当前位置: 仪器信息网 > 行业主题 > >

洋椿苦素

仪器信息网洋椿苦素专题为您提供2024年最新洋椿苦素价格报价、厂家品牌的相关信息, 包括洋椿苦素参数、型号等,不管是国产,还是进口品牌的洋椿苦素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合洋椿苦素相关的耗材配件、试剂标物,还有洋椿苦素相关的最新资讯、资料,以及洋椿苦素相关的解决方案。

洋椿苦素相关的论坛

  • 【转帖】吸附树脂分离纯化柚核中的柠檬苦素

    柠檬苦素及其类似物属于三萜类物质,是植物次生代谢的产物,它们主要存在于芸香科和楝科的多种植物中,迄今为止已发现300多种柠檬苦素类似物。虽然很早以前含有柠檬苦素的中草药已用于中医治疗,如含柠檬苦素及其降解产物的狭叶白藓皮的根,在中医上认为有清热除湿、祛风止痒的作用,但人们并不知道起作用的成份是哪些物质。近年来的研究发现,柠檬苦素及其类似物具有抗癌、镇痛、除虫和杀虫、调节体内胆固醇水平,防止动脉粥样化等方面作用,因此也越来越受到人们的重视。柠檬苦素广泛地存在于柑桔属的多种植物中,在果实中的含量因品种、发育阶段等不同而有差别,而在果实中的不同部位的柠檬苦素类化合物含量以种子最高,其中又以柠檬苦素含量最高我国的柑桔种植面积和产量都居世界前列,每年产生的柑桔皮渣等废弃物造成的环境污染也不容忽视,从这些废渣废弃物中提取一些生物活性物质,并加以利用,是提高柑桔产业效益,减少柑桔皮渣废弃物污染的重要途径。目前对柠檬苦素的提取纯化方法局限于溶剂法提取,然后结晶出产品或者用硅胶层析的方法。这些方法仅适用于小试,而要大规模生产或者大量处理柑桔产业的废弃物,成本太高。本实验采用大孔吸附树脂来分离纯化柠檬苦素,具有成本低、效率高、能循环利用等优点。

  • 有含铬元素、锡元素的纯铝标样么?

    我们想分析纯铝中的铬元素、锡元素,但我们现有的纯铝标样只有铁、硅、铜、镁、镓和锌元素的标准值,请教各位,哪里有卖含铁、硅、铜、镁、镓、锌、铬和锡元素的标样?

  • 23.4 枯草芽孢杆菌JA产生的脂肽类抗生素-iturin A的纯化及电喷雾质谱鉴定

    23.4 枯草芽孢杆菌JA产生的脂肽类抗生素-iturin A的纯化及电喷雾质谱鉴定

    【作者】 陈华; 袁成凌; 蔡克周; 郑之明; 余增亮;【Author】 Hua Chen,Chengling Yuan,Kezhou Cai,Zhiming Zheng,Zengliang Yu(Key Laboratory of Ion Beam Engineering,Chinese Academy of Sciences,Hefei 230031,China)【机构】 中国科学院离子束生物工程学重点实验室; 中国科学院离子束生物工程学重点实验室 合肥230031; 合肥230031;【摘要】 枯草芽孢杆菌JA产生的抗生素对植物病原真菌具有广谱抗性,明确抗生素的种类是进一步研究的基础。用6mol/L盐酸沉淀JA菌株的去菌体培养基,再用甲醇抽提获得抗生素的粗提物。利用反相HPLC系统,将粗提物过DiamonsilC18柱,收集有抗小麦赤霉病等病原真菌活性的化合物1、2。运用电喷雾质谱法(ESI/MS)测得其分子量分别为1042.4D和1056.5D。再利用碰撞诱导解离(CID)技术获得化合物的典型结构特征离子碎片,结果表明分子量为1042.4D的化合物一级结构为Pro-Asn-Tyr-βAA-Asn-Tyr-Asn-Gln(βAA为14个碳原子的氨基脂肪酸),属于脂iturin A。化合物1、2为相差一个亚甲基(-CH2)的iturinA同系物。研究结果提供了一种从枯草芽孢杆菌发酵液中快速分离纯化和鉴定脂肽类抗生素iturin A的新方法。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207301640_380623_2379123_3.jpg

  • 香水中醛的乙醇缩合物建库

    楼主库小 香水分析后遇到乙醇缩合物 想把手头有的常见的醛类原料 加入乙醇 不知道要等多久 加入的大概比例 然后 把反应物的质朴放入自建库不知道版友是如何得到乙醇缩合物的ms入库的 自己对分子量不熟 就想自己建立 到时分析不用去算了

  • 食品生活——莲子变苦是不是也是由黄曲霉毒素造成的

    上一星期在超市里买了一些莲子,在熬粥的时候加一些,本来味道很好吃,不过这两天经常会吃到有坏的莲子,味道特别苦,但是表面看不到有发霉的情况,不知道这个苦味是不是也是由黄曲霉毒素造成的?这样的话就不敢吃了。

  • 【原创大赛】【第五届原创】HPLC法测定疏肝片中的龙胆苦苷含量

    HPLC法测定疏肝片中的龙胆苦苷含量摘要: 目的 建立测定感愈胶囊中绿原酸含量。方法 色谱柱为Krom asilC18柱( 4. 6 mm @ 250 mm, 5 Lm ) ; 流动相:甲醇-水( 23:77); 流速1. 0 m l# m in- 1; 柱温: 40e ; 检测波长326 nm。结果 绿原酸进样量在0. 0414~ 0. 828 Lg 范围内线性关系良好( r= 1. 0000, n= 7), 平均加样回收率为99. 01%, RSD为1. 40% ( n = 6)。结论 该方法简便快速, 结果准确, 可用于疏肝片中龙胆苦苷含量的测定。关键词: 舒肝片; 液相色谱法; 龙胆苦苷1.仪器:岛津LC-20AT高效液相色谱仪配SPD-M20A二极管阵列检测器,瑞士梅特勒AP205天平(0.01mg)超声波清洗仪(江苏昆山超声仪器厂)色谱柱:Kromasil C18 (5μm×250×4.6mm)流动相:甲醇:水=30:70柱温:302 溶液的制备 2.1 对照品溶液的制备:精密称取龙胆苦苷对照品 9.86 mg、 7.37 mg,分别置100 ml、50ml量瓶中,加30%乙醇使溶解并稀释至刻度,摇匀,分别精密吸取2 ml、 1 ml,分制成每1ml含19.72 ug、 14.74 ug的溶液,即得。取本品,研细,取 约0.8克,置具塞锥形瓶中,精密加入30%乙醇50 ml,密塞,称定重量,超声处理(功率250W,频率33KHZ)超声处理 20 分钟,再称定重量,用30%乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。3 测定法:照高效液相色谱法(中国药典2010年版一部附录附录Ⅵ D),分别精密吸取对照品溶液10μl与供试品溶液各10μl,注入液相色谱仪,测定,即得。4. 结果样1 1.9%样2 2.3%样3 2.2%样4 1.8%样5 2.1%5.讨论:1.本文建立了疏肝片中的龙胆苦苷的高效液相测定法的研究。2.本实验过程中比较了不同流动相,最终确定了甲醇和水,此种流动相对物质的分离度较好,基线较平稳。3.为进一步研究奠定了相关基础。

  • 高纯铜样品测试杂质元素Zn的含量的溶样问题

    ICP-AES测高纯铜丝中杂质锌元素如何溶样?是用浓硝酸溶解或者稀硝酸溶解比较好?还是其他的溶解方式?如果是浓硝酸溶解以后再稀释的话,由于试样量有限,可能会使得Zn的含量只有10ug/L的含量,这样测试起来可能有些困难,请各位大侠帮忙指导下,感谢!~

  • 类胡萝卜素能防止“坏”胆固醇的氧化

    [color=#333333]类胡萝卜素能防止[/color][color=#333333]“[/color][color=#333333]坏[/color][color=#333333]”[/color][color=#333333]胆固醇的氧化,保护血管,避免斑块和血管病变的产生。黄色、绿色、红色果蔬都是类胡萝卜素的优质来源,比如木瓜、芒果、西红柿、南瓜、红薯、胡萝卜等。[/color]

  • 黄曲霉毒素B1标准样用甲醇稀释后测定值降低

    今天试着用甲醇去稀释黄曲霉毒素B1标准品来制作标准曲线,测定条件不变,结果测定浓度只有配制浓度的1/3,原来的曲线制作时标准样用二甲苯-乙腈稀释来制作的,现在只是改了稀释溶剂,为什么响应值为差这么多?话说有谁知道为什么黄曲霉毒素B1标准品要用98:2的苯-乙腈去稀释,用纯甲醇是否对响应值产生影响。

  • 求助用分光光度计法测定果汁中的柠檬苦素和柚皮苷的资料

    想用分光光度计法测定果汁中的柠檬苦素和柚皮苷,但看的资料觉得有些不靠谱,找了下面两篇历史比较悠久的,但没买这两个数据库的资料,故求助各位大虾,资源共享下~~~如果各位大虾还有其他用分光光度计法测定柠檬苦素和柚皮苷的,也望不吝赐教~~~Davis DW.Determination of flavonones in citrus juice.Analytical Chemistry,1947,19:46-48.Munish Puri,Marwaha SS,Kothari RM et al.Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering.Critical Reviews in Biotechnology,1996,16(2):145-155.

  • 南方科技大学郑春苗:全球地下水加速枯竭,我国地下水何时会枯竭?

    嘉宾简介:  郑春苗,现任宁波东方理工大学(暂名)讲席教授、创校副校长,南方科技大学讲席教授、深圳可持续发展研究院院长。曾任南方科技大学环境学院创院院长、校长办公会成员 (国际事务),北京大学讲席教授、水科学研究中心首任主任,美国阿拉巴马大学地质科学系乔治林达尔冠名讲席教授,国际水文科协(IAHS)国际地下水委员会主席。研究涉及地下水污染机理与修复技术、流域生态水文过程、以及新污染物生态环境健康风险等。  划重点:  1.地下水是人类未来的生存之本,人类可以利用的液态淡水99%来自地下水。  2.地下水资源枯竭将会带来生存危机、粮食危机、生态退化、海水倒灌、生物多样性减少等严重后果。  3.总体来说我国水资源使用量已接近最大值了,如果水资源需求持续扩大,到2030-2040年,中国可能真的没有更多的水可用了。  4.地下水过量开采之后要很长时间才能恢复,数年到几十年不等,甚至需要万年以上。  5.地下水储存量消耗超出降雨补给、不合理的开采方式、以及环境破坏等原因都会导致水资源枯竭。[align=right]  出品|搜狐科技[/align][align=right]  作者|周锦童[/align]  地下水是人类未来的生存之本,因为人类可以利用的水是液态淡水,而99%的液态淡水就是地下水。  近日,美国加州大学领导的一项研究表明,在全球范围内,地下水正在快速枯竭,最近几十年速度加快,在某些地方,地下水甚至以每年超半米的速度下降,其中包括中美印等地。  地下水枯竭会带来哪些严重后果?什么原因会导致地下水枯竭?按照这个速度,我国地下水究竟何时会枯竭?带着这些问题,本文对话了宁波东方理工大学(暂名)/南方科技大学讲席教授郑春苗。  对此,他表示:“研究表明我国每年最大可利用水资源量仅为8000-9000亿m3,但2022年我国用水总量大约为6000亿m3。据预测,到2030-2040年,我国用水总量将接近极限,那时我们可能就真的没有额外的水可用了。”  而地下水资源枯竭将会带来非常多的严重后果。“比如生存危机和冲突、粮食危机、生态退化、海水倒灌、生物多样性减少等问题都会接踵而至。”郑春苗如是说。  虽然地下水可再生,但含水层枯竭想要恢复需要非常久的时间,郑春苗表示,由于地下水补给速度较慢,恢复时间可能要数年到几十年不等,甚至像缺水的华北平原,抽空的深部含水层要上万年甚至更久才能恢复。  谈及目前我国地下水面临的问题时,郑春苗表示:“我国地下水目前面临着许多危机和挑战,比如地下水的超采、地下水水质污染、生态破坏、城市和农村缺水等。”  因此,我们要建立完善的监测网对地下水进行监测,加强地下水资源的管理,实施喷灌、滴灌等农业灌溉节水措施,通过雨水收集、洪水资源化利用等方式增加地下水的补给量,加强水污染治理,并针对可能出现的水资源危机,制定应急预案等。  以下为对话实录(经整理编辑)  [b]搜狐科技:您觉得地下水枯竭会给人类带来哪些比较严重的后果呢?[/b]  郑春苗:首先会给人类生存造成危机和冲突,我们要知道全球有50%的人口饮用地下水,干旱半干旱地区比例更大,像中国华北很多地方达到70%或更多。地下水一旦枯竭,会对这部分人的生存造成直接威胁,并可能导致对有限水资源的竞争和对水资源获取的潜在冲突。  其次会造成粮食危机,全球70%的粮食生产需要依赖地下水作为灌溉水源,地下水一旦枯竭,将影响农业生产力,导致食物短缺。此外,全球淡水用水量1/3来自地下水,地下水资源量减少,可能引发水资源短缺,人们不得不抽取更深层的地下水,导致地下水资源进一步枯竭。  此外,还可能引发一系列生态环境问题,比如地面沉降,破坏建筑物、道路和管道等基础设施,北京就存在这个问题,虽然毫米、厘米级别我们感受不到,但根据中国地调局数据,华北平原最严重的地面沉降累计3-4米之多。中国西安等一些地方还有地裂缝等现象。当然还可能导致沿海地区海水入侵,湿地和生态系统退化,生物多样性减少等问题。  [b]搜狐科技:按照目前枯竭速度来说,您觉得这个地下水哪一年会彻底枯竭?[/b]  郑春苗:据最新的调查显示,中国地下水总储量大概有52万亿立方米,但由于埋藏深度和地理位置等原因许多地下水资源都很难开采,而且空间分布极其不均匀。根据中国2022年水资源公报显示,当年地下水开采量大约为830亿立方米。这表明近几年国家为避免地下水枯竭而严格控制地下水超采,使得地下水开采量占全国用水总量的比例在逐年下降。  如果包括地表水和地下水,研究表明我国最大可利用水资源量大约8000-9000亿m3,但截至2022年我国用水总量大约6000亿m3。据预测到2030-2040年,我国总用水量将接近最大可利用水资源量了。  我们真的要小心,到2030-2040年,那时中国可能真的没有更多的水资源可用了,而且可利用总量里还要考虑水污染的问题,所以说中国的水问题还是非常严峻的,我们必须要考虑各种各样的措施和办法。  [b]搜狐科技:地下水是可再生的,含水层枯竭多久可以恢复?[/b]  郑春苗:虽然地下水是一种可再生资源,但补给速度往往较慢,恢复时间可能需要数年到几十年不等,甚至可能需要更长时间,比如华北平原深部地下水年龄有达到几万年的。  开采几万年的地下水其实就和采矿类似了,这些地下水开采之后需要很长时间恢复,具体的恢复时间因地区而异,主要取决于地质条件、地下水补给情况以及人类活动对地下水的影响程度。 [b] 搜狐科技:您觉得有哪些原因会造成地下水枯竭呢?[/b]  郑春苗:包括内在和外在两个因素。内在因素主要是地下水资源储存量的消耗,导致地下水位持续下降,形成区域性地下水位降落漏斗,引起一系列环境地质问题。  比如华北平原,本身就处在我国降雨补给较少、水资源相对短缺的北方,同时该地区又大量开采地下水资源,长时间的地下水超采,引发了地下水资源的持续减少。  外在因素包括不合理的开采方式、开采层位以及开采时间过分集中等。此外,生态环境破坏也是导致地下水枯竭的一个重要原因,比如山林植被减少、人类活动的干扰以及地下爆破钻凿工程等都可能造成地下水源的断流,导致地下水枯竭。  [b]搜狐科技:目前地下水快速枯竭,您觉得这一趋势是否有办法可逆呢?[/b]  郑春苗:地下水枯竭是一个严重的问题,但是在采取适当的管理和保护措施的情况下,快速枯竭的趋势是可逆的。  我们可以合理管理和规划地下水资源。例如,可以设定合理的开采限额、建立水权制度、制定地下水保护区,从用水总量上进行管理 可以提升用水效率,促进水资源节约,从用水需求侧进行管理 也可以发展和利用雨水、中水等多元化的水资源,增加水资源供应量,从用水供给侧进行管理。 [b] 搜狐科技:您觉得目前我国地下水面临哪些危机和挑战?是否有防治手段?[/b]  郑春苗:我国地下水目前面临着许多危机和挑战,比如地下水的超采、地下水质污染、生态破坏、城市和农村缺水等诸多问题。  针对上述问题我们要建立完善的地下水监测网进行监测,加强地下水资源的管理,推广喷灌、滴灌等节水措施提升用水效率,加强污染治理,通过雨水收集、洪水资源化利用等方式增加地下水补给量,通过海水淡化、废水利用等手段扩大水源,并针对可能出现的危机,制定应急预案等。  [b]搜狐科技:生活中由于地下水看不见,往往会被我们忽视,从个人角度来讲,我们又能做些什么呢?[/b]  郑春苗:我觉得作为个人,在日常生活中节约用水,养成节水习惯是最重要的,尤其是在我国北方,饮用水源就是广泛采用地下水,节约用水才能减小地下水开采量,使地下水资源维持在一个合理的平衡状态。  其次也要尽量减少对地下水的污染,比如像废旧电池之类的废弃物会释放污染物会并渗入地下,污染地下水资源。日常生活中我们要多参与地下水保护的宣传活动和志愿服务工作,协助有关部门加强水污染监督、劝阻水资源浪费行为,共同保护地下水资源。  我觉得人们应该对地下水引起足够的重视,因为地下水是人类未来的生存之本,地下水和地表水是一个统一的整体。 地下水的开发与保护要秉承可持续的理念,在污染修复方面要考虑我们国家的碳达峰与碳中和的“双碳”目标,达到减污降碳协同。  [b]搜狐科技:您觉得目前我国在地下水研究领域处于怎样的地位?[/b]  郑春苗:这个问题不好定量回答。可以说,欧美发达国家在地下水研究方面应该比中国领先了几十年,他们在80、90年代以来就特别重视地下水研究,在地下水污染和修复等方面,投入了大量人力物力,设置各种政府专项基金,调查、监测和防治地下污染。  但我现在可以很高兴地说中国发展很快,经过十几年的努力我们已经建立了全国地下水监测网,许多高校里有地下水相关的研究团队,我们在不断追赶,但总体来说还没有领先发达国家。在某些领域,比如环保材料、新污染物健康风险评估与管控等方面我们已经做得很不错了,虽然他们起跑比我们早很多,不过我相信不用太久我们就可以做的很好。[来源:搜狐科技][align=right][/align]

  • 香精香料质谱谱库建立小贴士

    香精香料质谱谱库建立小贴士前面有网友问我有关香精香料质谱谱库建立的一些问题,我只是简单回复了一下,现在再简单和大家探讨一下。大家知道,香精是由多种香(原)料成分组成的复杂混合物,可能包含各种天然提取物,各种合成的香料,溶剂等。由于其原料的组成本身就极为复杂,例如天然香精油就是一种复杂的混合物,许多单体原料就有多种异构体及其众多杂质在里面,这样给GCMS解析整个香精的构成带来了一定的困扰。既然是多种化合物在一起,在存放老化过程,不可避免的会产生某些反应,生产新的物质。对于这种复杂混合物,分析鉴定里面的组分是一项比较麻烦的事情。谱库检索是香精香料化合物定性的一个重要手段。首先要求有较大完整的质谱数据库(MSdatabase或MS library)。目前主要使用的商业质谱库有NIST和Wiley。其中NIST08,10,13等,还包含NIST检索,AMDIS,部分化合物的保留指数数据库等。虽然它们收集几十万张标准质谱图或化合物,但收集的香精香料化合物不够全面,特别是近几年新发现的香气香味化合物,新合成的香料化合物没有收入,另外收集的化合物多只是化学名称,没有商品名或行业俗名不方便使用。另外,也有出售香料香精专用质谱库,如FFNSC(Flavor & Fragrance Natural & Synthetic Compounds)等。有的公司或研究机构有自己的香气香味化合物专用谱库,但一般不对外,属于保密知识财产。这样有时候需要自己建立专用香精香料谱库。自己建立谱库,当然这是件费功夫而辛苦的工作,还要有足够的标样。标样可以从试剂公司或香料供应商购买。有纯度高的标样,最好纯度越高越好,因为杂质对质谱图的可能有干扰。如果无法得到很纯的标样也无太大关系,因为可以利用GC/MS中色谱分离的优势得到纯物质进入质谱而获得标准质谱图。也可以从天然物等来分离提纯标样。自建谱库的另一好处是,由于用自己的仪器类型和相同操作条件得到的质谱图,使用时匹配度很好。自建立谱库时候,仪器已经正确的调谐过,仪器处于最佳状态。数据采集的质量范围要合适,建议从29开始扫描到400左右即可,这样可以涵盖绝大多数香料香精化合物。例如有人为了减少氧,氮,CO2离子对基流的影响,从45开始扫描,这样会使质谱图上没有如29,30,31,42,43等离子,失去某些有用的离子信息,对将来实际样品的质谱图检索可能造成匹配度过低。如果扫描范围过大,则扫描速度慢,MS文件也太大。背景扣除要正确。获得的化合物的峰丰强度不要太高或过小,即进样浓度要合适,不可过载或丢失某些离子信息。可以通过调整进样量或稀释或加大分流比来实现,一般讲纯品不能直接进样必须稀释,否则容易过载。可以直接把商业库里面的现有谱图直接转过来使用(一般最好验证一下,商业库有时候个别图谱可能有误),一般讲在正常情况下(70ev)图谱是基本一致的,都能够有较好的匹配,自己的条件下有时候可能和自己的待测样品更好匹配。也可以在现有的商业库增加自己的新谱图。如果需要得到多个厂家工作站格式的谱库,可以把原始图谱转换成AIA格式后,用别家工作站建立谱库。最好使用行业俗名和商品名,注明化学名或来源。另外有条件的话,把保留指数信息也写入数据库里面,方便今后未知物鉴定确认。

  • 【讨论】生日“名牌”与艰苦朴素

    女孩长得很可爱,圆圆的大眼睛,红扑扑的脸。小小年纪,对美也有了一点朦胧的意识。任何时候,大人问她:“你和某某比,谁漂亮?”她都会毫不犹豫地说:“我。”  自然,女孩喜欢漂亮衣服。女孩生日到了,妈妈替她邀请了好几个小朋友和他们的父母一起到酒店过生日。妈妈劝说女孩换上爸爸给她买的新裙装,爸爸说:“这可是米老鼠牌连衣裙,‘名牌’啊!很贵很贵的,小朋友们一定特别羡慕你!”名牌?什么叫名牌?女孩不懂,但看见爸爸妈妈脸上神采飞扬,她想,名牌一定是特别好的东西,便答应了。  那天,虽然小朋友们并没有注意她身上的“名牌”,但大家都玩得特别开心, 一回到家,女孩就说:“‘名牌’累了,要睡觉去了。”  女孩上了小学后,白天基本就穿校服了,星期五才能穿自己的衣服。不知什么时候起,她对漂亮衣服失去了兴趣,却迷上了看书,再也不愿意跟母亲逛服装店了。后来,校服裤子短了,妈妈要重新订购一套,女孩有点不高兴,说:“没有必要,短一点点又不会感冒。”妈妈仍然给她买各种“名牌”,而且有时一买就是好几件。  转眼间,女孩的十岁生日到了。妈妈决定给她举办一个“派对”,非带她去买生日穿的衣服。女孩不忍心,只好去了。这是女孩生平第一次注意服装的标价,她惊奇地嚷嚷:“一件毛衣要八十元?太贵了!我可以买好多书呢!一百元?抢钱啊!”这时,她又注意到,和自己身上一模一样的一套运动衫——居然要七百元!再看其他的,天哪,五百,八百哪!  “这衣服究竟是什么做的?这么贵?”她不由问。  “这是名牌啊!”服务员阿姨笑着说。  女孩冲上去,拉起妈妈就走:“妈妈,你知道吗?这七百元我能买多少书啊!能买多少校服啊!还有,你说的,积累起来,能让多少贫困儿童上学啊!我小小年纪,穿什么名牌啊?你们这些大人,平时老说要艰苦朴素,不要奢侈浪费,哼,原来是这么教育我的啊!我可算明白了。”  妈妈听了这话,脸一下子红了,结结巴巴地说:“还不是心疼你吗?现在生活水平高了,哪个做父母的愿意让孩子在同学面前没面子呢?”  女孩说:“我们才不在乎什么名牌不名牌呢。在学校里,谁品德好,书看得多,成绩好,有才艺,能干,才有威信,才有面子。嗨,代沟啊!”  母亲脸上显得很尴尬,心里却特别高兴。没想到,今天,倒是孩子给自己上了一堂教育课。看来,最好的家庭教育,并不仅仅是父母对孩子的教育,而是每一个家庭成员之间的良性互动。

  • 【原创大赛】ICP-AES法同时测定高纯铅中微量杂质元素

    【原创大赛】ICP-AES法同时测定高纯铅中微量杂质元素

    ICP-AES法同时测定高纯铅中微量杂质元素摘要:用1:3的硝酸溶解高纯铅样,用1:1的硫酸沉淀大量的铅基体,干过滤后把滤液引入等离子矩,测定As、Tb、Bi、Sn、Zn、Fe、Cu等杂质元素的含量。 关键词:ICP-AES法、同时测定、1:3硝酸、1:1硫酸、干过滤  随着铅工业的发展,高纯铅在各领域的应用越来越广泛,而铅中杂质元素的含量直接影响着铅的质量,高纯铅中各杂质元素的测定在铅工业中也显得越来越重要。铅中杂质元素的测定一般采用原子吸收光谱法或吸光光度法,而这两种方法分析速度都比较慢,对于个别含量较低的元素,灵敏度也较低,结果不能令人满意。而ICP-AES法测定灵敏度较高,可以同时测定绝大部分的杂质元素,测定速度极快,经过实验证明,结果令人满意。 1实验部分仪器与试剂DGS-Ⅲ型等离子体单道扫描发射光谱仪(上海泰伦分析仪器有限公司)http://ng1.17img.cn/bbsfiles/images/2014/11/201411191644_523679_3238_3.jpg硝酸(优级纯)硫酸(优级纯)所用水均二次亚沸水As、Tb、Bi、Sn、Zn、Fe、Cu标准溶液储备液 称取各高纯金属1.000克于100ml小烧杯中,加少量HNO3溶解后,用纯水定溶到1000ml中。工作用标准系列 用逐级稀释的办法,分别准确吸取若干毫升上述各标准溶液,配制成各元素含量均为0、200、500?g/L的混合标准系列。1.2分析手续称取高纯铅样品5.00g于200ml的容量瓶中,加入1:3硝酸25ml,放在电热板上均匀低温加热至样品完全溶解,取下烧杯,冷却至室温,定溶于100ml的容量瓶中加水稀释到80ml左右,加入1:1硫酸3ml沉淀完全后,稀释至100ml,水浴保温30min后冷却至室温,干过滤至100ml容量瓶中,喷入等离子矩测定高纯铅中各杂质元素。 2结果与讨论2.1 仪器条件的选择2.1.1工作谱线的选择DGS-Ⅲ型等离子体单道扫描发射光谱仪提供有自己的谱线库,该谱线库包含了ICP-AES所分析所有元素的大部分灵敏线,并且按灵敏度的大小来排列,一般情况下,分析中选择第一条谱线,只有在该谱线有比较强的干扰时才选择其它的次灵敏线,通过实验证明,在该方法中灵敏线均不被干扰,所以每种元素都选择其灵敏线。但由于Sn的第一条谱线189.989过多的偏向短波给分析带来比较大的误差,所以选其次灵敏线,谱线列表如表一。表一 工作谱线列表谱线元素谱线(nm)谱线元素谱线(nm)As193.759Bi223.061Sb206.833Fe238.204Sn235.484Cu324.754Zn213.856   2.1.2 功率档次的选择 DGS-Ⅲ型等离子体单道扫描发射光谱仪功率一共分为五档可选,其中第一档为点火档,我们对余下的几档作了对比实验,结果见下表表二 功率档对发射强度的影响档次强度元素[/si

  • 【求助】关于微库伦仪氧气管线的问题???

    我单位有一台微库伦测硫仪,要延长下气路管线,请问各位高手:延长氧气的气路管线是否可以使用1/8英寸色谱专用铜管,主要是考虑一下是否会对氧气产生什么影响?或者会出现什么不安全因素???谢谢大家了!!!

  • 【原创】拉曼数据库

    提供一下拉曼数据库:1聚合物和聚合物添加剂谱图数据库包含862个聚合物或聚合物体系的拉曼光谱2食品添加剂和食品包装材料谱图数据库1,005个食品添加剂的拉曼光谱,其中包含FDA管制的物质;另外包含间接的食品添加剂:与食物直接接触的过程或包装物质3溶剂谱图数据库460种溶剂的拉曼光谱谱图4生化试剂谱图数据库1,585 种生化试剂的拉曼光谱,包含部分维生素、树脂、淀粉、甘油酯、脂肪酸、糖、碳水化合物、蛋白质和多肽物质 5醛、酮谱图数据库513 种脂肪族和芳香族醛类及酮类物质的拉曼光谱6醇类和酚类谱图数据库701 种醇类和酚类的拉曼光谱谱图7酯类、内酯和酸酐谱图数据库1,048 种羧酸、酯类、内酯和酸酐的拉曼光谱谱图8碳氢化合物谱图数据库539 种碳氢化合物和卤化碳氢化合物的拉曼光谱谱图9香料、芳香剂和化妆品成分谱图数据库949 种香料、芳香剂和用在化妆品中组分的拉曼谱图10苯氧基农药谱图数据库418 种苯氧基农药的拉曼谱图,包含杀虫剂、除草剂、除藻剂和杀菌剂11半导体化学品谱图数据库351 种在半导体中使用的化学品的拉曼谱图12法医谱图数据库655 种在法医实验室中常见的化合物的拉曼光谱13染料、颜料、和染色剂谱图数据库196 种选定的染料、颜料、染色剂和指示剂的拉曼光谱14硫磺和磷谱图数据库649种硫磺和磷的拉曼光谱 15危险化学品谱图数据库包含美国环保局(EPA)Cameo 数据库和美国海岸警卫队(USCG)Chris危险品数据库的1,249 种化学品的拉曼谱图16危险和有毒物质谱图数据库包含美国环保局(EPA)Cameo数据库中危险化学制品、美国海岸警卫队(USCG)Chris危险化学品数据库和国立职业和安全与健康研究所(NIOSH)危险化学品数据库的2,704 种物质的拉曼光谱,包括有毒物品控制法管制的化学品17医药品、药品和抗生素谱图数据库1,019种医药工业中常用的有效物质和艾滋药品 18大宗化学品谱图数据库657种大宗化学品的拉曼谱图。美国大宗化学品(HPV)指的是在美国生产或进口到美国的数量在一百万磅及以上的化学制品19矿物和无机物谱图数据库1,375种矿物和无机物的拉曼光谱(光谱范围1500 - 200 cm-1)有兴趣的朋友,可以与我联系。qq529971940

  • 一种先进的密闭系统纯氧条件下有机卤素有机氟的快速燃烧炉前处理装置

    一种先进的密闭系统纯氧条件下有机卤素有机氟的快速燃烧炉前处理装置

    符合EN14582 卤素测试的技术要求。由日本三菱生产的自动快速燃烧炉 AQF-2100H(针对固体) AQF-2100V(针对液体,气体)技术参数:高纯氩气,高纯氧气最高加热温度1100度高纯石英管,陶瓷管,痕量测试可到达100ppb加湿系统改善回收率,准确性自动定容功能,使用外标法更方便安全级别高,24小时无人值守,异常情况报警并及时停止错误操作[img=,690,816]https://ng1.17img.cn/bbsfiles/images/2023/03/202303310025559841_9136_3293902_3.jpg!w690x816.jpg[/img][img=,690,398]https://ng1.17img.cn/bbsfiles/images/2023/03/202303310027142194_9272_3293902_3.jpg!w690x398.jpg[/img]

  • 【应用数据库有奖问答9.28】葛根素的检测,对照品的理论塔板数是?

    [b]问题:[b][b][b][/b][/b]葛根素的检测,对照品的理论塔板数是?[/b]答案:=======================================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][align=center]=======================================================================[/align]方法:HPLC基质:标准溶液应用编号:103695化合物:葛根素色谱柱:[url=http://www.dikma.com.cn/product/details-219.html]Diamonsil C18(2) 5μm 250 x 4.6mm[/url]样品前处理:对照品:精密称取葛根素对照品适量,用30%的乙醇溶解稀释至30μg/mL。色谱条件:色谱柱: Diamonsil C18(2) 250*4.6 mm,5 μm(Cat#:99603)流动相: 甲醇:0.1%磷酸=25.4:74.6流速: 0.9 mL/min柱温: 30 ℃检测器: 250 nm进样量: 10.0 uL文章出处:天津应用实验室关键字:葛根素、Diamonsil C18(2)、HPLC摘要:Diamonsil C18(2)检测葛根素。图谱:[img=`22.PNG]http://www.dikma.com.cn/u/image/2015/10/14/1444801757132111.png[/img]

  • 【方法】气相色谱法分离测定环孢素A中乙醇及丙二醇的含量

    目的:建立一个[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件同时分离测定环孢素A中乙醇及丙二醇的含量。方法:以GDX-101为固定相,柱长为2 m,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标。结果:乙醇及丙二醇进样量分别在2.0~6.0 μg,1.0~3.0 μg,其峰面积与浓度呈良好的线性关系,加样回收率分别为99.9%(RSD<0.8%,n=5),101.4%(RSD<1.1%,n=5),精密度良好。结论:此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件可同时测定环孢素A中乙醇及丙二醇的含量,方法简便准确。关键词 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 乙醇 丙二醇 环孢素A山地明(环孢素A)为诺华制药有限公司的产品,是一种免疫抑制剂,用于器官移植和骨髓移植中的抑制排斥现象以及自身免疫疾病。厂方质量标准中乙醇及丙二醇的含量采用石英毛细管柱测定,此种色谱柱在国内使用不普及,我们经多次试验,摸索出一较好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件,适用于国内检测,即以GDX-101为固定相,柱长为2 m,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标,可同时分离测定环孢素A中乙醇及丙二醇的含量,改进后的方法,乙醇与正丙醇的分离度为3.1,丙二醇与正丙醇的分离度为5.0,符合中国药典1995年版中乙醇量度检查的分离度要求[1],操作简便,结果准确可靠。1 仪器与试药  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:SP-6890  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱:玻璃柱,长2 m,固定相为GDX-101。  乙醇、异丙醇、丙二醇均为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]纯,二甲基亚砜为色谱纯。  样品:环孢素A胶囊(山地明),由诺华公司提供,批号为187MFD0797;241MFD0797;166MFD0797;483MFD0797;477MFD0797。  标准贮备液及内标贮备液:精密称取[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]级的乙醇及丙二醇2.50及1.25 g分置50 mL容量瓶中,加二甲基亚砜至刻度,摇匀,作为标准贮备液;精密量取正丙醇5.0 mL置50 mL量瓶中,加二甲基亚砜至刻度,摇匀,作为内标贮备液。2 试验方法与结果2.1 色谱条件 采用GDX-101为固定相,柱长为2 m,氮气为载气,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,即初始为165 ℃,保持12 min,以40 ℃。min-1升至280 ℃,并保持20 min,检测器温度为280 ℃,进样量为2 μL。2.2 分离度试验 称取乙醇、丙二醇及正丙醇各50 mg置同一50 mL量瓶中,加二甲基亚砜至刻度,摇匀,进样2 μL,按上述色谱条件试验,记录色谱图,见图1-A,乙醇、丙二醇及正丙醇的保留时间分别为1.15,2.22,7.54 min,计算乙醇与正丙醇及丙二醇与正丙醇的分离度,其分离度分别为3.1和5.0。图1 分离度色谱(A)及样品测定(B)色谱图1.乙醇 2.正丙醇 3.丙二醇 4.二甲基亚砜2.3 线性范围及标准曲线 分别精密量取乙醇和丙二醇标准贮备液1.0,1.5,2.0,2.5,3.0 mL,分别置50 mL量瓶中,并分别加入内标贮备液1.0 mL,使乙醇终浓度为1.0,1.5,2.0,2.5,3.0 mg.mL-1,丙二醇的终浓度为0.5,0.75,1.0,1.25,1.5 mg.mL-1,分别进样2 μL,以乙醇及丙二醇的进样量为横坐标,以它们的峰面积与内标峰面积之比为纵坐标,分别进行线性回归,结果线性关系良好,乙醇、丙二醇回归方程分别为:A=8.935×103C+7.858×102 r=0.998 8A=8.086×103C-1.649×102 r=0.999 92.4 精密度试验 用乙醇与丙二醇浓度分别2.0及1.0 mg.mL-1的溶液,重复进样5次,结果乙醇与丙二醇的RSD分别为0.7%和1.0%,精密度良好。2.5 回收率试验 采用加样回收法,取已知乙醇与丙二醇含量的样品2粒,用二甲基亚砜溶解,置50 mL量瓶中,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,精密量取此溶液4.0,4.5,5.0,5.5,6.0 mL,分别加入乙醇与丙二醇的浓度分别为2.0 mg.mL-1及1.0 mg.mL-1的标准溶液6.0,5.5,5.0,4.5,4.0 mL,混匀,量取混匀后的溶液2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],测定这5份溶液的乙醇和丙二醇含量,计算回收率,乙醇的平均回收率为99.9%(RSD<0.8%,n=5),丙二醇的平均回收率为101.4%(RSD<1.1%,n=5)。2.6 样品的测定 取乙醇和丙二醇标准贮备液2.0 mL,内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为对照品溶液;取环孢素A胶囊2粒,置50 mL量瓶中,用二甲基亚砜溶解,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为样品溶液;分别量取对照品溶液和样品溶液各2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],按上述色谱条件测定,以内标法计算含量,即得;见图1-B。2.7 对比试验结果 取环孢素A样品5批,用改进后的方法测定样品中乙醇和丙二醇的含量,与厂方测定数据相比,结果基本吻合,见表1。表1 乙醇和丙二醇对比试验结果(%) 批号 本法结果 厂方测定数据 乙醇 丙二醇 乙醇 丙二醇 187MFD0797 101.0 106.3 100.5 105.0 241MFD0797 99.2 99.2 100.6 100.6 166MFD0797 101.7 102.7 101.3 103.0 483MFD0797 98.8 96.8 99.3 97.2 477MFD0797 99.1 98.1 98.9 97.7 3 讨论3.1 本法与原厂方方法相比,方法更为简便,条件普及,有利于对样品质量的控制。3.2 原厂方标准在测定乙醇含量时,以正丁醇为溶剂,由于正丁醇的保留时间与丙二醇过于接近,分离度达不到要求,本法采用二甲基亚砜为溶剂,不影响样品的溶解,同时使丙二醇与二甲基亚砜的分离度符合定量分析的要求。3.3 曾用固定相为GDX-401的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]柱进行检测,乙醇与正丙醇得到完全分离,但丙二醇与溶剂峰重叠,分离度达不到要求。3.4 采用程序升温,可使溶剂出峰时间加快,缩短分析时间。王俊秋(北京市药品检验所 北京 100035)庞青云(北京市药品检验所 北京 100035)余立(北京市药品检验所 北京 100035)参考文献1,中国药典.1995.二部:附录44

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制