当前位置: 仪器信息网 > 行业主题 > >

分特拉明

仪器信息网分特拉明专题为您提供2024年最新分特拉明价格报价、厂家品牌的相关信息, 包括分特拉明参数、型号等,不管是国产,还是进口品牌的分特拉明您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分特拉明相关的耗材配件、试剂标物,还有分特拉明相关的最新资讯、资料,以及分特拉明相关的解决方案。

分特拉明相关的资讯

  • 弗拉特利定律:Illumina如何缔造基因革命
    蕾妮· 瓦林特(Renee Valint)的女儿谢尔碧(Shelby)在2000年出生时,看起来虚弱无力,就如同一只耷拉着的布娃娃。谢尔碧学着走路和说话,但学得非常慢,错过了儿童发展的重要阶段。到4岁时,她还只能坐在轮椅上。到五年级时,她开始要用电子语音设备与人交流。绝望无助的蕾妮把女儿从菲尼克斯带到明尼苏达州罗切斯特的梅奥诊所(Mayo Clinic),进行最后一周的检查,并与美国最好的一些医生讨论病情。  &ldquo 他们都把手一摊,说:&lsquo 我们不知道她出了什么问题。&rsquo &rdquo 蕾妮说道,&ldquo 那时,她已经动都动不了了。我给她洗澡,给她喂饭。她甚至无法咀嚼吞咽。我不得不给她喂流质食物,这样她才能够吞下去,不会被噎着。这就像是一场噩梦。真是噩梦。我们没有其他地方可去了。&rdquo   但后来,菲尼克斯转基因组学研究所(Translational Genomics Research Institute)的医生们利用一项新技术&mdash &mdash DNA测序&mdash &mdash 来检查谢尔碧的基因。根据检查结果和其他发现,他们猜测用于帕金森综合症患者的补充多巴胺类药物可能会对她有效果。三个月后,谢尔碧从轮椅上站了起来。第二天,她步行上学,此后再也没有用过轮椅。现在,她喜欢上了跳舞。  像这样的故事正在创造DNA测序仪器市场的爆炸式增长。大型癌症中心把这类设备当作为那些没有其他希望的患者选择治疗药物的标准途径。如今,只需要一小瓶母亲的血液,DNA测序设备就能筛查胎儿的唐氏综合症等疾病和其他健康状况。它们正在取代更加昂贵的老式基因检测方法。  变化正以极快的速度到来。有多快?具有传奇色彩的英特尔(Intel)联合创始人兼董事长戈登· 摩尔(Gordon Moore)在1965年担任研究员时提出了一个愿景,结果推动了上世纪80和90年代的PC革命。摩尔认为,集成电路板上的晶体管数量将每两年翻一番。这不是科学定律,而是意愿&mdash &mdash 它是工程师们奋斗的目标。  但在过去的13年里,DNA测序费用的下降速度是摩尔定律的1,000倍,从每个人类基因组1亿美元降到了仅需1,000美元。  Illumina CEO 杰伊· 弗拉特利  只有一件事情比测序革命的发展速度更加令人惊讶,那就是这场革命的受益者是一家公司&mdash &mdash 位于圣迭戈的Illumina。这场大发展的大部分功劳可以归功于一位企业家,他就是该公司首席执行官杰伊· 弗拉特利(Jay Flatley)。Illumina在八年前成为占据主导地位的DNA测序设备制造商,尽管遭遇了几个资金雄厚的竞争对手发起的挑战,但该公司仍然保持了80%的市场份额。  自从2008年以来,Illumina的销售额和利润双双增长了147%,分别达到了14.2亿和1.25亿美元,股价上涨了617%,市值为230亿美元。  &ldquo 我们有专人对市场规模进行预测。&rdquo 61岁的弗拉特利说,&ldquo 到目前为止,我们做到的所有事情都表明,在我们5或10年的投资期内,如果我们依然是测序市场上的领头羊,那么我们的投资回报将比其他任何公司都要高得多。&rdquo   麦格理证券(Macquarie Securities)预测,DNA测序市场的规模将扩大10倍,达到230亿美元。Illumina正在大规模招兵买马并扩大生产,以使其能够每年生产出价值50亿到100亿美元的DNA测序设备。  &ldquo 一家公司拥有80%到90%的市场份额,而且正在以无人可及的速度推动技术的发展。这种事情非常罕见。&rdquo ARK投资管理公司(ARK Investment Management)首席投资官凯瑟· 伍德(Cathie Wood)说,&ldquo 这只股票还处于萌芽阶段。我知道这听起来有点疯狂,因为该公司市值已经超过200亿美元,但事实确实是这样。&rdquo   Illumina的故事并非源于改良的创意或者独创性的发现,而是坚持不懈、近乎完美的执行。这种执行完全可以追溯到首席执行官弗拉特利设定的调子。他是斯坦福大学培养出来的工业工程师。&ldquo 我不是科学家。&rdquo 弗拉特利说,&ldquo 坦白讲,我加入Illumina不是为了让我们作出科学突破,而是为了让我们打造出优秀的产品并尽快推向市场。&rdquo   弗拉特利这个人和蔼亲切,但少点情趣。他坐在隔间里,因为他不喜欢办公室。他穿着蓝色衬衫,领口敞着。他没有把改变世界这种激动人心的话挂在嘴边。就连他进行首次测序时的基因组也显得如此乏味无趣。最有意思的地方在于,他带有一个家族性寒冷型自身炎症综合征(Familial Cold Autoinflammatory Syndrome)的致病基因,在他身上表现出了这样的症状:他小时候会因为天气寒冷而长皮疹。但由于对执行的专注,他或许是生命科学行业甚至所有行业里最高效的首席执行官之一。  Illumina成立于1998年,当时的公司没有任何产品,就连原型都没有。公司创始人把弗拉特利招致麾下,因为他成功地以3亿美元的价格将他的上一家公司分子动力(Molecular Dynamics)出售。  那时,Illumina不是为人体DNA的每个碱基测序&mdash &mdash 那时每个人的费用高达3.6亿美元&mdash &mdash 而是迅速地对个别基因生成快照。另一家公司昂飞(Affymetrix)利用其DNA微阵列将那个市场占为己有。DNA微阵列又称基因芯片,是带有特定基因配型的微小玻片。这项技术利用了以下事实:DNA的四个碱基&mdash &mdash A(腺嘌呤),G(胞嘧啶),T(鸟嘌呤),C(胸腺嘧啶)&mdash &mdash 以特定方式配对(A和T配对,G和C配对),形成两条反向链。比方说,如果血液中有一条反向序列,它就会粘贴在像Velcro这样的基因芯片上。但Illumina有一个更好的办法:把DNA置于珠子而不是平面拨片之上。珠子的表面面积更大,拥有更好的信噪比,该公司希望藉此获得更加准确的结果。  在基因概念股大热期间,弗拉特利募集了1亿美元。他确保Illumina在其合作伙伴爱普拜斯应用生物系统公司(Applied Biosystems)&ldquo 打瞌睡&rdquo 时拥有后备计划。爱普拜斯是当时处于领先地位的DNA测序设备制造商。弗拉特利还与员工保持私人接触,坚持给每位员工写生日贺卡,直到Illumina在2006年招入第500位员工为止。  他还下大力气确保他招募到合适的人与他共事。他甚至炒掉了联合创始人、首席科学官安东尼· 恰尼克(Anthony Czarnik)。恰尼克说,弗拉特利之所以解雇他,是因为他患有临床抑郁症 他在2002年起诉公司,并赢得了720万美元的赔偿判决(占到当时Illumina年度净亏损的20%)。弗拉特利说,这是他职业生涯的最低谷。  在围绕着人类基因组计划的泡沫破裂后,投资者对基因概念股失去了信心。2003年,经复权调整,曾经高达22美元的Illumina股价跌至1美元以下。但那时,Illumina改进了其设备的化学和光学性能,使其基因芯片的准确性超过了昂飞公司。2006年,Illumina的销售额为1.84亿美元,而昂飞公司为3.55亿美元。第二年,Illumina成为最大的基因芯片制造商。如今,该公司的基因芯片被所有人加以使用,包括养牛的牧场主(处于繁殖目的)和加州山景城的基因检测公司23andMe。昂飞公司则面临亏损,市值仅为6.5亿美元。  但弗拉特利这时候已经对基因芯片的未来产生了质疑。基因芯片始终只是快照,只能用来寻找一个基因的一个特定序列。要是为一个基因甚至一个人的所有碱基进行测序的费用即将降低,这该怎么办呢?康涅狄格州布兰福德的454生命科学公司(454 Life Sciences)已经研发出了一种DNA测序仪,有望以25万美元而不是1亿美元的价格为个人全基因组进行测序。弗拉特利对董事们说,Illumina可以躺在功劳簿上数钱,但衰落终会来临。  他的解决办法是大规模的收购。2007年初,弗拉特利拿出价值6亿美元的股票&mdash &mdash 三倍于Illumina的年销售额&mdash &mdash 收购了Solexa公司。后者拥有一种实验性DNA测序仪,可以将DNA打断成微小的碎片并重组,然后用计算机进行破译。这笔交易是一次突破。到2008年,集成了这种新技术的Illumina设备能够以仅仅10万美元的价格为个人全基因组进行测序。  与此同时,很多资金雄厚的竞争对手,包括销售额达到40亿美元的生命技术公司(Life Technologies)和从私人投资者及公开市场筹集到5.7亿美元的初创企业太平洋生物科学公司(Pacific Biosciences),都试图赶上Illumina,但均以失败告终,甚至连其衣角都没有碰到。生命技术公司的原创技术曾在一段时间内很有竞争力,但未能与时俱进。太平洋生物科学公司点燃了利用激光来进行DNA测序的希望,但这项技术的错误率太高,无法与Illumina的效率相比。  &ldquo 那时,没有任何人能够威胁到他们的领先地位。&rdquo 马萨诸塞州总医院(Massachusetts General Hospital)的遗传学家丹尼尔· 麦克阿瑟(Daniel MacArthur)说,&ldquo 在我所处的领域里,几乎所有变革性的进步都来自于使用Illumina的技术。该公司取得了令人惊人的成就。&rdquo   Illumina的进步是如此之快,以至于常常令对手们猝不及防。弗拉特利回忆起了2010年与454生命科学公司创始人乔纳森· 罗森伯格(Jonathan Rothberg)会面的情景。当时,罗森伯格向他展示了一种基于半导体技术的桌面DNA测序设备,不仅体积更小,而且价格仅为5万美元,只相当于Illumina设备单价的十分之一。(罗森伯格是2011年《福布斯》杂志的封面人物。)弗拉特利问他,谁是他的竞争对手。&ldquo 我们没有竞争对手。&rdquo 罗森伯格对他说,&ldquo 这款产品将使世界意识到这种架构是真的。&rdquo   这听起来很棒,但就在罗森伯格于2010年推出该产品几周后,Illumina便发布了具有价格竞争力的仪器。弗拉特利的团队从2008年开始就一直在研发这款设备,虽然生命技术公司以7.25亿美元的价格收购了罗森伯格的初创公司,但仍然无法跟上Illumina的前进步伐。&ldquo 执行比什么都重要。&rdquo DNA测序关键技术的发明者、现任Illumina首席技术官的莫斯塔法· 罗纳吉(Mostafa Ronaghi)说。  瑞士制药巨头罗氏(Roche)发现Illumina不可战胜,因为罗氏自己的DNA测序业务也沦为可有可无的角色。2011年12月,该公司总裁弗朗茨· 胡默(Franz Humer)与弗拉特利会面,明确无误地告诉后者,他将收购Illumina。他说,他更倾向于友好收购。  弗拉特利大吃一惊。最终,他和董事会认为罗氏的57亿美元报价过低。在Illumina首席财务官马克· 斯塔普利(Marc Stapley)上任的第一天,罗氏便展开了敌意收购。&ldquo 我看到那个十年来带领公司不断发展的人坚定不移地说,&lsquo 我们会做那些最有利于股东的事?&rsquo &rdquo 斯塔普利说。  Illumina的银行家们告诉弗拉特利,被罗氏收购只是时间问题:近期收购生物科技领头羊基因泰克(Genentech)的交易证明罗氏从不退缩。但弗拉特利得到了股东们的支持。Illumina第三大股东摩根士丹利(Morgan Stanley)的杰森· 扬(Jason Young)说,他不会出售,无论价格多少。机构股东服务公司(Institutional Shareholder Services)也支持Illumina。最终,罗氏不得不放弃。&ldquo 感谢上帝,我们拥有了不起的支持者,&rdquo 弗拉特利说,&ldquo 在某些方面来说,这是件好事。尽管他们很有钱,但手没有那么长,所以他们早早地放弃了。&rdquo Illumina现在的市值是罗氏所报价格的四倍。  罗氏退缩了,而弗拉特利则向新市场挺进。科学家们发现,通过计算孕妇血液中的DNA标记数量,可以诊断出胎儿异常情况,包括唐氏综合症。2013年1月,Illumina收购了Verinata Health公司。Illumina认为,Verinata Health拥有该领域最宝贵的知识产权。分析师们说,虽然产前血液测试的销售额已经达到3亿美元左右,但在全球范围内有望达到30亿美元。  一年后,Illumina实现了期待已久的里程碑:该公司推出了X10,这款产品能够为个人全基因组进行高精度测序,费用仅为1,000美元,其中包括折旧费。这又是通过在化学成分方面来之不易的渐进式改进实现的。一点点的进步累积起来就是一大步。该产品的价格为100万美元,每次必须购买10台或以上,但这也意味着科学家们可以不再局限于仅仅研究几千名患者的基因组。&ldquo 这些工具使我们可以为一万、两万乃至三万人测序。&rdquo 哈佛-麻省理工博德研究所所长埃里克· 兰德尔(Eric Lander)说。该研究所购买了14台。在一家名叫人类寿命(Human Longevity)的新公司里,克雷格· 文特尔(Craig Venter)购买了20台X10,用来探索衰老的奥秘。亿万富豪陈颂雄(Patrick Soon-Shiong)和在西海岸拥有34家连锁医院的普罗维登斯医疗系统公司(Providence Health System)购买了10台,用于分析他们每年新收治的2.2万名癌症患者的基因。  麦利亚德基因公司(Myriad Genetics)和基因组医疗公司(Genomic Health)等老一辈基因检测公司转而使用Illumina的设备。新来者则希望颠覆这些市场。基因组医疗公司创始人兰迪· 斯科特(Randy Scott)创建的Invitae公司将向患者提供3,000种基因检测中的任何一种(或者所有),统一收费1,500美元。位于旧金山的Counsyl公司正利用X10来提供遗传性癌症基因和潜在疾病的检测。  最大的商机在于癌症检测,这可能成为110亿美元的全球市场。以60岁的希瑟· 弗尔维尔(Heather Follweiler)为例。她在越南和柬埔寨度假期间开始头痛,然后在移动左边身体时出现困难,回家后病情复发。凌晨两点的紧急CAT扫描发现她的脑里有一颗肿瘤,是从其他地方转移而来。医生们摘除了这颗肿瘤。  但后来,弗尔维尔这位退休的金融服务专业人士发现,在她的肠道里又有一颗肿瘤。医生们给她做了手术,但发现肿瘤太大,无法摘除,只能打发她回家。&ldquo 那时我基本上已经放弃了。&rdquo 她说。但她的一位医生把肿瘤样本送到了基础医学公司(Foundation Medicine)。这家得到了比尔· 盖茨(Bill Gates)和谷歌风投(Google Ventures)支持的初创企业,利用Illumina的测序设备来确定236个基因的突变位置,这可以为直接的药物治疗提供帮助。经过检测后,医生让她服用辉瑞(Pfizer)的抗癌药物Xalkori,此后她的的肠道肿瘤不见了,这种状态已经保持了一年多。&ldquo 我觉得自己的身体与两年半前没有什么不同了。&rdquo 她说道。  癌症关系重大,以至于弗拉特利花费数月时间说服美国国家癌症研究所前所长理查德· 克劳斯纳(Richard Klausner)担任Illumina的首席医疗官。在一次聚餐时,克劳斯纳为Illumina的未来勾勒了一幅蓝图。他以为自己只是在提供建议。但最后弗拉特利对他说:&ldquo 这正是我们的目标,可是我无法带领公司实现这个目标,但你可以。&rdquo   克劳斯纳说,下一个重大的机遇将是识别肿瘤细胞或者少量血液里的DNA,这样就能通过血液测试而非CAT扫描对癌症患者病情进行监测(Illumina的客户Sequenta就在对某些血癌做这样的事情)。以后有可能利用血液测试来筛查癌症,从而可以及早发现这种疾病。同时,克劳斯纳正在找机会与医疗保险商合作,以证明与大多数的医疗技术不同,改善的DNA测序诊断率实际上能够减少而不是增加医疗费用。病症的诊断方法常常会沦为大宗商品,但克劳斯纳相信DNA测序不会。  如今,Illumina的竞争对手变得更多了:曾经的合作伙伴、位于英国牛津的牛津纳米孔公司(Oxford Nanopore)一直在宣传如同优盘般大小的测序仪 罗氏以3.5亿美元的价格收购了山景城的另一家初创公司吉尼亚科技(Genia Technologies)。但弗拉特利相信,Illumina的业务(不仅包括设备,还包括处理基因数据的软件)将使该公司难以被击败。  很难不同意他的看法。个人DNA测序的费用如今还不到14年前弗拉特利开始执掌Illumina时的十万分之一。Illumina希望进一步降低费用。首席技术官罗纳吉说,到目前为止,每当测序费用下降五到十倍,市场就会被颠覆一次。他预计,DNA测序设备的价格可能降至1万美元(目前Illumina的中端设备售价为25万美元),这将带来全新的市场和疗法。弗拉特利说:&ldquo 就DNA测序技术在今后三至五年的走向而言,我们的路线图相当激动人心。&rdquo
  • 「以客为尊,使命必达」梅特勒托利多助力伟明环保江山项目
    「以客为尊,使命必达」梅特勒托利多助力伟明环保江山项目突如其来的“新冠”疫情席卷华夏大地,众多企业被迫停工停产。在危急时刻,一批企业挺身而出,排除万难为千家万户的正常生活提供保障。其中,垃圾处理企业作为保障民生的主力军之一,疫情期间承担着比平常更加繁复的垃圾处理任务。垃圾处理,尤其是餐厨垃圾处理环节众多。而其中的垃圾收运,作为连接垃圾产生和末端处置之间的重要环节,耗资最大,操作过程也最复杂,成为当前城市垃圾处理过程中最薄弱的环节。利用环卫信息化手段,对垃圾收运体系进行精细化监管,成为了许多城市环卫主管部门的共识。浙江伟明环保股份有限公司(以下称“伟明环保”)是国内领先的生活垃圾焚烧处理的龙头企业,也是首家获得国家环保部颁发的“生活垃圾处理甲级运营资质”的企业。伟明环保目前共投资、建设、运营50余个环保项目。2019年4月26日,伟明环保从众多企业中脱颖而出,中标江山市餐厨垃圾集中处理项目,该项目业务内容包括餐厨垃圾资源化收集、转运和处理,日处理规模为100吨,处理系统主要采用“预处理+厌氧发酵”工艺。基于对梅特勒托利多的信任,对该项目的计重系统需求,伟明环保选择了梅特勒托利多。在充分了解客户需求后,梅特勒托利多为伟明环保江山市餐厨垃圾集中处理项目量身定制了自动化汽车衡计重解决方案。伟明环保给予梅特勒托利多信任,不仅仅因为梅特勒托利多优良的产品及方案,更因为伟明环保对梅特勒托利多强有力的生产运维和迅速有效的服务支持能力的认可。伟明环保的汽车衡采购项目原定交付日期为2020年2月14日。然而,突发的“新冠肺炎”疫情严重影响生产秩序。对此,伟明环保给予了我们充分的理解。但是,梅特勒托利多急客户所急,想客户所想。为了帮助客户减少运营成本,我们于2月14日紧急为伟明环保项目启动绿色通道,通过远程技术支持模式服务客户。随着绿色通道开启的命令一声令下,梅特勒托利多汽车衡生产部门立刻开始协调内部资源组织生产。在常州工厂车间,生产团队、供应链团队、服务运营团队及物流团队配合紧密,排除万难推进项目进展。在疫情最严重的时候,梅特勒托利多深入了解供应商情况、协调原材料、人员、设备等资源,安排车间加班生产,协商落实发运环节,每日更新浙江省最新的“疫情通报”,“高速指南”。在江山市,伟明环保也在梅特勒托利多的远程技术支持下开始了准备工作。项目现场,伟明环保技术负责人石经理和杨经理亲临指挥,支持现场基础准备和审核,力求尽快安装完成。很快,项目现场基础万事俱备,虚位以待梅特勒托利多的汽车衡。终于在2月25日,崭新的汽车衡于从梅特勒托利多常州生产基地装车发运!汽车衡到达伟明环保现场后,双方工作人员立刻开展安装及调试工作。最终,在伟明环保和梅特勒托利多双方的共同努力配合下,该项目于3月初完成交付验收。疫情无情,服务至上。伟明环保这样的故事和案例,在梅特勒托利多与各行各业客户的合作中不断上演。客户的信任与支持是我们无上的荣耀;维护客户利益始终是梅特勒托利多的责任和目标。梅特勒托利多将一如既往坚持“以客为尊”的理念,携手各行各业客户共克时艰,共同进步!
  • 青岛能源所发明拉曼激活单细胞液滴分选技术
    p  单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到广泛关注。但是分选通量是当前限制其广泛应用的最重要的瓶颈之一。据此,青岛能源所单细胞中心马波研究员与徐健研究员带领的多学科交叉团队通过耦合SCRS和液滴微流控技术,发明了拉曼激活单细胞液滴分选技术(Raman-activated single-cell Droplet Sorting RADS),这是目前已公开报道的工作中分选通量最高的RACS系统。该工作于11月3号在线发表于Analytical Chemistry。/pp  单细胞中心前期发明了基于微流控芯片的流式RACS技术(Zhang, et al, Analytical Chemistry, 2015),通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、拉曼采集、释放和分选,通量达~60 个细胞/分钟。为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现超高通量分选。液滴包裹不仅可以保护细胞免受分选过程中的损伤,还能够与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接。因此,RADS技术有着广阔应用前景。/pp  然而,在RADS技术中存在诸多技术难题。首先,液滴表面凸/凹的形状会产生透镜效应,从而影响拉曼激光聚焦,降低空间分辨率,最终导致无法获取液滴中细胞的拉曼信号。其次,单细胞液滴包裹需要油相的引入,而油相具有强拉曼背景,会严重影响细胞拉曼信号的精确获取。第三,如何实现拉曼采集、分析、单细胞液滴包裹及分选的自动化集成未见先例。单细胞中心研究人员巧妙利用先获取单细胞拉曼信号,后进行单细胞液滴包裹的策略,有效解决了液滴对拉曼信号采集的影响 同时,在线集成液滴发生和分选同步进行,大大简化了系统操作步骤 最后,通过自主开发的软件,实现了拉曼采集、分析、单细胞液滴包裹及分选的高度自动化。该系统实现了高产虾青素之雨生红球藻的精确化(分选准确率高达98.3%)、高通量(260 细胞/分钟)筛选。研究人员还证明,分选后有92.7%的雨生红球藻细胞保持活性并可增殖,和未经分选的对照组相比没有显著性差异,说明RADS技术充分保护了细胞的活性。/pp  单细胞中心前期已证明,基于单细胞拉曼成像的拉曼组(Ramanome)技术能够非标记、非破坏性地识别与分析几近无限的细胞功能。与拉曼组技术相耦合的RADS将能够高通量分选广泛的细胞功能,从而允许下游特定功能单细胞的培养或组学分析。这一工作为研制高度通量化与集成化的单细胞拉曼分选与测序系统奠定了基础。/pp  论文共同一作是青岛能源所单细胞中心的王喜先与任立辉。本工作得到了中科院武汉水生所胡强研究员、北京大学王玮教授等的帮助,并得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。/pp style="TEXT-ALIGN: center"img title="W020171108322918001267.jpg" style="HEIGHT: 279px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/dee566b0-1166-47be-9cbd-0a240348aece.jpg" width="500" height="279"//pp/pp /pp style="TEXT-ALIGN: center"图1 拉曼激活单细胞液滴分选(RADS)系统示意图/p
  • 青岛能源所发明拉曼激活单细胞液滴分选技术
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到关注。但分选通量是当前限制其广泛应用的瓶颈。中国科学院青岛生物能源与过程研究所单细胞中心研究员马波与徐健带领的多学科交叉团队,通过耦合SCRS和液滴微流控技术,发明了拉曼激活单细胞液滴分选技术(Raman-activated single-cell Droplet Sorting RADS),这是目前已公开报道的工作中分选通量最高的RACS系统。相关研究工作在线发表在emAnalytical Chemistry/em上。/pp  科研人员前期发明了基于微流控芯片的流式RACS技术,通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、拉曼采集、释放和分选,通量达~60个细胞/分钟。为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现超高通量分选。液滴包裹不仅可以保护细胞免受分选过程中的损伤,还可与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接。因此,RADS技术有着广阔应用前景。/pp  然而,在RADS技术中存在诸多技术难题。首先,液滴表面凸/凹的形状会产生透镜效应,影响拉曼激光聚焦,降低空间分辨率,导致无法获取液滴中细胞的拉曼信号。其次,单细胞液滴包裹需要油相的引入,而油相具有强拉曼背景,会严重影响细胞拉曼信号的精确获取。第三,如何实现拉曼采集、分析、单细胞液滴包裹及分选的自动化集成未见先例。研究人员巧妙利用先获取单细胞拉曼信号,后进行单细胞液滴包裹的策略,有效解决了液滴对拉曼信号采集的影响;在线集成液滴发生和分选同步进行,简化了系统操作步骤;最后,通过自主开发的软件,实现了拉曼采集、分析、单细胞液滴包裹及分选的高度自动化。该系统实现了高产虾青素之雨生红球藻的精确化(分选准确率高达98.3%)、高通量(260细胞/分钟)筛选。研究表明,分选后有92.7%的雨生红球藻细胞保持活性并可增殖,和未经分选的对照组相比没有显著性差异,这说明RADS技术充分保护了细胞的活性。/pp  前期研究已证明,基于单细胞拉曼成像的拉曼组(Ramanome)技术能够非标记、非破坏性地识别与分析几近无限的细胞功能。与拉曼组技术相耦合的RADS将能够高通量分选广泛的细胞功能,从而允许下游特定功能单细胞的培养或组学分析。这一工作为研制高度通量化与集成化的单细胞拉曼分选与测序系统奠定了基础。/pp  研究工作得到了得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。 /ppbr//pp style="text-align:center "img alt="" oldsrc="W020171108379243922765.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/6707be3b-54a6-42a1-861d-30e8d5f0f10d.jpg" uploadpic="W020171108379243922765.jpg"//pp style="text-align: center "拉曼激活单细胞液滴分选(RADS)系统示意图/p
  • 国家钛白粉检测中心选用HunterLab LabScan XE
    2012年,由四川出入境检验检疫局牵头攀枝花材料学院组建的国家钛白粉检测中心现已开始运作。这标志着在聚集中国钛白粉最高产量的四川省,长期困扰钛白粉颜色设备结构和标准的企业有了方向性。国家钛白粉中心选用的是美国HunterLab的LabScan XE专用钛白粉测色仪,与包括杜邦在内的国外众多知名的钛白粉生产商选型一致,也就是钛白粉颜色检测的首选仪器几何机构是0/45度(与人眼观察结果一致)检测手段和检测结果都进一步向国际靠拢。上海韵鼎国际贸易有限公司作为美国HunterLab在中国的唯一战略合作伙伴和总销售服务商,将全力支持国家钛白粉检测中心的检测业务,准备与其建立长期的战略关系,引入先进的检测技术,提供优质的跟踪服务,引导钛白粉行业产品质量的进一步提高。
  • Tecan革命性微量板检测技术NanoQuant Plate获得欧洲专利
    Tecan微量板检测技术NanoQuant Plate™ 的革命性设计日前获得欧洲专利。该技术的研发始于2008年,设计的初衷是专为多种微量样本提供实现同时检测的最新解决方案。这种创新型微量检测板由16个检测灵敏度极高的石英质光路构成,简便易用,对体积低至2μl的样本能够快速实现光吸收、荧光模式下的高精度检测。该微量检测板可以与Tecan Infinite系列多功能酶标仪(如Infinite 200 PRO, Infinite F500和Infinite M1000 PRO)完美契合,对浓度低至1 ng/μl的样本具有极高的检测灵敏度,是DNA 或RNA定量、质控及标记效率检测等应用领域的理想选择。 为了充分发挥微量板检测技术NanoQuant Plate™ 无与伦比的极高灵敏度,Tecan专门为微量样本光吸收检测设计研发出新一代Infinite 200 PRO NanoQuant多功能酶标仪,在微量样本检测领域尚属首例。这款高灵敏度酶标仪具有高质量的光谱特性,分别使用Tecan 独有的Quad4 Monochromators ™ 四光栅或高品质UV - stable 滤光片作为核心检测组件,检测波长覆盖紫外至近红外全波段范围,并且具有多种选配模块,是您实现快速准确检测的最佳选择! 更多关于Tecan微量板检测技术NanoQuant Plate™ 的信息,请访问以下网站或咨询Tecan当地员工/经销商:www.tecan.com/nanoquant。微量板检测技术NanoQuant Plate™ 极大简化微量样本的检测过程Talk to Tecan 欲知更多详情,请联系帝肯(上海)贸易有限公司
  • 大分子互作出类拔萃,小分子互作不咸不淡?用“实例”证明“实力”
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到赛多利斯生物分析高级应用经理陈涛先生谈一谈赛多利斯的分子互作技术以及应用进展。赛多利斯生物分析高级应用经理 陈涛陈涛,赛多利斯生物分析高级应用经理,从事生物层干涉技术(BLI)类产品的技术支持12年,有着丰富的Octet®使用和troubleshooting经验,承担了国内华东地区现有客户的售后支持,并多次举办了在线培训和其他各种形式的培训班。在他的支持下,目前仅国内利用生物层干涉技术发表的SCI就有500余篇,是互作技术领域非常知名的“陈老师”生物层干涉(BLI)技术是一种非标记技术,可实时提供高通量的生物分子相互作用信息。此技术采用”浸入即读”的生物传感器对样品直接进行检测,无需对检测样品做任何荧光或同位素标记【1】,也不存在流路系统,从而实现更简便、更快速的分子互作定量分析。2020年,BLI技术被收录于美国药典1108章节,成为药物结合活性分析的标准方法之一。作为将BLI技术应用于分子互作检测的开创者和引领者,赛多利斯Octet®分子互作分析系统被广泛应用于包括蛋白、抗体、病毒颗粒、疫苗、多肽、小分子以及DNA/RNA等各类生物分子间相互作用分析。BLI技术的动力学分析可用于检测相互作用的亲和力以及可逆的非共价结合的结合常数(kon)、解离常数(koff)以及亲和力常数(KD)。典型的非共价结合由静电作用、氢键、范德华力和疏水作用组成。分子之间的特异性相互作用对生物学的许多过程以及药物研发至关重要【2】。凭借高通量、非标记、实时定量且无液路的特点,Octet®在大分子相互作用分析和生物药研发领域具有突出优势。越来越多的高分文献及应用实例证明了BLI技术在小分子、化合物片段、未知样品垂钓、竞争分析等应用中表现优异,传感器分析模式也更容易开发灵活和创意的检测方案。BLI技术在小分子互作分析的应用案例BLI技术用于片段化合物筛选基于生物传感器的片段化合物筛选是药物研发过程中一个非常具有价值的工具。这种方法优于许多其他的生化方法,因为苗头化合物可有效地通过具体的结合图谱以及响应值从非特异性或非理想的相互作用中区分开来,从而降低假阳性。BLI技术通过监测生物分子结合导致的光的干涉图谱的变化实现分子间的相互作用的实时检测。Charles A. Wartchow等【3】将重组表达纯化得到AVI-Tag生物素标记的蛋白或通过体外的方式标记生物素(biotin-LC-LC-NHS)固化至链酶亲和素传感器上。通过缓冲液建立基线噪音信号,以基线噪音信号的3倍标准差为阈值筛选苗头化合物(图1)。使用了包含6500种化合物的片段文库,以BCL-2、JNK1、eIF4E等蛋白为靶点进行了筛选,比较了这些靶点的苗头化合物的比率。图1 根据化合物的信号值筛选苗头化合物【3】Francesca E. Morreale等【4】同时使用差示扫描荧光(DSF)和BLI技术筛选E2泛素连接酶Ube2T的抑制剂。将Ube2T固化在链霉亲和素传感器上,对片段库的化合物进行筛选。利用DSF方法筛选出4种化合物,而采用BLI方法也筛选出4种化合物,其中有2种是同时用两种方法都筛选了出来。所有六种化合物用核磁共振(NMR)进行了验证并确认这些化合物在靶点蛋白上的结合位点。新冠病毒的RNA依赖的RNA聚合酶(RdRp)是理想的抗病毒靶点。中国医学科学院的研究人员【5】首先通过基于结构的虚拟筛选,选择结合最强的几十个hits,通过Octet高通量分析这些化合物与靶点SARS-CoV-2 RdRp的结合活性,发现Corilagin (RAI-S-37)作为SARS-CoV-2 RdRp的非核苷抑制剂,KD值达到0.54 μM。在细胞外和细胞活性检测中均能有效抑制聚合酶活性。Corilagin具有良好的安全性和药代动力学的数据,使其成为新冠肺炎潜在的治疗药物。化合物为分析物的亲和力检测 化合物药物与靶点的动力学参数是非常重要的表征参数,直接影响到了化合物在体内的半衰期以及所需的药物剂量。苗头化合物的亲和力通常比较低(10uM),而通过修饰改造后的小分子化合物的亲和力可以1 μM级别。多数情况,将蛋白靶点固化在传感器上和不同浓度梯度的化合物作为分析物。Chen P等【6】通过BLI技术进一步验证了化合物GSK2801与溴结构域(bromodomain)蛋白家族BAZ2B的结合,亲和力为60 nM。 BLI结果与ITC结果一致,且BLI技术可以实时监测分子间的相互作用的整个过程,GSK2801与BAZ2B的结合呈现快结合与快解离的结合模式(图2,ka 1/(Ms),1.57±0.02×105;kd 1/s,6.95±0.058×10-3)。图2 GSK2801与BAZ2B的结合解离原始图【6】Leah N. Makley等将突变的晶体蛋白cryAB固化在链霉亲和素传感器上,用BLI技术检测化合物与cryAB的相互作用,测得KD为29 μM。用差示扫描荧光(DSF)也观测到不同浓度的该化合物对cryAB熔点的改变。化合物为固化物的亲和力检测考虑到空间位阻与修饰后化合物的活性,一般在化合物的非活性基团上偶联一个生物素,再将化合物固化在链霉亲和素传感器上,并且生物素与小分子之间有10个碳的连接臂。Basudeb Maji等【7】利用BLI技术筛选cas9的小分子抑制剂,并且合成了生物素化的小分子,固化在链霉亲和素传感器上,然后和七个浓度的Cas9/gRNA复合物结合,测得亲和力为700 nM(图3)。 图3 化合物与不同浓度的Cas9/gRNA复合物的结合解离图,右边为生物素化小分子的结构【7】如果化合物有氨基,也可以用氨基偶联传感器对化合物进行固化。Terry F. McGrath等【8】将软骨藻酸(Domoic acid),固化在氨基偶联传感器上,用竞争法检测软骨藻酸的浓度,灵敏度可以达到2 ng/mL。另外,化合物也可以偶联在诸如牛血清白蛋白(BSA)等载体蛋白上,然后疏水固化在传感器上。Melanie Sanders等【9】将鸡卵白蛋白(OVA)偶联的呕吐毒素固化在疏水传感器上,与呕吐毒素的抗体反应,其亲和力在pM级别。化合物竞争实验如果已知某化合物与蛋白结合,需要观察另一个化合物是否阻断这种结合。可以参考前面“化合物为固化物的亲和力检测”部分将化合物进行固化,然后检测另一个化合物与蛋白的混合物。Kahina Hammam等【10】将生物素化的Masitinib固化在链霉亲和素传感器上,然后检测Imatinib与脱氧胞苷激酶(dCK)的混合物。如果Imatinib与Masitinib结合的是dCK的同一位点,那么dCK/Imatinib复合物就不会和Masitinib结合了。图4 竞争法实验示意图【10】通过竞争实验可见,Masitinib与Imatinib几乎完全竞争,这证明了他们的结合位点一致。但是与核苷类化疗药物(吉西他滨、阿糖胞苷和地西他滨)竞争关系不明显。BLI技术还可以检测化合物是否可以阻断受体配体的结合,并计算IC50。Zhu J 等【11】用BLI技术检测化合物NUCC-555对激活素(activin)和其配体结合的影响。将激活素配体ALK4-ECD-Fc固化至ProA传感器上,检测激活素与不同浓度NUCC-555的混合物。随着NUCC-555的浓度提高,由于NUCC-555与ALK4-ECD-Fc竞争结合激活素导致激活素与ALK4-ECD-Fc结合信号降低,IC50大概为1.6 μM。由此证明NUCC-555是选择性的竞争抑制激活素和其配体的结合。总结BLI技术不仅可以用来检测化合物与蛋白、细胞的相互作用【12】,也可以检测化合物与DNA/RNA【13,14】等其他物质的相互作用。应用BLI技术可以灵活的设计相互作用实验,比如将小分子固化或者蛋白质固化。固化方式可以根据蛋白所带的标签决定:组氨酸融合标签可以用NTA传感器或者已经固化了组氨酸标签抗体的传感器;如果蛋白带有生物素标签,可以用链霉亲和素传感器。一般来说,为了克服空间位阻和获得比较高的固化密度,建议选择链霉亲和素传感器固化蛋白。一般分析物需要知道明确的分子量和摩尔浓度才能获得结合常数(ka)和亲和力常数(KD)。分析物的分子量检测下限约为150 Da, Chenyun Guo等【15】用BLI技术成功检测了分子量142 Da的化合物并且获得了可观的信号(0.1 nm)。总之,BLI技术可以实现对相互作用更加定量化地测定,非常适合亲和力比较低的化合物检测。化合物解离比较快,传统方法有洗涤等步骤,可能造成结合的小分子被洗掉后产生假阴性结果。另外传统方法多数需要标记,可能改变靶点分子的构象,产生假阳性结果。BLI技术的非标记和实时检测能够克服传统方法的弊端,因此,小分子相互作用检测结果更加真实可靠。参考文献:1.A, Sultana. et al. Measuring protein‐protein and protein‐nucleic acid interactions by biolayer interferometry. Current protocols in protein science. 2015,79:19.25.1-262.Concepcion, Joy. et al. Label-free detection of biomolecular interactions using Biolayer interferometry for kinetic characterization. Combinatorial Chemistry & High Throughput Screening.2009,12(8):791-8003.Wartchow, C. A. et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des.2011, 25 :669-6764.Francesca E. Morreale. et al. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. J. Med. Chem.2017, 60:4093-40985.Li Q, et al. Corilagin inhibits SARS-CoV-2 replication bytargeting viral RNA-dependent RNA polymerase, Acta Pharmaceutica Sinica B, 2021.6.Chen P. et al. Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of medicinal chemistry,2016,59(4) :1410-14247.Basudeb Maji. et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell,2019,177:1067-10798.Terry F. McGrath. et al. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal Bioanal Chem.,2013,405:2535-25449.Melanie Sanders. et al. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust. Toxins,2016, 8, 10310.Kahina Hammam. et al. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nature Communications,2017,8:1420.11.Zhu J. el al. Virtual high-throughput screening to identify novel activin antagonists. J. Med. Chem.,2015,58:5637–564812.Verzijl, D. et al. A novel label-free cell-based assay technology using biolayer interferometry. Biosensors & Bioelectronics,2017,87:388-39513.Ting-Yuan Tseng. et al. Binding of Small Molecules to G-quadruplex DNA in Cells Revealed by Fluorescence Lifetime Imaging Microscopy of o-BMVC Foci. Molecules.,2019,24(1), 3514.Ezequiel-Alejandro Madrigal-Carrillo. et al. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Research,2019,47(12): 6425–643815.Chenyun G. et al. Anti-leprosy drug Clofazimine binds to human Raf1 kinase inhibitory protein and enhances ERK Phosphorylation. Acta Biochem Biophys Sin. ,2018,1-6
  • LabTech高精度水浴4月份闪亮入市
    莱伯泰科的高精度水浴将在2007年4月正式于客户见面,她是莱伯泰科继循环冷却器之后的又一力作,秉承了LabTech产品一贯的高品质、高质量、优质的服务理念;高精度水浴的推出也具有重要的发展意义,使莱伯泰科的循环器产品由以往的单一制冷拓展为加热、制冷一体化的产品,向拓展高温领域迈出了重要的一步,也将能满足更多客户的不同温控需求。 莱伯泰科公司将继续为广大客户提供更好的水冷产品。 莱伯泰科有限公司(LabTech,[url]http://www.labtechgroup.com[url])是一家专业的实验室产品供应商。她是集分析仪器、实验室样品处理仪器、实验室设备、实验室信息管理软件和实验室设计与工程的开发、生产和销售为一体的高科技跨国公司。最近几年,随着业务在全球范围的快速增长,LabTech逐步在欧洲、北美、香港以及中国各省市建立了广泛的销售和售后服务网络,客户总数达上万家。LabTech高精度水浴screen.width-300)this.width=screen.width-300"
  • 中科院青能所发明拉曼流式细胞检测新技术 助力肿瘤快检等生命科研
    日前,国际著名科学杂志《先进科学》(Advanced Science)发表了一篇专题文章,详细介绍了我国科学家团队在单细胞生物学研究领域的一项最新技术成果:中国科学院青岛生物能源与过程研究所单细胞中心(以下简称单细胞中心)和青岛星赛生物科技有限公司(以下简称星赛生物)合作发明了拉曼流式检测技术pDEP-D LD-RFC ,该技术基于介电诱导确定性侧向位移,可高效完成单细胞聚焦、捕获/释放,针对人体细胞(肿瘤)、植物(微藻)、酵母和细菌等多种细胞类型具有广谱适用性。 《先进科学》(Advanced Science)相关文章页面截图 据悉,基于此星赛生物即将推出的升级版FlowRACS仪器,为活体单细胞代谢表型组的高通量检测提供了全新工具,研究小组已经开发了一系列应用,广泛适用于肿瘤细胞分类、微藻合成过程监控、产油酵母多表型监控、细菌药敏性检测等生命科学研究的重点高精尖领域。 活体单细胞代谢表型组流式检测技术发展简史活体单细胞代谢表型组的流式检测,在微生物资源挖掘、细胞工厂筛选、酶元件表征、生物过程监控、临床诊疗等方面,具有共性的支撑作用。此前,荧光流式和质谱流式作为常用手段被广泛接受,但经过长时间的验证,二者均在不同方面有其技术的局限性。 其中,荧光流式受限于对生物标志物需有先验知识,并引入荧光标记探针来识别生物标志物——但许多细胞都没有可靠的生物标志物,如微生物群,无论是在基因上还是在生物分子上,都不能就其多数功能进行普遍标记,且可能存在强荧光干扰问题。另一方面,质谱流式涉及到细胞破碎,难以耦合目标单细胞的下游分选、培养或测序等单细胞组学技术。于是,新的技术应运而生。与荧光流式和质谱流式等现有流式细胞检测手段相比,拉曼流式具有无需标记细胞、活体检测、信息量丰富等优势,因此是一种具有广阔应用前景的细胞分析手段。但是,新技术的诞生必将伴随实际应用带来的阵痛。高通量拉曼流式技术的应用受限于:首先,如何提高样品的普适性,以适用于不同细胞类型与不同表型的检测;其次,如何提高检测的通量,以实现高度异质性细胞群体的深度检测;最后,如何提高运行的稳定性,以支撑高度可靠的仪器使用流程。活体单细胞代谢表型组检测新技术针对上述问题,单细胞中心王喜先、任立辉、刁志钿、何曰辉等带 领的研究小组发明了“介电诱导确定性侧向位移实现单细胞聚焦、捕获/释放的拉曼流式检测技术”(Positive Dielectrophoresis Induced Deterministic Lateral Displacement-based Raman Flow Cytometry,pDEP-DLD-RFC)。 《先进科学》(Advanced Science)文章页面中,关于拉曼流式细胞检测技术原理的插图首先,新技术采取的是宽流场高流量的进样策略。其能够有效防止细胞沉降,进而实现了长时间稳定运行(>5小时),但是此策略带来的问题就是如何在宽流场中实现快速、精准地对高速流动的单个细胞进行一一捕获,且不会漏检,也就是如何保证拉曼检测的高效率和高准确性。因此,团队又通过介电诱导细胞确定性侧向位移,实现了宽场中细胞高效聚焦地流经检测位点,从而保证了拉曼检测效率。最后,通过施加检测时间依赖的周期性介电场,实现了单细胞的快速捕获/释放,以满足各种不同细胞类型的普适性、高通量检测。 FlowRACS中介电诱导细胞确定性侧向位移实拍周期性介电场中单细胞的快速捕获/释放实拍生物过程监控及肿瘤/微生物细胞分类研究的新工具基于上述关键技术突破,星赛生物即将推出的升级版FlowRACS兼具广谱通用性、高通量、运行稳定性等性能的高通量拉曼流式检测系统,并开发了一系列应用:肿瘤细胞分类、微藻合成过程监控、产油酵母多表型监控、细菌药敏性检测。这套全新的细胞检测分选技术和仪器设备系统,将能极大提升相关领域的科研效率和能力。 在肿瘤细胞类型的快速区分场景中,基于SCRS中信息丰富的指纹区,以膀胱癌、肺癌、肾细胞癌、乳腺癌等细胞株为例,证明流式拉曼技术耦合拉曼组机器学习算法,能以平均95%的准确率,完成肿瘤细胞类型的快速判别。该方法对于肿瘤细胞质量检测等应用具有潜在的应用价值。在植物生物制造过程的代谢监控场景中,基于共振拉曼信号,实现了雨生红球藻中虾青素含量的实时监测,从而示范了单细胞精度的虾青素累积过程细胞工厂代谢状态的监控,并考察了“高光”和“缺氮”等条件对细胞虾青素累积速度及其同步性的影响。其虾青素含量检测速度达~2700 events/min,为目前最高的自发拉曼检测/分选通量。在酵母生物制造过程的代谢监控场景中,基于非共振拉曼信号,示范了油脂酵母中细胞代谢活力、甘油三脂含量、油脂不饱和度等多个关键代谢表型的同步动态监控,进而通过拉曼组机器学习、拉曼组内关联分析(Intra-Ramanome Correlation Analysis,IRCA)等算法,实现了单细胞代谢状态(准确率>96%)的实时鉴定,以及细胞内代谢物相互转化网络的实时重建。在细菌药敏性的流式快检场景中,基于单细胞中心前期提出的重水饲喂单细胞拉曼药敏原理,以大肠杆菌和多种常见抗生素为例,开发了流式药敏快检技术,并通过与拉曼药物应激条形码(Raman Barcode for Cellular Stress-response,RBCS)、IRCA、拉曼组机器学习等算法,证明该流式药敏快检技术还能实时地判断单菌体精度的药物应激状态、构建细胞内代谢物相互转化网络等,从而揭示细菌-药物互作机制。此外,流式检测大大提高了药敏检测中SCRS取样深度,对于识别群体中通常占比很低的耐药细胞,具有重要的意义。与转录组、蛋白组和代谢物组相比,拉曼组能表征单细胞精度的底物代谢、产物合成、环境应激性、化合物相互转化等关键代谢表型,而具广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、低成本、能耦合下游测序、质谱或培养等优势,因此拉曼组是一种更接近于“功能”、更适合于临床、工业等场景的单细胞表型组。为了支撑人体、动植物和微生物拉曼组数据的自动化采集与分析,单细胞中心与星赛生物基于pDEP-DLD-RFC技术,星赛生物即将推出升级版FlowRACS仪器,将大大加速拉曼组平台的推广应用。原文链接:https://doi.org/10.1002/advs.202207497
  • 秒级识别纳克级致命毒品:管窥理学新品拉曼比色一体机
    p style="text-align: justify text-indent: 2em "2019年年末,理学发布了新品手持式拉曼比色一体机CQL +1064nm。近日该仪器通过中国区的独家总代理北京裕德成科贸有限公司,正式面向中国市场大范围销售。值得一提的是,该仪器也参加了第十五届“科学仪器优秀新品”评选活动。/pp style="text-align: justify text-indent: 2em "作为一款理学重磅推出的新产品,CQL +1064nm手持式拉曼比色一体机可用于检测爆炸物、危险化学品、有毒有害工业物质、毒品易制毒等,在公安刑侦、技侦、禁毒,以及安全生产、消防救援应急管理等领域有广泛的应用。对芬太尼的现场快速检测是该仪器的典型应用之一。/pp style="text-align: justify text-indent: 2em "strong针砭芬太尼快检风险的理学新品药方/strong/pp style="text-align: justify text-indent: 2em "现如今芬太尼本身或作为海洛因、可卡因和甲基苯丙胺的稀释剂,在非法毒品交易中越来越流行。由于芬太尼有多种形式,如粉末、片剂、液体,且纯芬太尼的致死剂量约为一般成年人2mg,因此吞食或吸入可能有致命风险。面临这一风险的不仅是瘾君子,还有边境检查站、收发室和街道上的相关工作人员。正是由于接触芬太尼等毒品有高致命风险,因此必须采用适合现场使用的快速分析检测技术对其进行监测,对芬太尼的潜在使用提供即时测试结果。/pp style="text-align: justify text-indent: 2em "近年来,手持式拉曼光谱仪在相关毒品的现场检测中应用越来越普遍,该技术虽然可以提供一种穿透包装进行扫描检测的手段,降低了接触危险化学物质中的风险。但常规技术还是存在以下两大问题:/pp style="text-align: justify text-indent: 2em "一、样品的荧光干扰,使拉曼光谱仪在测试部分样品时表现出很大的局限性;/pp style="text-align: justify text-indent: 2em "二、拉曼光谱仪无法解决痕量样品的检测问题。/pp style="text-align: justify text-indent: 2em "理学推出的CQL +1064nm手持式拉曼比色一体机则具备分析大量和微量物质的能力,可穿透有色包装进行监测,即使是混合物,也能快速获得分析结果,成功地解决了现有的技术难题。/pp style="text-align: justify text-indent: 2em "strong1064nm拉曼技术——有效避免荧光干扰/strong/pp style="text-align: justify text-indent: 2em "1064nm激光的采用,让理学新品手持式拉曼比色一体机能够有效避免荧光干扰,可透过包装测试或检测有色物质,测试结果清晰明了,适合现场使用,可用于复杂样品类型的芬太尼分析。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/7947ba79-664d-4850-9194-29f0e5ae91b4.jpg" title="秒级识别纳克级致命毒品:管窥理学新品拉曼比色一体机.jpg" alt="秒级识别纳克级致命毒品:管窥理学新品拉曼比色一体机.jpg"//pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C402988.htm" target="_self" style="text-decoration: underline "strong手持拉曼比色一体机CQL+/strongstrong/strong/a/pp style="text-align: justify text-indent: 2em "strong集成自动比色法——轻松识别痕量物质/strong/pp style="text-align: justify text-indent: 2em "CQL +1064nm手持式拉曼比色一体机还集成了自动比色法,可用于痕量物质分析,检测残留物或肉眼不可见的物质,得到可靠检测结果。另外仪器能够在现场快速检测、自动解释结果、生成检测报告。设备配套的检测卡,便于携带,操作简单,无需配制化学药品和试剂,现场快速获得结果,检出限可达纳克级;软件自动识别,并生成检测报告。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/969206bc-ec7d-461d-9be3-cb55d7c5a775.jpg" title="秒级识别纳克级致命毒品:管窥理学新品拉曼比色一体机2.jpg" alt="秒级识别纳克级致命毒品:管窥理学新品拉曼比色一体机2.jpg"/a href="https://www.instrument.com.cn/netshow/C402988.htm" target="_self" style="text-decoration: underline "strongspan style="text-indent: 0em "手持拉曼比色一体机CQL+/span/strongstrongspan style="text-indent: 0em "/span/strong/a/pp style="text-align: justify text-indent: 2em "总之,通常情况下,大量的毒品会通过边境,少量甚至微量的毒品会流向街头。目前为止,很难有一个分析工具能够同时满足大量和微量的物质分析需求。/pp style="text-align: justify text-indent: 2em "CQL +1064nm手持式拉曼比色一体机则可以在数秒内提供包括毒品、易制毒和爆炸物的大量和痕量物质分析,是一款完全适用于现场的手持式拉曼设备。当透过包装或有色容器扫描样品时,CQL1064nm手持式拉曼分析仪又可以有效避免荧光效应,并能通过比色法快速检测功能,检测残留物或肉眼不可见的物质,得到可靠检测结果。/pp style="text-align: right text-indent: 2em "strong作者:杨文/strong/pp style="text-align: right text-indent: 2em "strong职位:北京裕德成科贸有限公司应用工程师/strong/p
  • 青岛能源所发明活体单细胞淀粉含量检测方法
    利用单细胞拉曼光谱技术在单个细胞精度定量监测微藻产淀粉过程  高等植物和微藻能够利用光能将水和二氧化碳转化成淀粉等高能化合物,从而生产粮食和生物燃料。因此,高产淀粉细胞工厂的选育具有重要意义。目前,定量测定细胞中淀粉含量的方法通常包括破坏性的细胞处理过程、酶(或酸)介导的水解、水解产物的定量等多个环节,不仅需要大量细胞,且操作步骤繁琐、耗时耗力、成本较高,极大地限制了淀粉含量的高通量筛选。此外,传统方法通常无法检测自然界中大量存在的难培养微生物中的淀粉含量。  近日,中国科学院青岛生物能源与过程研究所单细胞研究中心助理研究员籍月彤、硕士研究生何曰辉等利用该中心研制的活体单细胞拉曼分选仪原型机(Raman-activated Cell Sorter,RACS),通过单细胞拉曼光谱的快速采集和分析,发明了一种快速、非侵入性、不须标记、以单个活体细胞为单位的淀粉定量检测方法,为富含淀粉的种质资源选育提供了一种崭新手段。该工作发表在新一期的Biotechnology Journal上。  研究人员以478 cm-1拉曼峰强度作为细胞淀粉含量的定量标记对莱茵衣藻(Chlamydomonas reinhardtii)以及工业常用藻株小球藻(Chlorella pyrenoidosa)进行了淀粉含量检测,证明该方法与传统试剂盒法测定结果相关系数(R2)达0.99。该方法无需破壁等繁琐预处理,信号测量时间仅需两秒,基本无耗材消耗,仅需个别细胞或纳升级样品。同时,该方法不需经过细胞纯化与培养环节,能将微藻种质淀粉含量筛选时间从几天缩短至几分钟。此外,该方法还能对难培养微生物资源进行检测并基于淀粉含量进行单细胞分选,从而极大地拓展了应用空间。  上述研究得到了科技部合成生物学&ldquo 863&rdquo 项目和中科院&ldquo 能源微藻生物炼制&rdquo 创新团队国际合作伙伴计划等支持,由徐健研究员和黄巍研究员共同主持完成,华东理工大学李元广教授团队也参与了该研究。
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率:0.02um,扫描区域:200um×200um(40x物镜下)激光器532nm(蕞大100mW,可调DPSS激光器)滤波器低波数低至70cm-1 光谱仪 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:0.02um, 激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的 混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 合肥研究院阐明贵金属微纳结构的拉曼增强和光催化活性
    近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组的杨良保研究员等人在阐明单个的各向异性的金微米片上拉曼增强与光催化活性之间关系的研究上取得新进展。相关成果已发表在《欧洲化学》杂志上。该研究对于理解SERS活性纳米结构的增强机制和等离子体有关的催化效应具有重要的意义。  各向异性贵金属微纳结构因其独特的尺寸依赖效应和形状依赖效应,成为了越来越多的研究领域的热点,逐渐应用于光学、催化等领域。但是,在如何克服化学效应的贡献并获得分子层面信息的同时,阐明贵金属结构上的拉曼散射和光催化活性之间的关系,仍然是一个巨大挑战。  研究人员刘洪林博士等人通过简单的方法合成了纳米厚度的金微米三角片和六角片,并直观地展示了这些结构不同位置上拉曼信号和光催化活性之间关系。通过等离子体光催化敏感分子的结构的变化,利用其SERS信号峰相对强度的变化,成功刻画了金微米片角、边、面上不同位置的光催化活性的可视画面,排除了常规研究中浓度效应和分子覆盖度差异的问题。  研究结果表明,金微米片上特定位点分子吸附数目的增加,并不必然导致更高的光催化转化率,而是与其等离子体共振强度、电磁场强度密切相关,这与理论模拟的结果一致。相关研究策略排除或者弱化了等离子体局域热效应,也在一定程度了成功克服了浓度差异效应和化学贡献效应在贵金属等离子体光催化中的作用,清晰的刻画了等离子体共振强度相关的催化特性。  该研究工作得到了科技部重大科学研究计划纳米专项项目&ldquo 应用纳米技术去除饮用水中微污染物的基础研究(2011CB933700)&rdquo 以及国家重大科学仪器设备开发专项子任务&ldquo 动态表面增强拉曼光谱技术用于农药残留检测&rdquo 和&ldquo PERS仪器在环境污染物检测领域中的应用&rdquo (2011YQ0301241001 & 2011YQ0301241101)等项目的支持。   合肥研究院阐明各向异性贵金属微纳结构的拉曼增强和光催化活性之间的关系
  • 青岛能源所发明基于拉曼组的生物储碳含能分子单细胞定量技术
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  通过光合作用固定的二氧化碳与太阳能在生物体内有三种主要的存储形式:多糖、油脂和蛋白质,共同构成了生物碳存储与生物能源产业的物质基础。目前,对细胞中这三类高含能储碳分子的识别、表征和定量极为繁琐,通常难以在单个细胞精度测量,这限制了光合固碳细胞工厂的筛选与改造效率。中国科学院青岛生物能源与过程研究所单细胞中心发明了基于“拉曼组”的单细胞快检技术,能够在单个细胞精度同时测量淀粉、甘油三酯、蛋白质含量以及油脂不饱和度,为细胞工厂的性能测试平台增添了崭新的手段。11月19日,相关研究工作在线发表在emBiotechnology for Biofuels/em上。/pp  测定细胞中淀粉、甘油三酯和蛋白质的含量通常需要三个并行流程,每个流程都包括细胞培养以积累足够生物质、从生物质中提取并分离目标化合物、用特定方法定量目标组分等繁杂的步骤。这些传统方法遵循着“一个流程检测一种生物大分子”的模式,既耗时又耗力,而且难以分析生长缓慢或尚未培养的细胞。因此,发展一种快速、低成本、高通量、同时测定单个细胞中多种储碳分子的方法具有重要价值。/pp  “拉曼组”(Ramanome)是特定状态下,一个细胞群体之单细胞拉曼光谱的集合。研究人员以莱茵衣藻、微拟球藻等为模式,基于拉曼组技术,建立了同时定量单个细胞中淀粉、蛋白质、甘油三酯含量和脂质不饱和度的方法(如图)。由于拉曼组可直接跳过微藻细胞培养扩增,而且在不破坏细胞的前提下于秒级别完成测量,因此筛选速度提高了至少两个数量级。在此基础上,研究人员提出了累积多样性指数、累积含量和累积异质性、最小取样深度和最安全取样深度等新概念,建立了拉曼组取样深度与表型测量精度的关联,从理论上指导了拉曼组测量参数的选择与优化。该研究进一步提出,13个特定拉曼峰组合而成的“细胞储碳谱拉曼识别码”可灵敏、可靠、高通量地表征单个细胞中的淀粉、蛋白质、甘油三酯含量和油脂不饱和度等关键表型,并区分与揭示细胞中储碳组分及其相互转化的静态与动态特性。此外,在液体悬浮培养的活细胞、-80℃冷冻保存的湿藻泥和冷冻干燥藻粉等不同细胞保藏状态下,测量结果之间高度一致,因此拉曼组技术具有应用上的普适性。/pp  合成生物学领域的跨越式进展,在相当程度上取决于“基因型设计”、“基因型合成”、“细胞表型测试”这三大共性技术平台的突破。随着基因组测序与合成在通量与成本上的大幅度改进,“细胞表型测试”这一共性环节已成为人工细胞构建与生物元件表征的“限速步骤”之一。科研人员提出的拉曼组技术能够在单个细胞精度无需标记、非破坏性、快速地识别理论上近乎无限的细胞表型,结合前期发明的RADS、RAMS等一系列单细胞流式拉曼分选技术,能够实现单细胞功能识别、分选、测序与培养这一“细胞表型测试”完整流程的通量化、仪器化与自动化。因此,拉曼组有望成为具有普适性的新一代细胞功能测试仪器平台与单细胞表型大数据类型,服务于能源、环境、健康、海洋、生物安全等诸多应用领域的合成生物学研究与产业。/pp  研究工作获得了国家自然科学基金委、中科院含碳气体生物制造等的支持。/pp style="text-align:center "img alt="" oldsrc="W020171123403376764262.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/f3893125-4828-463f-99db-27fcc4d84b7a.jpg" uploadpic="W020171123403376764262.jpg"//pp style="text-align: center "拉曼组技术同时测定单个微藻细胞中淀粉、蛋白质和甘油三酯含量 /p
  • 德祥:美国Labcon透明离心管7月大促销
    美国Labcon透明离心管7月促销开始啦!!!更多产品请登陆德祥官网:www.tegent.com.cn渠道合作:南区(华南,西南与中南)地区请联系:周先生 Tel:020-22273381东区(华东, 江,浙,沪)地区请联系:黄小姐 Tel:021-52610159北区(华北,东北,西北)地区请联系:王先生 Tel:010-82326924德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 分子光谱市场热度不减 多家仪器厂商齐聚昆明
    仪器信息网讯 2023年7月15日-17日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开。全国分子光谱学学术会议在全国分子光谱科研等相关工作者的积极支持和共同参与下,已成功举办了二十一届,推动了此学科的研究朝向更深的理论和更尖端的技术发展。本次会议吸引了170多家单位的650余名代表参会,得到了赛默飞、岛津、HORIBA、布鲁克、雷尼绍、安捷伦、珀金埃尔默、瑞士万通、天美仪拓、荧飒光学、日立科学、奥谱天成、昊量光电、鉴知技术、如海光电等20多家仪器公司的鼎力支持。会议现场多家仪器公司的代表在本次会议中分享了报告,介绍他们最新的产品和技术。在大会报告中,赛默飞世尔科技(中国)有限公司应用专家邓洁介绍了赛默飞分子光谱技术新进展、岛津企业管理(中国)有限公司产品经理郑伟分享了题目为《红外拉曼,琴瑟和鸣——红外拉曼显微镜的创新与融合》的报告。在拉曼光谱新技术及新方法分会场中,堀场(中国)贸易有限公司应用工程师王春阳探讨了拉曼光谱技术在生物领域的最新技术及应用进展、赛默飞世尔科技(中国) 有限公司应用专家张衍亮介绍了赛默飞新型多模式DXR3 Flex 拉曼光谱仪、瑞士万通中国有限公司产品经理王睿分享了小型拉曼光谱仪的研发进展、徕卡显微系统(上海) 贸易有限公司高级应用专员齐瑶展示了相干拉曼散射显微镜助力生物无标记成像。在生物传感及光谱成像分会场中,安捷伦科技(中国)有限公司应用工程师王晶晶作了以“无处不在的UV-Vis:从生化研究到材料表征”为题目的报告分享、堀场(中国)贸易有限公司应用工程师任婉情介绍了分子荧光光谱及热点应用解决方案、天美仪拓实验室设备(上海)有限公司市场工程师孙玉琳分享了爱丁堡分子光谱家族5系列在材料分析领域的探索、岛津企业管理(中国)有限公司产品专员曹亚南作了以“追光逐谱——岛津UV-Vis-NIR 技术在光学材料领域的应用”为题目的报告分享。在红外光谱、超快光谱新技术新方法及新应用分会场中,布鲁克(北京)科技有限公司产品经理徐媛介绍了QCL 超快速红外吸收光谱技术、珀金埃尔默企业管理(上海)有限公司工程师李建蕊分享了微观颗粒物的自动定性定量分析方法经验、QUANTUM量子科学仪器贸易(北京)有限公司产品经理黄国炬分享了500 nm分辨荧光-红外-拉曼同步测量技术前沿进展、荧飒光学仪器(上海)有限公司产品经理王伟分享了以“深耕细作,荧飒光学让国产红外更出彩”为题目的报告、约翰威立商务服务(北京)有限公司销售经理孙程博进行了KnowItAll 软件助力红外,拉曼数据分析的探讨。在拉曼光谱新技术及新材料分会场中,雷尼绍(上海)贸易有限公司工程师刘丽银介绍了雷尼绍拉曼光谱技术的发展及应用、布鲁克(北京)科技有限公司产品经理徐媛介绍了布鲁克显微拉曼光谱仪最新技术进展、长春长光辰英生物科学仪器有限公司产品经理李天宇分享了以“拉曼+,生物表型探索新工具”为题目的报告。仪器厂商展位
  • 2014分子光谱看点:便携拉曼依然“热”
    p  strong仪器信息网讯/strong 2015年1月6日,2014年北京光谱年会在北京召开,本次会议聚焦分子光谱现场快速检测仪器的发展动态以及光谱仪器新产品和新技术两个方面。/pp  仪器信息网编辑在参会中发现,本次会议中有一半以上的报告内容都涉及到了span style="TEXT-DECORATION: underline"a href="http://www.instrument.com.cn/zc/34.html?SidStr=383& AgentSortId=& IMCityID=& IMShowBCharacter=& IMShowBigMode="span style="COLOR: #0000cd"拉曼光谱/span/a/span,特别是便携/手持式拉曼光谱仪的技术进展及应用依然是2014年拉曼光谱领域的一大看点。其中,清华大学孙素琴教授在《分子光谱现场快速检测仪器的发展动态》的报告中特别介绍了手持式/便携式拉曼光谱仪在药品、毒品等中的分析应用 北京化工大学的袁洪福教授也介绍了拉曼光谱在过程分析中的应用 中国检验检疫科学研究院的齐小花博士介绍了拉曼光谱技术应用及在食品安全快检方面的应用。/pp  拉曼光谱以其无损检测、样品无需前处理、现场快速检测等优势在刑侦、仿制及掺假产品等各领域有着越来越广泛的应用。同时,拉曼光谱法作为检测方法的一个分支,近年来愈来愈多地被广大的分析测试工作人员所接受和录用。从仪器方面来说,拉曼光谱已经从高端科研产品向分析型仪器方向发展了,价格也有所降低 从应用方面来分析,拉曼光谱仪现在的应用市场和以前的也不一样了,5年之前,拉曼光谱仪只应用在材料科学领域,而现在,拉曼光谱仪的应用已经涉及到化学、催化、刑侦、地质领域、艺术、生命科学、材料科学等各个领域,甚至有一些QC领域也已经开始使用拉曼光谱仪了。/pp  同时,拉曼光谱法也逐步走出实验室,成为一种现场常用的筛检方法,特别是一系列的便携式拉曼光谱仪器也赢得了用户的喜爱。为研究制定我国便携式激光拉曼光谱仪性能测试方法的标准,2014年8月,中国分析测试协会成立激光拉曼光谱仪性能测试方法标准研制工作组。/pp  鉴于对小型拉曼光谱仪广阔市场前景的看好,很多研究机构开展了表面增强拉曼光谱及相关快检仪器的研究工作。2009年,中国检验检疫科学研究院就利用激光拉曼技术,自主研发了用于现场快速检测三聚氰胺的激光拉曼光谱仪以及配套试剂。2011年起,为了促进等离激元增强拉曼光谱(PERS)的应用,田中群院士领衔的仪器研发及应用项目所研发的壳层隔离纳米粒子增强拉曼光谱(SHINERS)粒子也取得了系列进展。在过去的一年中,中国科学院重庆绿色智能技术研究中心以及四川大学生命科学学院分析仪器研究中心等在拉曼光谱方面的研究取得了一系列的进展:/pp  中国科学院重庆绿色智能技术研究院智能装备与仪器仪表研究中心成功研制出了光谱分辨率可达10cmsup-1/sup的小型拉曼光谱仪样机,样机通过了可靠性测试,可应用在工农业生产、食品安全和生物医药等领域的现场监测和样品快速检测。/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20141104/145294.shtml"span style="COLOR: #ffa07a"重庆研究院小型拉曼光谱仪样机研制成功/span/a/strong/pp  由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为激光诱导击穿-拉曼光谱分析仪LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。据悉该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="20141224112337.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201509/noimg/624c9103-e8bd-4e2c-a9a4-66174622ff41.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"激光诱导击穿-拉曼光谱分析仪LIBRAS/pp strongspan style="COLOR: #add8e6" /spanspan style="COLOR: #ffa07a"相关新闻:/spana href="http://www.instrument.com.cn/news/20141224/149360.shtml"span style="COLOR: #ffa07a"世界首款激光诱导击穿-拉曼一体化光谱分析仪面世/span/a/strong/pp  向小型化方向发展是分析仪器的发展潮流之一,现在很多厂商非常看好便携、现场检测仪器市场的前景,这一点在拉曼领域表现的尤其活跃,如海洋光学、必达泰克、赛默飞等很多厂商都已经推出了便携/手持式的拉曼光谱仪。2014年,TSI、万通等一些厂商也开始涉足便携/手持式拉曼产品。/pp  2014年2月25日,TSI收购了美国便携拉曼光谱仪制造商恩威(Enwave)的全部业务资产,从此进入便携拉曼光谱仪的市场。/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20140228/123405.shtml"span style="COLOR: #ffa07a"TSI收购便携式拉曼光谱仪厂商恩威(Enwave)/span/a/strong/pp  2014年年底瑞士万通Metrohm 和Snowy Range Instruments (SnRI)结成了战略联盟。根据协议,SnRI将专门为瑞士万通开发和制造新的手持式拉曼光谱仪,而新的手持式拉曼光谱仪产品将纳入瑞士万通NIRSystems品牌之下,进一步完善和补充瑞士万通的近红外光谱产品解决方案。与此同时,瑞士万通也推出了Mira M型新一代手持式拉曼光谱仪。/pp style="TEXT-ALIGN: center"img style="WIDTH: 351px HEIGHT: 335px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/20151715436.jpg" width="351" height="335"//pp style="TEXT-ALIGN: center"Mira M-1型手持式拉曼光谱仪/pp  span style="COLOR: #ffa07a"strong相关新闻:/strong/spanstronga href="http://www.instrument.com.cn/news/20141209/148231.shtml"span style="COLOR: #ffa07a"瑞士万通与SnRI结成战略联盟 推出手持拉曼光谱/span/a/strong/pp  此外,日本理学在去年也推出了Progeny手持拉曼光谱仪,该款仪器还获得了2014 IBO工业设计大奖 作为英国Cobalt公司RapID产品在中国区的指定代理商,上海凯来实验设备有限公司也在仪器信息网上展出了新的Cobalt RapID空间位移拉曼光谱。/pp style="TEXT-ALIGN: center"img style="WIDTH: 345px HEIGHT: 233px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201517154322.jpg" width="542" height="370"//pp style="TEXT-ALIGN: center"Progeny手持拉曼光谱仪/pp style="TEXT-ALIGN: center"img style="WIDTH: 280px HEIGHT: 280px" alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201517154334.jpg" width="280" height="280"//pp style="TEXT-ALIGN: center"Cobalt RapID空间位移拉曼光谱。/pp  另在2014北京光谱年会上获悉,岛津也将于2015年推出便携式的拉曼光谱仪。/pp  此外,还有一些厂商对手持式拉曼产品持观望态度,比如,虽然HORIBA没有直接介入手持式拉曼的市场,但已经通过OEM的方式参与其中,为一些便携式拉曼光谱仪的厂商提供光栅和光谱模块等。据悉,该公司已经在进行手持式拉曼光谱仪的市场调查。/pp strong 相关学术会议介绍/strong/pp  目前,国内外都有一些重要的学术会议为拉曼领域的研究人员提供了重要的交流平台。比如两年一次的全国光散射学术会议和国际拉曼光谱大会等,据悉四川大学将主办2015年的全国光散射学术会议。/pp  第24届国际拉曼光谱学大会 (The International Conference on Raman Spectroscopy,24th ICORS)已经于2014年8月10日-15日在德国耶拿召开,规模达到900多人,而且本次大会首次设立了拉曼大奖终身成就奖、创新技术发展奖、最佳初级研究员奖,以表彰在拉曼光谱领域做出突出贡献的杰出科学家。/pp  此外,由HORIBA科学仪器事业部主办,厦门大学协办的第三届国际拉曼前沿技术高端论坛将于2015年5月6-8日在厦门举行,聚焦SERS/TERS新技术及拉曼光谱在生命科学、材料科学中的热点应用。/pp /p
  • 上海交大团队基于表面增强拉曼的纳米探针技术为分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。 该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。 另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。 该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 再聚昆明 第22届全国分子光谱学学术会议暨2023年光谱年会开幕
    仪器信息网讯 2023年7月15日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开。本次会议由中国光学学会、中国光学学会光谱专业委员会、中国化学学会主办,云南师范大学承办。因为疫情,原定去年举办的会议延期至今。本次大会秉承前21届分子光谱学学术会议的宗旨,全力展示我国在光谱及相关领域的最新研究进展及取得的成果,增进广大光谱科学工作者及支持光谱事业人们间的交流与合作。据悉,本次会议共收到稿件近400篇,大会安排了16个大会报告以及200多个邀请报告和口头报告,吸引近600人注册参会。会议现场会议轮执主席、云南师范大学物理与电子信息学院院长 刘应开教授主持开幕式开幕式由会议轮值主席、云南师范大学物理与电子信息学院院长刘应开教授主持。中国光学学会光谱专业委员会主任、北京师范大学谢孟峡教授,云南师范大学副校长牛治亮教授,大会学术委员会主席、厦门大学田中群院士等为大会致辞。中国光学学会光谱专业委员会主任、北京师范大学谢孟峡教授致辞自 1979 年举办第一届全国分子光谱学学术会议以来,会议已经成功举办了21届。每届会议的成功举办,都凝聚了主办方和承办方的艰辛努力,特别是承办单位的无私奉献精神,以及为中国光谱事业发展做贡献的崇高情怀。谢孟峡教授在致辞中带领大家回顾了全国分子光谱学学术会议的发展历程,其中特别提到了2008年在北京举办的第十五届全国分子光谱学术会议,会议期间庆祝了全国分子光谱学术会议30周年,表彰了一批对光谱会议和我国光谱事业做出突出贡献的老先生;从2016年开始,全国分子光谱会议与光谱年会同期举办,为多种光谱技术的融合搭建了学术交流平台;2018年在青岛光谱会议期间隆重庆祝了光谱会议40年,为田中群院士、李灿院士和孙世刚院士颁发了中国光谱成就奖,以表彰他们在光谱领域取得的系列原创性研究成果和对中国光谱事业发展做出的杰出贡献。不仅如此,青岛会议上还发布了光谱会议的会标,开启了中国光谱事业发展的新时代;2020年,成都光谱会克服疫情影响成功召开……谢孟峡教授说,40年前,第二届全国分子光谱学学术会议在昆明召开(1983年);20年前,也就是2002在昆明又召开了第十二届全国分子光谱学学术会议。今天大家再聚昆明,共同交流各自的最新研究成果,共话中国光谱事业的发展蓝图,必将也是一场高水平的、成功的学术会议。云南师范大学副校长 牛治亮教授 致辞云南师范大学副校长牛治亮教授代表学校全体师生向远道而来的各位专家学者和来宾表示热烈的欢迎和诚挚的问候。牛治亮教授表示,本次会议各位专家学者将围绕方法、基本理论及新技术的创新应用开展深入的讨论,为大家带来一场精彩的学术盛宴。相信通过本次会议的召开,必将促进分子光谱学科的深层次研究,进一步推动我国光谱事业的蓬勃发展。同时牛治亮教授也希望以此会议为契机,云南师范大学可以和更多的学者建立联系,广纳真知灼见、广积学术资源、广交学术人才,助推学校学科建设和发展。学术委员会主席、厦门大学田中群院士致辞并作大会报告报告题目:从电化学拉曼光谱新方法到AI-光谱的工况联用新方向和纳米红外光谱仪器研制学术委员会主席、厦门大学田中群院士在致辞中表示,本世纪我们的科研人员已经在分子光谱领域取得了重要的进展,也逐渐在国际上有了重要的一席之地。当前,人工智能等技术到来,下一步光谱学科该怎么发展,很值得这次会议好好的思考。田中群院士说,现阶段对科研人员来说有大浪,也是一个洗牌的阶段,我们中国的学者应该争取这个机会冲上去,再创佳绩。开幕式之后,厦门大学田中群院士、北京大学张锦院士、郑州大学常俊标教授、山东师范大学唐波教授、赛默飞世尔科技(中国)有限公司应用专家邓洁等5位院士、专家带来精彩的分享。各位院士、专家从前沿研究、仪器研制及方法开发等多个方面分享了光谱技术的最新研究进展,多方思想碰撞呈现了既深厚、又极具活力的学术氛围。郑州大学常俊标教授、清华大学张新荣教授分别主持上午的大会报告环节。其中,厦门大学田中群院士从电化学拉曼光谱新方法、AI-光谱的工况联用新方向、纳米红外光谱仪器研制三个层面介绍了我国光谱学科发展的重要方向;北京大学张锦院士分享了在石墨烯与烯碳纤维的拉曼光谱研究方面所做的一系列前沿成果;郑州大学常俊标教授介绍了核苷类抗病毒药物的设计策略及应用;山东师范大学唐波教授分享了氧化应激相关疾病演进的细胞、活体分子荧光成像;赛默飞世尔科技(中国)有限公司应用专家邓洁介绍了赛默飞分子光谱技术新进展。报告人:北京大学张锦院士报告题目:石墨烯与烯碳纤维的拉曼光谱研究报告人:郑州大学常俊标教授报告题目:核苷类抗病毒药物的设计策略及应用报告人:山东师范大学唐波教授报告题目:氧化应激相关疾病演进的细胞、活体分子荧光成像报告人:赛默飞世尔科技(中国)有限公司应用专家 邓洁报告题目:赛默飞分子光谱技术新进展清华大学张新荣教授主持大会报告创新是发展的动力,随着科研及应用需求的深入,极具市场活力的光谱技术也在不断推陈出新,并在多个领域呈现了非常诱人的市场活力。会议第一天下午,清华大学张新荣教授、湖南大学张晓兵教授、岛津企业管理(中国)有限公司产品经理郑伟、南京大学龙亿涛教授、厦门大学任斌教授、湖南师范大学杨荣华教授等6位专家亦将带来精彩的报告。会议第二天,七大分会场同时进行,以拉曼光谱新技术及新方法、生物传感及光谱成像、红外光谱新技术及新方法、超快光谱新技术及新应用、拉曼光谱新技术及新材料、原子光谱新技术及新方法、青年论坛等为主题的精彩报告将一一呈现。作为科学研究与高端制造业发展所不可或缺的重要设备,科学仪器的进步在很大程度上推动着相关研究的进展。本次会议得到了赛默飞、岛津、HORIBA、布鲁克、雷尼绍、安捷伦、珀金埃尔默、瑞士万通、天美仪拓、荧飒光学、日立科学、奥谱天成、昊量光电、鉴知技术、如海光电等20多家仪器厂商的鼎力支持,多家仪器公司的代表也将在本次会议中分享最新的产品和技术。仪器信息网作为支持媒体将全程报道会议的最新进展,精彩内容请关注后续报道。同期仪器展
  • 2022全球分子光谱市场68.5亿美元 拉曼增长最快
    p  日前,MARKETSANDMARKETS发布关于分子光谱的市场研究报告。报告内容显示,2016年,全球分子光谱学市场46.8亿美元,预计到2022年该市场将达到68.5亿美元,复合年增长率为6.6%。/pp  报告分析称,整个分子光谱学市场的增长可以归因于食品安全问题的日益加剧,医药和生物技术产业的发展,分子光谱学在环境检测中的应用,以及分子光谱技术的更新等。未来几年,预计北美将占据全球分子光谱学市场的最大份额。然而,高成本的设备也可能会抑制市场在预测期间的增长。/pp  在环境保护方面的资金投入以及科研经费的增长,比如美国和加拿大等国家,将为市场参与者提供新的机会。例如,2016年,美国年度绩效计划和预算为82.67亿美元,比前一年增加了1.27亿美元(81.39亿美元),增加的经费用于购买检测高危样品的新仪器。此外,2016年3月,加拿大国家科学技术部部长宣布投资2300万美元,支持加拿大26所大学的95个研究项目。/pp  根据技术原理,该市场可以细分为NMR、紫外可见光谱、红外光谱、近红外光谱、色度测量光谱、拉曼光谱等。由于有机化合物结构检测方面的应用越来越多,预计NMR将在2017年的分子光谱市场中占有最大的份额。而从下图我们也可以看出,预测期间拉曼光谱的复合年增长率最高。/pp style="text-align: center "img width="500" height="427" title="molecular-spectroscopy-market2.jpg" style="width: 500px height: 427px " src="http://img1.17img.cn/17img/images/201708/insimg/3b45d479-89aa-4c64-88e1-0ff24d2104fc.jpg" border="0" vspace="0" hspace="0"//pp  根据应用,该市场细分为制药领域的应用、环境检测、食品和饮料检测、生物技术和生物制药应用、学术研究等。2017年,预计制药领域的应用将占分子光谱市场的最大份额,而且预计预测期间的复合年增长率也将最高。/pp  从地域上来看,北美占据全球市场最大份额,其次是欧洲。美国在环境检测方面越来越多的资金投入,以及对食品安全问题日益增长的关注等都是推动市场增长的主要因素。加拿大在研发和基础设施发展方面的资金投入增加也将推动市场在预测期内的增长。/pp  2016年,全球分子光谱学市场由Bruker、Thermo Fisher、PerkinElmer和Agilent主导。2016年,这些公司占据了全球分子光谱学市场的大部分份额。这个市场的其他参与者包括Shimadzu、Danaher 、ABB、Merck、JEOL、FOSS、JASCO和HORIBA等。/ppbr//p
  • 2013中国十大科技进展 世界最高分辨率单分子拉曼成像入选
    三中全会部署深化科技体制改革  11月9日至12日,党的十八届三中全会召开,会议把深化科技体制改革作为全面深化改革的重要内容进行系统部署。会议通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出深化科技体制改革、加强知识产权运用和保护、整合科技规划和资源、改革院士遴选和管理体制等。  三中全会关于科技体制改革的部署,既体现了与以往改革思路的继承发展,对实践中先行先试的经验予以肯定,又结合经济领域改革的大方向,突出了今后一个时期改革的重点领域和环节,为实施创新驱动发展战略、建设创新型国家提供了重要的制度设计。  &ldquo 嫦娥三号&rdquo 实现月面软着陆  12月14日21时11分,&ldquo 嫦娥三号&rdquo 在月球正面的虹湾以东地区实现软着陆。这将开创人类月球探测史的多项&ldquo 首次&rdquo 。月面软着陆就位探测与月球车巡视勘察二者同时进行并有机结合,将获得比以前更有意义的探测成果 在国际上首次利用测月雷达实测月壤厚度和月壳岩石结构 首次在软着陆地点利用数据转发器精确测定地月间距离,进行月球动力学研究 首次开展日地空间和太阳系外天体的月基甚低频射电干涉观测,进行太阳射电爆发与空间粒子流、光千米波辐射&hellip &hellip   运-20大型运输机首飞成功  1月26日,我国自主发展的运-20大型运输机首次试飞取得圆满成功。运-20是中国研制的最大的飞机,其成功标志着中国跻身世界大飞机国家。  该型飞机是我国依靠自己的力量研制的一种大型、多用途运输机,可在复杂气象条件下执行各种物资和人员的长距离航空运输任务。运-20大型运输机的首飞成功,对于推进我国经济和国防现代化建设,应对抢险救灾、人道主义援助等紧急情况,具有重要意义。该型飞机首飞后将按计划继续开展相关试验和试飞工作。  &ldquo 天河&rdquo 超级计算机再夺冠  6月中旬,在德国莱比锡&ldquo 2013国际超级计算大会&rdquo 上,中国天河二号超级计算机跃居第41届世界超级计算机500强排名榜首。其峰值计算速度达每秒5.49亿亿次、持续计算速度达每秒3.39亿亿次。这是继2010年天河一号首次夺冠之后,中国超级计算机再次夺冠。  天河二号超级计算机系统内存总容量1400万亿字节,存储总容量12400万亿字节,最大运行功耗17.8兆瓦。据天河二号工程副总指挥李楠研究员介绍,天河二号运算1小时,相当于13亿人同时用计算器计算1000年,其存储总容量相当于存储每册10万字的图书600亿册。较之上届&ldquo 状元&rdquo 美国&ldquo 泰坦&rdquo 超级计算机,天河二号计算速度是它的2倍,计算密度是它的2.5倍,能效比相当。  神十进行载人航天应用性飞行  6月26日,神舟十号载人飞船返回舱在预定区域安全着陆,航天员健康出舱,天宫一号与神舟十号载人飞行任务取得圆满成功。神舟十号开创中国载人航天应用性飞行的先河。  此次任务的主要目的有4个:  一是发射神舟十号飞船,为天宫一号目标飞行器在轨运营提供人员和物资天地往返运输服务,进一步考核交会对接技术和载人天地往返运输系统的性能   二是进一步考核组合体对航天员生活、工作和健康的保障能力,以及航天员执行飞行任务的能力   三是进行航天员空间环境适应性和空间操作工效研究,开展空间科学实验和航天器在轨维修等试验,首次开展我国航天员太空授课活动   四是进一步考核工程各系统执行飞行任务的功能、性能和系统间协调性。  首次测到量子反常霍尔效应  由清华大学薛其坤院士领衔的团队从实验中首次观测到量子反常霍尔效应,这是物理学领域基础研究的一项重要科学发现。该成果于北京时间3月15日在《科学》杂志在线发表。  美国科学家霍尔曾发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。其美妙之处是不需要任何外加磁场,这将推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。  体细胞重编程技术重大突破  8月,北京大学研究团队,成功将体细胞制成多潜能性干细胞。此前,通过借助卵母细胞进行细胞核移植或使用导入外源基因的方法,哺乳动物体细胞被证明可以进行&ldquo 重编程&rdquo 获得&ldquo 多潜能性&rdquo 。邓宏魁团队的方法则更简单和安全。  该成果将为未来细胞治疗及器官移植提供理想的细胞来源,极大推动人类&ldquo 克隆&rdquo 组织和器官治疗疾病的医学研究。这一重大发现有助于人们更好地理解细胞命运决定和细胞命运转变的机制,使人类未来有可能通过使用小分子化合物的方法,直接在体内改变细胞命运。  制出人感染H7N9禽流感病毒疫苗株  10月26日,我国科学家宣布成功研发出人感染H7N9禽流感病毒疫苗株,改变了我国流感疫苗株需由外国提供的历史,为及时应对新型流感疫情提供了有力的技术支撑。  目前,该病毒疫苗种子株已通过中国医学科学院医学实验动物研究所新药安全评价研究中心的安全性雪貂评价实验。检测结果显示,该病毒疫苗株各项基数指标均符合流感病毒疫苗株的要求。  该成果的领衔者、中国工程院院士李兰娟介绍,课题组于4月3日收到H7N9病例咽拭子样本,并成功分离获得一株H7N9禽流感病毒。随后,联合课题组采用国际通行的流感疫苗种子株制备方法,通过反向遗传技术,以PR8质粒为病毒骨架,与自行分离的病毒株进行基因重排,并成功研制出H7N9流感疫苗种子株。  实现世界最高分辨率单分子拉曼成像  6月,中国科学家在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。  光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值。  4G牌照发放助力信息消费升级  12月, 工信部向中国移动、中国电信和中国联通颁发了4G牌照。此举预示我国进入到一个全新的通信时代,将对包括用户网速、语音通话、移动互联网、电子商务、智慧城市等带来深远影响。据预计,到2014年,4G手机在国内市场的销量会接近1亿部,并拉动15%的消费需求。  工信部向三大电信运营商颁发了LTE/第四代数字蜂窝移动通信业务(TD-LTE)经营许可。此次4G牌照的发放打破了电信和联通对于固网牌照的垄断,实现了三大运营商固网+移动的格局。
  • 上海交通大学陈万涛/严明发现小细胞外囊泡介导肿瘤进展及免疫逃逸分子机制
    肿瘤微环境(TME)影响患者对免疫治疗的响应度。携带大量生物活性分子的细胞外囊泡(EVs)可以在细胞间传递信号并重塑 TME。因此,在制定抗肿瘤治疗策略时,应综合考虑 EVs、TME 和免疫细胞之间复杂的相互作用。2022年5月,上海交通大学医学院附属第九人民医院陈万涛/严明团队,在Journal of Extracellular Vesicles(IF=26)在线发表题为“CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment”的研究论文,该研究表明头颈鳞癌细胞来源的小细胞外囊泡(sEVs)运载的 CD73 可以重塑 TME 并促进肿瘤进展、介导免疫逃逸。研究内容解析【1】 HNSCC 细胞来源的 sEVs 中高表达 CD73从原代培养的头颈鳞癌(HNSCC)细胞及配对正常黏膜细胞上清中分离 sEVs。蛋白组学分析显示,与正常黏膜细胞相比,HNSCC 细胞来源的 sEVs 中高表达 CD73(图 f-h)。图1 | HNSCC 细胞来源的 sEVs 中高表达 CD73【2】HNSCC 源 sEVs-CD73 被巨噬细胞内化以促进 HNSCC 进展CD73 是由 NT5E 基因所编码的一种膜结合形式的外核苷酸。TCGA 数据分析表明,NT5E 基因在包括 HNSCC 在内的多种肿瘤中高表达,并且与 HNSCC 患者较低的总体生存率密切相关。免疫组化结果显示,CD73 在 HNSCC 肿瘤组织中高表达,并且与患者不良预后和高淋巴结转移率相关。免疫浸润分析表明,NT5E 表达与巨噬细胞密切相关(图 c),免疫荧光结果也表明 CD73 与巨噬细胞共定位(图 d-e)。进一步分析显示,高 NT5E 表达、高巨噬细胞浸润的 HNSCC 患者总体生存率最低(图 f)。图2 | sEVs 中的 CD73 与肿瘤相关巨噬细胞和 HNSCC 恶性进展密切相关小鼠移植瘤注射 sEVsCD73,结果显示 sEVsCD73 主要与巨噬细胞共定位(图 h-i),表明 sEVsCD73 被巨噬细胞吞噬。同时体内实验结果表明(图 j-n),肿瘤细胞来源的 sEVs 可以重塑引流淋巴结微环境,形成利于肿瘤转移的转移前微环境,sEVs 携带的 CD73在这一过程中发挥重要作用。【3】sEVs 通过 CD73 调节巨噬细胞介导的免疫抑制与对照相比,与肿瘤细胞共培养的巨噬细胞中 CD73 表达水平上升(图 b);而与 RAB27A 敲除以抑制 sEVs 释放的细胞共培养的巨噬细胞相比,其 CD73 含量与正常对照组相当(图 b),表明 CD73 主要通过 sEVs 运输。sEVs 中 CD73 的水平会影响 CD73+ 巨噬细胞的比例,使其随着共培养体系中 sEVsCD73 的累积而增加。当 sEVsCD73 被巨噬细胞内化后,其吞噬作用明显增强(图 c),同时分泌促癌炎性细胞因子 IL6、IL10、TNFα、TGFβ 能力显著增加(图 e-f),预示 CD73+ 巨噬细胞具有更强的促瘤作用。流式分析显示(图 h),sEVsCD73 使巨噬细胞免疫检查点(PD-1,PD-L1,LAG3等)表达上调,表明 CD73+ 巨噬细胞可发挥更强的免疫抑制能力。图3 | HNSCC 细胞源 sEVs 中 CD73 对巨噬细胞功能的影响【4】sEVs 中的 CD73 在体内促进免疫逃逸并促进肿瘤进展接下来评估 sEVsCD73在介导体内免疫抑制和肿瘤进展中的作用。与对照组相比,Rab27a 敲除组(SCC7Rab27aKO)的小鼠肿瘤生长速度慢、肿瘤偏小,表明 sEVs 可促进肿瘤进展。然而,注射外源性中高表达的 CD73 的 sEVs(sEVsSCC7-Nt5eOE 和 sEVsSCC7)则会显著促进肿瘤的发展,但 NT5E 敲除的 sEVsSCC7-NT5EKO并没有此作用(图 b-d)。结果表明 sEVsCD73 在 HNSCC 的进展中具有重要的作用。同时,流式分析显示,sEVsCD73 可招募巨噬细胞、Tregs 细胞,而 CD8+ T 细胞浸润数目减少。此外,在瘤内注射了含 CD73 的 sEVs 后,这些免疫细胞尤其是巨噬细胞表面 CD73、PD-1 的表达水平均有所增加。该体内实验结果提示,sEVsCD73 可诱导免疫抑制,从而促进肿瘤细胞免疫逃逸。图4 | sEVs 中敲除 CD73 可拯救免疫抑制并抑制了体内肿瘤生长【5】携带 CD73 的 sEVs 通过激活 NF-κB 通路调节巨噬细胞功能对经过 HNSCC 源 sEVs 处理的 M2 巨噬细胞进行转录组测序。利用韦恩图分析M2+HNSCC 源 sEVs(M2+sEVs)相对于对照组 M2 上调的基因,以及 M2+CD73 敲除的 HNSCC 源 sEVs(M2+sEVsNT5EKO)相对于 M2+sEVs 下调的基因。通过对两组差异基因取交集,筛选出了共 143 个可能受到 sEVsCD73 调控的候选下游基因(图 a),而 NFκB1 是与这些差异表达基因最为相关的转录因子(图 b),富集分析也显示 NF-κB 通路富集最为显著(图 c)。进一步实验显示,sEVsCD73 可以显著促进 p65 在巨噬细胞细胞核内积聚(图 f),激活NF-κB 通路,并促进下游基因转录。图5 | sEVs 中 CD73 通过 NF-κB 通路调节巨噬细胞的免疫功能【6】sEVsCD73 是抗 PD-1 治疗潜在的检查点和治疗靶点从 HNSCC 患者血清中分离 sEVs,ELISA 检测显示其 CD73 含量高于健康人血清 sEVs(图 a-c)。并且高水平的循环 sEVsCD73 可能预示着更高的淋巴结转移率和更大的肿瘤大小(图 d)。为研究 sEVsCD73 在抗 PD-1 治疗中的作用,通过体内实验进一步评估 sEVsCD73 敲除联合抗 PD-1 药物对小鼠头颈鳞癌的治疗作用。当 sEVs 中 CD73 敲除时,PD-1抗体的治疗效果发生明显的改善(图 f-h)。将瘤组织取出并进行流式分析,在接受抗 PD-1 药物后,巨噬细胞、Tregs 细胞的浸润数量有所下降,CD8+T 细胞的数目增加。同时,免疫细胞表面的 CD73 和 PD-1 表达下降,说明免疫抑制的现象有所缓解。这一现象在 RAB27aKO+anti-PD-1 组最为显著,说明抑制肿瘤细胞的 sEVs 释放会提高抗 PD-1 逆转免疫抑制的效率。然而在加入外源性的 sEVsCD73 后,巨噬细胞、Tregs 细胞的浸润数量明显上升,CD8+T 细胞的数目减少。此外,免疫细胞表面的 CD73和 PD-1 表达上升,表明 sEVs CD73 显著抑制了抗 PD-1 药物对免疫应答的重激活作用。以上结果表明,肿瘤细胞源 sEVs 携带 CD73 通过 TAM 介导免疫抑制并减弱抗 PD-1 的治疗效果。sEVsCD73 可用于预测 HNSCC 的转移,是潜在的 HNSCC 抗 PD-1 治疗的联合免疫治疗靶点。图6 | sEVsCD73 可减弱抗 PD-1 治疗敏感性原文链接:https://doi.org/10.1002/jev2.12218
  • 问题奶粉竟获“质检证明”
    一条本应在2008年就被销毁的问题奶粉如何悄无声息地重新流入市场的链条,开始慢慢呈现。而在从问题奶粉“幸存”到流入市场的链条中,至少存在着五大漏洞需要有关方面反省和填补。  近几日的广州阴云密布。笼罩在羊城上空的,除了湿气霉味外,还有对三聚氰胺奶粉死灰复燃的焦虑。  远在1700公里之外的陕西渭南,乐康乳业这个不足30人的小厂,究竟是如何将问题奶粉卖到广东和福建的?  早报记者在渭南、广州深入调查,一条本应在2008年就被销毁的问题奶粉如何悄无声息地重新流入市场的链条,开始慢慢呈现。而在从问题奶粉“幸存”到流入市场的链条中,至少存在着五大漏洞需要有关方面反省和填补。  问题奶粉销售者有前科  马双林2008年4至8月购得20吨问题奶粉,在卖掉3.44吨后,2009年1月15日曾被追缴并填埋销毁6.55吨。另外10吨问题奶粉为什么没有被及时发现,以致在8个月后被卖给乐康乳业?  陕西公安厅2月3日曾通报,乐康乳业的“问题奶粉”,是2009年9月和10月向该市社会人员马双林所购买,马双林则是2008年4月至8月从陕西大荔荔华乳业公司购得。早报记者昨日获悉,目前荔华乳业已停工。但早报记者致电该公司一位负责人时,他坚称公司停工并非因涉及“问题奶粉”,而是年前的正常停工放假,年后公司还会照常开工。同时,他还表示,该公司没有人因“问题奶粉”事件被刑拘或逮捕。  随后,对于通报所称“因为荔华乳业的管理混乱,销售台账记录不全,未将此前销售给马双林的20吨奶粉记入台账,造成了‘清零’工作的遗漏,而导致问题奶粉的外流”问题,该负责人表示,公司的奶粉是没有问题的,相关部门并未要求他们对外公布相关细节,因此不便透露。  记者注意到,根据警方通报,马双林购入20吨奶粉后,2008年6月至8月零售了3.44吨,2009年1月15日被追缴并销毁6.55吨。而乐康乳业从马双林处购得的10吨问题奶粉,则是此后分两次于2009年9月和10月所购。  由此可知,2009年初相关部门已知马双林买了问题奶粉,但可能不知具体数量,不过当时相关部门如何处理马双林,是否进行过进一步调查,深挖奶粉来源,尚不得而知。  不过,据记者了解,早在2008年10月“三鹿事件”后,渭南查处过一起工厂涉嫌奶粉掺假案件,最终因证据不足无法处理。据该市一位工商人士透露,当时某工商所接到群众举报,当地某奶粉厂副厂长将大量奶粉运往家中形迹可疑,随后工商部门会同公安前往此人家中搜查,也搜出了一些明显过期的奶粉,但他以“将库存的过期奶粉运往家中作为肥料浇地”为由交代用途,同时相关部门也未查到该厂将过期奶粉用作生产。  问题奶粉的“质检证明”  转销到福建漳州的25吨问题奶粉是分6批运到公司的,漳州南方食品公司称该奶粉还有渭南市相关部门出具的“质检报告”。而广州从化面包厂购买来自宁夏的问题奶粉时,对方也出示了一份“食品安全检测报告”。  乐康乳业这个不足30人的小厂,究竟是如何将奶粉卖到远在千里之外的广东和福建的?这就要提到乐康乳业主管销售的副总经理同天虎。  1980年在渭南市临渭区下吉镇就成立了一家名为渭南康乐乳品厂的乡镇企业,到1998年,该厂生产的“三彩”牌全脂甜牛奶粉和全脂淡牛奶粉远销湖南、湖北、四川、西藏等地,1999年该厂更成为“陕西省百强乡镇企业”,同天虎就是当时的厂长。  但2004年该厂被西安某集团以2000万元价格整体收购,加之同天虎与投资方意见不合,2005年他与张学文共同开办乐康乳业,他利用以前积累的人脉,将这个小厂的奶粉销往全国。随后,2009年的9月至11月混合了10吨问题奶粉的28吨奶粉从渭南销往了广东潮安县的龙信食品有限公司,龙信公司将25吨转销给福建漳州芗城南方食品公司。  “公司一直很重视奶粉质量,从来不买没有质检报告的便宜奶粉。同样,这批问题奶粉价格也不比市场价低,还有渭南市相关部门出具的‘质检报告’,这个报告还在厂里。” 南方食品公司问题奶糖事件应对组负责人柯先生表示,这些问题奶粉是分6批运到公司的,第一批奶粉运来时采购员曾到漳州市质检部门检验,没发现问题。随后几批原本也应送检,但考虑到与龙信公司合作了多年没出过问题,而且还有“质检证明”,所以“掉以轻心”没拿去检验。“‘毒奶糖’事件势必会影响我们其他产品的销售情况,我们担心企业的发展会因此变得艰难”。  目前,因为无法联系上当地质检部门,早报记者无法确认南方食品公司手中乐康乳业出具的“质检报告”真实性。但在与一位陕西乳业企业负责人交谈中了解到,这份 “质检报告”真实的可能性较大。相对于中型企业和大型企业,质检部门会派专门人驻厂监督每批产品的质量,小企业多是主动送去检查或者被抽验,这样就存在蒙混过关的可能。  还有一种可能的情况是,此前该公司生产了一批合格奶粉,并拿到了质检合格证明,而问题奶粉就冒充这批奶粉卖给下游生产厂家。  无独有偶,广州从化食安办的一位负责人也向早报记者透露,从化某面包厂购买来自宁夏的问题奶粉时,对方甚至出示了一份“食品安全检测报告”。  经销商的监管盲区  2008年底就有一些人频繁在广州市场上出现,要求收购奶粉。多位商家还强调,他们无法确定低价转售的奶粉是否三聚氰胺超标,因为其品牌并不在相关部门公布的名单上。  2010年2月6日上午,广州中山八路婴儿用品市场内,一位专营奶粉生意的店主回忆,2008年10月份,与他往来的经销商亲自到他店内,将两个品牌的奶粉取走,并清付了亏损。最终,广州就地销毁了价值1亿元的1800吨问题奶粉,在工商、质检等部门监管下,奶粉被送往垃圾场或者水泥厂进行高温焚烧。  但漏网之鱼同样存在。据广州几位商家透露,2008年底就有一些人频繁在市场上出现,要求收购奶粉。“大企业有实力回收奶粉,但有些杂牌子就难了。”在一德路开店的陈姓商人介绍,因为三鹿的冲击,奶粉市场萧条得厉害,国内的奶粉在广州市场上根本卖不出去。多位商家还强调,他们无法确定低价转售的奶粉是否三聚氰胺超标,因为其品牌并不在相关部门公布的名单上。  从已经查处的两个案例看,无论是陕西的马双林,还是上海(从垃圾场捡回袋装奶粉再销售)的段同明,均是通过一些漏洞获得了未被销毁的问题奶粉。据早报记者了解,2008年查处过程中,重点主要集中在生产企业和奶源地上,对流动中的经销商关注不足,最终给问题奶粉的再度出现埋下了伏笔。  2008年,中央多个部门联合表态,对三聚氰胺超标的奶粉进行销毁处理。销毁问题奶粉的方式有深埋、焚烧和弃入垃圾场,成本则分为回收和销毁两块。此开销均由生产企业自行承担,加上奶粉生产成本,企业面临的亏损可想而知。  不过,“三鹿事件”引发的三聚氰胺恐惧似乎很快就过去了。2009年四季度国内乳制品行业销售回暖,全行业销售收入达到437.8亿元,比2008年同期增长35.9%。业内更是传出了“乳制品走出最艰难时刻”的论调。  伴随着乳制品行业回暖的,是乳制品价格的上涨。早报记者了解到,2009年包括惠氏、美赞臣、雀巢等品牌都提高了配方奶的售价,涨幅在5%到10%。价格的上浮也刺激了手持问题奶粉的经销商。广州一德路某奶粉商铺主称,去年中期就曾有经销商前来自荐,称持有一批奶粉,可做低价处理。  广州市奶业协会理事长王丁棉也回忆:“2009年福建巴氏奶大会上,有饲料经销商告诉我,有奶粉经销商想把手中三聚氰胺含量达60%~70%的六、七万吨奶粉卖给他做饲料。”  奶粉疑“蚂蚁搬家”入穗  何梁辉简单估计了问题奶粉的转销方式:省外的经销商拿到问题奶粉,然后找广东地区的经销商转销,广东的商人再卖给自己的老客户工厂。为节约流通成本,外地经销商也可能直接联系广东的工厂。  对于问题奶粉流入广州的方式,从事食品采购的何梁辉估计:“集中运到市场上可能性太小,因为如果藏的奶粉太多,普通的经销商没有太大的仓库,而且一般的工厂也消耗不了太多的货。”根据经验,何简单估计了问题奶粉的转销方式:省外的经销商拿到问题奶粉,然后找广东地区的经销商转销,广东的商人再卖给自己的老客户。为节约流通成本,外地经销商也可能直接联系广东的工厂,“找工厂采购疏通疏通,采购也愿意低价拿货”。  在这个层层转销的过程中,有关奶粉的质量问题则可能被忽略。收购陕西问题奶粉的潮安真美公司向早报记者痛诉,他们也是被经销商欺骗,对奶粉质量并不知情。  买卖双方谈妥后,省外的经销商就会派汽车发货。对于运输过程中是否会被截获,广州一位奶粉店主开玩笑称:“奶粉又不是白粉,你让警察怎么去查?而且连我们也检测不出来奶粉里面有没有三聚氰胺,运输方面根本不存在困难。”据悉,目前三聚氰胺的检测方式主要使用液相色谱仪器或化学试剂,专业门槛均不低。  不过,问题奶粉流入广州奶粉市场的可能性不大。一德路奶粉商铺店员周丽说:“三鹿以后我们都是从熟的商家那里进货,很少做陌生人的,而且现在都主要做进口奶粉。”该解释得到了官方的证实,2月3日,广州市工商局曾向媒体澄清,称广州市场上并未发现问题乳品。  无法进入奶粉市场,问题奶粉便以原料形式进入其他行业。被证实使用问题奶粉的两家企业,一家生产奶糖,一家制作蛋糕,这也是此轮问题奶粉流通的新特点。目前,包括山东、辽宁,河北等地在内,雪糕、餐饮等行业都出现了用问题奶粉生产的情况。  小企业最容易出问题  中型以上乳品企业,都具备了一定的市场和知名度,它们不会拿公司的前途做赌注。但一些小企业,基本都是价格低迷时停产,价格上涨后开工,可能经不住利益诱惑铤而走险。  “从目前情况来看,一些生产原料奶粉的小企业,最容易出现问题奶粉。”一位渭南乳业企业负责人表示,中型以上乳品企业,都具备了一定的市场和知名度,它们不会拿公司的前途做赌注销售“问题奶粉”。但一些小企业,基本都是价格低迷时停产,价格上涨后开工,可能经不住利益诱惑铤而走险。同时,工商、质检等部门对直接冲泡饮用的袋装奶粉的企业和市场检查严格,但对在加工中用到奶粉的食品行业却检查相对薄弱,让一些不法企业有可乘之机。  有业内人士指出,食品行业事关群众健康和生命安全,对生产商的资质和设备技术水准要求更高,因此必须强化监管,比如可以考虑强制提高行业准入标准,而对小企业,有关部门更应实施更严格的驻厂监督或者更频繁的产品抽检,以此挤压不正规企业的作弊空间。  目前,陕西各地已在对乳品生产企业和使用原料乳粉的食品生产企业进行全面检查。在2月5日召开的“陕西省食品药品监督管理工作会议”上,陕西省副省长郑小明更是表示,从2月10日起如果再发生奶粉问题,将对主管区县长和责任局长先免职再处理。  2月2日起,广州工商也开展了为期10天的问题奶粉清查工作,截至发稿时,相关的数据和情况仍未被公布,广州市民也暂时无法得知是否还有新的问题奶粉“潜伏”于市场中。  目前,问题奶粉的清查工作仍在进行,清查结果也没公布。昨日,25岁的广州市民林蓉告诉早报记者,她的阿姨去年底刚刚生了一个男孩,因为奶水不足,也使用了奶粉哺乳。“现在她担心得要死,之前用的是国产的,现在才改成进口奶粉。估计这个年是没法过好了。”林蓉无奈地说。  据早报记者了解到,广州市内医院尚未有接诊问题奶粉相关病患。
  • 实现分子诊断技术和临床应用与转化的良好互动 labtech China Congress 2019邀您共探生命科学和精准医学未来新趋势
    p  随着人类对疾病认识的不断深入及基因检测的技术进步,全球分子诊断市场快速增长,分子诊断新技术及其在临床上的最新应用得到飞速发展。临床诊疗已经进入精准医疗时代,分子诊断在临床实践中的作用日益明显。2019中国国际实验室规划、建设与管理大会(labtech China Congress)同期论坛strong“2019生命组学技术与转化前沿论坛——分子诊断技术与临床应用新趋势”/strong应运而生,将于2019年11月6-7日在上海浦东嘉里大酒店隆重召开。/pp  labtech China Congress由亚洲重要的实验室行业盛会analytica China(慕尼黑上海分析生化展)倾力打造。2019年大会将围绕实验室设计、实验室环境与安全、智慧实验室、实验室效率和管理、人与实验室和谐发展等热门主题,邀请海内外专家及企业展开交流与探讨。大会通过大会论坛、Live Lab& 精品展览、workshop& seminar三大主要方式及丰富多彩的同期活动形式,在舒适与高效的空间中打造场景式、体验式、沟通式与启发式的参与环境,提升沟通质量与效率。/pp  此次 “strong2019生命组学技术与转化前沿论坛——分子诊断技术与临床应用新趋势”/strong论坛将围绕甲基化检测技术、单细胞测序技术、液体活检技术、人工智能等热门话题,聚焦技术热点,分享科研成果,共同探讨分子诊断技术的最新进展及临床应用与转化的新趋势,实现分子诊断技术和临床的良好互动,推动生命科学和精准医学的发展。论坛由上海市生物医药行业协会、上海市生物工程学会、上海市研发公共服务平台、上海市浦东新区科学技术协会、上海市浦东新区生物产业行业协会联合主办,由慕尼黑上海分析生化展、labtech China Congress与上海伯豪生物技术有限公司联合承办,由中科院神经科学研究所张旭院士担任会议主席,并将邀请分子诊断领域的科研专家、行业精英、企业代表等莅临现场。/pp  论坛同期,大会还将特别设立“生命科学研究与应用现场模拟实验室”, 现场展示前沿生命科学实验室规划、建设与管理实践以及相关仪器设备。论坛与模拟实验室的结合也将提供崭新的交流及参与模式,使参会者获得全方位的收获。/pp  strong会议名称:/strong2019 生命组学技术与转化前沿论坛--分子诊断技术与临床应用新趋势/pp  strong会议时间:/strong2019年11月6日-7日/pp  strong会议地点:/strong上海浦东嘉里大酒店/pp  /ppstrong分会主题:/strong/pul class=" list-paddingleft-2" style="list-style-type: circle "lip  分子诊断技术发展新方向与临床应用趋势/p/lilip  分子诊断前沿技术:甲基化检测技术、单细胞测序技术、液体活检技术/p/lilip  人工智能在分子诊断中的临床应用/p/li/ulp  /ppstrong大会主席/strong/pp  张 旭院士 中科院神经科学研究所/pp  /ppstrong拟邀嘉宾/strong/pp  黄荷凤教授 上海交大医学院附属和平妇幼保健院/pp  袁正宏教授 复旦大学复旦大学党委副书记、纪委书记/pp  张学军教授 安徽医科大学/pp  卢大儒教授 复旦大学生命科学学院/pp  于文强教授 复旦大学生物医学研究院/pp  陆前进教授 中南大学湘雅二医院/pp  周彩存所长 同济大学医学院肿瘤研究所/pp  孙英丽教授 中科院北京基因组研究所/pp  张 亮教授 广东妇幼保健院转化医学中心/pp  谢建平教授 西南大学生命科学院/pp  肖君华教授 东华大学/pp  刘 雷教授 复旦大学生物医学研究院/pp  施奇惠教授 上海交通大学/pp  傅启华教授 上海交通大学医学院/pp  王 洁教授 中国医学科学院肿瘤医院/pp  李昌林 博士 中科院神经科学研究所/ppbr//ppstrong主办单位/strong/pp  上海市生物医药行业协会/pp  上海市生物工程学会/pp  上海市研发公共服务平台/pp  上海市浦东新区科学技术协会/pp  上海市浦东新区生物产业行业协会/pp  伯豪生物院士专家工作站/pp  /ppstrong承办单位/strong/pp  慕尼黑上海分析生化展/pp  labtech China Congress/pp  上海伯豪生物技术有限公司/ppbr//pp  如需了解strong“labtech China Congress 2019/strong”更多详情,请关注官网span style="color: rgb(0, 112, 192) text-decoration: underline "http://www.analyticachina.com.cn/zh-cn/content/labtech_China_Congress /span或官方微信labtechChina。/pp  /ppstronglabtech China Congress简介/strong/pp  labtech China Congress暨中国国际实验室规划、建设与管理大会由亚洲重要的实验室行业盛会analytica China(慕尼黑上海分析生化展)倾力打造。从实验室综合体规划、实验室规划与建设,到实验室创新技术与产品、实验室管理与服务等,为用户呈现面向未来的实验室生态系统与实验室全生命周期。大会致力于推动中国实验室规划、建设与管理领域的可持续性发展,引领信息化与智能化的智慧实验室趋势,关注实验室工作者的安全与健康。/pp  /ppstrong慕尼黑博览集团简介/strong/pp  慕尼黑博览集团作为知名的全球性展览公司,拥有50余个品牌博览会,涉及资本产品、消费品和高新科技三大领域。集团每年在慕尼黑展览中心、慕尼黑国际会议中心、慕尼黑会展与采购中心举办逾200场展会,共吸引5万余家参展商及300余万名观众齐聚现场。慕尼黑博览集团及旗下子公司的各类专业博览会遍及中国、印度、巴西、俄罗斯、土耳其、南非、尼日利亚、越南和伊朗。此外,集团的业务网络覆盖全球,不仅在欧洲、亚洲、非洲及南美洲拥有数家子公司,还在全球100余个国家和地区设有70多个海外业务代表处。/pp  集团举办的国际展会均获得FKM资格认证,即:展商数、观众数和展会面积均达到展会统计自主监管团体FKM的统一标准并通过其独立审核。同时,慕尼黑博览集团也在可持续发展领域中有着非凡表现:集团先行获得了由官方技术认证机构TÜ V SÜ D授予的节能证书。更多信息:www.messe-muenchen.de。/ppbr//ppstrong参会与赞助报名:/strong/pp  朱莉华 女士 /pp  慕尼黑展览(上海)有限公司/pp  电话:+86-21-2020 5500 *646/pp  传真:+86-21-2020 5688/5699/pp  E-mail:lihua.zhu@mm-sh.com /ppbr//ppstrong媒体联系:/strong/pp  余琳 女士/pp  慕尼黑展览(上海)有限公司/pp  电话:+86-21-2020 5500 *845/pp  传真:+86-21-2020 5688/5699/pp  E-Mail:tracy.yu@mm-sh.com/ppbr//p
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • WITec GmbH 20周年 - 拉曼成像前沿之路
    热烈庆祝WITec公司成立20周年!自1997年成立至今,在从乌尔姆大学物理系毕业的3位公司创始人的努力下,公司不断发展壮大,目前全球拥有60名员工,除德国乌尔姆总部外,分支机构分设在西班牙、美国、中国、日本和新加坡。正如公司价值观“Focus Innovations”所体现,WITec的成功源于不断引进新技术并坚持以高质量、灵活强大的产品提升客户满意度。20年来,WITec已经成长为世界知名的共聚焦拉曼成像系统制造商,也充分体现着德国品质的内涵。WITec的第一套设备——扫描近场光学显微镜(SNOM/NSOM)至今还在稳定高效地运转,伊利诺伊大学分校Frederick Seitz材料研究实验室的资深研究员Julio Soares博士表示,很荣幸成为WITec第一个客户,在他看来,几乎不需要任何技术支持但设备还在持续运转,这本身就是一项很大的成就。成立之初,WITec拉曼显微镜就能实现快速成像,积分时间在每像素毫秒级别。追溯到90年代末,积分时间曾经是1分钟每个像素,由此WITec客户能够以超乎寻常的速度进行测量。所有WITec拉曼成像系统都可以通过样品的光谱信息生成图像,从而识别样品的化学成份结构。WITec也是第一家将多种显微技术融合到一台设备里的公司,WITec 拉曼-扫描电镜(RISE)联用系统就是这一技术的创新产品,这个系统在当下扫描电镜领域备受瞩目。WITec 自主研发了许多全新的引以为豪的拉曼成像系统和技术,巨大的拉曼分析技术优势及其发展惠及从半导体到纺织纤维再到癌细胞等众多材料分析领域,我们荣获的众多奖项就是对这些创新产品的认可。多年来我们一直乐于跟科学界和工业界的客户分享交流。未来还有很多有待开发和应用的拉曼成像技术理念,WITec团队热切地期望继续与我们的客户精诚合作。
  • 【拉曼学院最前线】分子会跳舞?科研分析也能很有趣
    在外人看来,从事科研分析相当枯燥,但如果你听过今天的报告,或许会对这个看法有所改观。SERS已成为高效的低浓度检测技术 在拉曼的众多应用领域中,化学的地位不言而喻。苏州大学姚建林、南京大学陆云、上海师范大学杨海峰教授均是这领域的翘楚,他们为大家联袂献上了一出“拉曼在化学领域中的应用大戏”。 姚教授率先总结了其所有可能涉及的应用,如:电化学反应、高分子、环境与食品方面的安全等。接着他又向大家展示了如何通过重金属离子与“羧酸根”的配位反应测定重金属离子的拉曼信号,由于使用了SERS检测方法,它可以检测到低浓度的重金属离子。 陆教授带来的是如何用拉曼光谱表征高分子聚合物的结晶度、有序性等。同样采用表面增强方法,杨海峰教授则与大家分享了他在食品安全与环境研究过程中的很多趣事,并着重介绍了如何用拉曼光谱对其进行鉴定与分析,涉及社会热点罗丹明、三聚氰胺、农药残留等食品添加剂。未来,拉曼或许真的会成为我们“餐桌上的一个工具”。 法国国家科研中心催化剂和固态化学实验室主任Edmond PAYEN教授已有40多年的研究经验,目前仍活跃在科研线,他详细地介绍了拉曼在催化中的发展过程,以及其中的热点。跨领域里过把瘾 如果你觉得以上的报告不过瘾,那我们还准备了两个有趣的领域:地质与刑侦。 南京大学的倪培教授已有20多年的地质研究经验,此次他介绍了高分辨拉曼光谱仪在矿物研究中的应用,和大家深入探讨了流体包裹体、盐度估测、矿物相变以及常见矿物的拉曼光谱分析。 如果大家觉得地质领域离我们稍显遥远,那接下来的应用就触手可及了,你知道怎么对假币鉴定并溯源?怎么鉴定伪造文件、毒品、炸药等样品吗?相信公安部物证鉴定中心的这个刑侦报告一定让你很过瘾。 原来拉曼可以应用在那么多和日常生活息息相关的领域,其中不乏有趣之事,也难怪有的教授会把新奇有趣的谱图视作“会跳舞的分子”。更多活动信息,请关注我们的官方平台:邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 针尖增强拉曼光谱(TERS)为何总是如此“耀眼”
    在成功实现针尖增强拉曼光谱(TERS)技术的15年后,HORIBA Scientific 和 AIST-NT 合作完成了 TERS 的整套解决方案,将其推向了一个全新的层面。TERS 技术不只是进行所谓的单点测量,更能够完成一个 TERS 扫描成像,收集到成千上万个像素点的拉曼光谱,而且一个完整成像采集时间一般小于10分钟。文中我们采用了HORIBA & AIST 的 Nano Raman 团队在2015年获得的结果,来展示TERS在纳米尺度上的化学成像,并由HORIBA Scientific的全球产品经理Marc Chaigneau 博士进行了讲解。图1采用XploRA Nano系统和镀金的TERS针尖,对单根碳纳米管进行纳米级的化学成像,其空间分辨率达到了8nm。扫描发现在绿色区域D峰(缺陷峰)产生明显的增强,该位置的空间分辨已经接近晶格缺陷尺寸(扫描步长为1.3nm)。“TERS的空间分辨率获得如此惊人的进步主要归功于NanoRaman系统光学耦合部件的稳定性和SmartSPM型号AFM的高频扫描器,能够远离噪声的干扰。”图1:单个碳纳米管的TERS成像,空间分辨率小至8nm, 1.3nm步长(75×75点,每点采集时间为100ms)从氧化石墨烯的TERS成像中发现,其褶皱位置与镀银的AFM-TERS针尖具有很强的相互作用,见图2(绿色:G峰强度分布,红色:有机物残留的C-H振动峰强度分布)。与普通远场拉曼信号相比,针尖将信号增强了大概2×106倍。并且通过进一步计算D/G的强度分布,可以表征样品上缺陷的局部变化。“这么好的拉曼增强效果要归功于Ag针尖的强等离子体共振;而且好消息是,由于保护层的加入,Ag针尖的寿命已经延长到了数周。”图2 左:氧化石墨烯D峰的TERS成像 右:褶皱位置(红色和蓝色)、平坦位置(绿色)和薄片外的单点TERS谱图 脉冲力刻蚀技术” (NanoRaman系统的一种纳米刻蚀模式)可以利用单晶金刚石针尖在单层氧化石墨烯上点压出所需的图案。我们在氧化石墨烯表面压印出了15nm尺寸大小的“TERS”字母,并发现在刻划位置的TERS信号显著增强。“得益于SmartSPM针尖调谐和准直的全自动化,使得我们即使在进行纳米刻蚀后更换为TERS针尖,也能够找到原来的测试区域。”图3:金膜上单层氧化石墨烯刻蚀字图的D峰强度TERS成像,尺度15nm为了将TERS应用于其他2D材料,应用团队对机械剥离的MoS2样品进行了TERS成像。从中发现,使用AFM-TERS针尖,MoS2的A1g和A2u振动模式强度有明显的提升(图4),而且采用DualSpec模式,能够采集到近场信号和远场信号并进行差谱处理。 “同样,由于AFM-TERS针尖的不断发展,尤其是镀银针尖,为新一代2D材料的TERS表征打开了一扇门。高增强因子使之前难以观察到的纳米尺度的拉曼振动模式变得清晰可见,同时DualSpec模式可以帮助我们完成每一个点的远场信号扣除。”图4 左:MoS2 408cm-1拉曼峰(A1g模式)的TERS成像 右:边缘及刚脱离边缘位置的TERS图谱图5展示了沉积在金基底上C60和C70富勒烯的TERS成像,并清晰地表现出某些位置具有单一的C60或C70的拉曼谱图。与单层的C70富勒烯区域的TERS成像对比,我们能够进一步确认在大气环境中完成了AFM模式下的单分子测试。“单分子灵敏度是每一个光谱学家的终目标!之前单分子的TERS检测已经在超高真空超低温的STM设备上实现了,但是如果TERS要成为一种大众化的检测技术,整套设备的安装和操作必须简单,成本也必须降低。由此来看,我们的应用团队在大气环境中得到了清晰地单分子测试结果,意义是非常大的。”图5:左:沉淀在金膜上的氧化石墨烯以及C60、C70富勒烯的TERS成像(每行128点,采集时间:每点80毫秒)。右: C60和C70混合位置谱图(绿色)以及单一成分的谱图(蓝色-C60,红色-C70)
  • 鉴知拉曼光谱系统获日内瓦国际发明展银奖
    近日,鉴知技术的小型化拉曼光谱系统斩获日内瓦国际发明展银奖。日内瓦国际发明展创办于上世纪的1973年,由瑞士联邦政府、日内瓦州政府、日内瓦市政府、世界知识产权组织共同举办,是全球举办历史最长的发明展之一。本次项目为一项创新性的小型化拉曼光谱系统,该系统结合自动校准技术和多种专利算法显著提高了识别准确性,并创新性的将显微成像技术集成到小型化系统内,实现微量复杂样品的现场快速、准确识别。本项目相关成果,获得北京市新产品新技术证书,且已有数千套应用于世界各地。该项目已申请国内外专利超过200项,相关专利技术获得专利奖和朱良漪创新成果奖。北京鉴知技术有限公司,简称“鉴知技术”,是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、食品安全、药品检测、液体安检等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • 鉴知拉曼光谱系统获日内瓦国际发明展银奖
    近日,鉴知技术的小型化拉曼光谱系统斩获日内瓦国际发明展银奖。日内瓦国际发明展创办于上世纪的1973年,由瑞士联邦政府、日内瓦州政府、日内瓦市政府、世界知识产权组织共同举办,是全球举办历史最长,规模最大的发明展之一。本次项目为一项创新性的小型化拉曼光谱系统,该系统结合自动校准技术和多种专利算法显著提高了识别准确性,并创新性的将显微成像技术集成到小型化系统内,实现微量复杂样品的现场快速、准确识别。本项目相关成果,获得北京市新产品新技术证书,且已有数千套应用于世界各地。该项目已申请国内外专利超过200项,相关专利技术获得专利优秀奖和朱良漪创新成果奖。关于鉴知北京鉴知技术有限公司,简称“鉴知技术”,是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、食品安全、药品检测、液体安检等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制