当前位置: 仪器信息网 > 行业主题 > >

异丁醛肟

仪器信息网异丁醛肟专题为您提供2024年最新异丁醛肟价格报价、厂家品牌的相关信息, 包括异丁醛肟参数、型号等,不管是国产,还是进口品牌的异丁醛肟您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异丁醛肟相关的耗材配件、试剂标物,还有异丁醛肟相关的最新资讯、资料,以及异丁醛肟相关的解决方案。

异丁醛肟相关的资讯

  • 两项醛酮类化合物环境标准发布 涉及高效液相
    p  为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,规范生态环境监测工作,现批准《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》等两项标准为国家环境保护标准,并予发布。/pp  标准名称、编号如下。/pp  一、img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://www.instrument.com.cn/download/shtml/975321.shtml" target="_self" title="固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf"span style="font-size: 16px "固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf/span/a/pp  本标准规定了测定固定污染源废气中醛、酮类化合物的高效液相色谱法。/pp  本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、 2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共 12 种醛、酮类化合物的测定。/pp  仪器和设备包括高效液相色谱仪、色谱柱、烟气采样器、连接管、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。/pp  二、img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://www.instrument.com.cn/download/shtml/975320.shtml" target="_self" title="《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf"span style="font-size: 16px "《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf/span/a/pp  本标准规定了测定环境空气和无组织排放监控点空气中醛、酮类化合物的高效液相色谱法。/pp  本标准适用于环境空气和无组织排放监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和 2,5-二甲基苯甲醛共 16 种醛、酮类化合物的测定。/pp  仪器和设备包括高效液相色谱仪、色谱柱、空气采样器、棕色多孔玻板吸收瓶、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。/pp  以上标准自2021年3月15日起实施,由中国环境出版集团有限公司出版,标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。/pp  特此公告。/pp style="text-align: right "  生态环境部/pp style="text-align: right "  2020年12月14日/pp  抄送:各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局,各流域生态环境监督管理局,环境标准研究所,各标准承担单位。/pp  生态环境部办公厅2020年12月15日印发/p
  • 上海伍丰-车内挥发性有机物和醛酮类物质 采样测定方法
    车内挥发性有机物和醛酮类物质采样测定方法一、说明本方法可以测定15 种以上醛酮类化合物,包括:甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等。二、仪器等度、紫外、C18柱固相萃取装置及其附件超声波清洗器DNPH 采样管标准样品:2,4-二硝基苯腙三、液相色谱分析条件a) 色谱柱:等效C18 反相高效液相色谱柱;b) 流动相:乙腈/水;c) 洗脱:均相等梯度,60%乙腈/40%水;d) 检测器:紫外检测器360nm,或二极管阵列;e) 流速:1.0 ml/min;f) 进样量:25 &mu l。
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权  随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。  车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。  车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。  为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。  博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。  博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。  同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。国家重点新产品证书北京市劳动保护科学研究所使用报告中国计量科学研究院测试报告
  • 3月15日实施!这两项新标准你注意到了吗?
    2020年12月24日,《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1153-2020)和《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020)两项标准正式发布,并将于2021年3月15日正式实施。 为了更好地帮助客户深入掌握标准要求,崂应现将标准简析如下:1.标准中规定的醛、酮类化合物有哪些?本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共12 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少?当采集有组织排放废气20L(标准状态下干烟气)时,方法的检出限为0.01mg/m3~0.02mg/m3,测定下限为0.04mg/m3~0.08mg/m3。3.需要哪些采样仪器和设备?1)烟气采样器:具有抗负压功能,采样流量0.2 L/min ~1.5L/min,采样管为硬质玻璃或氟树脂材质,应具备加热和保温功能,加热温度≥120℃。2)连接管:聚四氟乙烯软管或内衬聚四氟乙烯薄膜的硅橡胶管;3)棕色气泡吸收瓶:75mL。4.如何进行现场采样?a)采样位置和采样点1)采样位置:采样位置应避开涡流区,如果同时测定排气流量,采样位置应该优先选择垂直管段,应设置在距弯头、阀门、变径管下游方向不小于6倍直径和距上述部件不小于3倍直径处。2)采样点:由于气态污染物在采样断面内一般混合均匀,可取靠近烟道中心的一点作为采样点。b)采样参数的测定采样参数包括烟温、流速、含湿量,具体测定方法参照HJ 397 标准中“6排气参数的测定”。c)采样方法1)预热采样管,打开采样管加热电源,将采样管加热到≥120℃;2)串联三支各装有50mL DNPH(2,4-二硝基苯肼)饱和溶液的棕色气泡吸收瓶,与烟气采样器连接,如下图所示;3)正式采样前,排气应先通过旁路吸收瓶,将吸收瓶前管路的空气置换干净;4)接通采样管路,设置采样流量,以0.2L/min ~0.5L/min的流量,连续采集1h,或在1h内以等时间间隔采集3个~4个样品,流量波动应不大于±10%;5)采样结束后,切断采样泵和吸收瓶之间气路,抽出采样管,取下吸收瓶6)用密封帽密封吸收瓶,样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。7)将同批采样的三支装有50mL DNPH饱和溶液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。 1.标准中规定的醛、酮类化合物有哪些? 用于环境空气和无组织监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和2,5-二甲基苯甲醛共16 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少? 当采样体积为20 L(标准状态下)时,方法的检出限为0.002 mg/m3~0.003 mg/m3,测定下限为0.008 mg/m3~0.012 mg/m3。3.需要哪些采样仪器和设备?1)空气采样器:采样流量0.1 L/min ~1.0L/min;2)棕色多孔玻板吸收瓶:25mL;3)棕色气泡吸收瓶:25mL。4.如何进行现场采样?a)采样位置和采样点环境空气采样点位的布设及采样符合HJ 194的要求,无组织排放监控点的布设及采样符合HJ/T 55中的相关规定。b)采样方法 1)按照下图将装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶串联到空气采样器。 2)设置采样流量,以0.3L/min ~0.5L/min的流量,连续采集1h。如果浓度偏低可适当延长采样时间,但总采样量不超过80L。注:采样时温度低于4℃,吸收瓶应放在恒温箱中。 3)采样结束后,取下吸收瓶,用密封帽密封,避光保存。样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。 4)将同批采样的装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。
  • 青岛优派普--AKF-PL2015C塑料粒子专用水分测定仪调试完成
    6月底,我公司AKF-PL2015C塑料粒子检测专用水分测定仪在青岛优派普环保科技有限公司顺利安装调试完成。 这款仪器在优派普公司主要用于聚乙烯(PE)管材原料水分测试。AKF-PL2015C塑料粒子专用水分仪是禾工公司一款专门用于塑料粒子的水分含量检测仪器。可测定ABS、聚丙烯酰胺(PAM)、聚酰胺(PA)、聚碳酸酯(PC)、聚乙烯(PE)。聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(亚克力、PMMA)、聚丙烯(PP)、聚苯乙烯(PS)、聚乙烯醇缩丁醛(PVB)、硅橡胶塞等等。测试精度可以达到PPM级别,和塑料粒子行业传统的加热法水分仪相比,是其精度值的几百倍。 青岛优派普公司是台商在大陆的外资企业,是国内最早也是最主要的燃气、给排水泵管材料供应商。优派普在禾工公司和日本同类产品的竞争对比中,认为国产仪器具有价格低、售后方便、交货周期短、数据准确的优点,这款水分仪是该公司为数不多的国产设备之一。
  • 酱香拿铁里面到底有没有“酱香”?用禾信质谱一探究竟
    9月4日,某品牌咖啡与某品牌白酒合作推出的联名咖啡“酱香拿铁”火爆全网!据相关报道称“酱香拿铁每一杯都含有53度的酱香型白酒”。那么,“酱香拿铁”到底有没有酒精成分呢?“酱香拿铁”的“香”,到底是由哪些物质带来的?禾信仪器利用先进的全二维气相色谱-飞行时间质谱联用,带您一探究竟。实验方案前处理:取5 mL酱香拿铁,加入3 g氯化钠,待测。分析仪器:禾信仪器全二维气相色谱-飞行时间质谱联用仪GGT 0620柱系统:Welchrom WM-FFAP (30 m*0.25 mm*0.25 μm) + HV + DB-17 (1.3 m*0.18 mm*0.18 μm)进样方式:顶空固相微萃取(SPME)禾信仪器全二维气相色谱-飞行时间质谱联用仪 GGT 0620实验结果 酱香拿铁经禾信仪器GGT 0620分析可显著发现酒精成分及许多香味成分,选择信噪比大于15的化合物进行分析,共发现有354种风味物质,主要包括醇类、酯类、酸类、醛类、吡嗪、酮类等物质。酱香拿铁的全二维色谱轮廓图 醇类物质是酱香拿铁中化合物种类最多的物质。共检出53种化合物,其中包括常见的乙醇成分,以及其他香气成分如:正丁醇、异丁醇、异戊醇等。 酯类物质是酱香拿铁中含量最高的物质,共鉴定出49种酯类香气物质,主要呈果香香气,部分物质还呈甜香、花香、脂肪香等气味。据相关文献报道,酯类物质中,本次酱香拿铁检出的丙酸乙酯呈香蕉气味、丁酸乙酯呈菠萝香味、2-甲基丁酸乙酯、己酸乙酯呈典型的果香。 酸类物质同样是酱香型白酒中重要香气物质,酱香拿铁中检出的酸类主要包括乙酸、丁酸、己酸、辛酸。而醛类物质中,己醛、3-甲基丁醛是曾被报道酱香型白酒中的主要香气物质,在本次酱香拿铁检测中同样有检出。 除此以外,还鉴定出20种吡嗪类化合物,吡嗪类物质在酱香型白酒中主要呈烤香味,吡嗪类化合物在不同香型白酒中的种类和含量均有差异,在酱香型白酒中吡嗪类化合物含量最高,其次则是浓香型白酒、清香型白酒。分析结果化合物的种类数量占比分析结果化合物的含量占比 另外,根据相关文献结果可知[1],酱香型白酒中关键香气物质主要有:乙酸乙酯,2-甲基丙酸乙酯、3-甲基丁酸乙酯、己酸乙酯、乳酸乙酯、丙醇、3-甲基丁醇、乙酸、3-甲基丁酸、3-甲基丁醛、3-羟基-2-丁酮、4-甲基愈创木酚、三甲基吡嗪、糠醛、二甲基三硫。在本次实验中,除3-羟基-2-丁酮、二甲基三硫外,上述化合物均有检出。两个物质未检出的原因,可能与添加酒样的含量较低、含水率较高等因素有关。 综上可见,酱香拿铁中含有大量与酱香型白酒相符的成分,且特征成分几乎都有检出,商家的“酱香拿铁每一杯都含有53度的酱香型白酒”的宣传语可信度非常高,该产品中含有白酒。建议未成年人、孕妇、驾驶人员、酒精过敏者要谨慎饮用酱香拿铁。[1] 酱香拿铁3D轮廓图参考文献:[1]朱全. 茅台酒香气组成及香韵结构协同作用研究[D].上海应用技术大学,2020.DOI:10.27801/d.cnki.gshyy.2020.000050. 全二维气相色谱-飞行时间质谱联用仪GGT 0620是一套集合了全二维气相色谱和高时间分辨率飞行时间质谱的分析系统,主要用于复杂样品的精准定性定量检测,可应用于:环境分析、材料分析、石油化工产品分析、食品风味研究、非法添加与真假鉴别、香精香料分析、中药有效成分分析、代谢组学研究等。
  • 科技前沿 | 质谱技术应用于新冠患者呼出气体的快速筛查
    前言自2019年年底新型冠状病毒肺炎(COVID-19)疫情爆发后,基于呼出气体检测结果辅助筛查新冠肺炎的研究成果不断被应用,国外部分新型呼出气体检测仪也已经获得了权威机构的紧急授权。基于呼出气体分析的新冠检测技术早在2021年5月17日,新加坡卫生科学局(HSA)就为用于新冠检测的新型呼出气体检测仪“BreFence Go”颁布了临时授权,该仪器先通过采样器收集被测者的呼出气体,呼出气体再进入质子转移反应飞行时间质谱(PTR-TOFMS)进行检测筛查。新加坡卫生科学局(HSA)授权公告在今年的4月14日,美国食品药品监督管理局(FDA)也为用于新冠检测的新型呼出气体检测仪“InspectIR COVID-19”颁布了紧急使用授权(EUA),该仪器先收集被测者的呼出气体,再采用气相色谱质谱联用法检测其中与新冠病毒感染有关的5种醛酮类VOCs,在3分钟内给出检测结果。美国食品药品监督管理局(FDA)授权公告呼出气体检测仪部分参数如下:谱育科技仪器介绍谱育科技是一家专注于重大科学仪器研发和产业化创新应用的国家高新技术企业,多年来致力于VOCs检测仪器的研发,目前已经拥有全面成熟的VOCs检测体系和专业科学的分析解决方案。其中TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪等设备都在现场VOCs的检测中得到了充分应用。TRACE 8000化学电离-飞行时间质谱仪 TRACE 8000采用高效化学电离源及垂直引入反射式飞行时间质谱技术,是一款化学电离-飞行时间质谱仪(CI-TOFMS)。该设备具有分析速度快、灵敏度高、定性能力强、测量组分种类多等突出特点。 TRACE 8000化学电离-飞行时间质谱仪检测谱图EXPEC 3500便携式气相色谱质谱联用仪EXPEC 3500便携式气相色谱-质谱联用仪是一款基于气相色谱质谱联用技术的便携式仪器,可装备于移动监测车,也可通过肩背或手提方式徒步到达现场进行检测。设备具有检测灵敏度强、测量准确度高、便携性能良好、抗震性能优异、软件智能便捷、仪器维护方便等优势。EXPEC 3500 便携式GC-MS检测醛酮类VOCs谱图1丙烯醛 2 丙酮 3 丙醛 4甲基丙烯醛 5丁醛 6 2-丁酮 7 丁烯醛 8戊醛 9己醛 10苯甲醛 11间甲基苯甲醛TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪部分参数如下表:注:TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪详细参数扫描二维码见彩页。TRACE 8000化学电离-飞行时间质谱仪EXPEC 3500 便携式气相色谱质谱联用仪图片来源:https://www.youtube.com/watch?v=2saKzv9dGTAhttps://www.medicaldevice-network.com/news/breathonix-breath-test-singapore/呼出气体检测仪部分参数来源:https://www.ionicon.com/products/details/ptr-tof-6000-x2https://www.youtube.com/watch?v=kIMOzzXGWCo&t=1shttps://www.fda.gov/media/157723/download
  • 上海禾工塑料粒子行业水分仪技术交流培训
    日前,上海禾工在广东东莞群安塑胶实业有限公司安排了一场安调培训、技术交流会,东莞群安塑胶生产的离子型中间膜可广泛的应用在光伏、航天、国防、建筑、汽车等众多领域。 而在生产过程中。如果使用水分含量过多的塑料粒子进行生产,则会产生一些加工问题,并最终影响成品质量,如:表面开裂、反光,以及抗冲击性能和拉伸强度等机械性能降低等。因此,水分含量的控制对于生产高质量的塑胶产品是至关重要的。 在之前的很多产品选购指南中也提到,如果需要检测的塑料样品水分含量在0.1%以上,加热温度在200度以内,而且加热之后除了水分之外没有其他挥发性成分,可以选择方便快捷的加热失重法水分测定仪器,如果这三个条件有一个不符合您的测量要求,那么就建议选择卡尔费休滴定的测水方法,而且,一定要选择带卡式加热炉的卡尔费休滴定仪器。在离子型中间膜生产中东莞群安塑胶选择了禾工AKF-PL2015C卡尔费休塑料粒子专用水分测定仪,在仪器的培训过程中,禾工技术员在现场协助客户使用AKF-PL2015C塑料粒子专用水分仪检测了四组数据,根据计算结果得出平均值及RSD值较好。 卡式炉测定塑料水分含量建议温度ABS/160℃已内酰胺/100-120℃环氧树脂/120℃三聚氰胺甲醛树脂/160℃尼龙6(尼龙66)160-230℃苯酚甲醛树脂/200℃聚苯稀酰胺/200℃聚酰胺/160-230℃聚碳酸二酰亚胺/150℃聚碳酸酯/140-160℃聚酯/140-240℃聚醚/150℃聚异丁烯/250℃聚酰亚胺/160℃聚甲酯/160℃聚对苯二甲酸乙二醇酯/180-200℃聚乙烯/200℃聚甲基丙烯酸甲酯/180℃聚丙烯/160-200℃聚苯乙烯/120℃聚氨酯/180℃多乙酸乙烯酯 /170℃聚乙烯醇缩丁醛PVB/150℃聚四氟乙烯PTFE/250℃橡胶塞/250℃哇橡胶/250℃软PVC /140-160℃苯乙烯丙烯酸酯/170℃特氟隆/250℃对苯二酸酯 /150℃尿素甲醛酯 /100℃
  • 车内空气质量标准的前世今生
    最近相关报道说车内空气标准即将修订为强制性标准,难道GB/T27630-2011《乘用车内空气质量评价指南》将&ldquo 翻身农奴把歌唱&rdquo ?虽然总体来,这是好事。但作为消费者,眼瞅着GB/T27630-2011这两年的实施情况,不免担心&mdash &mdash 是否变为强制标准就能解决问题了?我看未必!下面我们来回顾下GB/T27630-2011《乘用车内空气质量评价指南》出台历程。  2004年5月下达的《关于下达〈土壤环境质量标准〉等环境保护标准制修订工作任务的函》(环办函[2004]318号)中将《车内空气污染物浓度限值及测量方法》列入2004年国家环保标准制修订计划。  2004年7月,原国家环保总局正式宣布《车内空气污染物浓度限值及测量方法》制订工作正式启动,由中国兵器装备集团公司、北京市环境保护监测中心、北京市劳动保护科学研究所、中国标准化研究院、中国兵器工业集团公司环境科技开发中心、大众汽车(中国)投资有限公司、日产(中国)投资有限公司、通用汽车(中国)投资有限公司等单位专家组成的标准编制组负责编制。  2004年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》(国标委计划函[2004]58号)。本来是限量标准和检测方法合二为一的,但是标准编写组和相关专家组认为应先编写《车内空气污染物测量方法》作为环境保护行业标准,以便进一步开展大批量的数据采集工作,为国家标准《车内空气污染物浓度限值及测量方法》确定限值提供技术支持。  通过几年的调查和研究,标准编制组起草了《车内空气污染物测量方法》,后更名为《车内挥发性有机物和醛酮类物质采样测定方法》,于2007年11月29日通过原国家环保总局组织召开得标准审议会,并于2007年12月7日批准发布,标准号:HJ/T 400-2007,于2008年3月1日正式实施。时间过的很快,一晃眼过了三年了,估计很多人都忘记国家最初要制订《车内空气污染物浓度限值及测量方法》这回事了,话说这几年的调查和研究应该也够了?  HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》对挥发性有机组分(正己烷到正十六烷之间具有挥发性的有机物总称)和醛酮类化合物(甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等化合物总称)进行检测,至少可以分析超过20中有害物质。  到2008年,编写组大概拟定了8种有机物作为标准的限量物质,至于他们为什么仅仅拟定8种(配套检测方法可检测至少20种),而不是更多,我们姑且相信这是权威调查和研究的最佳结果。  2008年,环保部科技标准司发文对车内污染物数据进行征集(环科函[2008]37号&ldquo 关于开展车内空气质量状况调查的函&rdquo ),目的是为标准的制定提供实测数据参考。期间,标准编制组完成了《车内空气污染物浓度限值》征求意见稿初稿。  2008年9月,标准编制组召开会议将《车内空气污染物浓度限值》更名为《车内空气挥发性有机污染物浓度要求》,并确定为推荐性标准。2008年各大媒体也纷纷发文称&ldquo 标准&rdquo 有望在2009年3月1日实施,就在大家以为尘埃落定的时候,时间又这么慢慢的流逝了。  到2011年10月27日,环保部才正式发布&ldquo 标准&rdquo ,这次又改名为GB/T27630-2011《乘用车内空气质量评价指南》。  除了,《乘用车内空气质量评价指南》和《车内空气挥发性有机污染物浓度要求》除了适用范围少有区别之外,对污染物的限制均完全一致,为什么标准出台之后又要暂停3年才发布?是因为用这3年作为缓冲期吗?或者是遭到厂家的一致反对?  过了两年后的今天,又折腾要转为强制标准了,何不一开始就弄成强制。还有,转为强制标准就解决问题了吗?我看未必! GB/T27630-2011规定的只有8种污染物的现值,但是车内挥发的有机物估计有好几十种甚至上百种,就算拿HJ/T 400-2007检测也不只检测8种有机物。要是其他有机物危害,难道消费者就只能默默忍受了?  还有,就算GB/T27630-2011变成强制标准,但是里面的指标和限值会不会变?是变好还是变坏?中国据说被企业绑架的标准不在少数。  有人说,不管怎么样这对第三方检测机构有好处,呵呵,真的吗?大家都知道,汽车厂商都是大佬,你拿份报告,别人不见得认可。他们可能只会认可内部或指定检测机构的报告,就类似美泰为什么要他们的供应商的实验室都通过他们的认可和CNAS认可,一定程度上也是不想认可外面第三方的报告。这种情况在汽车行业已有先例,你说这个市场能暂时开放给多少第三方?  虽然,国务院法制办关于《缺陷汽车产品召回管理条例释义》&ldquo 常见的具体缺陷表现形式&rdquo 中,就包括了&ldquo 车内的苯、甲苯、甲醛等挥发性有毒有害物质影响车内人员健康&rdquo 的解释。因此,车内空气质量问题应属于缺陷产品范畴。但是,大家都知道这些有机物的检测费用对一般消费者来说是笔不小的费用,这样算下来维权成本过高,导致大部分人可能放弃维权。这个估计也是为什么今年到4月份,国家质检总局缺陷产品管理中心就收到有关车内异味或污染问题投诉/报告1564例。维权不成(成本太高),只能投诉了!  总之,车内空气质量标准的执行是一条漫漫长路,仅仅是强制标准不见得会改变现在&ldquo 一纸空文&rdquo 的局面。
  • 博晖创新与沃森生物双向质押大安制药股权
    博晖创新与沃森生物6月24日晚间公告,将就大安制药的股权进行双向质押,以此来加强双方的合作。  2014年10月,沃森生物、博晖创新的实际控制人杜江涛以及河北大安制药有限公司签署了股权转让协议书,杜江涛受让了沃森生物持有的大安制药46%股权。2014年12月,杜江涛与博晖创新签署协议,约定博晖创新向杜江涛发行股份购买其持有的目标公司46%股权。  博晖创新表示,为继续履行股权转让协议书项下的相关事项,经各方友好协商,公司拟与沃森生物签订《股权质押协议》,将公司持有的大安制药46%股权质押给沃森生物。同时沃森生物也拟与公司签订《股权质押协议》,将其持有的大安制药44%股权质押给公司。本次股权质押有利于公司与沃森生物更好地履行股权转让协议书中约定的各项权利与义务,共同促进大安制药的持续发展。  大安制药从事血液制品的研发、生产和销售,主要产品包括人血白蛋白和人免疫球蛋白。
  • 美国首诺在苏州建成PVB材料质检测试实验室
    美国首诺公司(Solutia) 一直以来都在使用比利时的实验室来为亚洲客户进行聚乙烯醇缩丁醛(polyvinyl butyral,简称PVB)材料的质检测试。近日,为大幅缩短交货期,公司在中国苏州建成并启用一家新实验室。这家实验室的基本测试设备包括一架烘烤炉、一台恒温槽、一台抗击打测试仪和一座冲击塔。首诺公司表示还将在实验室内建造一间样品中心,按区域内客户所需提供首孚信(Saflex)业务部切片样品。  "为确保产品质量,首诺公司始终对旗下的首孚信中间膜进行严格的内外部检测。这间位于苏州的客服实验室的建成,也使得我们有能力为亚太地区的客户提供同等质量的服务。"首诺公司首孚信业务部的全球技术服务负责人马克斯洛克(Mark Slock)表示,"负责首孚信产品应用的员工将在这间实验室里对首孚信PVB中间膜制成的玻璃压制品进行检测,以保证我们的产品达到建筑、汽车和光伏产业严格的业内规范。"  首孚信业务部商业运营副总裁里克考克(Rick Calk)表示:"在苏州厂区建立实验室,使我们能够更积极主动地响应区域客户对产品质检方面提出的要求。"  新建成的实验室旨在在亚太地区内为建筑、汽车和光伏市场的客户提供压层测试服务。
  • 全流程可追溯 京东联合中国检科院看清进口燕窝“前世今生”
    p  产地、通关信息、仓储配送......进口燕窝的“前世今生”将一目了然。2月27日,京东与中国检验检疫科学研究院(以下简称“中国检科院”)宣布达成燕窝品质溯源战略合作,将携手实现电商平台进口燕窝从国外工厂到消费者手中的全流程追溯。此外,双方还将在规范线上进口燕窝制品市场秩序等方面展开深入合作,推动行业的健康发展。/pp style="text-align: center "img style="width: 600px height: 400px " title="11.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201802/noimg/c54a287a-97df-4bd9-93ff-3d0e5090fbfd.jpg" width="600" height="400"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "中国检科院与京东达成燕窝品质溯源战略合作/span/pp  “消费升级过程中,越来越多消费者更愿意为健康买单,京东数据显示,受女性用户喜爱的燕窝正在成为传统滋补品类中增长最迅速的商品之一”,京东集团副总裁、京东商城居家生活事业部总裁辛利军说这也是京东与中国检科院共同关注燕窝品类的原因。/pp  中国检科院是国家设立的公益性检验检疫中央研究机构,基于其进出口技术支撑的职责,该院建立了进口燕窝溯源体系,推出的CAIQ燕窝追溯平台及追溯标识已成为识别合法进口燕窝的有效手段。双方合作后,span style="color: rgb(0, 112, 192) "中国检科院将行业大数据共享给京东,结合京东的区块链技术,从而实现了电商平台进口燕窝产品全流程可视化追溯。京东消费者通过订单中心,或者扫描商品包装上的二维码,即可看到产品、生产商、经销商、通关、仓储配送等详细信息,从而确保购买的进口燕窝具有品质保障/span。/pp  燕窝主产于东南亚等国,在进口过程中,大量燕窝通过各种非正常渠道流入国内,而这部分燕窝产品的质量安全缺乏保障,染色、造假、掺假、以次充好等不良商业行为层出不穷。/pp  中国检科院李新实院长表示,span style="color: rgb(0, 112, 192) "CAIQ燕窝溯源体系实现了进口燕窝产品从源头到国内经销环节的追溯,而京东在自营仓储、物流配送、区块链技术方面的优势将加强进口燕窝在国内流通环节的追溯,从而实现在电商平台的全流程可追溯,更好的确保燕窝品质,帮助具有品质保障的品牌商更好的发展/span。/pp  京东商城居家生活事业部医药健康部总经理魏凯介绍说,京东已经成为国内燕窝零售的最大渠道,此次京东与中国检科院的合作将让燕窝的供应链全流程可视化,品质更加透明。此外,京东希望与中国检科院在后续开展更深入的合作,如在燕窝品质分级等领域挖掘更多合作的可能。/pp  而京东Y事业部在去年已经率先将区块链技术应用在供应链领域,据京东集团副总裁李晨介绍,结合京东物联网和大数据处理能力,与监管部门、第三方机构和品牌商共同联合打造了防伪追溯与全链条闭环的“京东区块链防伪追溯平台”。/pp  而实现燕窝区块链全流程溯源只是双方合作的第一步。根据规划,双方还将在推动燕窝品类的品质管理与升级方面进行更多深入合作,以及借助区块链、大数据和物联网等技术,打造燕窝消费新场景。/p
  • 一招搞定饮用水中的“钉子户”—全氟化合物
    全氟化合物是指:普通有机物中与碳相连的氢元素全都被氟元素所取代所产生的物质。这种特殊结构使其具有很强的化学稳定性,难以被自然降解并容易聚集在各种自然环境中及生物体内,这也是全氟化合物被当作一种新的环境污染物引起了越来越多的科学家注意的原因之一。由于全氟化合物的防水特性和化学稳定性,它被广泛应用于工业产品及家用产品的制造中,同时也大大增加了它的排放来源。目前,全氟化合物在废水和污泥、地表水、地下水、海水、海底沉积物和饮用水(自来水)中都有检出。全氟化合物的检测和分析已经成为全球关注的问题,但是这类化合物的分析依然面临很多难题比如:新标准的出台,样品量繁多;精确净化技术要求高,操作繁杂;操作过程易引入干扰物质……针对这些情况,Detelogy亮出看家法宝:iSPE-216/864智能全自动固相萃取仪逐一为大家解决难题。高通量高效率的仪器可同时完成2/8个样品的活化、上样过柱、淋洗、氮气干燥、洗脱收集等固相萃取的全过程。最多可连续批量处理16/64个样品。精确流速控制采用柱塞杆密封过柱技术,避免失速和堵柱,极大的提高了回收率与平行性同时适配大体积水样进样模块。无内源干扰及交叉污染配件均为聚丙烯材质,无特氟龙材质引起的内源性污染;采用十二通阀切换溶剂,避免共用进样针;进样前浸入式清洗进样针,避免交叉污染。得泰智造,必属精品智能控制终端和主机一体化设计,自动启停任意通道,匹配不同实验需求,可保存和调用不少于64种固相萃取方法,无需担心人员更换导致技术断层。事不宜迟,让我们来小试牛刀,Detelogy根据即将实施的GB/T 5750.8-2023 《生活饮用水标准检验方法 第8部分:有机物指标》结合iSPE-864智能全自动固相萃取仪提供饮用水中全氟化合物的前处理解决方案:水样的预处理:量取1 L待测水样,加入 4.625 g乙酸铵后pH调节至6.8~7.0,每升水样中加入同位素内标混合标准溶液100 μL,混匀,若水样浑浊需经醋酸纤维滤膜抽滤后再进行处理。水样的富集与净化:将混合型弱阴离子交换反相吸附剂(WAX)固相萃取柱装入iSPE-864智能全自动固相萃取仪,对上述水样进行净化。iSPE-864固相萃取条件溶剂用量(mL)流速(mL/min)备注活化氨水-甲醇溶液(NH3H2O)=0.1%52活化甲醇7.02活化纯水5.02上样样品10008淋洗乙酸铵水溶液(0.025 mol/L)62淋洗纯水122氮吹干燥洗脱甲醇5.02收集洗脱氨水-甲醇溶液(NH3H2O)=0.1%5.02收集注:样品处理过程避免使用特氟龙材料。若复溶后的样品出现混浊现象,必要时进行超高速离心处理。浓缩定容:将上述收集样液置于FV32Plus全自动高通量智能平行浓缩仪在≤40℃水浴温度下氮吹至近干。加入甲醇水溶液(3 7)定容至1 mL,用MultiVortex多样品涡旋混合器震荡混匀,过滤膜,待测。FV32Plus全自动高通量智能平行浓缩仪* 32位氮吹通道灵活组合,多路供气保障平行性* 兼容针追随式氮吹和涡旋式氮吹针。* 13.3寸高清智能终端,具备氮吹延时和延时压力功能。* 具备自动定容功能,可与iSPE-216/864组合使用,无缝衔接。MultiVortex 多样品涡旋混合器* 兼容性高,转速可调范围:200-3000rpm。* 小巧极简机身,主机低重心设计,运行噪声低。* 5寸高清彩色触屏,实时显示转速和运行时间,随时启停。* 支持自动和手动双模式,中英文界面自由切换。
  • 中科院精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。   干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。   研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。 涡旋物质波干涉仪的实验构型   在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。 两自旋态干涉条纹相位关系的实验测量   相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。   该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。
  • 精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。涡旋物质波干涉仪的实验构型  在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。两自旋态干涉条纹相位关系的实验测量  相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。  该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。  论文链接:https://www.nature.com/articles/s41534-022-00585-5
  • 参与全国首例丹顶鹤下义喙手术,保护珍稀动物瑞沃德一直在行动
    2022年7月21日,世界自然保护联盟(IUCN)更新濒危物种红色名录显示,长江特有物种白鲟(Psephurus gladius)已经灭绝。长江白鲟的灭绝为我们敲响了警钟,保护珍稀动物任重而道远。瑞沃德勇担社会责任,持续为珍稀动物的保护贡献力量。2020年,参与了全国首例丹顶鹤下义喙手术。2020年4月24日,吉林市野生动物保护协会接到一通来自公主岭的电话,当地村民称在家附近发现一只疑似鹤的鸟类,嘴部受伤非常严重。当吉林市野生动物保护协会工作人员赶到公主岭市后,确认该受伤动物为国家一级保护动物丹顶鹤,并发现受伤丹顶鹤的下喙已经断掉,下喙只剩根部有少许残留,无法进食,无法飞行,伤势严重,且体重很轻。吉林市野生动物保护协会副秘书长吴剑锋:“受伤的嘴部,我们怀疑是在野外求偶的时候折断的,可能撞在树桩上被折断,如果该受伤的丹顶鹤不被村民发现,这只丹顶鹤会在一个星期内饿死。”当天这只受伤的丹顶鹤被运回吉林市野生动物保护站进行救治,对其伤口进行消毒处理,并联系相关专家为丹顶鹤打造义嘴。义嘴方案经过反复推敲,并结合受伤丹顶鹤的实际情况进行考量,专家们最终决定以铝合金为材料来制作义嘴,并采取手工制作来确保义嘴的模型与丹顶鹤受伤嘴部的贴合度。2020年5月9日,手术当天,医生首先采用瑞沃德呼吸麻醉一体机对丹顶鹤进行了吸入式麻醉。确保丹顶鹤进入麻醉状态后,医生们开始安装义嘴,经过两个多小时的手术,受伤丹顶鹤有了铝合金的义嘴。2020年5月10日,手术第二天,丹顶鹤已经恢复少量进食。长达两小时的手术中,瑞沃德呼吸麻醉一体机全程为丹顶鹤的下义喙手术保驾护航。其中,R620-S1通用型动物麻醉机适用于犬、猫、猪、猴、啮齿类、爬行类以及鸟类等多种动物的临床麻醉,具有“一键式”快捷操作模式,操作简单,安全可靠;R419智能型动物呼吸机内置标准参考数据,只需要输入动物体重即可获得呼吸频率、吸呼比、潮气量等兽医需要的参数,简化操作。让我们携起手来,一起保护珍稀动物,让动物灭绝的悲剧不再上演,守护我们共同的家园。今后,瑞沃德将继续致力于保护生物多样性,共建地球生命共同体,为生命品质的提升贡献智慧和力量。
  • 西北农林科技大学惠竹梅教授团队在紫外和红外辐射对转色期酿酒葡萄挥发性香气组分的影响研究方面取得进展
    近期,西北农林科技大学葡萄酒学院惠竹梅教授团队在紫外和红外辐射对转色期酿酒葡萄挥发性香气组分的影响研究方面取得进展。研究以“Effects of ultraviolet and infrared radiation absence or presence on the aroma volatile compounds in winegrape during veraison”为题在《Food Research International》发表。论文第一作者为博士研究生尹海宁,通讯作者为王雪飞副教授和惠竹梅教授。   香气是葡萄酒重要的品质因子。光环境因素显著影响酿酒葡萄的香气积累和组成,而其中非可见光对葡萄生长发育过程中香气物质形成的影响研究较少。本研究通过葡萄果穗套袋分别阻隔紫外(UV)和红外(IR)辐射,并在体外用紫外或红外辐射照射葡萄果穗,采用HS-SPME-GC-MS和HS-GC-IMS研究了紫外和红外辐射对赤霞珠葡萄香气组分的影响。阻隔紫外辐射(UV-)或红外辐射(IR-)下,葡萄果实中鉴定出16种香气化合物,包括脂肪醇类、脂肪酸类、苯环类、醛类和单萜类。紫外辐射照射(UV+)或红外辐射照射(IR+)下,葡萄果实中鉴定出23种香气化合物,分为脂肪醇类、脂肪酮类、脂肪酯类、脂肪酸类、单萜类、醛类、挥发性酚类和其他挥发物。根据OPLS-DA分析,紫外辐射显著影响芳樟醇和己醛含量。己醛含量在UV-处理下升高,在UV+处理下降低,表明紫外辐射抑制己醛物质的合成代谢。根据VIP值,与对照相比,苯甲醛和2-癸酮分别是IR-和IR+处理下的主要差异香气物质。HS-GC-IMS分析了三种紫外和红外辐射强度下的香气物质差异,结果表明,乙酸、2-甲基丁醛和戊醛的含量随辐射强度的增加而降低,2-3-丁二酮、乙酸丁酯和1-己醇的含量随辐射强度的增加而增加,且紫外辐射的作用更显著。该研究提高了我们对非可见光在挥发性香气物质积累中的作用的认识,并进一步拓展了酿酒葡萄产业促进生长发育可利用的有效波长范围,为非可见光在田间和温室栽培技术应用提供了理论依据。   该研究得到国家重点研究计划和国家现代农业产业技术体系专项资金的资助。
  • “那不是空调,是我寒冬中生命的源泉”
    小菲发现到了冬天菲粉们对红外世界的探索兴趣更加浓厚了哟小菲筛选了几组有意思的图片分享给各位菲粉们~1“充电站和叉车电池的红外检查,不错哦,检查是安全哒~!”2“冬天到了,快看我的暖气,在源源不断地散发着热气,保证室内的温度~”3“开会中,打个小岔,看看各位大佬们在红外世界中是怎样的,果然你们都是大红脸,哈哈!”4"冬天出门总是有点麻烦,开车前要先给车启动除霜,等待的时刻干点什么呢?用我的菲力尔检查下除霜的过程吧~"5"在高尔夫球场打球,休息的片刻,拿出我的菲力尔,看看球道和排水管,发现他们在红外世界的区别还是蛮大的呀~"6"看那是什么?那不是空调,是我寒冬中生命的源泉~~~"7“新买的红茶壶,看看保温效果怎么样,不错哦~放了这么长时间水温还保持80℃以上呢!"8"早上来杯热气腾腾的咖啡,一天的时间都会元气满满,快看我的咖啡在红外世界中闪闪发光,一定会给我带来好运哒~"空调是生命源泉的哪位菲粉怕不是要笑哭小菲了看到大家分享的生活点滴小菲的生活也变得有趣了呢所以,亲爱的菲粉们快来投稿吧等你有趣分享哦~
  • 自制质谱仪助力科学岛团队探明氯原子与异丁烯醛大气氧化反应的化学机制
    近日,中科院合肥研究院安光所张为俊研究员团队在氯(Cl)原子引发的异丁烯醛(Methacrolein,MACR,化学分子式C4H6O)大气氧化反应研究方面取得新进展,相关论文以“基于光电离质谱检测技术的氯原子引发异丁烯醛氧化反应研究”为题在线发表在英国皇家化学学会期刊Physical Chemistry Chemical Physics上。   氯原子相比于大气中的其它氧化剂(OH自由基、臭氧O3等)具有更高的反应活性,随着近年来在内陆地区浓度的增加,氯引发的大气氧化过程的重要性越发显著。异丁烯醛是生物源挥发性有机物异戊二烯(C5H8)大气氧化的特征中间产物,具有较高的化学活性,其氧化降解对于大气臭氧和二次有机气溶胶的生成具有重要影响。   实验中,唐小锋研究员和林晓晓副研究员等人采用微波放电流动管反应器模拟大气氧化反应,结合实验室自行研制的真空紫外光电离反射式飞行时间质谱仪,在线检测氯原子引发异丁烯醛氧化过程中的反应物、中间体自由基和产物,开展了低NOx条件下氯原子与异丁烯醛的氧化反应机理研究。   结果表明,氯原子与异丁烯醛之间通过夺氢和加成反应分别生成C4H5O和C4H6OCl自由基,且与氧气(O2)进一步反应生成C4H5OO2 和 C4H6OClO2过氧自由基。在低氮氧化物(NOx,NO和NO2)条件下,过氧自由基继续与自身以及HO2自由基发生双分子反应,产生C4H5OO、C3H5OCl、C4H6OClO2H等产物。通过关键产物的动力学实验,结合高精度理论计算分析,获得了氯原子与异丁烯醛氧化反应详细的化学机制,有助于理解异丁烯醛在大气中的化学行为。   本文研究工作得到了国家自然科学基金、中科院国际合作重点项目和合肥大科学中心重点研发项目课题的经费支持。添加O2前后Cl和异丁烯醛反应的光电离质谱图氯原子引发异丁烯醛氧化反应机理图
  • 涂料净味攻略-专业气味分析设备GC-O-MS找到气味关键组分
    随着人们对健康安全的诉求,消费者对车饰,家具,生活用品,玩具散发出来的气味越来越敏感。气味时刻影响着用户的生活体验感,成为影响产品销售的重要因素之一。通过气味解决方案来改善用户最终的体验是未来的趋势。找到涂料气味来源涂料通常是以树脂、或油、或乳液为主,添加颜料、相应助剂,用有机溶剂或水配制而成的粘稠液体。按涂料使用分散介质可以将涂料分为溶剂型涂料和水性涂料(乳液型涂料、水溶性涂料)。涂料中的气味来源主要来自树脂、乳液、助剂、有机溶剂中的游离单体,也即挥发性的有机物VOCs。 根据化合物的气味阈值,有些即使浓度非常低,也会产生令人不悦的气味。只有找到气味来源,才能的放矢的解决气味问题,从而有针对性的进行原材料和工艺的优化。GERSTEL提供全面的解决方案高效的采样技术,对涂料中的VOCs进行全面的捕集无歧视的进样技术,使分析物100%进入色谱分析设备灵敏的嗅闻嗅辨技术,准确找到气味所对应的化合物强大的气味物质数据库,锁定气味化合物的化学式案列介绍水溶性树脂(示意图)样品:水性树脂 采样技术:搅拌棒吸附萃取 SBSE采样过程:将是适量样品放入20ml的顶空瓶,加入适量水稀释,放入带PDMS吸附层的搅拌质子Twister(10mm长,层厚1mm),在室温下搅拌萃取1小时。 进样:萃取结束后,使用GERSTEL TDU2 热脱附单元进行热脱附进样嗅闻嗅辨:使用嗅觉检测口ODP4进行GC-O-MS分析数据处理: 使用GERSTEL嗅觉数据处理软件ODI对气味物质进行分析和锁定使用Twister搅拌吸附棒萃水性树脂样品流程(示意图)使用SBSE-TD-GC-O-MS技术得到的水溶性树脂色谱图和嗅觉图的重叠视图通过GC-O-MS技术检测到的气味化合物(列出部分)及对应的气味描述保留时间化合物风味描述8.53正丁基醚醚、化学味、果味11.22乙酸丁酯果香、苹果香、胶水、刺激12.75乙苯芳香、汽油、胶水13.14丙酸丁酯甜、果香、苹果香14.192-丙烯酸丁酯刺激气味、果香15.38丁酸丁酯苹果香、果香23.90苯甲醛杏仁、焦糖、苦33.531-十二烷醇脂肪、刺激43.40二苯甲酮玫瑰,甜味表面活性剂(示意图)样品:表面活性剂 采样技术:薄膜固相微萃取 TF-SPME采样过程:取适量样品放入20ml的顶空瓶,在一定温度下,萃取1小时。 进样:萃取结束后,使用GERSTEL TDU2 热脱附单元进行热脱附进样嗅闻嗅辨:使用嗅觉检测口ODP4进行GC-O-MS分析数据处理: 使用GERSTEL嗅觉数据处理软件ODI对气味物质进行分析和锁定使用TF-SPME薄膜固相微萃取技术萃取表面活性剂样品(示意图)使用TF-SPME-TD-GC-O-MS技术得到的表面活性剂色谱图和嗅觉图的重叠视图通过GC-O-MS技术检测到的气味化合物(列出部分)及对应的气味描述保留时间化合物气味描述6.58丁醛辛辣的、青草气8.72戊醛杏仁、麦芽、辛辣11.63己醛 醛味、青草、 脂肪14.292-庚酮奶酪、肥皂14.38庚醛脂肪、柑橘、酸败15.612-戊基呋喃 绿豆、黄油17.35辛醛 脂肪、肥皂、柠檬20.25壬醛 脂肪、胶水、涂料、柑橘、清香21.24E-2-辛烯醛醛、杏仁、坚果、脂肪、青草气21.47蘑菇醇土腥、蘑菇21.641-庚醇化学, 割青草的气味、刺激22.95癸醛肥皂、脂肪、橘子、牛油24.232-甲基丁酸辛酯蜡、果香、割青草的气味26.602-癸烯醛醛、鸡油、橙子29.092-十一碳烯醛脂肪、肥皂、刺激、甜味30.42 2,4-癸二烯醛油、 蜡、脂肪33.421-十二烷醇脂肪、刺激35.06γ-壬内酯 椰子、桃子37.291-十四烷醇脂肪、椰子总结在通过GERSTEL涂料解决方案可以准确找到产品中的气味化合物,并针对其气味特征,选出“可疑”的异味来源。厂家通过去除,减少和替换这些可疑的候选名单中的化合物,达到去除异味的目的,实现净味涂料的目标。 这个解决方案不但适合与涂料,也同样适合于汽车内饰、胶粘剂、玩具、消费品等的气味评价和净味产品的研发。
  • 珠海市广通汽车有限公司订购我司汽车ABS测定仪
    珠海广通汽车有限公司,1999年08月30日成立,经营范围包括客车、客车底盘、医疗车、轻型客车和载货车及零部件的开发、制造与销售(具体型号按工信部公告的型号执行)等。广通汽车是国家十一五863计划的协办单位,其中LNG环保公交车更是获得国家863项目验收专家高度评价,特别是成功承接香港九龙双层巴士的加工业务后,一跃成为英国亚历山大在亚洲唯一加工商,同时成为国内唯一全面掌握全铝车身工艺和全面掌握最先进的双层巴士制造工艺的企业。先进的工艺技术,也赢得了香港高端旅游巴士公司的认可,先后成为香港捷联汽运等多家客运企业的供应商,成为国内最早通过欧盟认证,出口意大利的中国客车企业。 珠海市广通汽车有限公司订购我司汽车ABS测定仪。
  • pvc(糊树脂)难溶甲醇,听听禾工技术员怎么说
    pvc糊树脂是一种特殊的pvc,外观为白色细微粉末,主要用于制造人造革、纱窗、汽车胶、壁纸、地板卷材、玩具等。生产过程中,pvc糊树脂中水分含量是一项重要的测量指标,对生产具有重要的指导意义。 国家标准GB-T2914-20008《塑料 氯乙烯均聚合共聚树脂挥发物(包括水)的测定》方法中主要测定树脂本身所含有的水分及挥发性有机杂质,这些组分在加工过程中将成为气泡含于制品中,影响制品的强度、外观等性能,是衡量糊树脂产品质量的一项重要指标。但是由于国家标准分析方法采用烘箱法,且糊树脂具有颗粒小、质量轻、有静电等特点,所以环境条件和设备条件对分析结果影响很大,分析结果准确度和可靠度不高。卡尔费休法在测定物质水分的各类化学方法中,是世界公认的测定物质水分含量的最为专一和准确的经典方法。使用卡尔费休水分测定仪可快速的测出糊树脂中的水分含量,但是由于糊树脂不溶于甲醇,不能直接与卡尔费休试剂反应,因此我们需要卡尔费休水分测定仪与卡式加热炉一起使用。使用禾工AKF-PL2015C卡氏水分仪(配有卡式加热炉)把糊树脂样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析。 使用禾工AKF-PL2015C卡氏水分仪的优势:AKF-PL2015C塑料粒子专用水分测定采用瓶式加热技术,既能避免反应杯和加热炉膛污染问题,也能减少载气消耗。无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结 操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。 塑料粒子(树脂)含水量专用卡尔费休水分测定仪测定范围: 适用多种塑料粒子的生产及注塑,实现塑料粒子的水分含量检测。可测定abs、聚丙烯酰胺(pam)、聚酰胺(pa)、聚氯乙烯(pvc)聚碳酸酯(pc)、聚乙烯(pe)。聚对苯二甲酸乙二醇酯(pet)、聚甲基丙烯酸甲酯(亚克力、pmma)、聚丙烯(pp)、聚苯乙烯(ps)、聚乙烯醇缩丁醛(pvb)、硅橡胶塞等等。禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!您得到的不仅仅是一份报告,更可能是一份行业专业的解决方案!
  • 加拿大修订肟菌酯和甜菜安残留限量
    今年11月,加拿大卫生部发布 EMRL2012-51号通报和EMRL2012-52号通报,称有害生物管理局修订了肟菌酯和甜菜安分别在香蕉中和菠菜、甜菜中的最大残留限量。具体内容是,肟菌酯在香蕉中的最大残留限量为0.1ppm 甜菜安在菠菜中的最大残留限量为6ppm 在甜菜根中的最大残留限量为0.1ppm。  据了解,肟菌酯属于甲氧基丙烯酸类杀菌剂,对几乎所有真菌纲病害,如白粉病、锈病、网斑病、霜霉病、稻瘟病等均有良好的活性作用。甜菜安则是一种除草剂,适用于甜菜作物,特别是糖甜菜,用于控制阔叶杂草生长。  对此,检验检疫部门提醒相关生产和出口企业:一是加强与客户沟通,及时了解加拿大方面法律法规的最新修订情况,尽早作出调整 二是建立健全自检自控体系,尤其是在水果、蔬菜种植及后续生产、包装等过程中加大检测力度,一定要选择规模大、信誉度高的机构进行检测,确保产品符合加拿大的相关规定 三是及时与检验检疫部门联系,在产品出口前做好抽样与检测工作,确保产品顺利出口。
  • 阿拉丁(Aladdin)荣获“我最爱的试剂品牌”第一名
    近期,chemical book 平台颁发的2016年“我最喜爱的试剂品牌”,阿拉丁荣获第一名此次评选再一次验证了阿拉丁在客户群体中的良好口碑,这一殊荣是阿拉丁全体员工共同奋斗的结果,也是广大客户大力支持的结果。对此,我们向长期以来一直给予我司关注以及支持的科研用户们表示诚挚的感谢!阿拉丁产品质量稳定、客户满意度高,获得了国内外同行和业界的广泛赞誉。同时,贯彻先进的“互联网+"思维模式,为客户带来全新的购物体验。 2017年,阿拉丁将继续本着“为科研创造价值,让科研更为便捷”的使命,矢志成为全球一流的研发试剂及耗材供应商。
  • 生产工艺核对“来袭”,科学仪器如何把握“动荡”中的制药圈
    p  自2015年的“7.22临床试验自查核查”开始,医药圈一直震荡不断。行业相关政策公告接踵而至,令人应接不暇,网上甚至有网友直言“现在的阅读速度已经无法跟上法规颁布的速度了”。整个制药行业面临严峻考验,大洗牌在即,虽有阵痛,但也意味着我国制药行业正在朝更加正规、更加先进的方向发展,对我国药品的质量、人民用药安全无疑是一件非常有意义的好事。另外,制药行业在面临彻底改革的同时,又给分析仪器市场带来了巨大商机。仪器厂商面对瞬息万变的制药行业,该如何把握机遇?从哪些方面占领市场先机?仪器信息网编辑就此粗浅分析如下:/pp  span style="color: rgb(0, 112, 192) "strong药品生产工艺核对再次震荡制药圈/strong/span/pp  8月12日,CFDA正式对外发布了《关于开展药品生产工艺核对工作的公告(征求意见稿)》,要求药品生产企业应对每个批准上市药品的生产工艺开展自查,排除质量安全隐患。药品生产企业应于2016年10月1日前完成自查并将自查情况报所在地省级食品药品监管部门。生产工艺变化对药品质量产生影响的,企业应立即停产。/pp  药品生产工艺是持续稳定地生产出合格药品的过程和方法,按照监管部门批准的生产工艺组织生产是保障药品质量的前提。企业获批进行药品生产需要向监管部门提交生产标准并得到生产证书,但这一生产标准很多并不是实际应用的工艺。或出于节约成本的目的,或为了工艺“保密”,实际工艺与注册不符在我国制药行业也是一个长期默认的“潜规则”。从研发端到生产端再到流通端,兼以飞行检查贯穿产业链,环环相扣,国家打出了一系列的组合拳,而这次生产工艺核查其本质上是继 GMP 检查之后对生产端供给侧改革的又一大动作。/pp  据悉,目前各个制药企业都在组织人员梳理、研究本厂的生产工艺,更是有觉悟早的企业已经根据过去的工作经验,开始制定生产设备、相应分析仪器及标准品的购买计划。/pp  仿制药一致性评价针对的是化学药领域289个品种,涉及近两万个文号 而生产工艺核对,则是针对包括化学药、生物药和中药的所有企业。加之有很大一部分药厂要同时面对仿制药一致性评价及工艺核对两项工作量巨大的任务,对分析仪器的需求可想而知。/pp span style="color: rgb(0, 112, 192) "strong 药包材、辅料关联审评审批终出台/strong/span/pp  8月10日,CFDA发布了《关于药包材药用辅料与药品关联审评审批有关事项的公告》,药包材和药用辅料关联审评终于有了实质性进展。/pp  由于历史原因,我国专业的药用辅料生产企业不多,一些常规辅料多由化工、食品生产企业生产。据不完全统计,我国现有内资的药用辅料生产企业约400家,其中专业从事药用辅料生产的企业仅占23%,而化工企业约占17%,食品与其他企业约占60%。国内还有外资药用辅料企业10多家。国产药用辅料在质量及功能性方面仍与进口辅料也有一定差距。新政出台后,提高辅料品种及其质量标准、加强其功能性,甚至为下游制剂企业提供个性化产品也是我国药用辅料企业极为紧迫的任务。/pp  新政提高辅料生产门槛后,国内某些化工企业若要继续拓展辅料市场,需配备专门的药学研发人员以及符合GMP(生产质量管理规范)的生产车间和质量管理体系才能抢占市场先机。据悉,国内较大规模的企业已着手对车间进行升级改造并着手购买先进的分析仪器,以提升产品质量和规模。值得关注的是,行业外一些企业看到辅料市场的发展前景后,也有意发展这一领域,并已开始准备进行车间改造及仪器购买。/pp  未来,伴随我国制药工业的发展,药用辅料质量必将有所提高,而药用辅料质量检测及功能性研究均离不开先进的科学仪器,在这一蓬勃发展的市场之中,科学仪器厂商必可争得一席之地。/pp  span style="color: rgb(0, 112, 192) "strong仿制药一致性评价工作步入正轨/strong/span/pp  8月17日, CFDA官网公布了2018年底前须完成仿制药质量和疗效一致性评价品种的批准文号数量,包括289个品种17740个文号。目录的出台,使得仿制药一致性评价的厂家和品种的具体情况更加明确,通过一致性评价,一大批仿制药文号或将被清理,最终提高我国化学仿制药品的生产质量。/pp  关于仿制药一致性评价的内容,行业内人士都已非常熟悉。进入2016年来,国家频发的政策通告等,在表明国家整顿仿制药质量决心的同时,也一步步明确了一致性评价工作的流程,除公布原研对照药进口要求、申报资料要求外,还明确了溶出度仪验证的方法。另外,在之前公布的“征求意见稿”中,体外溶出试验方法的耐用性主要是针对色谱系统包括色谱柱、流动相的耐用性。在“试行稿”中,则将不同溶出仪之间的结果差异考察作为建立体外溶出试验方法的耐用性溶出量检测方法的方法学验证结果考察。以往的体外溶出度一致性评价试验中,仅通过同一台溶出度仪四种不同溶出介质即可完成试验,“试行稿”出台后,若想完成体外溶出度试验,则至少需要两台不同品牌的溶出度仪。仿制药一致性评价工作时间紧、任务重,我国很大一部分药厂都拥有若干仿制药品种,如每个品种都进行工艺改进已达到“一致性”目的,溶出试验及溶出度测定的试验工作量势必可观,稳定、可靠、可长时间运行、配备自动取样系统甚至在线测定系统的溶出度仪以及溶出度测定仪器(液相/紫外等)都会更受市场欢迎。/pp  span style="color: rgb(0, 112, 192) "strong中药领域将迎来爆发式发展/strong/span/pp  2月3日,国家取消了中药材生产质量管理规范(GAP)认证、2月26日,国务院印发中医药发展战略规划纲要(2016—2030年)、8月11日,《中医药发展“十三五”规划》正式出台。相对于我国医药行业其他子行业,可以说中药领域半年来出台的政策法规大多为利好政策。/pp  取消中药材生产质量管理规范(GAP)认证后,将由中药生产企业(包括饮片、中成药生产企业)对产品生产全过程的质量保证负责。国家取消GAP认证,并不意味着放任不管,而是变由企业自身切实对药材质量负责。另外,“国家中药标准化项目”也在切实推进过程之中。国家推行的一些列政策都提示,质量控制并不仅仅存在于药品生产的最后阶段,而是贯穿生产全过程,甚至存在于中药材的种植阶段。保证中药材种植、中药饮片生产、中成药生产全过程均有相应质量标准和技术规范来保障质量,并做到产品与标准均可溯源,可以说,这一发展目标对快速、稳定的在线分析仪器市场来说是个巨大的利好。目前我国已有少部分中药生产企业将近红外、拉曼等在线分析技术应用到生产之中,这也将是未来的发展趋势。另外,不论是“中医药发展纲要”,还是“中医药十三五规划”,都明确指出未来我国中药质量标准要与国际接轨,甚至要引领国际水平。而且在未来几年,我国还将建设一系列独立、权威、具有公信力的第三方质量检测技术平台,为医疗机构、相关企业、药品采购机构、公众和新闻媒体等提供中药质量检测和信息服务。从这几个方面来说,科学仪器在中药行业都将迎来爆发式发展。/pp  近两年的制药行业正面临着力度空前的改革,未来,行业集中度将获得极大提升。正如业内人士所言:“熬过了这些关的企业必定就是好企业”。经过这一系列的改革,我国药物质量将会得到实质性的提高,药物质量标准与检测技术也将与国际先进水平进一步接轨。在这一蓬勃发展的市场之中,少不了科学仪器这一重要角色,在未来制药行业之中,科学仪器的市场也将进一步扩大,为保证我国人民用药安全贡献力量。(撰稿 :王明煜)/p
  • 加拿大拟定肟草酮等杀虫剂最大残留限量
    近日,加拿大发出多项通报,加拿大卫生部有害生物管理局(PMRA)拟对杀虫剂肟草酮(Tralkoxydim)、甲酰胺磺隆(Foramsulfuron)、氟胺磺隆(triflusulfuron-methyl)和戊唑醇(Tebuconazole)制定最大残留限量。法规规定:肟草酮在黑麦和黑小麦中的最大残留限量为0.02ppm 甲酰胺磺隆在爆米花玉米粒、带穗轴去皮甜玉米的最大残留限量为0.01ppm 氟胺磺隆在红甜菜根、红甜菜头中的最大残留限量为0.01ppm 戊唑醇在大麦、燕麦中的最大残留限量为0.15ppm,在干大豆中的最大残留限量为0.08ppm.上述通报目前正在征求意见中。
  • 工信部公示370项行标 近60项与色谱光谱等相关
    pspan style="FONT-FAMILY: 黑体, SimHei"  根据行业标准制修订计划,相关标准化技术组织等单位已完成《静态混合器》等221项机械行业标准、《飞机燃油系统供输油泵系列型谱》等8项航空行业标准、《使用可燃性制冷剂房间空调器产品运输的特殊要求》等4项轻工行业标准、《油酸聚氧乙烯醚》等83项化工行业标准、《耐火缓冲泥浆》等46项冶金行业标准、《天然石材墙地砖》等8项建材行业标准的制修订工作。在以上370项行业标准批准发布之前,为进一步听取社会各界意见,特予以公示,截止日期2016年7月22日。/span/ppspan style="FONT-FAMILY: 黑体, SimHei"  原表下载:/spanimg src="http://www.instrument.com.cn/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="FONT-FAMILY: 黑体, SimHei TEXT-DECORATION: underline" href="http://img1.17img.cn/17img/files/201606/ueattachment/ad700917-c13b-429f-a1ad-4c5c396e51b6.doc"span style="FONT-FAMILY: 黑体, SimHei"370项行业标准公示汇总表.doc/span/a/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: 黑体, SimHei"  工业和信息化部科技司/span/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: 黑体, SimHei"  2016年6月22日/span/pp style="TEXT-ALIGN: left"span style="FONT-FAMILY: 黑体, SimHei"————/span/pp  此次公示的370项行业标准中有350项为化工、机械和冶金行业标准。据不完全统计,这350项标准中至少有59项与科学仪器、化学分析相关,其中包括空气中挥发性有机物在线气相色谱仪标准、工业用五氯化磷、铁含量的测定-分光光度法、氮化钒铁 硅、锰、磷、铝含量的测定-电感耦合等离子体原子发射光谱法等。仪器信息网编辑将这59项标准按行业摘列如下:/ppspan style="COLOR: rgb(192,0,0) FONT-SIZE: 20px"strong化工行业:/strong/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytrtd/tdtdp style="TEXT-ALIGN: center"HG/T 4998-2016/p/tdtdp style="TEXT-ALIGN: center"油酸聚氧乙烯醚/p/tdtdp style="TEXT-ALIGN: center"本标准规定了油酸聚氧乙烯醚(PEG400单油酸醚、PEG600单油酸醚)的结构式、命名、技术要求、采样、试验方法、检验规则及标志、包装、运输和贮存。 br/ 本标准适用于由油酸与环氧乙烷聚合而成的产品。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 4999-2016/p/tdtdp style="TEXT-ALIGN: center"三苯乙烯基苯酚聚氧乙烯醚/p/tdtdp style="TEXT-ALIGN: center"本标准规定了三苯乙烯基苯酚聚氧乙烯醚的结构式、命名、技术要求、采样、试验方法、检验规则及标志、包装、运输和贮存。 br/ 本标准适用于由苯酚与苯乙烯反应成苯乙烯基苯酚后,再与约26mol环氧乙烷聚合而成的产品,属于非离子表面活性剂,用于有机磷农药乳化剂的主要成分,纺织印染助剂中的染色助剂等。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5000-2016/p/tdtdp style="TEXT-ALIGN: center"乳化剂OS/p/tdtdp style="TEXT-ALIGN: center"本标准规定了乳化剂OS的外观、技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。 br/ 本标准适用于顺丁烯二酸酐与烷基苯酚聚氧乙烯醚反应后再磺化而制得的乳化剂OS。主要用于涂料工业和皮革工业。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5001-2016/p/tdtdp style="TEXT-ALIGN: center"乳化剂S-85/p/tdtdp style="TEXT-ALIGN: center"本标准规定了乳化剂S-85的技术要求、试验方法、检验规则、标志、包装、运输、贮存等。 br/ 本标准适用于山梨醇脱水后与三倍油酸酯化而制得的乳化剂S-85,该产品主要用于纺织、金属加工、太阳能电池浆料等工业作乳化剂、防锈剂、分散剂等。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5002-2016/p/tdtdp style="TEXT-ALIGN: center"渗透剂T/p/tdtdp style="TEXT-ALIGN: center"本标准规定了渗透剂T的外观、技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。 br/ 本标准适用于琥珀酸酯磺酸钠的渗透剂T。主要用于纺织和皮革等工业渗透剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5003-2016/p/tdtdp style="TEXT-ALIGN: center"静电防止剂SN/p/tdtdp style="TEXT-ALIGN: center"本标准规定了静电防止剂SN的外观、技术要求、采样、试验方法、检验规则及标志、包装、运输、贮存。 br/ 本标准适用于二甲基十八叔胺和硝酸反应后与环氧乙烷缩合而制得的产品,称为静电防止剂SN,主要用于聚酯等合成纤维的纺丝静电消除剂,真丝静电消除剂,涤纶仿真丝织物碱减量促进剂等。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5005-2016/p/tdtdp style="TEXT-ALIGN: center"锅炉用水和冷却水分析方法 钙、镁、铁、锌、铜含量的测定 电感耦合等离子体发射光谱(ICP-OES)测定法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了锅炉用水和冷却水中钙、镁、铁、锌、铜含量的测定方法 电感耦合等离子体发射光谱法。 br/ 本标准适用于锅炉用水和冷却水中钙、镁、铁、锌、铜含量的测定,也适用于各种工业用水、原水和生活用水中钙、镁、铁、锌、铜含量的测定。该方法适用于钙含量0.02mg/L~200mg/L;镁含量0.02mg/L~200mg/L;铁含量0.02mg/L~100mg/L;锌含量0.02mg/L~100mg/L;铜含量0.02mg/L~100mg/L范围的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 3642-2016/p/tdtdp style="TEXT-ALIGN: center"水处理剂 丙烯酸-2-甲基-2-丙烯酰胺基丙磺酸类共聚物/p/tdtdp style="TEXT-ALIGN: center"本标准规定了水处理剂 丙烯酸-2-甲基-2-丙烯酰胺基丙磺酸类共聚物的要求、试验方法、检验规则以及标志、包装、运输和贮存。 br/ 本标准适用于以丙烯酸为主体,与2-甲基-2-丙烯酰胺基丙磺酸等聚合而成的二元或多元共聚物。该产品主要用作工业水处理中的阻垢分散剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5010-2016/p/tdtdp style="TEXT-ALIGN: center"阻燃剂用磷酸二氢铵/p/tdtdp style="TEXT-ALIGN: center"本标准规定了阻燃剂用磷酸二氢铵的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。 br/ 本标准适用于阻燃剂用磷酸二氢铵。该产品是生产磷酸铵盐型灭火剂的主要原料。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5020-2016/p/tdtdp style="TEXT-ALIGN: center"工业氨基磺酸铵/p/tdtdp style="TEXT-ALIGN: center"本标准规定了工业氨基磺酸铵的要求、试验方法、检验规则及标志、包装、运输、贮存和安全。 br/ 本标准适用于工业氨基磺酸铵。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5021-2016/p/tdtdp style="TEXT-ALIGN: center"工业氨基磺酸钠/p/tdtdp style="TEXT-ALIGN: center"本标准规定了工业氨基磺酸钠的要求、试验方法、检验规则及标志、包装、运输、贮存和安全。 br/ 本标准适用于工业氨基磺酸钠。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5027-2016/p/tdtdp style="TEXT-ALIGN: center"丁醛气相加氢制丁醇催化剂催化性能试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了丁醛气相加氢制丁醇催化剂催化性能试验方法。 br/ 本标准适用于以铜、锌、铝为主要原料,以共沉淀法制备的丁醛气相加氢制丁醇催化剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5028-2016/p/tdtdp style="TEXT-ALIGN: center"丁醛气相加氢制丁醇催化剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了丁醛气相加氢制丁醇催化剂化学成分分析方法。 br/ 本标准适用于丁醛气相加氢制丁醇催化剂中氧化锌(ZnO)、氧化铜(CuO)、三氧化二铝(Al2O3)、三氧化二铁(Fe2O3)、氧化钠(Na2O)、水(H2O)、烧失量质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5030-2016/p/tdtdp style="TEXT-ALIGN: center"硫化钴钼用催化剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了硫化钴钼用催化剂化学成分分析方法。 br/ 本标准适用于硫化钴钼用催化剂中有效硫、钴、钼、氯、钙、镁、水分质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5031-2016/p/tdtdp style="TEXT-ALIGN: center"常温活性炭载碱脱硫剂硫容试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了常温活性炭载碱脱硫剂硫容试验方法。 br/ 本标准适用于在常温条件下脱除天然气、焦炉气、煤气等各种化工原料气中硫化物的活性炭载碱脱硫剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5032-2016/p/tdtdp style="TEXT-ALIGN: center"活性炭载碱脱硫剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了活性炭载碱脱硫剂化学成分分析方法。 br/ 本标准适用于天然气、炼厂气、液化石油气、催化汽油以及轻质油品的脱硫精制用活性炭载碱脱硫剂中氧化钠(Na2O)、氧化钾(K2O)、氧化钙(CaO)、氧化镁(MgO)、铁(Fe)、二氧化硅(SiO2)和烧失量质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5034-2016/p/tdtdp style="TEXT-ALIGN: center"铂系苯加氢制环己烷催化剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了铂系苯加氢制环己烷催化剂化学成分分析方法。 br/ 本标准适用于铂系苯加氢制环己烷催化剂中铂、氧化钠、三氧化二铁、烧失量以及水质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5035-2016/p/tdtdp style="TEXT-ALIGN: center"硝基苯加氢制苯胺催化剂催化性能试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了硝基苯加氢制苯胺催化剂催化性能试验方法。 br/ 本标准适用于以铜为活性组分、通过溶解吸附制备,主要用于流化床的硝基苯加氢制苯胺催化剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5036-2016/p/tdtdp style="TEXT-ALIGN: center"常温有机硫转化吸收催化剂催化性能试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了常温有机硫转化吸收催化剂的催化性能即活性试验方法。 br/ 本标准适用于脱除工业原料气中微量硫氧化碳和/或二硫化碳的常温转化吸收催化剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5037-2016/p/tdtdp style="TEXT-ALIGN: center"甲醇制氢催化剂活性试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了甲醇制氢催化剂的活性试验方法。 br/ 本标准适用于制氢工艺中甲醇加水制备氢气用催化剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 2780-2016/p/tdtdp style="TEXT-ALIGN: center"一氧化碳耐硫变换催化剂低压活性试验方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了一氧化碳耐硫变换催化剂的低压活性试验方法。 br/ 本标准适用于工况压力小于3.0MPa的合成氨及制氢等装置中,一氧化碳加水蒸气制氢用一氧化碳耐硫变换催化剂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5040-2016/p/tdtdp style="TEXT-ALIGN: center"预还原型氨合成催化剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了预还原型氨合成催化剂化学成分分析方法。 br/ 本标准适用于合成氨装置中,氢和氮反应制取氨用的预还原型氨合成催化剂中总铁(Fe)、氧化钾(K2O)、氧化钙(CaO)、氧化镁(MgO)、二氧化硅(SiO2)、二氧化钛(TiO2)、磷(P)、钴(Co)质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 3555-2016/p/tdtdp style="TEXT-ALIGN: center"轻油转化催化剂化学成分分析方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了轻油转化催化剂化学成分分析方法。 br/ 本标准适用于轻油转化催化剂中氧化镍(10 %~50 %)、三氧化二铝(20 %~70 %)、氧化钙(10 %~15 %)、氧化镁(10 %~15 %)、三氧化二铁(0.5 %~1 %)、二氧化钛(0.5 %~1 %)、二氧化硅(0.5 %~13 %)、氧化钾(2 %~6 %)、二氧化锆(0.3 %~1 %)和烧失量质量分数的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5041-2016/p/tdtdp style="TEXT-ALIGN: center"化妆品用氢氧化钠/p/tdtdp style="TEXT-ALIGN: center"本标准规定了化妆品用氢氧化钠的要求、采样、试验方法、检验规则以及标志、包装、运输、贮存和安全。 br/ 本标准适用于化妆品用氢氧化钠。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5042-2016/p/tdtdp style="TEXT-ALIGN: center"工业用五氯化磷 铁含量的测定 分光光度法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了工业用五氯化磷中铁含量测定的方法。 br/ 本标准适用于工业用五氯化磷中铁含量大于或等于0.0001%的产品。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5043-2016/p/tdtdp style="TEXT-ALIGN: center"工业用五氯化磷 重金属含量的测定 目视比色法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了工业用五氯化磷中重金属含量测定的方法。 br/ 本标准适用于工业用五氯化磷中重金属含量大于或等于0.0001%的产品。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5044-2016/p/tdtdp style="TEXT-ALIGN: center"工业用五氯化磷 砷含量的测定 砷斑法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了工业用五氯化磷中砷含量测定的方法。 br/ 本标准适用于工业用五氯化磷中砷含量大于或等于0.0001%的产品。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5077-2016/p/tdtdp style="TEXT-ALIGN: center"光学功能薄膜 近红外光谱透过率的测量方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了光学功能薄膜近红外区(780 nm~2500 nm)光谱透过率的测量方法。 br/ 本标准适用于光学功能薄膜近红外光谱透过率的测量,也适用于其他透明或半透明物体近红外光谱透过率的测量。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"HG/T 5081-2016/p/tdtdp style="TEXT-ALIGN: center"纺织染整助剂 有机硅整理剂 硅含量的测定/p/tdtdp style="TEXT-ALIGN: center"本标准规定了有机硅整理剂中硅含量的硅钼蓝分光光度测定法。 br/ 本标准适用于有机硅整理剂产品中硅含量的测定。/p/td/tr/tbody/tablepspan style="COLOR: rgb(192,0,0) FONT-SIZE: 20px"/span span style="COLOR: rgb(192,0,0) FONT-SIZE: 20px"strong机械行业:/strong/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytrtd/tdtdp style="TEXT-ALIGN: center"标准编号/p/tdtdp style="TEXT-ALIGN: center"标准名称/p/tdtdp style="TEXT-ALIGN: center"标准主要内容/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 7660-2016/p/tdtdp style="TEXT-ALIGN: center"静态混合器/p/tdtdp style="TEXT-ALIGN: center"本标准规定了静态混合器的类型与标记,基本参数与尺寸,技术要求,标志、包装、运输及储存,订货内容等要求。 br/ 本标准适用于公称压力为PN2.5~PN160、Class150~ Class 900, 公称尺寸为DN10~DN1000、NPS1/2~NPS40的静态混合器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12922-2016/p/tdtdp style="TEXT-ALIGN: center"恒温培养振荡器/p/tdtdp style="TEXT-ALIGN: center"本标准规定了恒温培养振荡器的术语和定义、分类、一般要求、性能要求、试验、检验规则、标志和包装、运输与贮存、随行文件。 br/ 本标准适用于以空气为导热介质,具有温度控制功能和以回旋式或往复式振荡的恒温培养振荡器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12933-2016/p/tdtdp style="TEXT-ALIGN: center"红外特征敏感滤光元件/p/tdtdp style="TEXT-ALIGN: center"本标准规定了红外特征敏感滤光元件的术语和定义、产品类别与命名、要求、试验方法、检验规则、标志、包装、运输和储存。 br/ 本标准适用于红外特征敏感滤光元件。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 9246-2016/p/tdtdp style="TEXT-ALIGN: center"涡轮流量传感器/p/tdtdp style="TEXT-ALIGN: center"本标准规定了涡轮流量传感器的术语和定义、产品分类与基本参数、技术要求、试验方法、检验规则以及标志、包装及贮存等要求。 br/ 本标准适用于测量封闭满管道中流体流量的涡轮流量传感器,特殊工作条件下使用的传感器亦可参照使用。 br/ 本标准不适用于插入式涡轮流量传感器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12962.1-2016/p/tdtdp style="TEXT-ALIGN: center"能量色散X射线荧光光谱仪 第1部分:通用技术/p/tdtdp style="TEXT-ALIGN: center"本部分规定了能量色散X射线荧光光谱仪的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输和贮存等。 br/ 本部分适用于以X射线管为激发源的能量色散X射线荧光光谱仪。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12962.2-2016/p/tdtdp style="TEXT-ALIGN: center"能量色散X射线荧光光谱仪 第2部分:元素分析仪/p/tdtdp style="TEXT-ALIGN: center"本部分规定了能量色散X射线荧光元素分析仪的术语和定义、要求、测量范围、试验方法、检验规则、标志、包装、运输、贮存。 br/ 本部分适用于采用X射线管为激发源,对元素进行定性、定量分析的能量色散X射线荧光光谱仪。采用其它激发源的仪器可参照使用。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12962.3-2016/p/tdtdp style="TEXT-ALIGN: center"能量色散X射线荧光光谱仪 第3部分:镀层厚度分析仪/p/tdtdp style="TEXT-ALIGN: center"本部分规定了能量色散X射线荧光镀层厚度分析仪的术语和定义、测量范围、要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ 本部分适用于采用X射线管为激发源,对镀层厚度进行无损测试的能量色散X射线荧光光谱仪,采用其它激发源的仪器可参照使用。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T12963-2016/p/tdtdp style="TEXT-ALIGN: center"a id="_Toc417233149" name="_Toc417233149"/a空气中挥发性有机物在线气相色谱仪/p/tdtdp style="TEXT-ALIGN: center"本标准适用于使用气相色谱技术对环境空气、室内空气和常温下低浓度废气中挥发性有机物进行定性和定量分析的在线气相色谱仪,仪器检测器包括氢火焰离子化检测器、光离子化检测器和氩离子化检测器,其他检测器可参照执行。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12964-2016/p/tdtdp style="TEXT-ALIGN: center"牛奶· 奶粉蛋白质快速检测仪/p/tdtdp style="TEXT-ALIGN: center"本标准规定了牛奶· 奶粉蛋白质快速检测仪的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ 本标准适用于采用比色法原理,使用试剂盒(包)对牛奶(蛋白质含量范围0.5%~4.0%)和奶粉(蛋白质含量范围5.0%~40.0%)中蛋白质进行快速检测的仪器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12965-2016/p/tdtdp style="TEXT-ALIGN: center"水中挥发性有机物在线气相色谱仪/p/tdtdp style="TEXT-ALIGN: center"本标准规定了水中挥发性有机物在线气相色谱仪的术语、要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ 本标准适用于可在工作现场长期运行,使用吹扫捕集和气相色谱技术对水中挥发性有机物进行连续自动定性和定量分析的在线气相色谱仪仪器检测器包括氢火焰离子化检测器、光离子化检测器和氩离子化检测器,其他检测器可参照执行。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12966-2016/p/tdtdp style="TEXT-ALIGN: center"溴酸盐快速检测仪/p/tdtdp style="TEXT-ALIGN: center"本标准规定了溴酸盐快速检测仪的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ 本标准适用于采用比色法原理,使用试剂盒(包)对经臭氧灭菌工艺处理的包装饮用水中溴酸盐进行快速检测的仪器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12967-2016/p/tdtdp style="TEXT-ALIGN: center"有机磷和氨基甲酸酯农药残留快速检测仪/p/tdtdp style="TEXT-ALIGN: center"本标准规定了有机磷和氨基甲酸酯农药残留快速检测仪的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ 本标准适用于采用酶抑制率法原理,使用试剂盒(包)对蔬菜中有机磷和氨基甲酸酯农药残留进行快速检测的仪器。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"JB/T 12895-2016/p/tdtdp style="TEXT-ALIGN: center"内燃机润滑油污染物颗粒分级和检测方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了内燃机润滑油污染物颗粒分级及检测的术语和定义、颗粒分级及标识、油样提取以及采用显微分析和自动消光颗粒计数器测定颗粒物大小和数量的方法。 br/ 本标准适用于内燃机润滑油污染物颗粒的评定。/p/td/tr/tbody/tablepspan style="COLOR: rgb(192,0,0) FONT-SIZE: 20px"strong冶金行业:/strong/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4565-2016/p/tdtdp style="TEXT-ALIGN: center"钛铁 氮含量的测定 惰性气体熔融热导法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了惰性气体熔融热导法测定氮含量。 br/ 本标准适用于钛铁中氮含量的测定。测定范围(质量分数):0.0050%~0.60%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.1-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 氮含量的测定 惰性气体熔融热导法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了惰性气体熔融热导法测定氮含量。 br/ 本部分适用于氮化钒铁中氮含量的测定。测定范围(质量分数):5.00%~20.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.2-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 氮含量的测定 蒸馏分离-酸碱中和滴定法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了蒸馏分离-酸碱中和滴定法测定氮含量。 br/ 本部分适用于氮化钒铁中氮含量的测定。测定范围(质量分数):5.00%~20.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.3-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 钒含量的测定 硫酸亚铁铵滴定法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了硫酸亚铁铵滴定法测定钒含量。 br/ 本部分适用于氮化钒铁中钒含量的测定。测定范围(质量分数):& #8805 40.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.4-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 硅、锰、磷、铝含量的测定 电感耦合等离子体原子发射光谱法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了电感耦合等离子体原子发射光谱法测定氮化钒铁中硅、锰、磷、铝含量。 br/ 本部分适用于氮化钒铁中硅、锰、磷、铝含量的测定。测定范围(质量分数):硅 0.100%~5.000%,锰 0.010%~1.000%,磷 0.010%~0.250%,铝 0.100%~5.000%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.5-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 硅含量的测定 硫酸脱水重量法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了硫酸脱水重量法测定硅含量。 br/ 本部分适用于氮化钒铁中硅含量的测定。测定范围(质量分数):0.50%~5.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.6-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 磷含量的测定 铋磷钼蓝分光光度法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了铋磷钼蓝分光光度法测定磷含量。 br/ 本部分适用于氮化钒铁中磷含量的测定。测定范围(质量分数);0.010%~0.l50%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.7-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 硫含量的测定 红外线吸收法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了红外线吸收法测定硫含量。 br/ 本部分适用于氮化钒铁中硫含量的测定。测定范围(质量分数):0.005%~0.500%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.8-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 碳含量的测定 红外线吸收法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了红外线吸收法测定碳含量。 br/ 本部分适用于氮化钒铁中碳含量的测定。测定范围(质量分数):0.100%~7.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 4566.9-2016/p/tdtdp style="TEXT-ALIGN: center"氮化钒铁 氧含量的测定 红外线吸收法/p/tdtdp style="TEXT-ALIGN: center"本部分规定了红外线吸收法测定氧含量。 br/ 本部分适用于氮化钒铁中氧含量的测定。测定范围(质量分数):0.10% ~3.00%。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5022-2016/p/tdtdp style="TEXT-ALIGN: center"粗苯/p/tdtdp style="TEXT-ALIGN: center"本标准规定了粗苯的技术要求、试验方法、检验规则以及包装、标志、运输、储存和质量证明书及安全注意事项。 br/ 本标准适用于高温炼焦过程中所得的粗苯和轻苯。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5093-2016/p/tdtdp style="TEXT-ALIGN: center"固体古马隆-茚树脂/p/tdtdp style="TEXT-ALIGN: center"本标准规定了固体古马隆一茚树脂的技术要求、试验方法、检验规则、包装、标志、储存、运输和质量证明书。 br/ 本标准适用于由重苯、精重苯、粗茚或脱酚酚油为原料经聚合、蒸馏或经聚合、蒸吹所得的固体古马隆—茚树脂。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5094-2016/p/tdtdp style="TEXT-ALIGN: center"固体古马隆-茚树脂外观颜色测定方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了固体古马隆-茚树脂外观颜色测定的原理、试样的采取与制备、试剂、仪器、试验步骤和精密度。 br/ 本标准适用于由重苯、精重苯、粗茚或脱酚酚油为原料经聚合、蒸馏或经聚合、蒸吹所得的固体古马隆-茚树脂的外观颜色测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5095-2016/p/tdtdp style="TEXT-ALIGN: center"固体古马隆-茚树脂酸碱度测定方法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了固体古马隆-茚树脂酸碱度测定的原理、试样的采取与制备、试剂、仪器和材料、试验步骤和精密度。 br/ 本标准适用于由重苯、精重苯、粗茚或脱酚酚油为原料经聚合、蒸馏或经聚合、蒸吹所得的固体古马隆-茚树脂的酸碱度测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5174-2016/p/tdtdp style="TEXT-ALIGN: center"炭黑用焦化原料油/p/tdtdp style="TEXT-ALIGN: center"本标准规定了炭黑用焦化原料油的技术要求、试验方法、检验规则、包装、标志、储存、运输和质量证明书。 br/ 本标准适用于炭黑用焦化原料油。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5176-2016/p/tdtdp style="TEXT-ALIGN: center"炭黑用原料油 钾、钠含量的测定 原子吸收光谱法和火焰光度法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了炭黑用原料油(焦化原料油和石油裂解所得的乙烯焦油等)中钾、钠含量的测定原理、试剂、仪器设备、计算方法。 br/ 本标准适用于炭黑用原料油(焦化原料油和石油裂解所得的乙烯焦油等)中钾、钠含量的测定。/p/td/trtrtd/tdtdp style="TEXT-ALIGN: center"YB/T 5178-2016/p/tdtdp style="TEXT-ALIGN: center"炭黑用原料油 沥青质含量的测定 正庚烷沉淀法/p/tdtdp style="TEXT-ALIGN: center"本标准规定了炭黑用原料油(包括炭黑用焦化原料油和石油裂解所得的乙烯焦油等)沥青质含量测定的原理、实验仪器、实验步骤、结果计算、精密度。 br/ 本标准适用于炭黑用原料油(包括炭黑用焦化原料油和石油裂解所得的乙烯焦油等)的沥青质含量的测定。/p/td/tr/tbody/table
  • 赛默飞乘用车内空气质量检测培训班取得圆满成功
    随着人们生活水平的提高,国内汽车工业的飞速发展以及轿车给人们生活带来快捷方便,其使用率在当今社会正逐步上升,然而其室内的空气质量也令人担忧。由于坐垫、靠背及其他设施大都由塑料制成,而塑料中含有甲苯、甲醛等芳香类和醛酮类化合物。这些化合物具有慢性毒性,在汽车使用过程中随着封闭室内温度上升会从塑料中自动释放出来,随着时间逐步积累而浓度增加。人在此种环境下会对呼吸道和神经系统等产生损害,因此空气中挥发性有害物质受到人们的关注。国家环保部和国家质量监督检验检疫总局联合发布GB/T 27630-2011《乘用车内空气质量评价指南》,赛默飞积极响应相关行业政策标准,参照HJ/T400-2007《车内挥发性有机物和醛酮物质采样方法》,就该问题提供了合理科学的解决方案。 2012年5月17-19日,赛默飞色谱质谱部应用中心和LPG-TCD二部门联合汽车网及上海环科院联合举办了第一届车内空气VOCs和醛酮分析培训班,来自行广州本田,无锡吉兴汽车,欧诺法装饰材料,上海普利特复合材料,上海延锋江森座椅,SGS等12家单位的15位专家及用户参加了本次培训,上海环境科学研究院钱华所长就汽车车内空气污染状况,《乘用车内空气质量评价指南》及《车内挥发性有机物和醛酮物质采样方法》做了详细解读。 培训会上,赛默飞为整车车内空气挥发性有机物检测、车内零部件释放的有机物检测和车内非金属材料释放的有机物检测进行了详细的介绍:我们提供包括雾化测试(Fogging Tester)及热脱附-气相色谱与质谱联用(TD-GCMS)方法,采用Tenax管对汽车空气中有害物质进行吸附,通过Markers TD-100热脱附仪将吸附的汽车空气中的有害物质二次脱附并转移至Trace 1300 GC-ISQ气质联用仪上进行分析,35分钟内可准确检测空气中9种挥发性有害物质(苯、甲苯、乙基苯、乙酸丁酯、对/间二甲苯、苯乙烯、邻二甲苯、正十一烷)。运用高效液相色谱和超高效液相色谱方法成功分析空气中13种醛酮,该法采用涂渍有2,4-二硝基苯肼(DNPH)的硅胶采样管,将空气中醛酮类挥发性物质吸附到管中并与DNPH发生反应生成稳定不挥发的有色化合物。将该化合物溶解在适当的溶剂中,利用Ultimate 3000液相色谱联合紫外检测器进行分析,HPLC及UHPLC可分别在20分钟及10分钟内准确有效地检测汽车空气中13种醛酮化合物(甲醛、乙醛、丙酮、丙醛、丙烯醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、间甲基苯甲醛、己醛)。 本次培训主要针对车内空气VOCs和醛酮分析方法和标准,专业性很强,引起了来会专家和用户的广泛兴趣,用户根据工作中遇到的实际问题,与工程师展开讨论,现场讨论十分热烈。赛默飞的专业能力获得了在场人士的高度好评。 会后,应用中心工程师在仪器操作现场,与大家进行使用介绍与技术交流。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 北京大学王初课题组发展硫辛酰化修饰的组学鉴定新方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心王初课题组在Journal of American Chemical Society杂志上发表题为“Quantitative Site-Specific Chemoproteomic Profiling of Protein Lipoylation”的研究文章。在这项工作中,作者发展了新型的用于捕获硫辛酰化修饰的化学探针,并结合定量化学蛋白质组学的技术,首次实现在大肠杆菌和哺乳动物细胞中的硫辛酰化修饰位点全局性鉴定与定量,并对大肠杆菌中特定底物蛋白中三个硫辛酰化修饰位点的调控和硫辛酰化修饰合成酶的功能进行了研究。 硫辛酰化修饰是一种通过酰胺键将硫辛酸共价连接到蛋白质赖氨酸残基上的翻译后修饰。硫辛酰化修饰在进化中高度保守,并且位于细菌和哺乳细胞核心代谢途径几种重要蛋白质复合物(丙酮酸脱氢酶复合物,酮戊二酸脱氢酶复合物和支链酮酸脱氢酶复合物)的活性口袋中,作为关键辅因子发挥着重要的催化作用。硫辛酰化修饰的失调与人类代谢紊乱、癌症等疾病相关。因此,加深对硫辛酰化修饰调节的理解对于研究与这些疾病相关分子机制具有重要的意义。 早期工作主要通过结构生物学和生物化学的方法对单个蛋白硫辛酰化修饰进行研究。近些年来,科学家们通过将基于抗体或化学连接的方法与基于质谱的蛋白质组学技术结合,实现了不同细胞类型和组织中硫辛酰化修饰的检测。然而,硫辛酰化抗体的结合亲和力不足,无法实现对所有硫辛酰化修饰蛋白进行鉴定。最近,北京大学陈兴课题组发展了一种化学连接策略用于硫辛酰化修饰蛋白的鉴定(Angew. Chem. | 蛋白质硫辛酰化修饰的化学标记),但未能实现在组学层面对硫辛酰化修饰位点的定量分析和检测。而使用选择反应检测扫描(SRM)的方法则可以实现对特定的底物蛋白二氢硫辛酰胺乙酰转移酶(DLAT)中硫辛酰化修饰位点进行相对定量,但很难实现对所有的硫辛酰化修饰位点进行全覆盖。因此,到目前为止,仍然缺乏一种用于全局分析蛋白质组中蛋白质硫辛酰化修饰的位点特异性鉴定和定量的方法。本论文发展了一种标记硫辛酰化修饰的探针和一套具有位点分辨率的定量化学蛋白质组技术。作者受醛基基团保护策略中常用的基于硫缩醛的方法启发,设计了丁醛探针BAP。该探针中含有醛基,可与硫辛酰化修饰发生缩合反应,并结合生物正交基团炔基,通过铜催化的点击化学反应引入可切割的富集标签。作者结合底物序列分析结果,使用V8蛋白内切酶Glu-C代替常规的胰蛋白酶Trypsin,实现了对大肠杆菌中所有已知硫辛酰化修饰位点的鉴定。在大肠杆菌中,其中一个蛋白底物二氢硫辛酰赖氨酸乙酰转移酶ODP2上含有三个修饰位点,在Glu-C进行酶切后会产生完全一致的肽段序列。为了能够对ODP2中三个硫辛酰化修饰位点进行区分,作者巧妙地利用修饰肽段下游的序列来代表三个硫辛酰化修饰位点,结合稳定同位素二甲基化定量的方法,开发出一种能够将ODP2上三个硫辛酰化位点进行区分定量的流程。利用发展的大肠杆菌硫辛酰化修饰位点定量策略,本研究对ODP2中三个硫辛酰化修饰任意的单突变和双突变组合菌株中硫辛酰化修饰状态进行分析。实验结果显示,ODP2中三个硫辛酰化修饰位点在体内的调控是相对独立的,并且当体内感受到整体的硫辛酰化修饰降低到一定限度时,会启动一定的补偿调控机制。作者进一步在大肠杆菌中探究了硫辛酰化修饰从头合成途径(由辛酸转移酶LipB和硫辛酰化合成酶LipA级联介导调控)和硫辛酰化修饰直接合成途径(由硫辛酸蛋白连接酶LplA调控)在硫辛酰化修饰合成过程的重要性。作者对三个硫辛酰化修饰合成酶LplA、LipB和LipA进行敲除,利用开发的位点定量流程对大肠杆菌中所有已知硫辛酰化修饰位点进行定量。实验结果显示,在营养充足的情况下,从头合成途径比直接合成途径起了更重要的作用。同时LplA在辛酸充足的条件下能够发挥与LipB类似的辛酸转移酶的功能。但是相比之下,LipB是体内更为重要的辛酸转移酶。作者接下来将该定量化学蛋白质组学流程运用到哺乳细胞体系中。作者发现,在人源细胞大多数的硫辛酰化修饰肽段都含有两个酸性氨基酸,这严重影响了质谱正离子检测模式下肽段的检测效率。为了解决这个问题,作者在常规的酸切标签DADPS的结构中引入了一个额外的氨基,发展了新一代酸切割的生物素叠氮标签CY58。利用新型的电离辅助亲和标签CY58,结合二甲基化标记定量策略,作者成功地实现了对人源细胞中所有已知的六个硫辛酰化修饰位点进行定量。最后,作者利用BAP探针结合质量标签的方法,成功地实现对甘氨酸裂解系统 H 蛋白(GCSH)中硫辛酰化修饰的修饰率进行测量,未来有望进一步在蛋白质组水平上直接检测所有蛋白中硫辛酰化修饰的修饰率。总之,本工作为组学层面的硫辛酰化修饰位点定量分析提供了强有力的工具,极大地助力了硫辛酰化修饰位点的功能研究。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心的王初教授。其指导的化学与分子工程学院2016级博士研究生赖书畅和博士后陈颖博士为本文的共同第一作者。王初课题组杨帆博士,肖伟弟博士和刘源博士等合作者为本课题做出了突出的贡献。该工作得到了科技部、基金委、北京分子科学国家研究中心、教育部生物有机和分子工程重点实验室的经费支持。
  • 联合全球八大仪器设备商共建总部实验室 亚洲最大“芯片全科医院”封顶
    加快实现高水平科技自立自强,苏州工业园区充分发挥头部企业的引领作用。昨天,胜科纳米(苏州)股份有限公司总部大楼在园区上市企业产业园正式封顶,8家国际顶尖仪器设备商现场与胜科纳米签署协议,联合共建总部实验室。据悉,胜科纳米总部大楼投用后,将成为亚洲最大的芯片分析测试和辅助研发平台。胜科纳米2004年创立于新加坡,2012年随着中新深化合作的脚步来到园区。公司聚焦电子及半导体芯片领域,可提供一站式可靠性分析、材料分析等高端检测和方案解决咨询服务,是泛半导体领域研发、制造的关键技术支撑平台。目前,胜科纳米拥有200余项独创性高端分析技术,并在园区投资建设了全国最先进的CPU级别可靠性实验室。据介绍,胜科纳米是国内最早掌握7纳米、5纳米半导体工艺节点分析技术的测试中心,全球客户数量超2000家,是国内半导体分析测试细分领域里的龙头企业和“隐形冠军”,被业界誉为半导体全产业链中的“芯片全科医院”。此次封顶的总部大楼,总建筑面积约7万平方米,总投资约10亿元,未来将会配备世界半导体分析测试行业内最顶尖的仪器设备。同时,企业将进一步汇聚高科技人才资源,推动更多半导体企业联合研发,为全球半导体产业链提供更全面的分析测试服务。现场,胜科纳米与赛默飞世尔中国区分析仪器集团等8家国际顶尖仪器设备商签署合作协议。各方将协力进行半导体分析测试仪器的升级开发,共同为全球半导体行业的蓬勃发展提供强有力的支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制