当前位置: 仪器信息网 > 行业主题 > >

乙二醛双

仪器信息网乙二醛双专题为您提供2024年最新乙二醛双价格报价、厂家品牌的相关信息, 包括乙二醛双参数、型号等,不管是国产,还是进口品牌的乙二醛双您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙二醛双相关的耗材配件、试剂标物,还有乙二醛双相关的最新资讯、资料,以及乙二醛双相关的解决方案。

乙二醛双相关的资讯

  • 济南三泉中石实验仪器有限公司"双软企业”
    见证科技实力 荣获“双软企业” 济南三泉中石实验仪器有限公司是一家重视技术研发的企业,经不断努力通过国家专业人员的考察与评审,济南三泉中石实验仪器有限公司顺利通过国家认可的双软企业认证,荣获“双软企业”荣誉,并成为山东省软件行业协会会员单位,承此誉,担其责,此称号肯定了三泉中石的自主研发实力,为三泉中石可持续进行研究开发与技术成果转化,形成企业核心自主知识产权奠定了坚实基础。 众所周知双软认定是指软件企业的认定和软件产品的登记。济南三泉中石实验仪器有限公司经过高新技术的开发,已具备了一支专业化的研发团队,这对于进一步提高三泉中石产品软件高科技、加快三泉中石的产品更新换代、产品的功能不断升级,赢得和保持市场有着重要新突破。 顺利获得“双软企业”荣誉,见证了济南三泉中石实验仪器有限公司的技术研发实力与售后服务的认可,也为济南三泉中石实验仪器有限公司进一步实现高新技术软件开发夯定基础,作为国内资深包装材料检测仪器的生产厂家,三泉中石一直秉承科研致尚的原则,不忘初心,在包装材料检测的道路上为大家提供更专业的技术方案,更舒适的售后服务........
  • 统一和农夫山泉突陷“砒霜门”
    继三鹿奶粉掀起三聚氰胺事件一周年后,农夫山泉和统一果汁又被检出“含砒霜”。  日前,农夫山泉和统一蜜桃多被海口市工商局检测出的是总砷超标。总砷指无机和有机化合物中砷的总量。常说的砒霜中毒,就是急性砷中毒。如果检验报告属实,也就意味着“农夫山泉”、“统一”有批次饮料“涉毒”。  消息一出,统一和农夫山泉深陷“砒霜门”的说法不胫而走。  统一、农夫忙辟谣  两公司皆喊冤  日前,海口市工商局对海口部分批发市场、商场、农贸市场、超市等销售的部分食品进行抽样初检,农夫山泉广东万绿湖有限公司生产的30%混合果蔬、农夫山泉广东万绿湖有限公司生产的水溶C100西柚汁饮料、统一企业(中国)投资有限公司生产的蜜桃多汁3种饮料总砷超标。  海口市工商局的消费警示还表示,上述结果经过了海南省出入境检验检疫局检验和海口市卫生防疫站复检证实。据质监部门介绍,无机砷可能引发皮肤癌、肝癌等病症,毒性非常强,三氧化二砷在我国古代文献中的俗称为砒霜。  记者走访了几家小型超市,发现平日受白领青睐的农夫山泉“水溶C100”西柚汁饮料和统一蜜桃多汁等“问题果汁”仍占据货架显著位置。  统一总部新闻发言人杨寿正在接受《证券日报》采访时表示:“我们确实收到了海口市那个检测报告,但是同时这个消息就已经传出去了,我们没有任何反应的机会。”  而农夫山泉新闻发言人周力同时也对外宣称:“对这件事情我们感到非常蹊跷,为什么会这个样子,是引人深思的。如果有关方面违法,会找合理的法律途径加以解决。”  统一称:最快今日出权威检测结果  而杨寿正对记者多次强调:统一产品没有问题。  据记者了解,统一在接到海南省工商局食品处的通知后,已将同一批次产品送广州市质量监督检测研究院(国家加工食品质量监督检验中心)检测,11月26日得到的结果显示,含砷量符合国家标准要求。  “为了让检测结果更加准确,我们在11月29日早已经把同一批的样本送到了北京检测,检测结果2日内肯定会有个公布,最快12月1日就会有结果。等结果出来后,我们肯定会有个官方的说法。”  而在此前的27日下午,农夫山泉已经紧急召开电话新闻发布会,就其旗下两款产品被海口工商局通报不合格一事做出严正声明。农夫山泉认为海口市工商局本次检测的发布严重违背了法定程序,给企业造成了巨大损失。  据农夫山泉透露,依据相关法规,该类通报发布之前,执法部门应该先以正式函件向企业予以核实,确保样品的权威性,企业也可提出复检要求。  声明还表示:农夫果园和水溶C100在最近的国家、上海和广东等地组织的产品监督抽查中均为合格。同时,农夫山泉在报道出来之后,第一时间委托广东省河源市质量计量检测所对同批次留样产品进行了检测,结果也为合格。目前,农夫山泉已经派遣客诉部经理前往海南核实情况,并要求复检,同时也会将同批次留样送至国家级的权威检测部门进行复检。  会否掀起饮料业的三聚氰胺?  资料显示,砷是毒性非常强的污染物,它的氧化物即是人们常说的砒霜,对环境和人体的危害要比铜和锌大得多。慢性砷中毒潜伏期可长达几年甚至几十年,此外砷还有致癌作用,能引起皮肤癌。  那么此次统一、农夫山泉的“砒霜门”事件会否如08年乳业三聚氰胺事件一样波及范围和影响力扩大到整个果蔬汁饮料业?  中投顾问食品行业首席研究员陈晨在接受记者采访时表示:如果此事相关权威部门一旦查出确实“涉毒”那么必定会引起果蔬汁饮料的一个大的风暴,不会亚于三聚氰胺对乳业的影响。  他同时表示:“首先对于企业和品牌来说,统一和农夫山泉的品牌和市场分额都很大,不管“涉毒”事件查出是否确实都必定会影响企业的形象,也会让一部分消费者对其望而却步,这也是三聚氰胺事件留给消费者的一个后遗症。  “现在还没有最终权威部门的报告,是否‘涉毒’现在不能定论,但如果真的‘涉毒’此次事件是跟三聚氰胺事件不同的,三聚氰胺事件让整个乳业几乎全军覆没,但此次砒霜门事件目前为止只涉及到2家企业。”陈晨最后表示。
  • 农夫山泉和统一果汁被检“含砒霜”(图)
    郑州部分超市仍在销售的不同批次的统一蜜桃多汁 农夫山泉和统一果汁被查出“总砷超标” 业内称,虽是同一品牌,但产地不同结果也不尽相同  这两天,农夫山泉和统一企业被海口市工商局推向消费者的关注中——两家公司生产的部分批次果汁饮品近日被该工商局检测出“含砒霜”。  【新闻事件】  农夫山泉和统一果汁被检出“含砒霜”  海口市工商局上周发布消费警示称,农夫山泉广东万绿湖有限公司生产的农夫果园30%混合果蔬(生产日期:2009-6-27,规格:500毫升/瓶)、水溶C100西柚汁饮料(生产日期:2009-8-16,规格:445毫升/瓶),以及统一企业(中国)投资有限公司生产的蜜桃多汁(生产日期:2009-8-22,规格:250毫升/瓶),总砷超标。  据了解,总砷,就是指该产品中砷的总量。而砷就是常说的砒霜,有毒。长期低剂量摄入砷化物达一定程度,会导致慢性砷中毒,引起神经衰弱症候群,皮肤色素异常,多发性末梢神经炎,支气管、肺部疾患以及末梢血管循环障碍等。  其实,在海口市的检测中,还检测到另外7种产品中苯甲酸、山梨酸、糖精钠、甜蜜素超标或二氧化硫超标,但未能像农夫山泉和统一企业的果汁总砷超标一样,引起轩然之波。  【郑州落地】  同一品种但不同批次果汁仍在销售  昨日,商报记者在郑州多家超市进行了采访。发现部分超市仍在销售农夫果园30%混合果蔬、农夫山泉水溶C100西柚汁饮料和统一蜜桃多汁。  在人民路一家超市里,500毫升的农夫果园30%混合果蔬和445毫升的农夫山泉水溶C100西柚汁饮料仍然在货架上销售。不过,这两种饮品均非农夫山泉广东万绿湖有限公司生产,而是由农夫山泉湖北丹江口有限公司生产。  虽然有的超市正在促销统一鲜橙多汁和葡萄多汁,但其销售的250毫升装“多汁”系列饮品,却未见到蜜桃多汁。“是该超市原本就没有该规格的蜜桃多汁,还是已经下架?”面对记者的询问,促销人员称不知情。  不过,在紫荆山附近一家超市,商报记者见到统一250毫升蜜桃多汁仍在销售,但生产日期为2009年8月9日,而非海口市工商局检测到的8月22日。超市负责质检工作的业务经理称:“我昨天晚上在网上看到了相关新闻,今天一早上班就首先做了检查,发现我们的产品和被检查出有问题的产品并非同一批次。”  【厂家反应】  统一力证清白,农夫山泉提出质疑  在得知海口市工商局公布相关检测结果后,农夫山泉和统一均发表了声明。  统一企业在其官网上贴出“回应稿”称,因之前生产饮料类产品,在送检第三方检测机构和政府监督抽样检测过程中,均未出现类似不良状况。统一在接到通知后非常重视,立即将同一产程产品送广州市质量监督检测研究院(国家加工食品质量监督检验中心)检测以追查原因,11月26日报告结果为:含砷量符合国家标准要求。该公司称“目前正在和海南省工商单位协调处理,有结果后再向媒体说明”。  农夫山泉则在上周末召开新闻发布会,对海口市工商局发布的2009第8号商品质量监督消费警示表示质疑。同时称农夫果园和水溶C100在最近的国家、上海和广东等地组织的产品监督抽查中均合格,且报道出来后,委托相关检测机构对同批次留样产品的检测结果也为合格。  业内人士介绍,饮料企业在各地销售的产品,一般由当地或附近地区的生产商生产,比如郑州本地销售农夫山泉果汁,基本上都是湖北工厂生产的,故海口工商部门检测到广东工厂生产的饮料有问题,则郑州本地销售的饮料就不一定也有问题。
  • 瞄准科技前沿!复旦大学“集成电路科学与工程”入选第二轮“双一流”名单
    近日,教育部、财政部、国家发展改革委发布《第二轮“双一流”建设高校及建设学科名单》(教研函〔2022〕1号),复旦大学的“集成电路科学与工程”入选。2019年12月,复旦大学宣布“集成电路科学与工程” 博士学位授权一级学科点将于2020年试点建设,并启动博士研究生招生。据介绍,“集成电路科学与工程”一级学科的建设内容将紧扣集成电路产业链各环节的主要任务,致力于解决集成电路设计、集成电路制造和工艺技术,以及集成电路封测各个环节的核心科学与工程技术问题。2020年12月,国务院学位委员会、教育部印发了《国务院学位委员会 教育部关于设置“交叉学科”门类、“集成电路科学与工程”和“国家安全学”一级学科的通知》(学位〔2020〕30号),集成电路正式成为一级学科。国务院学位委员会办公室负责人表示,国务院学位委员会作出设立“集成电路科学与工程”一级学科的决定,就是要构建支撑集成电路产业高速发展的创新人才培养体系,从数量上和质量上培养出满足产业发展急需的创新型人才,为从根本上解决制约我国集成电路产业发展的“卡脖子”问题提供强有力人才支撑。教育部有关负责人表示,第二轮“双一流”建设瞄准科技前沿和关键领域,加大力度优化学科专业和人才培养布局,率先推进学科专业调整,夯实基础学科建设,加强应用学科与行业产业、区域发展的对接联动,推进中国特色哲学社会科学体系建设,推动学科交叉融合。同时,深化科教融合,支撑高水平科技自立自强,深入推进“高等学校基础研究珠峰计划”,加强关键领域核心技术攻关,集中力量开展高层次创新人才培养和联合科研,加强重大科研平台协同对接,服务国家创新体系建设。数据显示,2020年我国直接从事集成电路产业的人员约54.1万人,同比增长5.7%。从产业链各环节看,2020年设计业、制造业和封装测试业的从业人员规模分别为19.96万人、18.12万人和16.02万人。预计到2023年前后,全行业人才需求将达到76.65万人左右。有关专家表示,集成电路学科入选“双一流”,将使该学科的建设发展得到更多支持。创道投资咨询总经理步日欣向记者指出,集成电路的人才培养还体现在“电子科学与技术”一级学科中,下设电磁场与微波技术、电路与系统、物理电子学、微电子学与固体电子学等专业,在产业中统称为电子工程。在第二轮“双一流”建设高校及建设学科中,上海交通大学、东南大学、南京邮电大学、中山大学、电子科技大学的“电子科学与技术”学科也被列入名单。“入选双一流对于学科建设有重要意义,避免了学科发展的同质化,可以获得国家和高校层面的重点扶持,可以更好地提升相关领域的教育水平和科研能力。”步日欣向《中国电子报》记者表示。
  • 重磅新品!Nanoscribe全能双光子微纳加工系统Quantum X shape
    Quantum X shapeReshaping precision,output,usabilityQuantum X shape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。作为2019年推出的第一台双光子灰度光刻 (2GL ) 系统Quantum X的同系列产品,Quantum X shape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到最高水平的生产力和打印质量。作为一款真正意义上的全能机型,该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。Quantum X shape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等)。作为Nanoscribe的新型高精度3D打印系统,Quantum X shape可自由设计几乎任何2.5D或3D形状的结构,并提供大尺寸高质量结构制作。Reshaping precision.作为已被工业界认可的Quantum X平台的二代加工系统,Quantum X shape在3D微纳加工领域无与伦比的精度,比肩于Nanoscribe公司在表面结构应用上突破性的双光子灰度光刻(2GL )。全新的Quantum X shape的高精度有赖于其最高能力的体素调制比和超精细处理网格,从而实现亚体素的尺寸控制。此外,受益于双光子灰度光刻对体素的微调,该系统在表面微结构的制作上可达到超光滑,同时保持高精度的形状控制。双光子聚合(2PP)是一种可实现最高精度和完全设计自由度的增材制造方法。而作为同类最佳的3D微加工系统Quantum X shape具有下列优异性能:在所有空间方向上低至 100 纳米的特征尺寸控制,适用于纳米和微米级打印制作高达 50 毫米的目标结构,适用于中尺度打印左图:机械器件的快速高精度小批量生产。200个结构的通宵产量右图:使用Nanoscribe微纳加工技术制作的3D微针,轻松实现具有高纵横比,形状精度和锋利边缘的不同设计变化Reshaping output.高速3D微纳加工系统Quantum X shape可实现一流形状精度和高精度制作。这种高质量的打印效果及产量是结合了最先进的振镜系统和智能电子系统控制单元的结果,同时还离不开工业级飞秒脉冲激光器以及平稳坚固的花岗岩操作平台。Quantum X shape具有先进的激光焦点轨迹控制,可操控振镜加速和减速至最佳扫描速度,并以 1 MHz 调制速率动态调整激光功率。Quantum X shape 带有独特的自动界面查找功能,可以以低至 30 纳米的精度检测基板表面。这种在最高扫描速度下的纳米级精度体现,再加上自校准程序,可在最短的时间内实现可靠和准确的打印,为 3D 微纳加工树立了新标杆。这些优异的性能使Quantum X shape 成为快速原型制作和应用于微纳光学、微流体、材料表面工程、MEMS 等其他领域中晶圆级规模生产的理想工具。Reshaping usability.通过系统集成触控屏控制打印文件来大大提高实用性。通过系统自带的nanoConnectX软件来进行打印文件的远程监控及多用户的使用配置,实现推动工业标准化及基于晶圆批量效率生产。Quantum X shape作为具备光敏树脂自动滴配功能的直立式打印系统,非常适合标准6英寸晶圆片工业批量加工制造。用户还可以通过设备的集成触控屏直接或远程访问Quantum X shape打印系统来控制打印作业。通过远程访问软件nanoConnectX ,用户可以看到触控屏的显示选项并操控所有功能,实现从任何地方启动、监控和控制连接打印系统的打印作业进程。这使得整个小组成员(例如研究小组或部门所有成员)均可在个人电脑访问打印系统。实现了最低限度减少实验室准备时间,简化并提高整个制备、执行和监控打印作业效率,并在共享系统时大大提升团队协作。nanoConnectX远程访问软件实现任意电脑连接到Quantum X shape系统进行远程执行,检查和控制整个打印作业。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 美国禁止在婴儿奶粉包装中使用双酚A
    美国食品药物监督管理局(FDA)修订美国食品添加剂法规,不再允许双酚A型环氧树脂作为婴幼儿奶粉包装涂层使用。FDA做出该决定以回应时任美国国会众议院议员爱德华马基(U.S. Representative Edward Markey)于2012年7月的请愿申请。  联邦食品药品化妆品法案(the Federal Food, Drug, and Cosmetic Act)第409部分允许请愿人申请FDA修订食品添加剂规例,只要他/她能证明相关食品添加剂的旧用途已被废弃。这种废弃必须是在美国市场上任何预期用途的完全禁止。同时,第409部分也规定在基于安全的原则下,食品添加剂规例可进行修订与撤销,基于废弃某一用途而做的修订与撤销不是基于安全,而是由于该用途已被永远完全禁止,不需要对该具体用途进行管理授权。禁止可能基于某个授权食品添加剂禁止用于某种物质(比如一种物质不再用于某种产品类别中)或者所有授权食品添加剂用途的禁止(比如一种物质不再使用于生产中)。  请愿书包括公众信息和来自针对美国所有注册婴幼儿奶粉制造商的调查搜集的信息以支持请愿要求,所有美国的婴幼儿奶粉制造商已经禁止在婴幼儿奶粉食品接触包装涂层中使用双酚A型环氧树脂,并且包装含有双酚A型环氧树脂的婴幼儿产品没有进入美国市场。根据请愿书,调查中参与的制造商是目前美国婴幼儿奶粉市场上的所有制造商。
  • 690万!常州大学采购聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统
    项目概况聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购项目的潜在投标人应在常州润邦招标代理有限公司前台获取招标文件,并于2022年2月18日14点00分(北京时间)前递交投标文件。一、项目基本情况1.项目编号:常润公2022-0001号2.项目名称:聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购3.预算金额:人民币690万元4.最高限价:人民币690万元5.采购需求:本项目采购内容为聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统采购,包括设备及系统的采购、供货、安装、调试、测试、售后服务、质保、技术培训等,直至通过采购人验收。具体参数详见采购需求。序号设备名称数量单位1聚焦离子束-电子束双束电镜与飞行时间二次离子质谱仪联用系统1套7.合同履行期限:合同签订,免表办理好后6个月内完成供货、安装调试、经采购人验收合格并投入使用。8.本项目不接受联合体。9.本项目接受进口产品。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)无其他法律、行政法规规定的禁止参与招投标或采购活动的行为,含下列情形:a.未被“信用中国”网站(www.creditchina.gov.cn)和 “中国政府采购网”网站(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重失信行为记录名单;b.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:本项目接受进口产品投标,投标人所投设备为进口产品的,应提供以下之一的证明材料:(1)投标人为所投设备的授权经销(代理)商,必须提供生产(制造)商或上级经销(代理)商授权供应商的授权书,并提供逐级经销(代理)商的营业执照复印件。(2)投标人为本项目的授权投标人,必须提供生产(制造)商或授权经销(代理)商对本次招标的项目或所投产品的授权书,并提供逐级经销(代理)商的营业执照复印件。三、获取招标文件时间:2022年1月28日至2022年2月9日17:00时(北京时间,法定节假日除外)地点:常州市飞龙东路108号-304室(翠园世家商业街三楼)方式:(投标人可采取以下任一种方式获取招标文件)(1)线上申领:投标人在规定的时间内将相关材料扫描PDF文档发至本公司邮箱“2406652663@qq.com”并按邮箱回复要求交纳费用后,招标文件以邮件形式发送至投标人邮箱。报名咨询电话:0519-81882063。(2)现场申领:至常州润邦招标代理有限公司前台领取。(3)投标人获取招标文件时应提供如下材料:①招标文件获取申请表(格式见公告附件1)②投标人为企业的,提供企业营业执照(三证合一复印件加盖公章);投标人为事业单位的,提供事业单位法人证书(三证合一复印件加盖公章);投标人为自然人的,提供自然人身份证明文件(复印件及签名)。售价:人民币伍佰元/份。招标文件售后一概不退,未获取招标文件的投标人不得参与本项目投标。四、提交投标文件截止时间、开标时间和地点截止时间:2022年2月18日14点00分(北京时间)地 点:常州润邦招标代理有限公司开标室(一)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目不组织现场踏勘。2.对招标文件需要进行澄清或有异议的投标人,均应在2022年2月10日12:00前按招标公告中的通讯地址,以书面形式(加盖公章)提交采购代理机构,否则视为无效澄清或异议。3.有关本次采购的事项若存在变动或修改,采购代理机构将通过补充或更正形式在相关网站上发布,因未能及时了解相关最新信息所引起的失误责任由投标人自负。4.费用缴纳账户信息如下(汇款请备注项目名称或编号)户名:常州润邦招标代理有限公司开户银行:江南农村商业银行龙虎塘支行账号:01080012010000003610财务电话(付款、开票咨询):0519-81882063七、对本次招标提出询问,请按以下方式联系1.采购人信息名称:常州大学地址:江苏省常州市武进区滆湖中路21号 联系方式:丁老师155012902882.采购代理机构信息名称:常州润邦招标代理有限公司地址:常州市飞龙东路108号-304室(翠园世家商业街三楼)联系方式:0519-818829933.项目联系方式项目联系人:周叶电话:0519-81882993网址:cg.czrbzb.com
  • FEI发布新的SEM/FIB双束系统:Quanta 3D FEG
    2007年2月21日FEI公司发布了Quanta 3D FEG 扫描电镜(SEM)/聚焦离子束(FIB)"双束"系统, 进一步完善了FEI公司"双束"系统的产品家族. Quanta 3D FEG是目前功能最强大的分析型"双束"系统.Quanta 3D FEG将FEI公司最新的FIB和电子光学技术融为一体, 并结合了FEI公司独特的环境扫描电镜(ESEM)技术, 为用户带来更大的应用灵活性和通用性. Quanta 3D FEG的发布, 将FEI公司目前已有的"双束"产品家族(包括Quanta 200 3D, Nova NanoLab, Helios NanoLab和Strata 400等)拓宽新的高度.Quanta 3D FEG主要新技术包括:- FIB最大束流达到65nA- 扫描电镜电子束流最大200nA- 环境扫描(ESEM)技术: 高真空, 低真空和环境真空三种真空模式- 1kV分辨率(高真空) 2.9nm- 3kV分辨率(低真空) 2.9nm- 30kV STEM(高真空)分辨率 0.8nm详细信息请参阅FEI公司网站 www.fei.com
  • 双光子微纳打印系统Quantum X在2020美国西部光电展深受关注
    The SPIE Photonics West 2020 成功落幕,作为北美地区规模最大光学领域贸易博览会,也是光电子行业全球数一数二的知名展览会,超过1300家公司参加了展会。此次展会开展了超过5000个精彩的会议演讲,包含多个主题,例如生物光子学,工业激光器,光电子学,微加工,微电子机械系统,微光机电系统和显示器等,展现了最前沿的光学和光子技术。Nanoscribe在展会上介绍了3D微加工领域的进展,其中新品Quantum X系统引起了光子学界的浓厚兴趣。参观者对于多层衍射光学元件和新型折射微光学设计的高端制造也进行了积极的讨论。Quantum X 新型超高速无掩模光刻系统的技术核心是Nanoscribe特别研发的双光子灰度光刻技术(2GL)。该设备能在保持极高精度的同时达到160nm横向最低打印线宽,≤10nm表面粗糙度,使其同时具备高速打印,完全设计自由度和超高精度的特点。从而满足了高端复杂增材制造对于优异形状精度和光滑表面的极高要求。此外,在展会上发布的新型IP-Visio打印材料也受到了生物医学领域的巨大反响。这种打印材料具有无生物毒性,低荧光的特点且专为生物兼容微结构3D微加工而设计。借助自住研发的打印材料IP-Visio, Nanoscribe的3D打印设备为生产3D细胞培养和组织工程所需的复杂微环境开辟了新的道路。会议期间各界的巨大反响证明了微加工已然成为光学和光子学行业的关键技术之一。 Nanoscribe秉持着卡尔斯鲁厄理工学院(KIT)的技术背景,经过十几年的不断研究和成长,已然成为微纳米生产领域的领导企业。为了拓展并加强中国及亚太地区的销售推广和售后服务范围, 在2017年底Nanoscribe在上海成立了独资子公司 - 纳糯三维科技(上海)有限公司,并设立亚太实验室供参观访问。更多咨询可联系Nanoscribe纳糯三维科技(上海)有限公司 销售技术团队
  • 国办明确第二批92个双创示范基地 26个高校/科研院所入选
    p  6月21日,国务院办公厅印发《关于建设第二批大众创业万众创新示范基地的实施意见》(以下简称《意见》),系统部署第二批大众创业万众创新示范基地建设工作。/pp  《意见》明确了第二批共92个双创示范基地,包括北京市顺义区等45个区域示范基地,北京大学、中国科学院西安光学精密机械研究所等26个高校和科研院所示范基地,中国航空工业集团公司等21个企业示范基地。/pp  根据2017年《政府工作报告》部署要求,为在更大范围、更高层次、更深程度上推进大众创业万众创新,持续打造发展新引擎,突破阻碍创新创业发展的政策障碍,形成可复制可推广的创新创业模式和典型经验,经国务院同意,决定在部分地区、高校和科研院所、企业建设第二批双创示范基地。/pp  根据《意见》内容,为了扎实推进落实既定改革举措和建设任务,推动创新创业资源向双创示范基地集聚,确保各项“双创”支持政策真正落地,推出一批有效的改革举措:/pp  在加快科技成果转化应用方面,进一步打通科研和产业之间的通道,加速双创示范基地科技成果转移转化。落实好提高科技型中小企业研发费用加计扣除比例的政策。建立有利于提升创新创业效率的科研管理、资产管理和破产清算等制度体系。出台激励国有企业加大研发投入力度、参与国家重大科技项目的措施办法。通过股权期权激励等措施,让创新人才在科技成果转化过程中得到合理回报,激发各类人才的创新创业活力。加强国家与地方科技创新政策衔接,加大普惠性科技创新政策落实力度,落实高新技术企业所得税优惠等创新政策。/pp  在支持建设“双创”支撑平台方面,采取政府资金与社会资本相结合的方式支持双创示范基地建设,引导各类社会资源向创新创业支撑平台集聚,加快建设进度,提高服务水平。支持示范区域内的龙头骨干企业、高校和科研院所建设专业化、平台型众创空间。对条件成熟的专业化众创空间进行备案,给予精准扶持。依托科技园区、高等学校、科研院所等,加快发展“互联网+”创业网络体系,建设一批低成本、便利化、全要素、开放式的众创空间,降低创业门槛。试点推动老旧商业设施、仓储设施、闲置楼宇、过剩商业地产转为创业孵化基地。双创示范基地可根据创业孵化基地入驻实体数量和孵化效果,给予一定奖补。/pp  详细名单如下:/pp style="text-align: center "strong第二批双创示范基地名单(92个)/strong/pp  strong一、区域示范基地(45个)/strong/pp  北京市顺义区/pp  天津滨海高新技术产业开发区/pp  河北省保定国家高新技术产业开发区/pp  山西转型综合改革示范区学府产业园区/pp  内蒙古自治区包头稀土高新技术产业开发区/pp  辽宁省大连高新技术产业园区/pp  辽宁省鞍山高新技术产业开发区/pp  吉林长春新区/pp  黑龙江哈尔滨新区/pp  上海市徐汇区/pp  江苏省南京市雨花台区/pp  浙江省杭州经济技术开发区/pp  浙江省宁波市鄞州区/pp  浙江省嘉兴南湖高新技术产业园区/pp  安徽省芜湖高新技术产业开发区/pp  福建省厦门火炬高技术产业开发区/pp  福建省泉州市丰泽区/pp  江西赣江新区/pp  山东省青岛高新技术产业开发区/pp  山东省淄博市张店区/pp  山东省威海火炬高技术产业开发区/pp  河南省许昌市城乡一体化示范区/pp  河南省鹿邑县/pp  湖北省武汉市江岸区/pp  湖北省荆门高新技术产业开发区/pp  湖北省黄冈市罗田县/pp  湖南省湘潭高新技术产业开发区/pp  广东省深圳市福田区/pp  广东省汕头华侨经济文化合作试验区/pp  广东省中山火炬高技术产业开发区/pp  广西壮族自治区南宁高新技术产业开发区/pp  海南省海口国家高新技术产业开发区/pp  重庆市永川区/pp  四川天府新区/pp  四川省巴中市平昌县/pp  贵州省贵阳高新技术产业开发区/pp  贵州省遵义市汇川区/pp  云南省昆明经济技术开发区/pp  西藏自治区拉萨市柳梧新区/pp  陕西省杨凌农业高新技术产业示范区/pp  甘肃省兰州市城关区/pp  青海省青海国家高新技术产业开发区/pp  宁夏回族自治区银川经济技术开发区/pp  新疆维吾尔自治区乌鲁木齐高新技术产业开发区/pp  新疆生产建设兵团石河子高新技术产业开发区/pp  strong二、高校和科研院所示范基地(26个)/strong/pp  北京大学/pp  河北农业大学/pp  吉林大学/pp  哈尔滨工业大学/pp  复旦大学/pp  上海科技大学/pp  南京理工大学/pp  南京工业职业技术学院/pp  浙江大学/pp  山东大学/pp  武汉大学/pp  华中科技大学/pp  中南大学/pp  华南理工大学/pp  西安电子科技大学/pp  中国信息通信研究院/pp  国家工业信息安全发展研究中心/pp  中国科学院计算技术研究所/pp  中国科学院大连化学物理研究所/pp  中国科学院长春光学精密机械与物理研究所/pp  中国科学院上海微系统与信息技术研究所/pp  中国科学院苏州纳米技术与纳米仿生研究所/pp  中国科学院宁波材料技术与工程研究所/pp  中国科学院合肥物质科学研究院/pp  中国科学院深圳先进技术研究院/pp  中国科学院西安光学精密机械研究所/pp  strong三、企业示范基地(21个)/strong/pp  中国航空工业集团公司/pp  中国船舶重工集团公司/pp  中国电子科技集团公司/pp  国家电网公司/pp  中国移动通信集团公司/pp  中国电子信息产业集团有限公司/pp  中国宝武钢铁集团有限公司/pp  中国钢研科技集团有限公司/pp  北京有色金属研究总院/pp  中国普天信息产业集团公司/pp  三一重工股份有限公司/pp  北京百度网讯科技有限公司/pp  长春国信现代农业科技发展股份有限公司/pp  万向集团公司/pp  合肥荣事达电子电器集团有限公司/pp  浪潮集团有限公司/pp  迪尚集团有限公司/pp  深圳市腾讯计算机系统有限公司/pp  重庆猪八戒网络有限公司/pp  四川长虹电子控股集团有限公司/pp  新希望集团有限公司/pp/p
  • 全在线双冷阱大气预浓缩常规四极杆气质VOCs监测系统 成功落户宁波
    2016年6月,磐合科仪推出的全在线双冷阱大气预浓缩常规四极杆气质VOCs监测系统成功落户浙江宁波。该系统位于宁波石化园区与居民区的交界处,主要对环境空气中的苯系物、烷烃类、卤代烃、硫化物等挥发性有机化合物进行在线监测。为了保障居民生活环境安全,用户对数据采集、分析灵敏度及定性准确性要求非常严格。 磐合科仪在获知用户需求后,高度重视,进行了精心准备,与用户开展了多次深入的需求分析,最终确立了本套方案,并在最终的招标程序中胜出。经过数月准备,浙江首套全在线双冷阱大气预浓缩常规四极杆气质VOCs监测系统已安装成功。 全在线双冷阱大气预浓缩常规四极杆气质VOCs监测系统采用双冷阱交替采样浓缩,搭载安捷伦高灵敏度四极杆气质,可实现环境空气中VOCs定性定量分析,数据无盲点,灵敏度高,真实反应VOCs的类型和变化,对重点监测区域进行在线监测。 为了更好地服务用户,该套系统顺利安装验收后,磐合科仪工程师提供专业技术指导和系统运维,配合用户进行数据分析,帮助用户更快更好地使用该系统,为VOCs在线监测提供可靠的科学数据。 磐合科仪专注于环境监测领域,近年来通过不断加大研发投入,先后推出多个系列的环境监测新产品以及应用方案,在大气VOCs在线监测、土壤有机污染物监测、水质监测等方面取得了重要突破。本次全在线双冷阱大气预浓缩常规四极杆气质VOCs监测系统在宁波成功启用,为浙江乃至全国在线监测用户树立了新榜样,将在线监测技术及产品推上一个新台阶,同时也让更多VOCs监测与治理工作者认识了磐合科仪,更加增强了我们在环境监测领域发展的信心。
  • 第二轮“双一流”名单即将公布?多所高校透露重要信息!
    新一轮“双一流”名单何时公布,成为近期高教领域的热点话题。  据澎湃新闻报道,杭州市民魏先生近日向教育部政务公开办公室提出公开申请“第二轮‘双一流’建设高校名单、第二轮‘双一流’建设学科名单”,并于10月11日收到邮件回复称“有关名单待上级部门批准后方可公布”。  2021年是第二轮“双一流”建设的起始年。部分高校已经透露此次“双一流”建设学科名单变动信息。科学网进行了梳理。  高校披露:部分新增建设学科  截至目前,华中师范大学、湖南大学及西北大学新增的“双一流”建设学科信息已在报道中有所显现。  而此前,关于清华大学、山东大学及东北大学的新增学科信息也在网上引发关注。  部分高校新增“双一流”学科信息如下:  华中师范大学:教育学  近日公布的《华中师范大学2021年国际青年学者论坛公告》中提到,该校已有政治学、中国语言文学、教育学3个国家“双一流”建设学科,而在2017年首轮“双一流”名单中,华中师范大学入选学科为政治学及中国语言文学。  湖南大学:电气工程学科  据湖南大学电气与信息工程学院10月3日消息,在该学院“办学一百周年”庆典大会上,该院教授罗安院士在发言中提到“在国家‘双一流’建设学科中,电气工程学科的发展得到了教育部和湖南大学的大力支持”。  西北大学:考古学  陕西省人民政府网站于9月10日发布的《陕西省人民政府2020年履行教育职责情况自查自评报告》中提到,“西北大学考古学等3个学科纳入国家新一轮‘双一流’建设方案。新增博士学位授予单位2个,省属高校新增专业学位博士点3个,实现‘零’的突破”。  清华大学:航空宇航科学与技术学科  由清华校友总会认证的微信公众号“THU航院校友会”曾在9月初发布喜报,称“此次教育部‘双一流’学科建设,清华大学共有35个学科入选,与首轮34个学科相比,唯一新增学科为我院的‘航空宇航科学与技术’学科”。  东北大学:冶金工程  在东北大学9月初召开的暑期战略研讨会和科技工作会议上,校长冯夏庭指出,“在新一轮‘双一流’建设中,要奋发有为,急速行军,更高质量地建设好‘控制科学与工程’和‘冶金工程’学科”。而在首轮“双一流”名单中,东北大学入选学科为控制科学与工程。  山东大学:中国语言文学  8月,“山大中文之声”微信公号发布了山东大学文学院院长杜泽逊的报告《关于“双一流”建设的若干思考》,其中提到“根据教育部第二轮双一流建设的通知,山东大学进入重点建设的学科有四个,中国语言文学是其中一个”。  除了双一流建设学科的最新消息,还有3所高校在建设“世界一流大学建设高校”上受到地方政府的大力支持。  福州大学  福建省政府近日印发的《福建省“十四五”教育发展专项规划》中提到,“分类推进‘双一流’建设,支持厦门大学建设中国特色世界一流大学;支持福州大学争创世界一流大学建设高校”。  昆明理工大学  据昆明理工大学网站报道,9月29日,云南省科技厅厅长王学勤率队到昆明理工大学召开专题座谈会,共同商议科技支持昆明理工大学创建“双一流”相关事宜。  河南大学  据媒体报道,河南省科技创新委员会近日召开第一次会议,会议中指出“加快推进郑州大学、河南大学‘双一流’建设”。  官方信号:第二轮“双一流”重点支持这些学科和高校  2021年是第二轮“双一流”建设的起始年。去年以来,官方也发布了一些针对“双一流”评选的政策,其中揭示了对关键核心技术领域、医学类、师范类及农业学科和高校的重点支持。  以下为部分信息整理:  急需领域学科  国家发展改革委今年5月发布关于印发《“十四五”时期教育强国推进工程实施方案》的通知。其中提到,加快“双一流”建设,大力加强急需领域学科专业建设,显著提升人才培养能力,加快破解“卡脖子”关键核心技术。  其中提到,“中央高校‘双一流’建设… … 在集成电路、储能技术等关键领域,布局建设一批国家产教融合创新平台。”同时,优先考虑、重点支持集成电路、人工智能、储能技术、量子科技、高端装备、智能制造、生物技术、医学攻关、数字经济(含区块链)、生物育种等相关学科专业教学和科研设施建设。  中医药院校和学科  国务院办公厅今年1月发布的《关于加快中医药特色发展的若干政策措施》中明确提出,“加强‘双一流’建设对中医药院校和学科的支持。布局建设100个左右中医药类一流本科专业建设点”。  医学及相关学科  教育部2020年9月发布了《国务院办公厅关于加快医学教育创新发展的指导意见》,其中提到,“着力加强医学学科建设。在一流大学和一流学科建设中,加大医学及相关学科建设布局和支持力度” 。  师范院校和教育学学科  教育部在2020年12月发布的“对十三届全国人大三次会议第5444号建议的答复”中提到,2020年是“双一流”建设的收官之年,将进行成效评价并动态调整建设范围。教育部、财政部、国家发展改革委正在加紧研究相关办法,加强对师范院校和教育学学科建设的支持力度。  农业学科、农业工程等相关领域  教育部在2020年10月发布的“对十三届全国人大三次会议第6876号建议的答复”中提到,“新一轮‘双一流’建设将继续坚持扶强扶优,聚焦高端农业装备的重大需求和急迫生产实践问题,加大对农业学科、农业工程等相关领域的支持力度”。  2017年9月21日,教育部公布首轮 “双一流”建设高校名单,其中包括42所一流大学建设高校及95所一流学科建设高校。  “双一流”建设每五年为一个建设周期。在即将公布的第二轮建设名单中,会有哪些高校及学科上榜?让我们拭目以待!
  • 新规范来了!聚光科技携手自主孵化子公司双谱科技全流程参与《车载水质污染监测溯源系统技术规范》编制
    9月22日,由聚光科技携手自主孵化子公司双谱科技参与编制的团体标准T/AHEPI 0010—2023《车载水质污染监测溯源系统技术规范》发布。该规范由大地安柯(合肥)科技有限公司、浙江双谱科技有限公司、北京大学、南开大学、江苏省环境监测中心、浙江省生态环境监测中心、浙江农林大学、安徽大学、合肥综合性科学中心环境研究院、聚光科技(杭州)股份有限公司、安徽中科智慧环境检测技术服务有限公司共同起草完成。技术规范规定了车载水质污染监测溯源系统的方法原理和测定范围、设备与装置、检测方法和性能指标、实施步骤、溯源流程和质量保证与质量控制,适用于对江河湖库、工业园区、重点水源地等领域开展的应急监测和污染溯源及入河/湖排口精细指纹调查及痕量新型污染物监测。T/AHEPI 0010—2023《车载水质污染监测溯源系统技术规范》水质有机物与重金属特征因子溯源移动实验室双谱科技水质有机物与重金属特征因子溯源移动实验室完全符合技术规范。溯源车基于SPME 前处理技术、全二维气相色谱-飞行时间质谱联用技术、水质重金属XRF监测等技术,可以实现水中上千种有机物和四十余种重金属元素的高精度测量。针对不同场景提供合理溯源路线,结合多种溯源算法,追溯污染迁移过程,识别水中污染来源。水质有机物与重金属特征因子溯源移动实验室GC×GC-TOFMS 3000W水中VOCs/SVOC在线监测全二维色谱质谱系统 可实现上千种水中有机物组分分离检测; 超高灵敏度,检出限低至ppt级; 丰富四维图谱信息,指纹特征表征全面,实现精准溯源; 多种进样方式结合,适用于在线、离线、应急等多场景;XRF-3000水质重金属在线监测系统 广谱监测,可同时监测40余种重金属元素; ppb级别检测限,满足地表水Ⅰ类监测需求; 自动标定; 维护简单,无二次污染;SIA-3000常规水质在线分析系统小型模块化、体积小,重量轻,便于运输安装与集成;多种量程可选,实现自动量程切换,适应多变工况需求;连续测量、周期测量、远程触发测量等多测量模式;周期自动清洗、周期自动标准标定,提升仪器可靠性;水质污染溯源分析软件 海量特征污染物排放指纹谱库及质谱信息自建库; 样品信息管控系统,保证样品信息追踪及结果可靠; 高精细指纹匹配及相似性算法,快速摸清污染源头; 水体污染物传输分析,立体展示污染物迁移转化规律;溯源流程溯源流程以“查-测-溯”为重点,依次制定溯源方案、开展溯源分析、呈现溯源结果、校验溯源结果,为“管”提供基础数据和技术支撑。“查”:摸清污染底数,构建基础信息库;“测”:科学合理布点,全面监测污染物;“溯”:融合溯源算法,快速精准溯源;“管”:提供排污名单,协助制定管控策略;溯源案例① 某流域氮磷超标溯源浙江某水质监测站监测到流域断面总磷含量升高。双谱科技根据站点周边污染源整体分布情况,设置采样点位,通过溯源移动实验室进行总磷浓度及有机成分分析,并进行污染溯源。采样点5至采样点1 TP浓度逐渐升高,经水质监测站后降低。其中采样点5至采样点4 TP出现突升。水样中有机物种类数量与TP浓度变化一致。根据有机物二维图谱显示,采样点4、采样点3和采样点1分别出现了TP升高的伴随物质,且物质存在差异,说明这两处分别存在影响TP浓度的排放源。经分析,伴随物质主要为药物合成中间体,对比周边污染源排放信息,锁定影响源为A医药企业及B生物公司。② 某河道死鱼事件应急溯源某医药化工园区周边河道,出现死鱼现象,周边伴有密集浮藻。双谱科技受业主委托出动溯源移动实验室至现场,分别从该河道死鱼点以及其上、下游设点取样,对比指纹差异,分析特征物质,溯源排污单位。对比上、中、下游水质有机指纹图谱发现,在中游(死鱼事件点位)污染物丰度最高,且出现明显指纹。死鱼点及上下游水中有机物分析全二维图谱根据周边企业排污许可信息披露的工艺过程中的原辅料信息,对比非靶向扫描结果,识别到A制药科技有限公司原辅料对三氟甲氧基苯胺在环境样本中检出。对三氟甲氧基苯胺MSDS信息危险性概述-健康危害-急性毒性(经口) 第3级 ;急性毒性(经皮) 第2级 ;皮肤腐蚀/刺激 第2级 ;严重损伤/刺激眼睛 第1级 。关于双谱聚光科技自主孵化子公司双谱科技是一家以产品技术研发为核心的高新技术企业,公司以全二维色谱飞行时间质谱/离子迁移谱技术为特色,专注于解决复杂体系中有机及无机组分高精准检测难题,打造集复杂样品前处理、多维分离、高端检测器和高维数据分析为一体的多维分析技术完全自主研发的高科技公司。在大气光化学、恶臭异味、化工园区、工业过程、食品药品、公共安全、生命健康等领域为客户提供全方位、专业化的科学分析解决方案。
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • 浙江省计量院双碳领域实用新型专利获国家知识产权局授权
    近期,浙江省计量院又一项实用新型专利获国家知识产权局授权。此基于腔衰荡光谱技术的实用新型专利《用于温室气体含量检测的衰荡光腔》是浙江省计量院自主承担浙江省科技厅公益项目《温室气体超快光谱分析方法及应用研究》的研究成果,为高精度温室气体光谱检测提供技术支持,进一步展现了浙江省计量院在双碳计量领域的技术实力。   该专利提供了一种温室气体含量检测装置及方法。该装置通过飞秒激光射入衰荡光腔后,通过两端的腔镜使得激光在两个腔镜之间来回反射,扩大了激光的吸收行程,增加了激光与待检测气体之间的相互作用长度,极大地提高了检测精度。所研制的分析测量方法及监测装置,可用于大气环境温室气体测量仪器的校准,具有快速实时特性,具有较大的社会效益。光腔衰荡光谱也称腔振铃吸收光谱,共振腔环路衰减光谱,是一种非常灵敏的光谱学方法。它可用来探测样品的绝对的光学消光,包括光的散射和吸收。它已经被广泛地应用于探测气态样品在特定波长的吸收,并可以在万亿分率的水平上确定样品的摩尔分数。这种方法也被称作激光光腔衰荡吸收光谱。   一台典型的光腔衰荡光谱装置包含了一个用于照亮高精细度光学谐振腔的激光光源,和构成谐振腔的两面高反射率反射镜。当激光和谐振腔的模式共振时,腔内光强会因相长干涉迅速增强。之后激光被迅速切断,以探测从腔中逸出光强的指数衰减。在衰减中,光在反射镜间被来回反射了成千上万次,由此带来了几到几十公里的有效吸收光程。   如果吸光物质被放置在谐振腔内,则腔内光子的平均寿命会因被吸收而减少。一套光强衰荡光谱装置测量的是,光强衰减为之前强度的 1/e 所需要的时间,这个时间被称为“衰荡时间”可以被用来计算腔内吸光物质的浓度。   浙江省计量科学研究院成立于1960年,是浙江省人民政府计量行政部门依法设置并经国家总局授权的省级法定计量检定机构、浙江省市场监督管理局所属公益二类事业单位、浙江省科技厅重点扶植科研院所之一。浙江省计量院经过多年发展,在人才队伍、科技创新、项目建设、管理能力、履职服务等方面取得长足进步,大力提升了机构的综合技术能力和服务能力,充分发挥计量在现代社会治理体系中的积极作用,为浙江经济社会发展提供强有力的支撑。
  • 内有福利 | Sievers分析仪 | “双旦”将至,感恩相伴,前路同行
    Merry Christmas一年将尽,最后留白2023,我们以心致敬相伴的时光“双旦”将至,感恩有你Sievers分析仪愿您福启新岁,万事顺意!我们已经准备好惊喜福利参与游戏赢好礼扫码参加游戏时间即日起至2024年1月1日中午12:00【本活动仅限仪器使用单位人员参加(已购买或尚未购买均可),Sievers分析仪保留活动解释权】 游戏规则游戏时间为40秒,在40秒时间内,夹住1台仪器得10分,夹住的仪器数量越多,得分越高,成绩达到30分,即为挑战成功。我们将于1月上旬,在所有挑战成功的参与者中随机抽取50位获奖人,送出礼品。获奖名单将于1月中下旬在“Sievers分析仪”微信公众号中公布,敬请关注。【tips:夹子必须在仪器正上方才能夹住仪器哦,每人最多99次参与机会】 【首次游戏开始前需要填写邮寄地址及个人信息,请准确填写,以便获奖后给您寄送奖品(信息不真实或不完整无法参与抽奖)】奖品设置一等奖 5名外交官双肩背包二等奖 15名 MOMAX无线充电鼠标垫三等奖 30名 台历+笔记本1套Happy New Year未完待续,未来可期2024,我们用心祈愿滚烫的未来希望Sievers分析仪的产品与服务继续伴您一起历尽千帆,前路同行!◆ ◆ ◆联系我们,了解更多!
  • 山东邹平市市场监管局: 成品油抽检 “双100%”全覆盖
    山东邹平市市场监管局: 成品油抽检 “双100%”全覆盖2020-08-12 10:44:52 中国质量报本报讯 (徐丽娜)近日来,山东邹平市市场监管局对全市在营114家加油站开展“双100%”全覆盖抽检活动。该局制定成品油抽检工作方案和实施细则,并在中国邹平网站公示,有效履行市场监管部门的监管职责。该局执法人员会同淄博质检所和山东柏森化工技术检测有限公司,对全市在营加油站的在营成品油开展抽样检验,共抽取样品316个,其中车用柴油样品207个、汽油样品109个,做到在营油站和在营油品“双100%”抽检。目前,送检的316个样品已经全部检验完毕,合格率达99.05%。对于不合格的油品,该局正依法调查处理,并督促和帮助加油站查找不合格原因,进一步提升成品油质量,保障消费者权益。下一步,该局将加大执法力度以及成品油检测、快检频次,为绿水青山和优良的大气环境贡献市场监管部门的力量。《中国质量报》
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 陈清泉院士:氢能和四网四流融合推进双碳目标
    目前,世界各国能源供需格局加快调整,绿色低碳转型已经成为新的共识,新能源发展进入活跃期,数字化智能化技术推动行业重塑。 氢能与电能类似,是常见的二次能源,需要通过一次能源转化获得。同时,氢能的能量密度高、储存方式简单,是大规模、长周期储能的理想选择,为可再生能源规模化消纳提供了解决方案。我国提出,争取于2030年前达到峰值,努力争取2060年前实现碳中和的“双碳目标”。为实现“3060双碳目标”,发展氢能产业是重中之重。其中,绿氢的发展尤为重要。我们要加速发展绿氢制取、储运和应用等氢能产业链技术装备。实现双碳目标的重要途径 过去十年,全球温室气体排放以1.5%速度增长,2018年全球二氧化碳气体排放375亿吨,各种温室气体排放553亿吨二氧化碳当量。全球已有130多个国家和地区提出了实现碳中和的时间,发达国家多数把实现碳中和目标的时间定在2050年。 2018年,我国二氧化碳排放98.39亿吨,占全球碳排放总量的29.69%,人均排放6.98吨,是全球人均排放量的1.6倍。 我们在承受气候灾害和风险的同时,高碳粗放发展也使我国付出了沉重的资源、环境代价,制约着我国的可持续发展。积极应对气候变化,不仅是为了规避气候变化的风险,也是为了提高我国经济增长的质量和效益,破解资源、环境约束,事关国家发展和未来。 我国提出了“3060双碳目标”,这就要求我们力争到2030年实现碳排放减少65%,非化石能源占比达到25%,实现风光电装机达到12亿千瓦。到2060年,我国将实现控制化石能源的总量,提高现有能源体系的效率,加快发展可再生能源替代,构建以新能源为主体的新型能源体系。 从碳达峰到碳中和,欧盟用时大概需要70年,日本、美国需要40年左右,而我国仅有30年时间。 2022年全国两会上,政府工作报告提出,要有序推进碳达峰碳中和工作,落实碳达峰行动方案。同时,要推动能源革命,确保能源供应,立足资源禀赋,坚持先立后破、通盘谋划,推进能源低碳转型。 氢能源作为一种高效、清洁、可持续的能源,已得到世界各国的普遍关注,被誉为21世纪的新能源。随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。发展氢经济是人类摆脱对化石能源的依赖、保障能源安全的重要战略选择。 积极践行绿色制氢路线 我国的发展现状和挑战,表明我国化石能源只能打减量牌,我们必须要提高可再生能源的利用率,如太阳能、风能、水力能的利用潜力要进一步挖掘。我国可再生能源有深厚的资源禀赋,相当于我国峰值能源需求总量的2.7倍。但是可再生能源需要储能来解决稳定供应问题。 氢能可以解决大规模电力的储存问题,也可以解决将来单一电网不能解决的冶金、化工等行业的原料问题。目前,我国主要有两条绿色制氢路线。一是通过光伏、风力发电,开展水电解制氢,实现绿色制氢;二是通过光合作用,利用种植植物,通过生物发酵乙醇重整制氢。 从现有情况看,我国光伏电池发电效率目前已经可达到25%,度电成本不超过0.25元,通过可再生能源电解制氢,制氢成本有望进一步降低和可控,是当下比较符合国情的绿色制氢发展之路。 此外,我国氢气资源十分丰富,特别是作为工业副产品的氢气资源非常丰富,煤制氢产氢量占世界的三分之一。但副产氢气的问题是它含杂质多,不能用于质子交换膜氢燃料电池,目前基本上用于化工和石油工业。目前,我国燃料电池用氢量不到1%,主要是因为氢气提纯成本太高,工艺难度大,压缩耗能高,导致最终应用成本高。 燃料电池用氢气方面,大型化是制氢装备用于可再生能源制氢的前提。欧美等国家制氢装备开发较早,已有大型化成熟产品,但低成本技术仍未解决。 我国质子交换膜关键材料技术和大型化方面还是有短板,低成本技术有待加强攻关,产业化速度应该尽快提升。随着产业竞争日益激烈,氢能产业核心关键技术的攻关仍需加速。 在北京2022年冬奥会赛事保障中,国电投氢能车辆在延庆赛区、北京赛区总投入200辆,累计出车7200多次,总行驶里程超过88万公里,是我国氢燃料电池汽车发展方面取得的重要进展。推动四网四流融合 仅仅依靠技术不能够解决复杂的问题和迎接新的挑战,必须将人文世界、物理世界、信息世界等深度地融合,以“四网四流”融合推进碳中和、促进数字经济。 所谓“四网”,是指能源网、信息网、交通网、人文网;“四流”是指能源流、信息流、物质流、价值流。通过四网四流融合,可以将人的主观能动性和能源革命、信息革命、交通出行革命联动起来。通过建立“人-机-物”系统形成的新的生产关系,发掘第四次工业革命的数据红利所带来的巨大生产力,并在前三次工业革命生产力总和的基础上,爆发出指数级增长。 “四网四流”有三个载体:第一个载体是区域的智能能源管控中心;第二个载体是电动汽车,也是移动的载体储能;第三个载体是光伏的建筑,也是一个发电厂,多余的电量可以跟电网连接,可以制氢,可以给电动汽车充电。 在能源里,存在多种形态,通过不同能源形态的耦合,比如风能、太阳能是间歇性的,在电网不能接受时,把它们拿来制氢,就把能源流变成了物质流;等需要时,氢气再跟氧气结合,通过燃料电池发电,有助于解决电力能源和化工能源的矛盾问题。 通过“四网四流”形成智能能源,既能把没有用的能源变成有用的能源,又能促进实现“碳中和”。 而氢在其中有着重要的作用,因为氢气不仅具有能源和物质的属性,而且具有燃料和材料的属性,所以能够耦合电力能源和化工能源,耦合能源流和物质流。可以肯定,氢能在我国未来的能源系统中的地位将越来越重要。
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YH Tan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 柏恒科技新品上市 双槽二维梯度PCR仪抢先围观
    产品上新介绍RePure-D系列产品是柏恒科技潜心打造的智能二维梯度基因扩增仪,在此之前我们已发布有RePure-A/B/C系列PCR仪,在原有产品的基础上我们做了更新升级,此前RePure-A/B/C系列产品一经上市就深受广大用户的青睐,全新推出的RePure-D系列采用独特的复合式双槽二维梯度模块,两个模块可独立运行,满足多种实验需求。 柏恒科技新上市的RePure-D系列PCR仪共有三个型号,分别为RePure-D(B)、RePure-D及RePure-D(P),以RePure-D(P)型号PCR仪为例,我们的仪器部分产品参数如下:产品型号RePure-D(P)样本容量64×0.2ml (A 槽) + 32×0.2ml (B 槽)试管0.2ml单管,8联管温度范围0-105℃最大变温速率8℃/s温度均匀性≤±0.2℃≤±0.2℃温度准确性≤±0.1℃≤±0.1℃变温速率可调0.1-8℃梯度温度范围30-105℃梯度类型二维梯度常规梯度(A槽)(B槽)梯度设置范围横向:1-30℃1-30℃纵向:1-30℃热盖温度范围30-115℃ RePure-D 系列PCR仪产品主要特点如下:1.复合双槽二维梯度模块,一机多用RePure-D系列PCR仪具有独特的复合式双槽二维梯度模块,A模块带二维梯度功能,B模块为常规梯度,两个模块可独立运行,复合式模块设置,一机多用,满足不同的实验摸索需求。2.快速升降温,最大变温速率达到8℃/s仪器采用进口温度循环器专用长寿命Peltier模块,最大变温速率8℃/S,快速的升降温可以提升反应速率,进行一次PCR实验所需时间明显缩短,使得实验更快捷。3.仪器操作便捷,功能强大RePure-D系列PCR仪采用安卓操作系统,匹配10.1英寸电容式触摸屏,图形化菜单式导航界面,操作简洁流畅;具备一键快速孵育功能,满足变性、酶切/酶连、ELISA等实验需要。 当然,我们的RePure-D系列PCR仪不只以上优势,还有其它更多特色,如配置自适应压杆式热盖,能适应不同高度试管以及自动断电保护功能等。想了解更多吗,可以访问我们的网站或者联系技术支持人员,我们提供详尽的产品介绍,更多PCR仪等产品可以访问柏恒科技官网了解。
  • 17所高校生物学/生物医学工程学科入列第二轮“双一流”建设名单
    2月14日,教育部、财政部、国家发展改革委公布了第二轮“双一流”建设高校及建设学科名单,本文对生物/生物医学类学科及学校进行梳理总结,供广大对生物学科感兴趣的用户了解。共有17所高校的生物/生物医学类学科入列本轮名单。中国农业大学:生物学北京协和医学院:生物学、生物医学工程吉林大学:生物学复旦大学:生物学、同济大学:生物学上海交通大学:生物学南京大学:生物学东南大学:生物医学工程浙江大学:化学、生物学中国科学技术大学:生物学中国科学技术大学: 生物学厦门大学:生物学河南大学:生物学武汉大学:生物学华中农业大学:生物学中山大学:生物学西南大学:生物学附全名单:第二轮“双一流”建设高校及建设学科名单.pdf
  • 注重全维度健康发展 华测检测多举措推动“质量回报双提升”
    日前,深交所正式启动“质量回报双提升”专项行动。2月4日晚,一批深市公司披露行动方案,华测检测为其中之一。  根据公告,华测检测将采取的举措包括以投资者为本,切实推进股份回购;专注主业,深耕检验检测行业;不断提升创新研发能力,增强核心竞争力;打造以透明度为核心的治理结构;注重股东回报,坚持以投资者需求为导向的信息披露。  “长期价值投资是资本市场稳定运行的基础,资本市场的健康发展离不开上市公司质量的提升。”华测检测相关负责人表示,上市公司发展过程中除了要关注业绩指标的稳健增长,还需要重视公司的ESG表现,发现内在管理风险,促进管理提升,防范经营风险,持续增强上市公司抗风险能力,注重全维度健康持续的稳定发展。  资料显示,华测检测是中国检测认证行业首家上市公司,主要为全球客户提供一站式测试、检验、认证、计量、审核、培训及技术服务。  目前,华测检测在全球90多个城市设立160多间实验室和260多个服务网络,服务能力全面覆盖食品及农产品、化妆品及日化用品、能源化工、汽车和航空材料、芯片及半导体等相关行业及其供应链上下游产业。  上市以来,华测检测的经营业绩保持可持续、高质量的增长态势。数据显示,2009年至2022年,公司的营业收入、归母净利润、经营现金流年复合增长率均超过20%。华测检测预计,2023年营业收入55.41亿元至56.95亿元,同比增长8%至11%。  检测行业具有“技术密集型”“人员密集型”特点。为提高自身在检测技术领域的核心竞争力,华测检测不断加大研发和创新投入,自主建立了国内首家民营第三方检测认证专业研究机构——华测集团研究院。  数据显示,2022年,华测检测研发投入4.35亿元,近三年平均研发投入占比达到8.59%。截至2023年年底,公司已申请专利646项,授权354项。  推动公司业务高质量发展的同时,华测检测持续通过现金分红和股份回购等方式回报投资者。  据悉,华测检测自2022年以来连续推出两期股份回购计划,第一期股份回购计划已经实施完毕,累计回购股份数量300万股,成交总金额6350.54万元。第二期股份回购计划正在稳步推进中,截至2024年1月31日,累计回购股份数量为470万股,成交总金额为6814.95万元。  “公司坚持以人民为中心的价值取向,坚持以投资者为本,牢记亿万中小投资者对我国资本市场30多年发展的贡献,牢固树立回报股东意识,让广大投资者有回报、获得感。”华测检测表示,公司计划在回购完成后将前述回购股份用于员工持股计划或股权激励,提高员工积极性,提升公司业绩表现,让投资者共享公司的发展成果。  分红方面,华测检测定期制定《未来三年股东回报规划》,严格执行股东分红回报规划及利润分配政策。截至2022年度,公司坚持每年实施现金分红,累计分红金额达7.43亿元。  据华测检测制定的“质量回报双提升”行动方案,公司将继续根据所处发展阶段,统筹好业绩增长与股东回报的动态平衡,落实“长期、稳定、可持续”的股东价值回报机制。
  • 青岛高校朋友圈扩大 多校开建新区 青大获4亿双一流扶持
    青岛的高校朋友圈不断扩大,驻青高校也纷纷建设新校区。昨天上午,记者从青岛大学服务青岛“三中心一基地”建设发展论坛了解到,青大将在胶州建设新校区。新校区占地面积约3000亩地,比现有校区还要大,该项目的选址和规划目前仍在审批阶段。除此之外,论坛上省教育厅还与青岛市政府签署了共建青岛大学“十三五”建设项目协议。  青大胶州校区占地3000亩  昨天上午,青岛大学服务青岛“三中心一基地”建设发展论坛在青大国际学术交流中心举行,青岛大学与胶州市人民政府签订了共建青岛大学胶州校区合作协议。为发挥青岛大学在人才培养、科学研究、国际交流、学科综合等方面的优势和胶州的城市发展与区位优势,引进国际优质教育、科研和医疗资源,双方商定在胶州市建设青岛大学胶州校区。胶州校区的主要功能是引进美国、加拿大等国际优质高等教育资源,联合开展本科、硕士和博士研究生教育 引进高水平领军人才,打造高水平创新科研团队 围绕青岛市“三中心一基地”建设和胶州市经济社会发展需求,优化学科布局,调整组建推动地方经济社会发展的优势学科群。  据悉,青大胶州校区占地3000余亩,而目前学校浮山校区、金家岭校区和松山校区三个校区占地为2715亩,也就是说青大胶州校区比学校目前3个校区总占地面积还要大。胶州市将为校区建设提供政策、土地等方面的支持,青大将依托胶州校区,在国际化合作办学、人才引进以及打造高水平学科方面加快发展步伐。目前,青大胶州校区的选址和规划仍在审批阶段。双方将共同成立战略合作领导小组,履行各种报批程序,尽早启动胶州校区建设。  “一揽子”协议现场签订  论坛上,省教育厅还与青岛市政府签署了共建青岛大学“十三五”建设项目协议。青岛大学还与市南区、李沧区、崂山区政府分别签署了战略合作协议,与美国科罗拉多州立大学签署了国际合作谅解备忘录。现场青大还与市教育局签署了推进青岛基础教育创新发展合作协议,与市知识产权局签署了共建青岛大学知识产权学院的协议,与市卫计委签署了关于青岛市卫生大数据联合研究的合作协议、共建青岛市精准健康一体化平台的战略合作协议。青大与崂山区签署了共建青岛大学肿瘤精准医学研究院战略合作协议,与红岛经济区签署了关于合作共建青岛海洋新材料研究院的协议,与即墨经济开发区蓝色新区签署了共建国际干细胞再生医学研究战略合作框架协议。目前,我省按照国家“双一流”建设方案要求,重点加强山东省一流大学和一流学科建设,青岛大学获批4个一流学科,每个学科将获得1亿元额度的资金扶持。  据青岛大学校长范跃进介绍,“十三五”期间,学校将围绕建设国际知名高水平大学的目标,聚焦一流本科,建设一流大学。以校园建设、综合改革、国际合作和人才队伍为四大抓手,以落实立德树人根本任务为出发点,以建设服务地方发展战略的一流特色学科,以建设高水平多元化师资队伍为核心,以完善治理结构和深化综合改革为保障,推进高水平大学建设。  驻青高校拓展建设新校区  今年以来,驻青高校结合区域发展特色,纷纷展开布局建设新的校区。此前,青岛市同海大签署了中国海洋大学海洋科教创新园区(黄岛校区)协议。根据协议,海大黄岛校区选址在青岛西海岸新区古镇口军民融合创新示范区,占地约3000亩。该校区将重点打造国家级综合性滨海试验区和海上试验场,建设海洋可再生能源、海洋新材料、海洋装备与仪器、船舶与海洋工程等研发基地和相关学院 建设海洋发展战略研究领域的协同创新中心,打造国家“蓝色智库” 并与国际知名海洋科教机构共建联合实验室、共建学院。海大黄岛校区规划到2020年,校园建设达到招收和培养研究生、开展科研的办学条件和生活条件,在校生规模达到1000人以上 2021年,初步完成校区一期基本建设,规模不低于30万平方米,在校生规模达到5500人 2025年,初步实现校区运行常态化,形成黄岛校区学科专业基本框架。  青岛农业大学平度校区此前也已开工建设。平度校区占地约1000亩,建筑面积约28万平方米,总投资约23亿元。 2018年建成后,学校将围绕区域经济产业需要,按照不少于5个学科门类、不低于1万人的规模开展全日制人才培养。青农大将在此配备相应教学、科研、教辅、后勤等机构和人员,平度校区成为规模适中、结构完善、管理先进的主校区之一。同时,学校将面向现代农业产业创新驱动发展,孕育并设置未来20-30年间新兴学科专业。青岛高校朋友圈不断扩大,我市已引进并运行的高校有13个: 山东大学青岛校区、西安交通大学青岛研究院、上海财经大学财富管理研究院、天津大学青岛海洋技术研究院、大连理工大学青岛新能源材料技术研究院、哈尔滨工程大学青岛研究院(校区)、四川大学青岛研究院、吉林大学青岛汽车研究院、对外经济贸易大学青岛研究院、北京航空航天大学青岛研究院(校区)、山东中医药大学青岛中医药科学院、中央美术学院大学生艺术创业园、复旦大学青岛研究院。我市已签署合作协议并正在推进的国内外高校(机构)有14个:中国科学院大学海洋学院(中科院科教园)、同济大学青岛高等研究院、北京外国语大学、哈尔滨工业大学、青岛科技园、西南交通大学、青岛轨道交通研究院、清华大学大数据中心和清华大学文化创意产业研究院、大连工业大学、北京大学青岛科技园和海洋研究院中国政法大学、中美城市管理学院、中国人民大学、青岛研究院青岛科技大学与德国耶拿应用大学等5所德国大学合作共建中德双元工程大学、青岛理工大学与德国BITS大学共建中德创业大学联合国大学可再生能源学院普华永道大学。  政策 创新高校引进运行模式  据了解,根据城市发展需求我市提出“到2020年,在青高等教育机构(含军事院校)总数由目前的25所增加至50所以上。”为此,我市也出台了多项优惠政策,对引进的非独立法人和独立法人的国内外优质高等教育机构,分别给予总计不低于1500万元和3000万元的资金补助 对来青办校区或分校的,预留500亩至3000亩建设用地。  我市还探索高等教育机构的引进模式和运行模式,实现了体制机制的创新。办学模式上注重发挥市场机制作用,积极探索公办、民办、混合所有制等多种产权形式。引进模式上对引进的高校坚持“研究生院+研究院+成果转化+国际合作”四位一体的新型高等教育机构引进模式,使引进的高等教育机构融合多种创新要素和资源,同时具备多种职能,实现资源整合。学校层次上引进的境内大学原则上为国家“985” “211”工程大学或国内学科专业排名前5名的高校,境外大学原则上为世界一流大学或拥有一流学科的大学。人才培养方面,我市重点面向高层次人才培养,引进研究生培养机构。办学方向上重点引进符合我市 “十三五”期间产业布局和战略性新兴产业规划的高校,形成重点突出、区域协调、分工合理的高层次学科专业发展格局。
  • 合肥"芯火"双创平台聚集近300家企业,初步形成半导体全产业链
    p style="text-indent: 2em "集成电路被誉为“工业粮食”,是工业发展的基础。从国家级“芯火”双创平台落户合肥至今,全市集成电路产业已集聚企业近300家。在9月4日下午举办的集成电路产业链对接区活动上,合肥晶合、富芯微电子等多家芯片企业也现场进行供需对接。/ph3 style="text-indent: 0em "全市集成电路企业已近300家/h3p style="text-indent: 2em "合肥发展集成电路产业起步较晚,短短数年就从“白手起家”到实现“弯道超车”。这其中,平台的作用功不可没。/pp style="text-indent: 2em "“早在2018年12月,合肥‘芯火’双创基地(平台)就获工信部批准建设。”在合肥市集成电路产业链协同发展对接会上,合肥国家级“芯火”双创平台副主任朱治国介绍,这一平台以集成电路技术为核心,建立“芯片-软件-整机-系统-信息服务”的产业生态体系,进一步增强中小型企业自主创新研发能力,为合肥打造“中国IC之都”注入“芯动力”。/pp style="text-indent: 2em "“根据目前合肥市的产业分布情况和科技优势,平台将重点围绕存储器、显示驱动、智能传感器、智能家用电器和汽车电子等领域。”在朱治国看来,集成电路的产业链需要发展氛围,更需要一批企业扎堆才能做起来。/pp style="text-indent: 2em "而目前,全市集成电路产业已集聚企业近300家,从业人员超过2.3万人,初步形成研发设计、晶圆制造、封装测试、设备材料、第三方服务平台等全产业链格局。/ph3 style="text-indent: 0em "多家集成电路企业现场对接/h3p style="text-indent: 2em "作为此次对接会的分区活动,9月4日下午,集成电路产业链对接区活动上,包括合肥晶合集成电路、富芯微电子、合肥矽迈微电子等芯片企业也现场介绍在肥发展情况,并进行供需对接。/ph3 style="text-indent: 0em "中国“芯”,合肥造。/h3p style="text-indent: 2em "位于合肥市新站高新技术产业开发区综合保税区内,成立于2015年的合肥晶合集成电路有限公司专注于半导体晶圆生产代工,不仅是安徽省首家12英寸晶圆代工企业,更是安徽省首个超百亿级集成电路项目。“截至今年7月份,公司产能突破2.5万片/月,实现在手机面板驱动芯片代工领域市占率全球第一的目标。”对接会上,合肥晶合集成电路相关负责人介绍,预计在2021年突破设计产能达到4.5万片/月,成为全球面板驱动芯片代工市占率第一的公司。/pp style="text-indent: 2em "位于合肥市高新区柏堰科技园富芯微电子有限公司,是一家集芯片研发、制造、封装、测试到销售服务完整产业链的综合性IDM微电子企业。目前,已拥有一条年产50万片可控硅、功率保护器件及集成电路的芯片生产线,以及配套的封测生产线。/p
  • 539万!2024年新疆大学“双一流”建设(第二批)分析测试中心(进口)共享仪器平台采购项目
    一、项目基本情况项目编号:xsj2024106-7项目名称:2024年新疆大学“双一流”建设(第二批)分析测试中心(进口)共享仪器平台检测能力提升(2期)采购方式:公开招标预算金额(元):5360000最高限价(元):1960000,2470000,930000采购需求:标项一 标项名称:2024年新疆大学“双一流”建设(第二批)分析测试中心(进口)共享仪器平台检测能力提升(2期)(第一包) 数量:不限 预算金额(元):1960000 简要规格描述或项目基本概况介绍、用途:具体采购要求详见招标文件 备注:标项二 标项名称:2024年新疆大学“双一流”建设(第二批)分析测试中心(进口)共享仪器平台检测能力提升(2期)(第二包) 数量:不限 预算金额(元):2470000 简要规格描述或项目基本概况介绍、用途:具体采购要求详见招标文件 备注:标项三 标项名称:2024年新疆大学“双一流”建设(第二批)分析测试中心(进口)共享仪器平台检测能力提升(2期)(第三包) 数量:不限 预算金额(元):930000 简要规格描述或项目基本概况介绍、用途:具体采购要求详见招标文件 备注:合同履约期限:标项 1、2、3,详见招标文件“第五章采购需求”本项目(否)接受联合体投标。二、获取招标文件时间:2024年03月05日至2024年03月26日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:政采云平台http://www.zcygov.cn/方式:供应商登陆政采云账户(网址:https://www.zcygov.cn/),在线申请获取采购文件(登录政府采购云平台→采购项目→获取采购文件→申请,审核通过后可下载招标文件,如有操作性问题,可与政采云在线客服进行咨询,咨询电话95763)。售价(元):0三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:新疆大学地 址:乌鲁木齐市胜利路666号联系方式:0991-85800352.采购代理机构信息名 称:新疆新世纪招标有限公司地 址:新疆乌鲁木齐市水磨沟区新兴街20号凤凰科技大厦五楼联系方式:18799185025、131099692293.项目联系方式项目联系人:周志伟、宋金龙电 话:18799185025、13109969229
  • 从三星堆考古“露脸”仪器,看文物保护的“第二双眼睛”
    近日,“三星堆”考古发掘捷报频传,形状奇特的黄金面具,迄今为止世界上唯一一座双手合拢的顶尊铜人像,首次出土的整段象牙,0.12mm的超薄鸟型金器等等,都是21世纪人类最伟大的考古发现之一。三星堆遗址是中华文明探源工程的重点项目,从拉竹篱盖草棚,到如今的考古方舱,考古的科技水平大大提升,实现了考古发掘与文物保护全过程的紧密结合。四川省文物考古研究院文物保护中心副主任王冲在央视采访中说道,文物的信息通过仪器的分析检测是可以还原出当时生活生产状况的,仪器就相当于文保人员的另一双“眼睛”,能够更大地还原出文物原来的历史信息。让我们一起走进距考古现场仅有几公里的三星堆开放式文物修复馆,看文保人员是如何在第一时间借助高科技的仪器对文物进行保护与修复的。土中寻丝 科技给了考古者第二双眼睛高频振荡仪 雷磁pH计在文物修复馆里,可以看到超景深显微镜,雷磁pH计,高频振荡仪,离心机,高光显微镜,便携式X射线荧光光谱仪(XRF)以及高光谱成像仪等科学仪器。工作人员使用基恩士品牌数码显微镜分析样品超景深显微镜不仅可以实现对样品高达1000倍的放大,同时在以微米为单位对样品不同高度的位置进行多张图片的拍摄与叠加后还可以形成样品的类三维影像,从而为文保人员观察样品提供更多角度。高光显微镜高光显微镜可以将检测样品放大到几百甚至上千倍,任何蛛丝马迹都逃不过人的眼睛,科技让人类得以看到历史的微光!工作人员使用高光谱成像仪检测土壤中物质分布高光谱成像仪可以直接为考古人员呈现出土壤中物质的分布情况。甚至文物保存在坑位中,高光谱成像仪这样的设备也可以实时获取一手资料,这就是多学科联动考古的力量。工作人员使用赛默飞X射线荧光光谱仪检测土壤成分文保人员需要对发掘地周围土壤属性及样品所含有的元素等肉眼无法识别的信息进行提取,从而判断文物上是否还附着着其他物质,这些信息的收集将直接影响日后文保方案的制定,而便携式X射线荧光光谱仪就成了快速检测物质成分的新帮手。PerkinElmer红外光谱通过红外光谱可以分析出玉器的种类,而通过某段特定的波长放大谱可以更加准确地判断玉器的类别,红外光谱也满足文物近似无损的分析要求。延伸阅读故宫博物院、秦始皇兵马俑博物馆… … 中国拥有4000多家博物馆,难以计数的珍贵文物。这些文物年代久远、保存环境也不尽相同,其复杂程度让文物鉴定研究行业充满了许多未知的挑战。现在文物研究领域都用到哪些仪器?有哪些新兴的、适合的分析手段?据三星堆博物馆副馆长朱亚蓉介绍,三星堆文物修复馆建立了专门的分析仪器室,并配备了扫描电镜,X射线衍射仪,激光拉曼光谱等先进的仪器设备,可以对文物进行检测分析,从而为文物的修复保护提供科学的依据。在文物保护过程中,这些仪器又起到了哪些作用呢,小编罗列了朱亚蓉副馆长提到的几种仪器为大家简单介绍一下。扫描电镜扫描电镜具有取样量少和微区分析的特点,可以对文物样品进行微观形貌观察,并对组成元素进行定性定量分析。(点击此处可查看更多关于扫描电镜)中国国家博物馆曾采购扫描电镜,配备背散射电子探测器及二次电子探测器,能谱仪。可以通过扫描电镜可以观察到博物馆内收藏的一件清代官服的表面的金属箔片厚度及占比;通过能谱仪能够分析得到官服面料及补子位置所用到金属线的材质。科学仪器的精密探测使得文物修复工作得以更好的进行。赛默飞Quattro扫描电镜日本电子JSM-7200F扫描电镜中科科仪KYKY-EM6900LV扫描电镜X射线衍射仪X射线粉末衍射仪通常应用于晶体结构的分析。在文物分析中,是进行矿物组成分析有效的检测手段,一般用于分析文物原产地和制作工艺工作。(点击此处可查看更多关于X射线衍射仪)马尔文帕纳科 Empyrean X射线衍射仪岛津XRD-7000S/L型多晶衍射仪布鲁克D8 Advance X射线衍射仪激光拉曼光谱拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。拉曼光谱非常适合于易损和不允许取样的珍贵艺术品颜料的无损原位分析,可以检测出字画的真假,真迹的拉曼图谱具有较好的一致性,还可以成功地对古陶器、古玉石的表面主要成分等进行测量。搭载了显微镜及CCD成像技术的显微共聚焦激光拉曼光谱仪,在青铜器多层锈蚀物的形貌观察及微区结构分析方面发挥了很大的作用,完善了传统的X射线衍射法和扫描电镜法在多层锈蚀物分析方面的不足。国内多家博物馆及考古中心等都购置了拉曼光谱仪展开了相关研究,比如,秦始皇帝陵博物院/兵马俑博物馆、上海博物馆文物保护研究中心、上海光学精密机械研究所科技考古中心等。据悉前文中的三星堆开放式文物修复馆在年初也采购了HORIBA XploRA PLUS拉曼光谱仪。(点击此处可查看更多关于激光拉曼光谱)HORIBA XploRA PLUS超快速拉曼成像光仪雷尼绍 inVia Reflex显微拉曼光谱仪必达泰克 BWS485 便携/手持式拉曼光谱仪赛默飞 DXR 3xi 显微拉曼光谱布鲁克 SENTERRA II 共聚焦拉曼显微光谱仪三星堆开放式文物修复馆引进了许多高精度的科学仪器用于文物修复保护工作,文中只列举了部分央视新闻中公布的厂商的仪器型号,若有不完全,欢迎读者在评论区留言。此外也欢迎各厂商与仪器信息网联系,共同搭建仪器平台。
  • 美国呼吁禁止在婴儿产品中使用双酚A
    2009年2月25日,美国消费者联盟(CU)呼吁美国食品药物管理局(FDA)禁止双酚A用于儿童产品及食品包装。据悉,美国食品药物管理局在近日召开的双酚A公众听证会上默认了双酚A会引起严重威胁人体健康的问题,目前FDA正对双酚A在婴儿产品中的限值进行研究,同时正考虑进行一系列的数据规划和分析,以证明双酚A如何影响婴幼儿的健康。   美国消费者联盟此次提请美国食品药物管理局公布双酚A检测数据,并对人体开展血液生物监测。同时,认为食品药物管理局对化学品的审查应包含对婴幼儿可能接触的潜在的低剂量双酚A物质的研究。保护高危人群,尤其是婴幼儿十分重要,同时建议收集更多关于双酚A的数据。  加拿大于2008年禁止双酚A用于制造奶瓶,但这一举动被FDA描述为过于谨慎。FDA表示,美国不会效仿加拿大举动,但一定会在包装材料的化学物质安全方面提出自己的结论。  据悉,美国华盛顿州、明尼苏达州和康涅狄格州正在考虑推出禁止将双酚A用于3岁以下儿童产品的法案。
  • 全在线双冷阱大气预浓缩飞行时间质谱VOCs监测系统 成功落户上海环科院
    2016年7月,磐合科仪推出的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海市环境科学研究院(简称:上海环科院)安装成功。众所周之,上海环科院是上海设立较早、规模大、专业齐全的综合性环境科研机构,长期致力于区域环境问题研究、环境战略咨询、环境技术开发和示范应用 ,为政府环境管理和决策以及环境污染防治提供了有力的技术支撑。全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统作为全国重量级的环境科研机构,上海环科院对数据采集、分析灵敏度、分析时间及定性准确性等要求非常严格。本次安装成功的全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统,为业界高端大气vocs监测系统,配有双冷阱交替采样浓缩系统,搭载先进的高灵敏度飞行时间质谱。可无盲点采样,实时分析环境空气中从c2至c12范围内烃类、含氧、含氮挥发性有机化合物和有机硫化合物,可同时得到定性定量结果。全自动热脱附系统应用于环境空气中半挥发性有机化合物(svocs)如多环芳烃的检测,能满足分析超痕量化合物、需要大体积样品浓缩的应用要求。两套仪器的完美搭配可对环境大气中vocs 和svocs进行在线和离线分析检测,两种进样方式可自动切换,操作方便,充分满足上海环科院多种科学研究及各项应用分析的需求,为环境空气雾霾成因和成分研究分析提供有力工具。为了更好地服务用户,磐合科仪特邀英国技术专家提供专业技术安装和培训,配合用户进行数据分析,帮助用户更快更好地使用该系统,为vocs在线监测提供可靠的科学数据。磐合科仪专注于环境监测领域,近年来通过不断加大研发投入,先后推出多个系列的环境监测新产品以及应用方案,在大气vocs在线监测、土壤有机污染物监测、水质监测等方面取得了重要突破。本次全在线双冷阱大气预浓缩飞行时间质谱vocs监测系统和全自动热脱附系统在上海环科院的成功启用,为上海环境用户、全国环境科研机构乃至全国在线监测用户树立了新榜样,将在线监测技术及产品推上一个新台阶,同时也让更多vocs监测与治理工作者认识了磐合科仪,更加增强了我们在环境监测领域发展的信心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制