作用被溶出和释放,与皮肤接触就会通过皮肤进入人体并不断蓄积,这会导致肝脏、肾脏、神经系统等不同程度的损伤,甚至会诱发肿瘤和癌症。因含氯苯酚化合物的危险性,各国及行业组织均对其残留做了严格的限量。 染料与有机染料制造商生态与毒理协会(ETAD)修订的《染料中的有机杂质和限制值》,规定含氯苯酚类(四氯苯酚和五氯苯酚总量)限量值为20mg/kg。 GB/T 24166-2021《染料产品中含氯苯酚的测定》标准将在今年7月1日正式实施,新标准针对染料产品分析制定了专属方法,并且增加了可检测含氯苯酚的目标物的种类。搭配岛津的GCMS产品给您带来全新的染料检测体验。 图1 样品制备流程 表1 2种含氟苯酚乙酸酯选择离子图2 含氯苯酚衍生化后的色谱图 标准曲线浓度0.05、0.1、0.2、0.5、1.0mg/L的TeCP和PCP混合标准溶液,经衍生化处理,得到标准曲线: 图3 TeCP和PCP乙酸酯标准曲线图 0.1mg/L 的TeCP乙酸酯和PCP乙酸酯混合标液的重复性测试: 表2 含氯苯酚峰面积重复性结果(n=6)采用岛津气相色谱- 质谱联用仪,对染料中的四氯苯酚、五氯苯酚进行分析,结果表明线性关系及重复性良好,灵敏度高,定量准确,完全满足国际生态法规中规定的检测要求。 GCMS-QP2020 NX特点1. 超强抗污染性能,降低维护频率※可旋转的预四极,减少主四极污染。※超高效大容量真空系统,有效降低离子源污染 2. 操作简单,易于维护※Easy sTop功能,可以在维护进样口时无需关闭真空泵,大大减少仪器待机时间。 ※创新ClickTek技术,实现徒手维护,全面提升用户分析体验。 3. 集成高灵敏度和低实验成本※先进技术提高离子化效率,降低基质干扰和背景噪音,实现高信噪比。※超快速扫描,有效降低高质量端歧视。※“Ecology Mode”生态模式,节省仪器的耗电量及载气消耗量。 本文内容非商业广告,仅供专业人士参考。
  • 新品上市-博纳艾杰尔苯并芘前处理柱
    苯并芘(BaP),又称3,4-苯并芘,是一种常见的高活性间接致癌物,是目前世界公认的三大强致癌物质之一,照中国国家GB2716-2005《食用植物油卫生标准》要求,在食用植物油类产品中苯并芘的安全限量为不超过10微克/千克。 对于苯并芘的检测,目前各检测单位通用的是国标方法,即:《GBT 22509-2008 动植物油脂 苯并(a)芘的测定 反相高效液相色谱法》,其中用到调整活度后的中性氧化铝柱——Brockman活度为Ⅳ级的的氧化铝柱,如果自己进行装填,需要经过大量实验进行调整、装填、测试、再调整。博纳艾杰尔经过测试,研发出直接可用的商品化小柱新品——Cleanert BaP苯并芘专用固相萃取柱!无需改变实验方法,可直接进行实验!帮助您节省了层析柱的准备时间, 问题迎刃而解! 同时我们提供多环芳烃专用色谱柱,配合使用,效果更佳,详情请咨询400-606-8099或email:service@agela.com.cn 附实验方法:本方法参考GBT 22509-2008国标方法:动植物油脂 苯并(a)芘的测定反相高效液相色谱法。 一、 实验原理用正己烷溶解油脂样品,上样到CleanertBaP固相萃取柱,去除脂肪酸等,再用正己烷洗脱苯并(a)芘,采用反相高效液相色谱法分离,荧光检测器检测。二、试剂与材料2.1CleanertBaP固相萃取柱,22g/60mg(P/N: BaP2260):100-200目,brockmann活度Ⅳ级,在室温下避光保存,天津博纳艾杰尔科技有限公司; Venusil PAH,5.0µ m,4.6mm×250mm(P/N:VP952505-L)2.2色谱纯正己烷;2.3 苯并(a)芘标准储备液:称取10mg标准品于10mL容量瓶中,用正己烷定容,配制的标准储备液浓度为1000mg/L;3.4 标准工作液:用正己烷稀释标准储备液,稀释的浓度为10µ g/L。三、仪器和设备3.1 旋转蒸发仪,大于150mL的鸡心瓶或圆底旋蒸瓶;3.2 氮吹仪;3.3 涡旋混合器;3.4 2ml进样瓶;3.5 250µ L进样瓶玻璃内插管;3.6 高效液相色谱仪,配自动进样器,荧光检测器。四、样品前处理4.1称取约0.300g的油样,用5mL正己烷溶解涡旋混合器上充分混匀。4.2活化:用约30mL正己烷将氧化铝柱预先活化,活化过程直到氧化铝柱末端正己烷自然滴下约5mL为止。在正己烷滴出的过程中,柱体上部要不断添加正己烷,千万注意不能让正己烷低于柱子的上筛板,避免空气进入柱子!将滴出的约5mL正己烷去除,不予收集。4.3上样:将溶解好的油样添加到预活化好的氧化铝柱子中,注意操作过程中上筛板不能干涸。4.4洗脱:添加80mL正己烷,用150mL的旋蒸瓶接收,直到80mL的正己烷完全自然滴出。操作过程中不需要加压或抽真空加快流速,让正己烷在重力作用下自然洗脱。4.5将洗脱液在45℃水浴中旋转蒸发至干,如果仍然有油滴无法蒸干,说明净化不完全,需要向油滴中添加80mL的正己烷制得新样,取一根新柱重复上述净化过程;4.6用总计10mL的正己烷分三次淋洗旋蒸瓶,合并淋洗液到氮吹管中,氮气吹干。添加300µ L的正己烷到氮吹管中,在涡旋混合器上充分混匀。注意氮吹过程避免气流过大,造成液体溅出;涡旋过程避免正己烷蒸发。4.7将上述300µ L的正己烷转移至2mL进样瓶内插管中,进样分析。五、色谱条件色谱柱:Venusil PAH,5.0µ m,4.6mm×250mm,;流动相:乙腈:水 =95:5;流速:1.0mL/min;进样量:20µ L;荧光检测器:发射波长406nm,激发波长384nm。六、实验结果和讨论:6.1结果:本方法的采用Cleanert BaP固相萃取柱用于某植物油苯并(a)芘的净化处理于5ug/kg添加水平可获得99.49%回收率。
  • 欧盟修订对兽药三氯苯哒唑Triclabendazole的残留限量要求
    2012年3月15日,欧盟发布COMMISSION IMPLEMENTING REGULATION (EU) No 222/2012,修订对抗寄生虫剂/抗体内寄生物药剂三氯苯哒唑Triclabendazole的残留限量要求,新增对该兽药在乳【所有反刍动物】Milk[All ruminants]中的临时残留限量要求10μg/kg,该临时残留限量将于2014年1月1日到期。该法规自公布3天后生效。   欧盟兽药残留限量要求可登录下述网址查询:  http://www.tbt-sps.gov.cn/foodsafe/xlbz/Pages/veterinary.aspx
  • 苯系物分析用二硫化碳促销
    CNW二硫化碳的纯度大于等于99.9%,苯低含量低,能够满足水、空气、土壤以及室内空气质量监测中苯系物的萃取和含量测定。(&rho =1.26g/ml) 产品货号 产品名称 品牌 规格 报价(元) 促销价(元) 4-114001-0500# (低苯级)二硫化碳 CNW 500ml 1120.00 896.00 截止时间:2010年4月30日 售完为止!
  • 欧盟审查苯丁锡的最大残留限量
    p  据欧盟食品安全局(EFSA)消息,近日欧盟食品安全局按照(EC) No 396/2005第12章的要求,审查了苯丁锡(fenbutatin oxide)的最大残留限量。/pp  苯丁锡为抑制神经组织的有机锡杀螨剂,又名托尔克、 克螨锡,对害螨以触杀为主,广泛用于果树、柑橘、苹果等,可防治多种活动期的植食性螨类。br//pp  据了解,由于缺少二羟基苯丁锡的毒理学数据,欧盟地区已不再许可苯丁锡的最大残留限量。然而,国际食品法典委员会制定的限量仍然存在。br//pp  由于缺少完整的苯丁锡毒理学特性,欧盟食品安全局不能开展国际食品法典委员会限量的评估,也不建议将该限量整合进欧盟法律。然而,欧盟食品安全局可以根据现有数据,提议针对非法使用的标示残留物和定量限。br//ppbr/br//p
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。  加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:  按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。  禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。  加强联邦环境质量手册对多溴联苯醚的检测。  对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。  检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。  此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。  BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 欧盟拟修订联苯肼酯在蔬果中最大残留限量
    欧盟拟修订联苯肼酯在多种蔬果中的最大残留限量  据欧盟食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧盟食品安全局提议修订联苯肼酯(bifenazate)在柑橘、仁果、核果、茄子等多种商品中的最大残留限量。  据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,荷兰收到要求修定多种蔬菜中联苯肼酯最大残留限量的申请。为协调联苯肼酯的最大残留限量(MRL),荷兰建议修订联苯肼酯的最大残留限量。  荷兰依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧盟食品安全局。欧盟食品安全局对评估报告进行评审后,做出如下决定:商品种类现行MRL(mg/kg)建议MRL(mg/kg)柑橘类水果0.010.9仁果0.010.5/0.7核果0.012食用葡萄、酿酒葡萄0.010.7草莓23胡椒22/3葫芦-不可食用的皮0.010.6啤酒花(干制)0.0220
  • 【行业应用】赛默飞发布大体积进样技术气质联用测定五氯苯酚解决方案
    赛默飞世尔科技(以下简称:赛默飞)近日发布测定五氯苯酚的解决方案,通过使用Thermo ScientificTM TRACETM 1310 气相色谱和Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统,实现检测效率和精度的显著提升。 五氯苯酚(PCP)是一种使用广泛,毒性很大,污染严重的化合物,作为一种防腐、防霉、防蛀剂使用于染料、纺织品、皮革等行业中。它会通过皮肤在人体内产生生物积蓄而危害人体健康,具有致畸致癌性。此外,五氯苯酚十分稳定,自然降解过程长,对环境有害。 目前,国内颁布了GB/T 24166-2009 对染料中的五氯苯酚的检测方法。然而,有些染料,尤其应用于婴幼儿用品的染料中五氯苯酚含量低,且方法前处理又有稀释过程,这样容易导致假阴性或者检测结果不准确。对此,可采用大体积进样技术,通过提高样品的进样量来提高五氯苯酚的灵敏度。赛默飞发布一种新的大体积进样技术——同时溶剂浓缩进样技术(Concurrent Solvent Recondensation)。通过在衬管和分析柱之间连接一段预柱,其中衬管可以保留高沸点干扰基质,使其不进入色谱柱系统,且预柱可以承载大体积进样的所有溶剂及目标物,然后缓慢蒸发溶剂通过色谱柱到达检测器并放空,比溶剂沸点略高的目标物在溶剂之后到达检测器被检测,从而保证了所有沸程的目标组分均由色谱柱分离达到检测器,因此可以保证较高的检测灵敏度。 在进样体积为30μ L 时,体现了较高的灵敏度及较低的检出限,因此可使样品前处理步骤简化,与传统方法相比,大大减少了样品量,减少了溶剂使用量,减少了溶剂浓缩蒸发等过程,大大减少了前处理带入的误差;更重要的是仪器检出限为0.01μ g/L,极大满足了Oko-Tex Standard 100 对纺织品中的五氯苯酚残留限量规定不得超过0.5mg/kg, 尤其对于婴幼儿用品不得超过0.05mg/kg的要求。更多产品信息,请查看:TRACETM 1310 气相色谱www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 解决方案下载:www.thermoscientific.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/environment/documents/Measurements%20of%20pentachlorophenol%20using%20large%20volume%20injection%20technique%20GC-MS.pdf ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com 请扫码关注:赛默飞世尔科技中国官方微信
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 第二十一届全国光散射学术会议日程公布
    冬藏春发,傲雪凌霜,十二月的长春是银装素裹的冰雪世界。由于疫情原因,第二十一届全国光散射学术会议将以线上会议方式举办。会议受中国物理学会光散射专业委员会委托,由吉林大学超硬材料国家重点实验室承办,北京理工大学协办,于2021年12月24至28日召开。本届大会邀请了国内外知名专家就光散射和相关光谱原理和技术等领域的前沿热点问题进行交流。会议邀请了国内外著名专家、学者参会并作报告,共收到400余篇摘要与论文投稿,注册参会600余人,分别来自百余所高校、科研院所和企业。会议主题涵盖了SERS/TERS、材料物理、生物医药等方面,将开展7场大会报告、58场分会邀请报告、67场分会口头报告、12场仪器展商报告、线上参评优秀青年论文8份、优秀墙报投稿74份。报告全程使用“腾讯会议”,我们诚挚的欢迎各位同仁参会与交流,共同办好这场两年一度的光散射学术盛会。会前特邀讲座时间12月24日主持人14:00-15:00会前特邀讲座1:刘玉龙 研究员 (中科院物理所)布里渊散射原理和技术发展在研究中的应用与它在中国发展的历史张韫宏15:00-16:00会前特邀讲座2:程光煦 教授 (南京大学)从三本书封面说起(动量守恒-能量守恒-与物质的作用)16:00-17:00会前特邀讲座3:王爽 副教授 (西北大学)多元拉曼光谱与图像分析方法及其应用实例第二十一届全国光散射学术会议大会报告时间12月25日主持人8:30-9:00开幕式刘冰冰9:00-9:45大会报告1:张锦 院士(北京大学)二维材料的偏振拉曼光谱研究谭平恒9:45-10:30大会报告2:Prof. Zexiang Shen (Nanyang Technological University, Singapore)Enhancing Properties of Two-Dimensional Perovskites with High Pressure 10:30-10:40合影;茶歇10:40-11:25大会报告3:郭林 教授 (北京航空航天大学)非晶半导体微、纳米材料SERS活性的研究与进展赵冰11:25-12:10大会报告4:徐健 研究员 (中科院青岛生物能源与过程研究所)高通量拉曼流式细胞分选仪(FlowRACS)的研制与应用时间12月28日主持人8:30-9:15大会报告5:Prof. Jorio Ado (Universidade Federal de Minas Gerais, Brazil)Nano-Raman Spectroscopy in Graphene Systems任斌9:15-10:00大会报告6:李剑锋 教授 (厦门大学)增强拉曼光谱原位研究表界面反应过程10:00-10:10茶歇10:10-10:55大会报告7:王兵 教授 (中国科技大学)单化学键精度的分子多重特异性综合表征陈建10:55-12:00闭幕式第二十一届全国光散射学术会议分会场报告12月25日 邀请报告 口头报告第一分会场:SERS/TERS 时间报告人单位题目主持人吴德印13:30-13:55方吉祥西安交通大学邀请报告:浓缩富集与分子空间定位型SERS关键技术及应用13:55-14:20杨良保中国科学院合肥物质科学研究院邀请报告:A General Surface Enhanced Raman Spectroscopy Method for Actively Capturing Target Molecules in Small Gaps14:20-14:35胡艳芳南开大学一种双功能表面增强拉曼基底的普适性制备方法14:35-14:50万福重庆大学电力变压器油中溶解糠醛表面增强拉曼光谱原位检测研究14:50-15:05董军西安邮电大学自组装制备金属纳米结构衬底及其表面增强拉曼特性研究15:05-15:15茶歇主持人尤静林15:15-15:40赵志刚苏州纳米技术与纳米仿生研究所邀请报告:以纳米形貌为驱动力增强半导体材料的SERS活性及应用探索15:40-16:05邱腾东南大学邀请报告:二维过渡金属硫属化合物缺陷与界面增强拉曼散射16:05-16:20李安然北京航空航天大学Remarkable Surface-Enhanced Raman Scattering Activity of Amorphous Zn(OH)2 Nanocages16:20-16:35王丰上海师范大学QSS@AuNPs动态SERS基底的制备与应用第二分会场:材料物理及仪器时间报告人单位题目主持人钟海政13:30-13:55刘玉龙中国科学院物理研究所邀请报告:时间门控拉曼光谱原理及在纳米与发光材料中的应用13:55-14:20徐伟高南京大学邀请报告:二维异质界面的耦合结构与功能14:20-14:45李兆芬雷尼绍上海(贸易)有限公司仪器公司:雷尼绍拉曼光谱产品及技术最新进展14:45-15:00黄保坤江苏海洋大学拉曼积分球光谱仪研究进展15:00-15:10茶歇主持人王玉芳15:10-15:35林妙玲中国科学院半导体研究所邀请报告:转角二维材料中声子重整化的拉曼光谱研究15:35-16:00彭波电子科技大学邀请报告:铁磁二维材料非互易磁光拉曼效应16:00-16:25石磊中山大学邀请报告:一维碳链的拉曼光谱研究16:25-16:50马书荣赛默飞世尔科技(中国)有限公司仪器公司:赛默飞拉曼光谱仪新技术和应用介绍16:50-17:05徐宗伟天津大学宽禁带半导体原子尺度缺陷加工与光谱表征第三分会场:分析医药及其他时间报告人单位题目主持人龙亿涛13:30-13:55沈爱国武汉大学邀请报告:叁键拉曼散射的光学标记技术13:55-14:20高婷娟华中师范大学邀请报告:偶氮增强拉曼散射与超灵敏拉曼光谱成像14:20-14:35王楠西安电子科技大学基于贝塞尔光拉曼光谱仪的散射介质中药物检测及定量分析14:35-14:50赵婷婷丰益(上海)生物技术研发中心有限公司Structure-gelatinization Characteristics Relationships for Starches with Different Amylose Content by using Raman Spectroscopy14:50-15:05李洋哈尔滨医科大学拉曼光谱在生物样品分析领域的应用15:05-15:15茶歇主持人叶坚15:15-15:40傅钰中国科学院微生物研究所邀请报告:Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification and Characterization15:40-16:05崔丽中国科学院城市环境研究所邀请报告:单细胞拉曼研究环境功能微生物和生命过程16:05-16:20李天宇长春长光辰英生物科学仪器有限公司仪器公司:拉曼检测技术在生物医学领域中的全流程解决方案16:20-16:35孔宪明辽宁石油化工大学分子衍生化TLC-SERS应用于食品中有害物的快检研究16:35-16:50余东武汉大学印刷驱动的拉曼模拟指纹加密研究12月26日 邀请报告 口头报告第一分会场:SERS/TERS时间报告人单位题目主持人王培杰8:30-8:55谢微南开大学邀请报告:基于等离激元“核-卫星”纳米结构的表界面化学分析8:55-9:20张正龙陕西师范大学邀请报告:等离激元调控发光和催化研究9:20-9:35刘皓吉林大学基于SERS传感的增强纳米酶催化体系用于有机汞的全去除9:35-9:50欧阳磊中国地质大学(武汉)基于等离子体多普勒光栅的表面增强光谱增强机理研究9:50-10:05钟航中国工程物理研究院材料研究所表面等离激元催化反应的原位表面增强拉曼光谱研究:对氨基苯硫酚偶联反应与电催化CO2还原反应10:05-10:15茶歇主持人张洁10:15-10:40吴德印厦门大学邀请报告:电位调控SPR光电化学反应的表面增强拉曼光谱10:40-11:05江林苏州大学邀请报告:表面等离激元纳米结构设计及应用11:05-11:30王晓天北京航空航天大学邀请报告:非晶半导体纳米材料的表面增强拉曼散射效应11:30-11:45康博雯陕西师范大学等离激元手性纳米结构的光热效应研究12:00-13:30午休主持人方吉祥13:30-13:55张洁重庆大学邀请报告:结构化SERS基底制备和性能13:55-14:20王月东北大学邀请报告:基于非手性标记SERS方法的手性小分子识别14:20-14:35冯龙秀上海师范大学自动书写式SERS基底应用于水果中福美双残留的检测14:35-14:50武和平西安交通大学石墨烯混合型SERS系统用于不同尺度测试物的无标记检测14:50-15:05高宇坤北京航空航天大学表面超浸润性在痕量分析中的应用15:05-15:15茶歇主持人张正龙15:15-15:40杨士宽浙江大学邀请报告:电化学3D打印SERS微鱼雷15:40-15:55毕鑫鑫首都师范大学等离子体-激子(Plexciton)强耦合的吸收和散射光谱研究15:55-16:10胡策军南开大学表面增强拉曼光谱研究NiFe催化析氧反应的活性物种16:10-16:25姚蕾东南大学等离激元柔性薄膜的制备及应用16:25-18:00墙报交流第二分会场:材料物理仪器时间报告人单位题目主持人吴兴龙8:30-8:55赵继民中国科学院物理研究所邀请报告:Phonons Conveying Secrets of Correlated Quantum Materials--an Ultrafast Optical Spectroscopy Approach8:55-9:20赵伟杰东南大学邀请报告:钙钛矿半导体中的超快激子动力学研究9:20-9:35胡增权光谱时代(北京)科技有限公司 仪器公司:利用Lightmachinery的 HF-8999-LLL-AUTO进行快速布里渊频移测量9:35-9:50王英惠吉林大学基于飞秒时间分辨CARS技术研究共轭材料的振动弛豫行为9:50-10:05江润泽北京高压科学研究中心亚纳秒时间分辨显微拉曼系统在地球与环境科学领域中的应用10:05-10:15茶歇主持人梁二军10:15-10:40宋寅北京理工大学邀请报告:Multispectral Multidimensional Spectroscopy Probes Charge Separation in Organic Photovoltaics and Photosynthetic Reaction Centers10:40-11:05张俊中国科学院半导体研究所邀请报告:几种半导体中声学声子的角分辨布里渊光散射研究11:05-11:20王睿瑞士万通中国有限公司仪器公司:瑞士万通透射拉曼与荧光抑制拉曼技术介绍11:20-11:35罗思恒厦门大学发展一种提升拉曼光谱时间分辨率的去噪算法11:35-11:50欧阳顺利内蒙古科技大学矿渣微晶玻璃的析晶机理及其对重金属固化和性能影响的拉曼光谱研究11:50-12:05芦思珉南京大学光电限域单颗粒动态测量12:05-13:30午休主持人姚明光13:30-13:55肖冠军吉林大学邀请报告:高压极端条件下卤素钙钛矿材料的结构与物性调控13:55-14:20夏娟电子科技大学邀请报告:高压调控二维TMDC材料层间耦合作用的光谱学研究14:20-14:45苗芃堀场(中国)贸易有限公司仪器公司:HORIBA最新光谱技术助力前沿科研14:45-15:00朱伟武汉大学优秀青年论文:单粒子叁键拉曼编码用于生物多色成像15:00-15:15胡香敏清华大学优秀青年论文:基于差分反射高光谱成像的薄层TMDC材料检测技术研究15:15-15:25茶歇主持人仇巍15:25-15:40唐晓辉上海大学优秀青年论文:(CaO-SiO2)-xAl2O三元系玻璃及熔体的拉曼定量研究15:40-15:55刘圣君厦门城市职业学院优秀青年论文:关联X射线散射及其数据分析算法的研究15:55-16:10张福上海大学优秀青年论文:NaF-AlF3二元体系熔盐微结构的理论模拟与原位拉曼光谱定量解析16:10-16:25陈哲北京理工大学优秀青年论文:光镊-受激拉曼光谱技术测量SO2与悬浮NaCl单液滴的氧化反应动力学速率常数16:25-16:40张译元首都师范大学优秀青年论文:对氨基苯硫酚分子在金属薄膜上的光催化研究16:40-16:55邱俊中国科学院长春光学精密机械与物理研究所优秀青年论文:中阶梯光栅-平面镜型空间外差拉曼光谱仪对无机化合物的探测16:55-18:00墙报交流第三分会场:分析医药及其他时间报告人单位题目主持人杨海峰8:30-8:55杨勇中国科学院上海硅酸盐研究所邀请报告:SERS技术高灵敏检测SARS-CoV-2病毒研究进展8:55-9:20李丹上海应用技术大学邀请报告:柔性拉曼传感器的气体分子精准测量研究9:20-9:35温思思吉林大学基于缺陷态纳米酶基底SERS-催化动力学模型的建立其应用研究9:35-9:50姜陆月西安交通大学无标记石墨烯-SERS平台检测不同状态的K562白血病细胞9:50-10:05黄景林中国工程物理研究院激光聚变研究中心基于深度学习的新冠病毒SERS检测及基底设计10:05-10:15茶歇主持人尹建华10:15-10:40杨海峰上海师范大学邀请报告:构建反应性拉曼增强检测体系及其POCT应用探索10:40-11:05郑广超郑州大学邀请报告:分子等离激元耦合的光学应用11:05-11:20李洁西北大学利用显微拉曼光谱成像技术研究骨肉瘤细胞与药物的相互作用11:20-11:35国新华吉林大学核酸二级结构的表面增强拉曼光谱研究11:35-11:50林杰中国科学院宁波材料技术与工程研究所循环肿瘤细胞快速检测新策略-表面增强拉曼光谱12:00-13:30午休主持人胡继明13:30-13:55宋薇吉林大学邀请报告:纳米酶-SERS体系在传感与生物检测中的应用13:55-14:20高荣科中国石油大学(华东)邀请报告:The Early Diagnostic of Cancer Disease using SERS-Microfluidic based Sensor14:20-14:35刘亚琴武汉大学基于Ag+增强含氰基聚合物拉曼散射的细菌定量检测与杀菌一体化研究14:35-14:50鲍莹吉林大学表面增强拉曼光谱检测生物分子14:50-15:00茶歇主持人韩鹤友15:00-15:25李芳菲吉林大学邀请报告:高压布里渊散射在地质科学中的应用15:25-15:40苏虹羊威泰克(北京)科学技术有限公司仪器公司:拉曼成像技术新进展及其在前沿课题中的应用15:40-15:55刘海辉北京鉴知技术有限公司仪器公司:1064 nm手持拉曼在现场快检中的应用15:55-16:10凌霄上海交通大学Probing Heterogeneous Water Transport across Nanoscale Water Pores using CARS16:10-18:00墙报交流12月27日 邀请报告 口头报告第一分会场:SERS/TERS 时间报告人单位题目主持人谢微8:30-8:55王翔厦门大学邀请报告:基于针尖增强拉曼光谱的纳米分辨表界面研究8:55-9:20刘少创南京大学邀请报告:基于纳米孔道的单分子拉曼光谱光电同步采集系统9:20-9:35郑婷婷华东师范大学基于半导体纳米材料的单细胞水平SERS分析9:35-9:50吴千 苏州大学纳米粒子动态过程的表面增强拉曼光谱研究9:50-10:05孙欢欢浙江师范大学高压下二维半导体基SERS增强机制研究10:05-10:15茶歇主持人杨良保 10:15-10:40席广成中国检验检疫科学研究院工业与消费品安全研究所邀请报告:准金属表面增强拉曼光谱基底的制备及性质10:40-11:05纪伟大连理工大学邀请报告:半导体SERS增强机制及基底构筑方法研究11:05-11:20卢知轩厦门大学单颗粒散射光谱探究二氧化钛和金的光诱导电荷转移11:20-11:35郭立婷燕山大学Improve Optical Properties by Modifying Metal Materials on SERS Substrate11:35-11:50杨龙坤首都师范大学An in-situ Microfluidic SERS Chip for Ultrasensitive Hg2+ Sensing based on I- Functionalized Silver Aggregates12:00-13:30午休主持人宋薇13:30-13:55范美坤西南交通大学邀请报告:基于多维度表面增强拉曼光谱指纹的细菌识别技术13:55-14:20胡家文湖南大学化学化工学院邀请报告:SERS热点的制备、不稳定性及其机制14:20-14:35王静福建师范大学SERS体液活检技术在癌症精准医疗中的应用14:35-14:50张萌首都师范大学具有可重复性的SERS标准曲线的研究14:50-15:05李月娥兰州大学共振拉曼探针设计及细胞标记成像15:05-15:15茶歇主持人王俊俏15:15-15:40李志鹏首都师范大学邀请报告:基于三维银纳米颗粒团聚体的气/液体超灵敏检测15:40-16:05刘博文兰州大学邀请报告:多巴胺(PDA)功能化的SERS基底对弱吸附分子的定量检测16:05-16:20郝祺东南大学SERS瓶颈问题的等离激元阵列解决方案16:20-16:35印璐苏州大学应用磁场调控下多维“热点”的SERS研究第二分会场:材料物理仪器时间报告人单位题目主持人毛艳丽8:30-8:55闫胤洲北京工业大学邀请报告:微球腔垂直荧光增益结构及其介观光场调控机制8:55-9:20郑海荣陕西师范大学邀请报告:等离激元效应对微纳光学颗粒的结构调控及光谱学探测9:20-9:45李朝霞天美仪拓实验室设备(上海)有限公司仪器公司:爱丁堡仪器全新显微共聚焦拉曼光谱技术与应用9:45-10:00陈环陕西师范大学等离激元近场泵浦稀土掺杂纳米颗粒的激发态吸收和能量转移上转换及其超衍射发光增强10:00-10:15芦一瑞陕西师范大学TERS中等离激元热点优化及C18分子成像10:15-10:25茶歇主持人郑海荣10:25-10:50冯兆池中国科学院大连化学物理研究所邀请报告:紫外拉曼光谱在分子筛转晶合成过程研究中新进展10:50-11:15张昕中国科学院半导体研究所邀请报告:Dynamically-enhanced Strain in Atomically Thin Resonators11:15-11:30常颖天津大学角度分辨拉曼光谱力学测量装置及其应用11:30-11:45马楠长沙学院钾铝氟熔盐体系微结构的高温原位拉曼光谱研究11:45-12:00刘彩云吉林大学射频磁控溅射制备氮化硼薄膜的光谱研究12:00-13:30午休主持人童廉明13:30-13:55王凯吉林大学邀请报告:反常压力响应材料的探索与机理研究13:55-14:20陈亚彬北京理工大学邀请报告:极端环境下低维材料的结构调控与物性测试14:20-14:45丁珏滨松光子学商贸(中国)有限公司仪器公司:滨松发光材料&器件检测的新花样14:45-15:00刘琳琳华南理工大学有机光电器件的微区光电流和原位拉曼成像研究15:00-15:15张国峰山西大学单量子点光谱与激子动力学15:15-15:25茶歇主持人李芳菲15:25-15:50雷力四川大学邀请报告:高压拉曼光谱技术及其应用15:50-16:15陈雪利西安电子科技大学邀请报告:贝塞尔光束在拉曼光谱成像技术中的应用16:15-16:30徐媛布鲁克(北京)科技有限公司仪器公司:布鲁克拉曼光谱技术研究进展16:30-16:45徐波北京大学纳米材料空间取向的螺旋度分辨拉曼光谱表征16:45-17:00牟从普燕山大学Broadband Light Absorption and Photoresponse Enhancement in Monolayer WSe2 Crystal Coupled to Sb2O3 Microresonators第三分会场:分析医药及其他时间报告人单位题目主持人徐抒平8:30-8:55尤静林上海大学邀请报告:原位高温熔体结构的计算模拟和实验研究8:55-9:20吴国祯清华大学邀请报告:Implication of ROA Signatures by a Classical Handedness Formula along with the Raman Intensity Interpretation: the Case Study of Pinane9:20-9:35静超中国科学院上海应用物理研究所原位拉曼光谱表征LDH电催化氧析出反应过程9:35-9:50李备中国科学院长春光学精密机械与物理研究所单细胞拉曼技术的发展与应用9:50-10:05何畅上海交通大学Gap-enhanced Raman Tags as Physically Unclonable Labels for Anticounterfeiting10:05-10:15茶歇主持人叶勇10:15-10:40孙萌涛北京科技大学邀请报告:Plasmon-enhanced CARS and TPEF10:40-11:05周海波暨南大学邀请报告:表面增强拉曼光谱在生物医药中的应用11:05-11:20张庆丰武汉大学等离激元纳米粒子-蛋白复合物的手性产生机制研究11:20-11:35林翔大连民族大学贵金属纳米晶的精准合成、自组装及其SERS应用研究11:35-11:50鲍智勇合肥工业大学金属纳米功能材料的制备及在环境与能源领域应用12:00-13:30午休主持人陆峰13:30-13:55徐抒平吉林大学邀请报告:基于表面增强拉曼技术的候选药物分子筛选新技术-SERScreen13:55-14:20刘睿中国科学院生态环境研究中心邀请报告:基于拉曼光谱的催化活性位点结构解析14:20-14:35曹玥南京医科大学SERS纳米传感器的构建及在生物分析中的应用14:35-14:50彭程上海师范大学计算机辅助黄曲霉素B1分子印迹SERS传感器的制备与应用14:50-15:05王运庆中国科学院烟台海岸带研究所分子印迹SERS毛细管传感器用于蛋白质和手性氨基酸分析15:05-15:15茶歇主持人李攻科15:15-15:40叶坚上海交通大学邀请报告:缝隙增强拉曼探针:从传感到成像15:40-16:05谢云飞江南大学邀请报告:拉曼光谱在食品安全与质量控制中的应用16:05-16:20唐红杰Quantum Design 中国仪器公司:O-PTIR光学光热红外技术在化学分析和生物医药领域的前沿应用16:20-16:35邓斌格上海交通大学SERS探针引导的术中前哨淋巴结微创手术16:35-16:50弥小虎陕西师范大学银碳复合结构微米阵列的制备及应用
  • 香港科技大学唐本忠:纳米光学革命正在到来
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/2e585610-8fe0-4d17-b2fd-802522963a42.jpg" title="3816F60D3BA443E21D2C6E4AF4D07930.jpg"//pp style="text-align: center "香港科技大学唐本忠教授/pp  去年3月2日,《自然》杂志发表一篇新闻深度分析文章,预测“纳米光学革命”的来临(“The nanolight revolution is coming” Nature, 2016, 531, 26.)。量子点(quantum dots)和聚合物点(polymer dots)是一直备受关注的纳米发光材料,而具有聚集诱导发光(aggregation-induced emission, AIE)特性的纳米粒子(AIE dots)则是发光材料研究领域的一支新秀。/pp  量子点是一种重要的零维纳米半导体,能够用于许多重要的领域,如光电、光伏、生物、医疗等。但它存在两个问题:第一,量子点的种类有限、合成复杂、稳定性差。第二,量子点存在聚集导致发光淬灭(aggregation-caused quenching, ACQ)效应。比如悬浮在水中的纳米粒子,一旦失去包覆的表面活性剂,纳米粒子就会形成不发光的聚集体。聚合物点是高分子聚集体,也存在ACQ问题。当高分子链在水介质中紧密聚集时,分子链间相互作用增强,导致其发光减弱甚或完全消失。/pp  我们常用的有机发光材料多为小分子,其ACQ问题也很严重。举个例子,荧光素是一种合成染料,当其浓度很稀的时候,荧光素的发光效率为100% 但当浓度增加至10%左右时,其分子发生聚集,发光量子产率降至0%,也就是完全不发光了。生物体系的介质为水,而很多有机染料都会在水中自然聚集。显然,ACQ效应是一个令人烦恼的问题。/pp  我们课题组研究的聚集诱导发光体系与上述传统体系完全相反。2001年,我们观察到一些噻咯分子在溶液中几乎不发光,而在聚集状态发光大大增强。因为发光增强是由聚集所引起的,故我们将此现象定义为AIE。/pp  我们研究了典型的AIE分子六苯基噻咯(hexaphenylsilole, HPS)。在溶液中,HPS分子外围的苯环可以通过单键绕中心的噻咯环自由旋转。这种运动消耗激发态的能量,因而猝灭HPS分子的荧光。在聚集态,HPS分子的螺旋桨式构型可以防止π-π堆积和荧光猝灭 同时由于空间限制,分子内旋转受到很大阻碍。这种分子内旋转受限(restriction of intramolecular rotation, RIR)抑制激发态的非辐射衰变过程,打开辐射跃迁渠道,从而使HPS聚集体高效发光。/pp  为了验证RIR工作机制,我们通过改变外部环境(降低温度、增大黏度和施加压力等),或者对分子结构本身进行修饰(利用共价键等锁住外围的转子),使分子内旋转不容易进行。在这些条件下,AIE分子发光增强,从而证实分子内旋转受限的确是导致荧光增强的原因,即RIR过程是AIE效应的主因。/pp  除了旋转,分子也可震动。震动也可消耗能量,导致发光减弱。但一旦分子聚集之后,分子内震动受限也可使聚集体发光增强,从而产生AIE效应。旋转和震动都属于分子内运动,我们因此将AIE机理从RIR扩展至更通用的分子内运动受限(restriction of intramolecular motion, RIM)模型。/pp  我们经常说一个正确的机理或者模型应有双重作用:一个是可以帮助理解以前观察到的现象,另一个更重要的是也可指导将来的分子结构设计。我们猜想:如果RIM机理正确的话,任何一个分子只要在单分子态易于旋转或震动,就有可能显示AIE效应。我们因此设计并合成了一系列易于旋转或震动的分子,并高兴地发现它们都有AIE活性。这一方面确认了我们提出的RIM机制的正确性,另一方面使得我们可以容易地开发覆盖整个可见波光范围的AIE材料体系。/pp  上面讨论的AIE体系的发光皆为荧光,还有一种发光为磷光。虽然磷光比荧光更重要,但教科书告诉我们,有机分子溶液在室温下不可能发出长寿命磷光。溶液态如此,那聚集态情况如何呢?我们惊喜地发现一些简单有机分子的结晶可发出长寿命磷光。这种奇特的结晶诱导AIE现象使我们实现了纯有机聚集体的高效室温磷光。/pp  有机分子发光,一般需要共轭电子结构,因此传统的发光材料都是芳香族或富含苯环的化合物。没有苯环的分子会发光吗?这个问题非常重要,因为自然界很多分子都不含苯环。我们发现很多不含芳香环的合成高分子和天然产物都可发荧光和磷光。这些分子的结构特点是富含杂原子。这些杂原子电负性很强,且有孤对电子,它们之间的空间电子相互作用导致刚硬的簇结构的生成。这些簇作为生色团发光,因此我们将其命名为“簇发光”。/pp  氧、氮、磷、硫等杂原子都可形成簇结构,因此理论上都可发光。自然界的很多东西都富含杂原子,都存在簇发光现象,比如,大米、淀粉、纤维素、蛋白、DNA等在紫外光照射下都可发光。簇发光为我们寻找天然发光材料开辟了一条新路。通过AIE途径,我们有望从自然界寻找廉价、无毒、环保、益生的非凡发光材料。/p
  • 20吨苯酚流入新安江 杭州55万居民用水受影响
    浙江在线杭州6月6日讯 (记者 徐晓)今天中午11时,杭州市政府就6月4日发生在建德市境内杭新景高速公路苯酚槽罐车泄漏污染新安江水体事件召开新闻发布会。杭州市环保局副局长、新闻发言人劳新祥代表杭州市饮用水源应急处置现场办公室就事故处置进展情况作通报,称这是一起因危险化学品运输交通事故引发的严重环境污染事件。  劳新祥通报说,2011年6月4日晚上22时55分左右,一辆车牌号为浙AM8993的装载有31吨苯酚化学品的槽罐车,在由上海高桥化工厂开往龙游红云化工厂的途中,经杭新景高速公路新安江高速出口互通主路段内(S31龙游方向48KM+200M处)发生抛锚。  当车辆正在进行抢修作业时,一辆车牌号为浙HD8399的重型货车与其发生碰撞事故,导致槽罐破裂,苯酚泄漏,并造成1名抢修人员当场死亡。  事发时,因时逢黑夜,并受暴雨影响,估计约有20吨泄漏苯酚随地表水流入新安江中,造成部分水体受到污染。但由于事发地新安江为杭州市重要饮用水源地上游,对下游居民正常生产、生活用水造成重大影响。  根据专家意见,确定沿线各自来水厂进水挥发酚最高允许浓度为0.005mg/L。  根据现场水质监测情况,桐庐县政府决定桐庐境内富春江沿线桐庐自来水厂、桐庐七里陇水厂于6月5日21:10开始暂停取水 富阳市政府决定,富阳境内富春江沿线江北水厂、江南水厂、东梓自来水于6月6日凌晨1:00开始停止取水。以上5个水厂总计供水能力约为30.9万吨/日,共计涉及 55.22万居民用水。
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 饮用水中苯酚类化合物的检测方法
    下载: 饮用水中苯酚类化合物的检测方法.pdf关键词: 饮用水 苯酚类化合物 标准品 石炭酸 羟基苯 镇江上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn博纳艾杰尔网站www.agela.com.cn 1.水性样品此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。4.1 动植物油脂样品的处理取0.2g样品,用1mL正己烷溶解,作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:7mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待检液。检测:GC/MS检测。4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。 5.复杂样品此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例:取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。检测:GC/MS检测。 附件一:高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L)流动相:A:水,B:甲醇:乙腈=50:50Time/minA/%B/%060402505010406012307020307031010040010040.016040流 速:1.0 mL/min波 长:242 nm进样量:5 µ L(100ppm),50µ L(10ppm)样 品:15种邻苯二甲酸酯浓 度:100 ppm(正己烷),10 ppm(40%流动相A)溶 剂:正己烷 /40%流动相A柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm)(邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP)结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS色谱条件:色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1&mu L流速:1 mL/min 质谱条件:接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min监测方式:SIM模式,监测离子见下表 序号保留时间/min中文名称英文缩写SIM离子18.265邻苯二甲酸二甲酯DMP163、7729.135邻苯二甲酸二乙酯DEP149、177310.888邻苯二甲酸二异丁酯DIBP149、223411.637邻苯二甲酸二丁酯DBP149、223511.979邻苯二甲酸二(2-甲氧基)乙酯DMEP59、149、193612.72邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149、251713.044邻苯二甲酸二(2-乙氧基)乙酯DEEP45、72813.41邻苯二甲酸二戊酯DPP149、237915.552邻苯二甲酸二己酯DHXP104、149、761015.694邻苯二甲酸丁基苄基酯BBP149、911117.153邻苯二甲酸二(2-丁氧基)乙酯DBEP149、2231217.81邻苯二甲酸二环己酯DCHP149、1671318.056邻苯二甲酸二(2-乙基)己酯DEHP149、1671420.444邻苯二甲酸二正辛酯DNOP149、2791522.98邻苯二甲酸二壬酯DNP57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下:表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号保留时间/min中文名称英文缩写回收率18.337邻苯二甲酸二甲酯DMP87.82%29.214邻苯二甲酸二乙酯DEP72.31%310.996邻苯二甲酸二异丁酯DIBP81.97%411.759邻苯二甲酸二丁酯DBP77.33%512.11邻苯二甲酸二(2-甲氧基)乙酯DMEP83.87%612.864邻苯二甲酸二(4-甲基-2-戊基)酯BMPP83.83%713.201邻苯二甲酸二(2-乙氧基)乙酯DEEP109.08%813.576邻苯二甲酸二戊酯DPP86.36%915.757邻苯二甲酸二己酯DHXP84.67%1015.923邻苯二甲酸丁基苄基酯BBP98.33%1117.377邻苯二甲酸二(2-丁氧基)乙酯DBEP101.30%1218.041邻苯二甲酸二环己酯DCHP92.47%1318.28邻苯二甲酸二(2-乙基)己酯DEHP132.32%1420.718邻苯二甲酸二正辛酯DNOP89.73%1523.303邻苯二甲酸二壬酯DNP70.10% 某植物油中15种邻苯二甲酸酯的添加回收率按正文第4.1项方法进行某种牛奶的添加回收率实验,得到的数据如下:表2、某植物油中添加15种邻苯二甲酸酯(在样品中的浓度为500&mu g/L)的回收率结果列表序号保留时间/min中文名称英文缩写回收率18.308邻苯二甲酸二甲酯DMP149.97%29.185邻苯二甲酸二乙酯DEP93.49%310.96邻苯二甲酸二异丁酯DIBP125.70%411.716邻苯二甲酸二丁酯DBP136.89%512.064邻苯二甲酸二(2-甲氧基)乙酯DMEP90.84%612.778邻苯二甲酸二(4-甲基-2-戊基)酯BMPP82.29%713.144邻苯二甲酸二(2-乙氧基)乙酯DEEP106.38%813.518邻苯二甲酸二戊酯DPP88.14%915.686邻苯二甲酸二己酯DHXP75.32%1015.844邻苯二甲酸丁基苄基酯BBP89.56%1117.295邻苯二甲酸二(2-丁氧基)乙酯DBEP105.05%1217.967邻苯二甲酸二环己酯DCHP72.94%1318.206邻苯二甲酸二(2-乙基)己酯DEHP124.27%1420.625邻苯二甲酸二正辛酯DNOP78.19%1523.297邻苯二甲酸二壬酯DNP75.27%
  • 欧盟修订双苯三唑醇等农残最大残留限量
    p  2016年7月7日,欧盟委员会发布G/SPS/N/EU/168通报,拟修订法规(EC)396/2005号附件II和V中部分食品的双苯三唑醇(bitertanol)、吡螨胺(tebufenpyrad)和矮壮素(chlormequat)等3种农残最大残留限量。部分限量修订情况见下表:/pp/ptable border="1" cellpadding="0" cellspacing="0" width="600"tbodytrtd width="38"p style="text-align:center "序号/p/tdtd width="104"p style="text-align:center "农残名称/p/tdtd width="227"p style="text-align:center "产品名称/p/tdtd width="123"p style="text-align:center "现行残留量(mg/kg)/p/tdtd width="116"p style="text-align:center "拟修残留量(mg/kg)/p/td/trtrtd width="38"p style="text-align:center "1/p/tdtd width="104"p style="text-align:center "双苯三唑醇/p/tdtd width="227"p style="text-align:center "荞麦、小米、黄米、燕麦、大米等/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "2/p/tdtd width="104"p style="text-align:center "吡螨胺/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "3/p/tdtd width="104"p style="text-align:center "矮壮素/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.1/p/tdtd width="116"p style="text-align:center "0.01/p/td/tr/tbody/tablep/p
  • 贵州大学池永贵团队Nat Commun | 国仪量子EPR助力合成苯并呋喃衍生物研究
    近日,贵州大学池永贵研究团队证明了杂原子阴离子可以用作超电子供体来引发自由基反应,从而轻松合成 3-取代苯并呋喃。所得产物在有机合成和农药开发方面具有广阔的应用前景。  相关成果以“Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors”为题,发表于著名学术期刊《自然-通讯》(Nature Communications)。研究中使用了国仪量子的X波段连续波电子顺磁共振波谱仪EPR200-Plus,证实了反应体系中自由基物种的生成。  苯并呋喃是广泛存在于人类临床药物中的100种主要环状结构之一。特别是,在许多已被证实具有生物活性的天然和非天然药物分子中, 3-取代苯并呋喃经常被发现为核心结构。为快速而选择性地获得具有多种功能的3-取代苯并呋喃衍生物,开发高效的合成新方法至关重要。单电子转移反应是构建功能化 3-取代苯并呋喃的最有效途径之一,而合适的电子供体对单电子转移过程的成功至关重要。然而迄今为止,还未有研究报道采用以杂原子为中心的阴离子作为单电子转移反应的直接超级电子供体。图片来源:摄图网  贵州大学池永贵研究团队在研究中利用杂原子阴离子作为 SED 来引发自由基反应,从而轻松合成了具有各种杂原子官能团的 3-取代苯并呋喃分子。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。  Fig. 1 | Bioactivities, syntheses of 3-substituted benzofurans and SEDs for radical reactions. a Commercial drugs containing 3-substituted benzofuran structures. b Typical methods for access to 3-substituted benzofurans. c Representative organic small molecular SEDs. d Heteroatom anions as SEDs for 3-heteroalkylbenzofuran synthesis.  研究中使用EPR技术(国仪量子EPR200-Plus)证实了反应体系中自由基物种的生成。在25℃ DME中,1a、HPPh2和LDA的混合物的EPR光谱在g = 2.0023处出现了类似于苯基g因子的信号。  Fig. 4 | EPR spectrum of the reaction mixtures and control experiments. a EPR spectrum of the reaction mixtures. b Feasibilities of the heteroatomic anions as SEDs for the radical reactions. c Cross-radical coupling reactions with mercaptans. d The X-band EPR spectrum of 1:2:2 stoichiometric reaction of 1a (0.1 mmol), HPPh2 (0.2 mmol), and LDA (0.2 mmol) was measured at 298 K with DME (2 mL) as solvent at a microwave frequency of 9.418333054 GHz (g = 2.0023).成果摘要  Nature Communications:通过与杂原子中心的超级电子供体的自由基反应轻松获得苯并呋喃衍生物  开发合适的电子供体对于单电子转移(SET)过程至关重要。使用杂原子中心阴离子作为直接 SET 反应的超电子供体 (SED) 的研究很少。在这里,我们证明杂原子阴离子可以用作 SED 来引发自由基反应,从而轻松合成 3-取代苯并呋喃。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。通过控制实验和计算方法阐明了反应机理。所提供的产品在有机合成和农药开发方面显示出有前景的应用。国仪量子电子顺磁共振波谱仪国仪量子目前已推出具有核心自主知识产权、商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。在化学、环境、材料物理、生物医疗、食品、工业领域有着重要而广泛的应用。国仪量子电子顺磁共振波谱仪全系列产品
  • CFDA:小麦粉中严禁添加过氧化苯甲酰等非食品原料
    p  为规范生产行为,加强小麦粉质量安全监管,现将有关事项公告如下:/pp  一、取得“小麦粉(通用)”生产许可的企业,不得在小麦粉中添加任何食品辅料。/pp  二、取得“小麦粉(专用)”生产许可的企业,生产专用小麦粉时,应按照《食品安全国家标准食用淀粉》(GB 31637)、《食品安全国家标准食品加工用植物蛋白》(GB 20371)、《谷朊粉》(GB/T 21924)等相应的标准,添加食用淀粉、大豆蛋白、谷朊粉等食品辅料,并制定相应的企业标准,报省级卫生行政部门备案。/pp  三、小麦粉生产企业应当按照《中华人民共和国食品安全法》、《食品安全国家标准预包装食品标签通则》(GB 7718)、《食品安全国家标准预包装食品营养标签通则》(GB 28050)等相关法律、法规和标准要求如实标注,不得虚假标注产品成分,不得虚假标注执行标准,不得生产无标识、标识不全或标识信息不真实的小麦粉。/pp  四、严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料。/pp  五、小麦粉生产企业要严格履行小麦原料进货查验、小麦粉出厂检验,落实质量安全主体责任。/pp  六、各地食品药品监管部门要加大对小麦粉生产企业的日常监督检查、监督抽检与风险监测,严肃查处在小麦粉中超范围、超限量使用食品添加剂的行为,严肃查处在小麦粉中添加非食品原料的行为,严肃查处标签不如实标注小麦粉成分的行为,涉嫌犯罪的及时移送公安机关追究刑事责任。/ppbr//p
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew. Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制