当前位置: 仪器信息网 > 行业主题 > >

丙酮酸钠

仪器信息网丙酮酸钠专题为您提供2024年最新丙酮酸钠价格报价、厂家品牌的相关信息, 包括丙酮酸钠参数、型号等,不管是国产,还是进口品牌的丙酮酸钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙酮酸钠相关的耗材配件、试剂标物,还有丙酮酸钠相关的最新资讯、资料,以及丙酮酸钠相关的解决方案。

丙酮酸钠相关的资讯

  • 成果速递|李咏生教授团队阐述线粒体丙酮酸载体作为代谢-表观遗传检查点调控T细胞分化的机制
    近日,重庆大学附属肿瘤医院李咏生教授团队在《Signal Transduction and Targeted Therapy》杂志(影响因子:38.104)发表了题为《线粒体丙酮酸载体:调控T细胞分化的代谢-表观遗传学检查点》的研究亮点,阐述线粒体丙酮酸载体作为代谢-表观遗传检查点调控T细胞分化的分子机制,及影响肿瘤免疫的临床意义。细胞毒性CD8+ T细胞是抗癌免疫反应中最强大的效应细胞。在抗原刺激下,CD8+ T细胞可增殖并分化为效应T细胞(Teff),其中大部分是终末分化的短寿命效应细胞 (SLEC),具有强大的细胞毒性潜力;而其余的部分则是记忆前体效应细胞 (MPEC),可进一步分化为长寿的、可自我更新的记忆CD8+ T细胞(Tmem)。代谢重编程对CD8+ T细胞的分化和功能具有重要调控作用,其中糖酵解,包括乳酸发酵和丙酮酸氧化,均可促进CD8+ T细胞向Teff的分化。然而,线粒体丙酮酸载体(MPC)控制的线粒体丙酮酸摄取和代谢如何影响T细胞功能和命运仍不清楚。今年五月,来自瑞士洛桑大学的Mathias Wenes团队在Cell Metabolism上发表了题为 The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function的论著,他们发现,MPC缺陷的CD8+ T细胞具有向记忆型分化的倾向,机制研究表明,MPC受抑制的CD8+ T细胞可利用环境中的谷胱甘肽和脂肪酸氧化产生乙酰辅酶A,进而促进组蛋白H3K27位点乙酰化,并导致转录因子RUNX1下游的Tmem分化相关细胞因子(如IL-2,CD40)的表达上调。 此外,该团队还发现,在营养缺乏的肿瘤微环境(TME)中,乳酸来源的丙酮酸是维持CD8+ T细胞抗肿瘤活性的重要能源物质。由于谷胱甘肽和脂肪酸含量较少,在肿瘤微环境(TME)浸润CD8+ T细胞中敲除MPC并不会导致其向Tmem分化,但CD8+ T细胞内mTOR信号受到了显著抑制,进而引起H3K27位点甲基化水平上调,最终导致其抗肿瘤免疫活性降低。近年来,过继细胞转移(ACT)疗法成为了临床上最主要的抗肿瘤免疫治疗策略之一,其通过生成大量的带有基因修饰受体(嵌合抗原受体CAR)的肿瘤特异性CD8+ T细胞(也就是CAR-T 细胞)来增强抗肿瘤效应。然而,由于CAR- T细胞在患者体内的存活率、增殖能力和活力持续性较低,对部分患者的抗癌效果不佳。研究表明,低分化的CD8+ Tmem细胞在ACT疗法中具有更好的抗肿瘤治疗效果。同样,在ACT疗法中,使用MPC抑制剂预处理的CAR-T细胞具有更强的抗肿瘤效应。李咏生教授团队指出,在临床转化应用中,对MPC调控CD8+ T细胞分化和肿瘤免疫抑制的研究表明了靶向MPC可成为激活肿瘤浸润T细胞乳酸利用和抗肿瘤疗效的新途径。并且抑制MPC增强了CAR-T细胞的抗肿瘤作用、记忆表型和持久性,可能是未来临床试验中改善CAR-T细胞免疫治疗的潜在策略。据悉,重庆大学附属肿瘤医院肿瘤内科助理研究员陈瑜和陆军军医大学新桥医院消化内科博士生王景纯为共同第一作者,重庆大学附属肿瘤医院肿瘤内科李咏生教授为通讯作者。原文链接:https://www.nature.com/articles/s41392-022-01101-z陈瑜重庆大学附属肿瘤医院肿瘤内科助理研究员。长期从事肿瘤微环境中MDSC免疫抑制功能及其脂质代谢的基础研究工作,主要研究方向为肿瘤免疫与脂质代谢。近年来共参与发表SCI文章9篇,其中以第一/共同第一作者在Signal Transduction and Targeted Therapy和Theranostics杂志共发表SCI论文3篇;参编Elsevier出版社的英文著作1部;主持重庆市科技局课题1项,参与重庆市科技局课题2项。王景纯陆军军医大学新桥医院消化内科博士生,从事肿瘤治疗耐药及肿瘤干细胞领域研究。近年来共参与发表SCI文章11篇,其中以第一/共一作者在Signal Transduction and Targeted Therapy和Theranostics杂志共发表SCI论文3篇;参与重庆市科技局课题1项;2019年获得“世界医学生论坛”冠军;获评陆军军医大学“优秀共产党员”及“优秀毕业生”。李咏生重庆大学附属肿瘤医院肿瘤内科主任、教研室主任、I期病房主任,博士、教授、主任医师、博士生导师、结直肠癌和恶性肿瘤临床试验首席专家,美国哈佛医学院博士后,国家高层次引进人才,国家自然科学基金重点国际合作项目首席科学家,国家自然科学基金重点、国合、优青、海外优青项目评审委员,重庆英才•创新领军人才,重庆市杰出青年科学基金获得者,重庆市学术技术带头人,重庆市高校创新研究群体负责人,重庆市青年专家工作室领衔专家,中国抗癌协会肿瘤代谢专委会免疫代谢学组组长,肿瘤与微生态专委会常务委员,重庆市免疫学会代谢免疫专委会主任委员,重庆市医药生物技术协会肿瘤罕见病疑难病专委会主任委员,重庆市医学会肿瘤学分会化疗学组组长,重庆市医学会精准医疗与分子诊断专委会副主任委员,重庆市免疫学会、重庆抗癌协会、重庆市医药生物技术学会常务理事。兼任《中国医院用药评价与分析》副主编,STTT等杂志编委,Cell Metabolism、Advanced Science、Cancer Research等杂志审稿人。专注于“肿瘤免疫代谢”研究,主持国家高层次引进人才计划、国家自然科学基金重点国际合作研究项目、国家临床重点专科等项目20余项,发表SCI论文70余篇,总影响因子大于500,被引用大于4000次,以第一/通讯作者在Immunity、STTT、Ann Rheum Dis、Sci Adv、Nat Commun、Cancer Res等杂志发表SCI论文40余篇,单篇影响因子大于30的论文4篇,大于10的论文12篇,截止2022年7月的H指数36。获得国际发明专利1项,国家发明专利2项,国家实用新型专利2项。主编和参编Springer Nature、Elsevier等出版社英文专著4部。以PI身份参研临床试验共计48项,其中I期36项,II期5项,III期7项,以组长单位牵头全国多中心临床研究7项,其中注册类6项。当选中国临床肿瘤协会首批35岁以下最具潜力青年肿瘤医生,获树兰医学青年奖提名,获中国抗癌协会青年科学家奖,入围中国细胞生物学学会青年科学家奖。
  • 新品上市,DLM-9-25/氘代丙酮/666-52-4!
    新品上市,DLM-9-25/氘代丙酮/666-52-4!关于产品 DLM-9-25/氘代丙酮/666-52-4 的具体详情:CAS号:666-52-4编号:DLM-9-25包装:25g纯度/规格:D, 99.9%品牌:美国CILDLM-9-25/氘代丙酮/666-52-4 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:T017/脱叶灵(噻苯隆)培养基厂家盐酸伐昔洛韦对照品/标准品对甲氧基桂皮酸乙酯对照品/标准品CAS:102-08-9,N,N`-二苯基硫脲价格人表面膜免疫球蛋白A(mIgA)ELISA试剂盒,96T/48T盐酸川芎嗪对照品/标准品大鼠磷酸化蛋白激酶C(P-PKC)ELISA试剂盒,96T/48Tbs-0358R-Bio,生物素标记的兔抗豚鼠IgG|Rabbit Anti-Guinea pig IgG/Bio抗体价格bs-0294R-AF555,Alexa Fluor 555标记的兔抗羊IgG|Rabbit Anti-Goat IgG/Alexa Fluor 555抗体价格环己胺标准品/对照品大鼠胰岛素样生长因子结合蛋白3(IGFBP-3)ELISA试剂盒,96T/48Tbs-13764R,线粒体核糖体蛋白MRP63抗体|MRP63抗体价格CAS:7585-39-9,β-环糊精价格CAS:10004-44-1,恶霉灵标准品/对照品价格香菇多糖厂家|CAS号37339-90-5CAS:67-48-1,氯化胆碱现货供应甲萘醌标准品/对照品bs-7766R,Rho GTP酶激活蛋白GAP抗体|RACGAP1抗体价格CAS:41083-11-8,三唑锡标准品/对照品价格大鼠骨粘连蛋白(ON)ELISA检测试剂盒说明书bs-1064R,肠道内富含的Kruppel样因子/上皮锌指蛋白4抗体|KLF4抗体价格盐酸加替沙星厂家|CAS号160738-57-8甘遂对照品/标准品临床免疫诊断血清|CAS号无|无bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6
  • 【预警】五氯酚酸钠又超标了!
    近期,北京市市场监督管理局网站发布的关于2021年食品安全监督抽检信息的公告(2021年第2期)显示,该局组织抽检了12类食品1449批次样品,其中不合格样品15批次中含有2批猪肉、牛肉中五氯酚酸钠不符合国家相关规定。维德维康市场部对2020年国家及部分省级市场监督管理局(北京、山东、四川、河南省等等市场监督管理局)网站通告的动物性食品中兽药残留不合格项目统计发现,五氯酚酸钠在猪肉、猪肝、禽肉、牛羊肉、水产品等多种样本中都有检出。【五氯酚酸钠】五氯酚酸钠,又名五氯酚钠,易溶于水、醇、丙酮,不溶于苯,有臭味。它属于有机氯农药,常被用作除草剂或者杀菌剂。养殖户曾把它作为杀螺剂,用于鱼塘虾塘的消毒,消杀福寿螺、钉螺。五氯酚酸钠对蚂蟥、蟛蜞、果树害虫,真菌、细菌等也有杀灭功能,还可作为木材防腐和农业除草剂,用途广泛。五氯酚酸钠具有较高的水溶性,容易以水为载体广泛地扩散,对水源和土壤中造成污染,经环境积累进入饲料用植物中,通过食物链蓄积在动物体内,残留在动物性食品中。五氯酚钠通过食物链进入人畜体内分解为五氯酚,五氯酚具有有机氯和酚的毒性,能抑制生物代谢过程中氧化磷酸化作用,长期摄入这类物质,会对人体的肝、肾及中枢神经系统造成损害。《食品动物中禁止使用的药品及其他化合物清单》(农业农村部公告 第250号)中规定,食品动物中禁止使用五氯酚酸钠(动物性食品中不得检出)。【动物性食品中五氯酚钠残留量的测定标准】GB 29708-2013《食品安全国家标准 动物性食品中五氯酚钠残留量的测定 气相色谱-质谱法》(本标准适用于猪的肌肉、肝脏和肾脏及鸡的肌肉和肝脏组织中五氯酚钠残留量的检测,检测限为0.25 μg/kg,定量限:肌肉组织中为0.5 μg/kg,肝脏和肾脏组织中为1 μg/kg) GB 23200.92-2016 《食品安全国家标准 动物源性食品中五氯酚残留量的测定 液相色谱-质谱法》(本标准适用于猪肝、猪肾、猪肉、牛奶、鱼肉、虾、蟹等动物源性食品中五氯酚残留的测定,定量限为1 μg/kg)【五氯酚酸钠快速检测方案】五氯酚酸钠酶联免疫试剂盒检测样本:猪肉、鸡肉、鸭肉、牛肉、羊肉、鸡胗、猪肝、饲料原料检测限:1 μg/kg(ppb)五氯酚酸钠快速检测卡检测样本:猪肉、鸡肉、鱼肉、虾肉检测限:5 μg/kg(ppb)
  • 美国拟批准苯甲酸、苯甲酸钠、丙酸钠用于肉禽产品
    近日,据美国政府网站消息,美国农业部食品安全检验署(FSIS)发布一份终期法规,拟修订联邦肉禽产品检验条例,批准苯甲酸、苯甲酸钠、丙酸钠3种物质用于肉禽产品。  这项终期法规将于2013年5月6日生效。这项终期法规规定,当丙酸钠作为单一抗菌剂用于肉禽产品时,最大限量为0.5%(以重量计) 当苯甲酸钠作为单一抗菌剂用于肉禽产品时,最大限量为0.1% 苯甲酸可作为食品配料用于肉禽产品,最大限量为0.1%。  美国FSIS认为,美国FDA与FSIS均对有关数据进行了评估,一致认为三种物质用于肉禽产品不会对消费者(包括儿童)的健康构成影响。  更多详情参见:  http://www.regulations.gov/#!documentDetail D=FSIS-2011-0018-0022
  • 戴安公司提供牛奶中硫氰酸钠检测方法
    最近一段时期卫生部在食品安全方面的工作力度逐渐加大,2008年12月12卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单(第一批)》中明确规定乳及乳制品中硫氰酸钠属于违法添加物质。近日卫生部食品整治办[2009]29号文件全国打击违法添加非食用物质和滥用食品添加剂专项整治中,规定的牛奶中的硫氰酸钠检验方法,使用了戴安公司的&ldquo 离子色谱法测定牛奶中硫氰酸根&rdquo 方法,该方法使用戴安公司离子色谱仪和AS16离子色谱柱进行检测。该检测方法结果准确,重复性良好,检测限低。值得一提的是,方法中梯度洗脱的方式,采用了戴安公司 &ldquo 只加水&rdquo 淋洗液发生专利技术,能够自动产生需要的淋洗液浓度,替代了传统人工配制的方式,克服了因手动配置带来的浓度不准确,操作繁复缺点。 链接为卫生部食品办[2009]29号文件 http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohwsjdj/s3594/200903/39650.htm 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182 硫氰酸钠简介:来自于中国检科院综合检测中心的专题报道,硫氰酸钠(NaSCN) 是白色斜方晶系结晶或粉末,毒害品。易溶于水、乙醇和丙酮。硫氰酸钠的毒性主要由其在体内释放的氰根离子而引起。氰根离子在体内能很快与细胞色素氧化酶中的三价铁离子结合, 抑制该酶活性, 使组织不能利用氧。氰根离子所致的急性中毒分为轻、中、重三级。轻度中毒表现为眼及上呼吸道刺激症状, 有苦杏仁味, 口唇及咽部麻木, 继而可出现恶心、呕吐、震颤等 中度中毒表现为叹息样呼吸, 皮肤、黏膜常呈鲜红色,其他症状加重 重度中毒表现为意识丧失, 出现强直性和阵发性抽搐, 直至角弓反张, 血压下降, 尿、便失禁, 常伴发脑水肿和呼吸衰竭。原料乳或奶粉中掺入硫氰酸钠后可有效的抑菌、保鲜, 是不法奶户的掺假物质之一。但硫氰酸钠是毒害品, 少量的食入就会对人体造成极大伤害。戴安中国市场部2009年4月11日
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 天津滨海爆炸之后的环保风险
    p  8月12日晚11时许天津发生爆炸之后的10个小时,至今没有人知道到底是什么导致了爆炸,爆炸物是什么。第一财经记者在天津东疆保税港区瑞海国际物流有限公司的网站上看到,该公司仓储业务的商品类别有:第二类:压缩气体和液化气体(氩气、压缩天然气等) 第三类:易燃液体(甲乙酮、乙酸乙酯等) 第四类:易燃固体、自燃物品和遇湿易燃物品(硫磺、硝化纤维素、电石、硅钙合金等) 第五类:氧化剂和有机过氧化物(硝酸钾、硝酸钠等) 第六类:毒害品(氰化钠、甲苯二异氰酸酯等) 第八、九类:腐蚀品、杂类(甲酸、磷酸、甲基磺酸、烧碱、硫化碱等)。/pp  “这些物品都是危险物品,如果操作不当,自身混合后就可以发生爆炸,根本不需要火源。压缩天然气本身就容易爆炸,氧化剂和有机物以及氰化物有一点的混合,都会发生爆炸。但是具体是哪个环节导致出现的爆炸,还必须现场勘查。但是爆炸之后氰化物的污染非常严重,也是毒性最大的一个物品。”一位化学专家对此次的爆炸分析道。/pp  据资料显示,氰化物是剧毒物质。HCN人的口服致死量平均为50毫克,氰化钠约100毫克,氰化钾约120毫克。/pp  氰化物对鱼类及其他水生物的危害较大。水中氰化物含量折合成氰离子(CN-)浓度为0.04~0.1毫克/升时,就能使鱼类致死。对浮游生物和甲壳类生物的CN-最大容许浓度为0.01毫克/升。氰化物在水中对鱼类的毒性还与水的pH值、溶解氧及其他金属离子的存在有关。此外,含氰废水还会造成农业减产、牲畜死亡。/pp  简单的氰化物经口、呼吸道或皮肤进入人体,极易被人体吸收。氰化物进入胃内,在胃酸的作用下,能立即水解为氰氢酸而被吸收,进入血液。细胞色素氧化酶的Fe3+与血液中的氰根结合,生成氰化高铁细胞色素氧化酶,使Fe3+丧失传递电子的能力,造成呼吸链中断,细胞窒息死亡。在非致死剂量范围内,氰化物在体内能逐渐被解毒。/pp  氰化物污染,因为体内的β-巯基丙酮酸在断裂酶的作用下释放出的硫能被体内代谢产生的亚硫酸根所接受,生成硫代硫酸盐。硫代硫酸盐与氰根在硫氰生成酶的作用下,能生成硫氰化物,从尿中排出。不过,这种体内解毒能力是很有限的,如摄入的氰化物超过了解毒的负荷,达到中毒的浓度,便会引起中毒甚至死亡。由于呼吸中枢对组织缺氧特别敏感,急性氰化物中毒的病人,其症状主要为呼吸困难,继而可出现痉挛 呼吸衰竭往往是致死的主要原因。氰化物污染水体引起鱼类、家畜乃至人群急性中毒的事例,国内外都有报道。这些事件都是因为短期内将大量氰化物排入水体造成的。/pp  铁氰化物和亚铁氰化物毒性虽然很低,也能造成危害。如果将这种含氰络合物大量排入地面水,通过阳光曝晒和其他条件的配合,即可分解并释放出相当数量的游离氰,导致鱼类死亡。/pp  少量氰化物经消化道长期进入人体,会引起慢性毒害,动物实验所得的阈下浓度每公斤体重为 0.005毫克。流行病学调查得知,有的居民由于长期饮用受氰污染(含氰0.14毫克/升)的地下水,出现头痛、头晕、心悸等症状。这可能是由于神经系统发生细胞退行性变化所致。这些居民的甲状腺肿发生率显著上升,可能是由于体内长期蓄积硫氰化物所致。因为硫氰化物能妨碍甲状腺素的合成,影响甲状腺的功能,导致甲状腺代偿性肥大。/pp /p
  • 动物细胞培养基如何选择?这里有答案
    1、细胞培养基的种类按照细胞培养基的发展历史,细胞培养基大致可分为平衡盐溶液、天然细胞培养基、合成细胞培养基、无血清细胞培养基、限定化学成分细胞培养基等几大种类。1.1 平衡盐溶液(balanced salt solution,BSS)BSS主要是由无机盐、葡萄糖组成,它的作用是维持细胞渗透压平衡,保持pH稳定及提供简单的营养。其主要用于细胞的漂洗、配制其他试剂等。几种常用的BSS配方如下(表1-1)。D-Hank' s与Hank' s的一个主要区别是前者不含有Ca2+和Mg2+,因此D-Hank' s常用于配制胰酶溶液。因为Ca2+、Mg2+是细胞膜的重要组成成份,参与细胞粘附等功能,使用不含Ca2+、Mg2+的BSS可避免细胞结团。此外,Hanks液和Earle液是常用的BSS基础溶液,前者缓冲能力较弱,适合于密闭培养;后者缓冲能力较强,适合于5% CO2的培养条件。表1-1 几种常用的BSS配方(g/L)名称PBS(无Ca2+、Mg2+)PBS(含Ca2+、Mg2+)Earle’sHank’sD-Hank’sKrebs-RingerNaCl8.008.006.808.008.007.00KCl0.200.200.400.400.400.34CaCl2--0.200.14-MgCl2• 6H2O-0.10---MgSO4• 7H2O--0.20.2-Na2HPO41.151.15-0.0480.0480.10Na2HPO4• 2H2O--0.14--0.207KH2PO40.200.20-0.060.06NaHCO3--2.200.350.35-葡萄糖--1.001.00-1.80酚红--0.010.010.01-目前用于细胞培养的血清主要是牛血清,培养某些特殊细胞也用人血清、马血清等。牛血清对绝大多数哺乳动物细胞都是适合的,但并不排除在培养某种细胞时使用其他动物血清更合适。血清中含有各种血浆蛋白、多肽、脂肪、碳水化合物、生长因子、激素、无机物等,这些物质对促进细胞生长或抑制生长活性是达到生理平衡的。此外,血清含一些对细胞产生毒性的物质,如多胺氧化酶,能与来自高度繁殖细胞的多胺反应(如精胺、亚精胺)形成有细胞毒性作用的聚精胺。补体、抗体、细菌毒素等都会影响细胞生长,甚至造成细胞死亡。目前,血清多作为一种添加成分与合成培养基混合使用,使用浓度一般为5~20 %,最常用是10 %。1.2 合成细胞培养基合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。最早开发的基础培养基(minimal essential medium, MEM),其本质为含有盐、氨基酸、维生素和其他必需营养物的pH缓冲的等渗混合物。在此基础上,DMEM、IMDM、HAM F12、PRMI1640等各种合成细胞培养基被不断开发出来。常用合成培养基的配方此处不详细介绍,其特性及应用的范围见下表:哺乳动物细胞培养基:培养基名称特性及应用范围199细胞培养基添加适量的血清后,可广泛用于多种细胞培养,并用于病毒学、疫苗生产等MEM细胞培养基MEM(Minimal Essential Medium)培养基有含Earle' s平衡盐的类型,也有含Hanks' 平衡盐的类型;有高压灭菌型的,也有过滤除菌型的;还有含非必需氨基酸的类型。是最基本、适用范围最广的细胞培养基。DMEM细胞培养基DMEM(Dulbecco’s modified Minimal Essential Medium)是由Dulbecco在MEM培养基的基础上改良获得的,各成分份量加倍,分低糖(1000mg/L)、高糖(4500mg/L)两种类型。细胞生长快。附着稍差的肿瘤细胞、克隆培养用高糖效果较好,常用于杂交瘤的骨髓瘤细胞和DNA转染的转化细胞培养。IMDM细胞培养基IMDM(Iscove’s modified DMEM )是由Iscove在DMEM基础上改良,增加了几种氨基酸和胱氨酸量等。可用于杂交瘤细胞培养,以及无血清培养的基础细胞培养基。GMEM细胞培养基Glasgow’s MEM培养基是MEM的改进型,用于支持BHK-21细胞的生长。原配方以BME为基础, 加入10%磷酸胰蛋白(月示)肉汤,氨基酸和维生素浓度加倍。RPMI-1640细胞培养基专门针对淋巴细胞培养设计,含有BSS、21种氨基酸、维生素等,广泛适于多种正常细胞和肿瘤细胞的培养,也用做悬浮细胞培养。HamF12细胞培养基含微量元素,可在血清含量低时用,适用于克隆化培养。F12适用于CHO细胞,也是无血清细胞培养基中常用的基础细胞培养基。DMEM/F12细胞培养基将DMEM和F12按照1:1比例混合,混合后营养成份丰富,血清使用量也减少,常作为开发无血清细胞培养基时的基础细胞培养基。McCoy' s5AMcCoy' s 5A Medium 主要为肉瘤细胞的培养所设计,可支持多种(如骨髓、皮肤、肺和脾脏等)原代细胞的生长,除适于一般的原代细胞培养外,主要用于作组织活检培养、一些淋巴细胞培养以及一些难培养细胞的生长支持。例如Jensen大鼠肉瘤成纤维细胞、人淋巴细胞、HT-29、BHL-100等上皮细胞。William' s Medium E适用于大鼠肝上皮细胞的长期细胞培养。神经元基础培养基可为神经元生长提供基础营养物质。昆虫细胞培养基:培养基名称特性及应用范围Grace' s昆虫培养基Grace昆虫培养基(Grace' s Insect Medium)最初设计为支持澳大利亚白星橙天蚕蛾 (Antherea eucalypti) 细胞 的生长,是对Wyatt培养基的改良,以更接近 Antherea 血淋巴。Grace用这种培养基建立了第一个连续细胞系。适当补充添加剂后,该基本培养基已用于培养各种昆虫细胞,包括多种鳞翅类以及一些双翅类昆虫。Grace昆虫细胞培养基主要作为 培养基基础,用于培养Sf9 和Sf21细胞系,也用于其它鳞翅类昆虫细胞系的生长和维持。Grace' s培养基(Grace’s Insect Cell Culture Medium) 是无血清培养基,使用时需要补充血清,从而为细胞提供必要的营养因子。添加5 -20%胎牛血清后,Grace昆虫细胞培养基可以用于培养多种昆虫细胞。IPL-41 昆虫培养基 IPL-41昆虫培养基(IPL-41 Insect Medium)旨在用于大规模扩增草地贪夜蛾(Spodoptera frugiperda)细胞系,也常用于通过杆状病毒表达系统(BEVS)进行蛋白表达。 IPL-41培养基是对原始IPL配方的改良,由美国农业部昆虫病理实验室Weiss等人开发,用于大规模扩增草地贪夜蛾衍生细胞系。Weiss向基础培养基中加入了胎牛血清和TPB培养基(Tryptose Phosphate Broth),成功地实现了IPL-21 AE (III)细胞系的大规模连续培养。该培养基主要用于培养和维护鳞翅类衍生细胞系和扩增这些细胞系的病毒。IPL-41培养基基础也以用于无血清夜蛾细胞的杆状病毒重组蛋白表达。Shield' s & Sang Insect向Sheilds-Sang M3昆虫培养基中添加10%胎牛血清后广泛用于培养各种果蝇细胞系。Sheilds-Sang M3昆虫培养基(Sheilds and Sang M3 Insect medium) 基于D22培养基。该培养基支持黑腹果蝇衍生细胞的生长。Sheilds和Sang将原配方中的氯化物除去,用谷氨酸盐提供钠和钾离子,并用游离氨基酸替代乳白蛋白水解物。Bis-Tris作为缓冲剂放置pH变动。Schneider' s 果蝇培养基 很多昆虫组织培养基的配方是模拟特定昆虫体液的主要物理化学性质。针对相同物种的不同培养基成分的相似度可能比针对不同物种的培养基之间更低。有多种培养基用于果蝇细胞和组织的体外培养。应用最多的是Schneider 培养基、D-22 培养基。果蝇细胞用于研究各种生物化学过程,包括遗传学、内分泌学、生理学和细胞生物学等方面,以及重组蛋白的表达。加入5-20% 胎牛血清后Schneider培养基能够支持黑腹果蝇(Drosophila melanogaster)原代细胞和建立的细胞系的快速生长。该培养基用于培养和维护果蝇胚胎衍生的细胞系以及其它双翅目昆虫细胞培养物细胞培养基常用几种重要的添加成分及使用过程中应注意的问题酚红在细胞培养基中用作pH值的指示剂。一般情况下,可以通过酚红的指示作用判断培养基的pH值,但低血清或是无血清细胞培养基中酚红的含量与普通细胞培养基中的酚红含量不同,不能通过肉眼观察或通过经验来判定pH值,建议使用pH计进行测定。酚红通常对含血清的细胞培养基生产的生物制品质量并不会产生明显影响,也可通过纯化技术去除,但酚红在无血清细胞培养基中可能带来胞内钠/钾失衡,影响细胞生长。碳酸氢钠在细胞培养基中主要是作为缓冲系统,此外还具有调节渗透压的作用。通常产品使用说明中的碳酸氢钠推荐量是一个标准、安全量,是在科学的基础上根据实践经验所得。但是由于不同的细胞系(株)不同,同一株细胞适应环境也可能不同(细胞耐受性不同等),且存在的地域性水质差异等,在实际生产过程中也可稍作改动,但使用者需做相应的检测(理化及细胞生产试验等)。HEPES是一种非离子缓冲液,在pH 7.2 ~7.4范围内具有较好的缓冲能力,在高浓度时对一些细胞可能有毒。HEPES缓冲液可与低水平的碳酸钠(0.34 g /L)共用,以抵消因额外加入HEPES引起的渗透压增加。其安全浓度范围是10~25 mmol/L。丙酮酸钠可以作为细胞培养中的替代碳源,尽管细胞更倾向于以葡萄糖作为碳源,但是在没有葡萄糖的条件下,细胞也可以代谢丙酮酸钠。谷氨酰胺在溶液中很不稳定,4 ℃下放置1周可分解50 %,使用中最好单独配制,置-20 ℃冰箱中保存,使用前加入细胞培养液中。赖氨酸(L-lysine):分子量大于70,000的多聚赖氨酸可以用于促进细胞贴壁生长,也可以用于组织学(Histology)分析时的粘片剂。Poly-L-lysine和Poly-D-lysine都可以用于促进细胞的贴壁生长。Poly-L-lysine可以被某些细胞所消化并吸收,摄入过多的Poly-L-lysine会产生一定的细胞毒性。如果遇到Poly-L-lysine有细胞毒性的情况,可以考虑选用Poly-D-lysine,因为右旋的聚赖氨酸是不会被生物吸收利用的,所以毒性更低。远慕生物致力于生物技术和生命科学等行业领域,专注于植物生物学技术研究,以满足全球不断增长的食品,能源、医药日益增长的需求和发展。目前远慕生物制造和提供的产品主要有动物细胞培养产品(包括细胞培养基、FBS、缓冲溶液、抗菌剂和其他试剂)和植物生物学产品(包括植物组织培养基、凝胶系列产品、植物生长调节剂、抗生素&抗菌剂、生化试剂以及植物组培容器和耗材)。
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • 内有福利!农药界三酮类除草剂领军产品-硝磺草酮实现连续化合成
    6月16日晚7点,由中国农药工业协会和康宁反应器技术有限公司联合举办的“绿色创新合成、分离技术在农药产业转型升级中的应用”技术交流会,将在中国农药工业协会官方微信公众号直播大厅举行。欢迎您关注“康宁反应器技术“公众号点击阅读原文了解详情并报名参会!背景硝磺草酮(通用名:mesotrione;商品名:Callisto)是先正达成功开发的HPPD抑制剂类除草剂中的领军产品。硝磺草酮结构式硝磺草酮的常规合成方法是1,3-环己二酮和2-硝基-4-甲磺酰苯甲酰氯酯化后再重排反应制得。前人对该合成工艺做了很多优化工作,但大都是基于釜式基础上的改进。浙江工业大学的研究人员基于前人的研究基础上成功地开发了全连续酯化-重排合成硝磺草酮的工艺,并实现了丙酮氰醇的无害化处理,总收率为90.5% ,纯度 99% 。该工艺实现了多步安全连续化反应,提高了酯化反应速度(20s vs.釜式3h)和总收率(较釜式提高3.9%)。本文将为您简单介绍相关内容。研究过程一. 从反应机理出发,分解研究内容从下图的反应机理可以推测:初始物料1,3-环己二酮经历酯化、重排后得到最终产物。图1. 反应机理作者重现了釜式工艺,也验证并认可上述反应机理。基于此,研究人员分步研究了酯化反应和重排反应连续化的可行性。二. 溶剂研究前人研究的釜式工艺中,大多溶剂不能完全溶解反应物或中间体。为了避免由于体系存在固体堵塞反应通道,作者首先对溶剂做了优化,重点研究了烯醇酯在各种溶剂中的溶解度以及不同溶剂对重排反应的效果和影响。经研究发现烯醇酯在乙腈中的溶解较高,且乙腈条件下酯化和重排的分离产率较高,因此选择乙腈作为连续流反应溶剂。三. 酯化反应连续化研究1. 酯化反应阶段釜式工艺问题:不安全,反应放热剧烈,有安全风险;时间长,反应物未完全溶解在溶剂中,且需要缓慢加入三乙胺,反应时间长(3 h);副反应,反应过程中产生不稳定中间体,易发生副反应;收率低,反应物转化率、收率较低。2. 连续流工艺,非常适合中间体不稳定的反应,具有以下优势:反应安全,传热效率提高,可以迅速移走反应过程中的热量,提高反应安全性;时间变短,精准控制物料,物料混合效率高,反应时间可大大缩短;减少副反应,可以精确控制反应温度,减少或消除副反应;收率提高,通过优化反应条件,使反应完全高效,提高收率。3. 连续酯化工艺流程图2.酯化连续流工艺如上图作者将2-硝基-4-甲磺酰苯甲酰氯溶解在乙腈中配成一股物料,在乙腈中加入1,3- 环己二酮和三乙胺配成另外一股物料,进行预冷/预热后,通过一个三通混合,注入管式反应器。在水浴中进行延迟循环后,将反应液收集在 -20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者优化了反应条件,发现在酯化反应中停留时间是影响收率的关键因素,时间过长产物发生副反应的可能性增大,三乙胺需要过量。最终确定了反应温度为20℃,反应时间20 s。分离收率99%,纯度98.6%。四. 重排反应连续流工艺的研究1. 重排反应阶段釜式工艺的主要问题是酯化反应产物烯醇酯易发生副反应,由于釜式工艺温度很难精准控制导致副反应的发生。2. 连续流工艺可以精确控制反应条件,最大程度上减少副反应的发生。并且其相对密封的反应体系也有助于解决当前工业生产中的毒性试剂接触性安全问题。3. 连续重排反应工艺流程图3.重排连续流工艺如上图作者将烯醇酯、乙腈溶液和乙腈、三乙胺、丙酮氰醇溶液,经过管道进行预冷/预热后,通过T形接头注入管式反应器。在水浴中经过延迟反应,将反应液收集到-20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者同样做了条件的优化,该重排过程中反应温度对收率的影响较大,最终选择反应温度为25 °C,停留时间为252min,收率为91.3% ,纯度为99.3% 五. 全连续工艺图4.全连续流程如图4所示,为了充分发挥连续流动反应的技术优势,研究人员设计了全连续流动酯化重排制备硝磺草酮的工艺。由于丙酮氰醇有毒性,需要进行处理以降低对环境的影响。研究者参考文献选用次氯酸钠和丙酮氰醇反应。次氯酸钠溶液,经预冷/预热管道泵入带有反应混合物的管式反应器,40 °C下反应30min。酯化-重排和丙酮氰醇淬灭3步反应温度分别为20 °C、25 °C 和40 °C,停留时间分别为20s,252min,30min。表1.釜式工艺和连续流工艺对比综上采用连续流工艺发现:酯化反应时间和总反应时间显著减少。纯度和分离收率都有所提高。此外,还增加了丙酮氰醇的无害化处理。研究结果研究人员开发了一种连续合成硝磺草酮的新工艺;该方法提高了反应效率,减少了酯化后处理操作,降低了成本,减少了连续流工艺中重排副产物;此外,采用连续流工艺可以强化传热,避免操作人员过多接触丙酮氰醇,提高了工艺安全性;该工艺酯化收率为99% ,重排反应收率为91.3% ,纯度分别为98.6% 和99.3% 。酯化连续重排合成硝磺草酮的分离收率为90.5% ,纯度 99%。参考文献:Journal of Flow Chemistry 12, 197–205 (2022)编者语全连续合成一直是近几年农药先进工艺研究非常热门的话题,但是实现全连续的工业化生产的例子却凤毛麟角。康宁反应器无缝放大的特性有利于连续化生产的快速实现。同时连续化生产技术是一项综合的科学技术,离不开连续化合成、分离、提纯等生产工艺技术、PAT分析技术、专业技术培训等各个方面的进步与发展。更离不开企业在相关技术的投入与支持。为了让更多的农药企业了解连续合成工艺和分离技术的应用与进展,6月16日晚7点我们特邀浙江工业大学化学工程设计研究所所长姚克俭教授与康宁AFR项目经理周太炎先生,在线畅谈农药绿色工艺研究和自动化分离技术等话题!欢迎您点击阅读原文或拨打400-812-1766联系康宁反应器技术了解详情。
  • 清华大学药学院胡泽平课题组应邀发表“代谢组学、代谢流技术及肿瘤药理”的综述文章
    清华大学药学院胡泽平课题组应邀发文系统总结了代谢组学和代谢流分析技术的最新研究进展,及其在肿瘤药理学应用中的重要研究进展,包括发现抗肿瘤药物靶点以及生物标记物、揭示药物作用机制和耐药机制、促进精准治疗等。值得一提的是,该综述首次系统地总结绘制了代谢流分析中各种稳定同位素标记示踪物的工作原理及其应用(详见图2),这将为代谢流分析技术在代谢研究领域和肿瘤药理中的广泛应用起到重要的推动作用。  增殖中的肿瘤细胞通常以代谢重塑的方式来提供更多的生物能量和物质,以满足其自身快速增殖的需求。譬如,沃伯格效应(Warburg effect)描述了即便是在有氧的情况下,肿瘤细胞仍然会上调糖酵解途径,并产生更多的乳酸。深入理解肿瘤中的代谢重塑对于我们发现新型治疗靶点,开发抗肿瘤药物有着重大的启示作用 而代谢组学和代谢流技术的发展则极大地促进了我们对于肿瘤代谢的理解。代谢组学能够给我们提供某一静态时刻下的大量代谢物信息,而代谢流分析能够动态地告诉我们某一代谢通路的流量变化。代谢组学和代谢流相辅相成,为我们理解肿瘤代谢打开了全面且动态的崭新视角。  图1. 基于液相色谱-质谱的代谢组学-代谢流分析流程简图  代谢组学分析主要分为三步骤:样品制备、数据采集、和数据处理分析与生物学意义阐释。生物样本经过提取处理后,通过色谱-质谱(mass spectrometry, MS)联用或核磁共振(nuclear magnetic resonance, NMR)来对代谢物进行分析和数据采集。简要数据处理则主要包括通过火山图和热图呈现代谢物的丰度和倍数变化,对代谢物进行通路富集分析。后续则可选择使用同位素标记的代谢流分析来揭示代谢通路的动态变化,并使用体外或者体内模型来进行代谢重塑的功能和机制验证。近年来的代谢组学技术取得一些重要进展,如胡泽平课题组发展的可用于极微量样本(如1,000-5,000个造血干细胞或者60个卵母细胞)的超灵敏代谢组学技术和Sabatini课题组发展的线粒体代谢组学等,都推动了代谢组学在代谢生物学和肿瘤生物学中的应用。  代谢流分析(metabolic flux analysis, MFA)可以动态地揭示代谢通路的流量变化。当一个代谢物产生积累时,可能是由于其生产的增加或者是消耗的减少。基于稳定同位素示踪法的MFA则可以帮助我们测量代谢流量:带有稳定同位素标记的代谢物经过生化反应,则会导致下游代谢产物的标记,产生在特定位置被同位素标记的M+1,… ,M+n代谢物。通过分析下游代谢物的标记模式及被标记代谢物的量,我们可以计算得出感兴趣的代谢通路的流量速度和方向信息。  图2. 稳定同位素标记示踪剂标记葡萄糖代谢通路(节选部分)  例如图2(A)中全13C标记的葡萄糖经过糖酵解反应,生成糖酵解终产物丙酮酸。丙酮酸又可经丙酮酸脱氢酶生成乙酰辅酶A,进入三羧酸循环(TCA cycle)。另外,葡萄糖作为磷酸戊糖途径和丝氨酸生物合成的底物,可以标记这两条代谢途径中的中间产物。通过分析特定通路的下游产物标记,我们可以得到在某段时间内的代谢流量。图2(B)则展示了全13C标记的葡萄糖通过糖酵解代谢为丙酮酸后,可以通过丙酮酸脱氢酶和丙酮酸羧化酶两种方式进入三羧酸循环,从而产生M+2以及M+3的TCA中间产物,进而我们可以分析得到两种酶所介导的不同通路信息。  代谢是高度复杂且受严密调控的动态变化网络。除了基于特定酶、转运体的调控外,通路之间可以通过同一中间产物而产生关联。如果能找到肿瘤细胞中相较于正常细胞而特定依赖的代谢通路,那么我们就可以精确地靶向肿瘤细胞进行治疗和干预。   图3. 促进肿瘤细胞生长的代谢通路及潜在治疗靶点  图3.展示了细胞中复杂的代谢通路,包括葡萄糖的代谢(糖酵解、磷酸戊糖途径)、脂肪酸代谢、核苷酸的合成、叶酸代谢等,其中特别标记了值得调控的关键酶和转运体,以及针对这些作为靶标已进入临床试验或者已经被FDA批准的小分子药物。譬如,在胶质瘤中曾报道过突变的异柠檬酸脱氢酶(IDH)可以介导肿瘤代谢物2-羟戊二酸(2HG)的产生,展示了IDH作为抗肿瘤靶标的潜力,从而引发IDH抑制剂的开发、获批与应用。  代谢组学与代谢流分析也可以在肿瘤药物研发中发挥重要作用,并可贯穿于每一步中:从发现靶点到理解药物作用机理,从耐药机制研究到指导精准治疗。  经过代谢组学分析后,差异代谢物和代谢通路可引导发现潜在的生物标记物和可靶向的代谢依赖性和弱点。潜在的生物标记物可帮助肿瘤的早期诊断、预后和药物有效性预测。通过结合代谢流分析,代谢靶标可以帮助新药研发,或者是帮助科研人员更好地理解现有药物的作用机制,以及如何产生耐药,从而改善现有疗法。药理代谢组学可以用于指导精准治疗 饮食干预疗法则可以作为药物治疗的辅助手段。  图4.代谢组学和代谢流分析技术在肿瘤药物研发和药理学中的应用  尽管代谢组学和代谢流分析极大拓展了我们对于肿瘤生物学的理解,但是领域中依旧存在诸多技术挑战和瓶颈,比如灵敏度不足、精准度不够、难以进行代谢流分析,以及至今无法实现真正意义上的单细胞代谢组学(特别是由于灵敏度的技术瓶颈)等等。相关的技术进步和新型方法开发都将进一步促进代谢组学和代谢流分析技术在不同生物医学背景下的应用。下一阶段的研究需要更好地整合、利用所获取的代谢重塑表型和机制信息,将其转化成更好的抗肿瘤疗法。药物研发方面需要更多地关注肿瘤微环境,尤其是肿瘤细胞与免疫细胞之间的代谢相互作用。多组学整合的应用,包括基因组学、蛋白组学、代谢组学等,将有助于加深我们对于肿瘤生物学的理解和利用,进一步加速抗肿瘤药物的研发。  以上综述文章于2021年3月1日应邀在线发表于国际知名学术期刊《药理学&治疗》(Pharmacology & Therapeutics),题为《代谢组学、代谢流分析与肿瘤药理学》(Metabolomics, metabolic flux analysis and cancer pharmacology),此前,胡泽平课题组曾于2019年获邀在国际知名临床药理期刊《临床药理学&治疗》Clinical Pharmacology & Therapeutics发表代谢组学技术及其在临床药理中应用的相关综述。  清华大学药学院胡泽平研究员与烟台大学药学院王洪波教授为本文通讯作者,2016级药学院本科毕业生梁凌帆与胡泽平课题组2020级博士研究生孙菲分别为本文第一、第二作者。本研究得到了国家自然科学基金委糖脂代谢重大计划重点项目(92057209)、基金委面上项目(81973355)、国家科技部重点研发计划(2019YFA0802100-02, 2020YFA0803300)、清华-北大生命科学联合中心、北京市高精尖结构生物学中心的资助。  点击链接,阅读原文:https://www.sciencedirect.com/science/article/abs/pii/S0163725821000292
  • 【安捷伦】一种评估细胞代谢的创新方法——安捷伦 Seahorse XF 底物氧化检测
    什么是能量代谢?代谢,是生命最基本的特征之一,机体从外界摄取营养物质,包括碳水化合物、脂肪、蛋白质、微量元素、水及维生素等,同时经过体内分解吸收将其中蕴藏的化学能释放出来转化为组织和细胞可以利用的能量,再通过利用这些能量来维持正常的生命活动。我们把这种代谢过程中所伴随的能量的释放、储存和利用称为能量代谢。细胞,作为构成生命体最基本的结构和功能单位,对其功能的研究,比如细胞的增殖,分化等,可以为多个研究领域提供有价值的信息,包括癌症、免疫功能障碍、心血管疾病、神经退行性疾病等。在过去的若干年中,涌现出大量文章及数据,说明能量代谢如何支持细胞生物学的各个方面,以及代谢的变化如何影响重要的细胞功能。安捷伦 Seahorse XF 技术,作为目前细胞能量代谢检测的金标准,可以在不侵入,不破坏样本的前提下,实现实时、高通量、多样本来源的活细胞能量代谢检测,从而为评估细胞功能及研究代谢机制,提供了强有力的技术手段。除了细胞样本,安捷伦 Seahorse XF 技术可以支持多种类型的样本检测,包括新鲜的组织切片,微生物,模式动物等等。当下新冠状病毒肆虐,我国针对病毒的疫苗及特效药的研发也在争分夺秒的进行中,安捷伦 Seahorse 技术同时可以为抗病毒药物和疫苗的研发奠定理论基础。我们已经在之前两篇系列文章(具体请参见文末推荐阅读)中介绍了安捷伦 Seahorse 助力抗病毒研究的相关内容。为什么要研究细胞底物氧化水平?细胞能量代谢与多种疾病息息相关,因此,许多领域的研究人员都对研究能量代谢产生了浓厚的兴趣,其中了解并知道在代谢过程中满足细胞能量需求所依赖的燃料成为了一个重要的研究方向。众所周知,生物体所需的三大营养物质为脂肪、糖类和蛋白质,对于细胞来说,长链脂肪酸(LCFA),葡萄糖(glucose)/丙酮酸(pyruvate)和谷氨酰胺(glutamine)是提供能量的三种最主要的底物。许多领域(例如癌症、免疫学、干细胞生物学)的研究人员已经证明这些底物的氧化水平会对细胞命运、功能以及适应性产生深远影响。癌症研究人员对研究癌细胞对于底物的依赖性很感兴趣,最常见的是癌细胞对于谷氨酰胺的依赖[1,2],这种依赖性可以揭示癌细胞的弱点,从而为找到药物靶点提供依据;免疫学研究人员则对研究诱导免疫细胞分化和激活的底物感兴趣,最常见的是脂肪酸氧化[3]。很多研究发现不仅提供了新的生物学见解,而且还揭示了干预和开发成功疗法的新方法。免疫代谢研究领域领军人物 Dr.Erika L. Pierce 的团队发表在 Trends in Immunology 上的综述性文章[4] 就是这样一个例子。在本文中,他们着重讨论了通过调控 T 细胞代谢(包括脂肪酸氧化)从而治疗癌症和免疫疾病的各种方法,为现在热门的免疫治疗提供了重要依据。文章提到代谢重编程对于 T 细胞激活和功能是必须的,比如抑制氨基酸的转运,可以限制效应 T(effector T)细胞的扩增;抑制脂肪酸的合成,可以削弱 Th17 细胞的分化并且促进调节性 T 细胞(Treg)的发展;增强脂肪酸氧化可以促进调节性 T 细胞或者记忆 T 细胞(T memory)的发展。因此,调控 T 细胞的代谢是提高靶向 T 细胞功能的一种方法。再来看一篇来自癌症研究领域,2019 年发表在 Nature Metabolism 上的文章。美国贝勒医学院的科学家揭示了前列腺癌,这种常见于中老年男性泌尿生殖系统癌症类型的发生机制,其中有部分前列腺癌与雄性激素分泌紊乱有关[5]。文章中指出雄激素受体驱动的前列腺癌细胞所需的能量来源依赖于线粒体丙酮酸氧化,其中 Seahorse 数据证实了抑制负责将丙酮酸转运到线粒体内的转运子(MPC),可以有效抑制细胞的氧化磷酸化水平,揭示了这种癌细胞的底物利用机制,从而提示 MPC 可能是这种前列腺癌的潜在治疗靶点。如何检测细胞底物氧化水平前面我们已经介绍了研究细胞对于底物氧化依赖的重要性,安捷伦 Seahorse 为此提供了一套完整的检测方法,可通过评估活细胞的耗氧速率(OCR)变化来测定细胞底物的氧化水平。这些快速而对样本无侵入损伤的检测方法使研究人员能够研究细胞如何氧化三种主要的底物:长链脂肪酸,葡萄糖/丙酮酸和谷氨酰胺。利用特定底物氧化通路的抑制剂,结合 Seahorse XF 线粒体压力测试,可以对线粒体功能进行全面评估,在底物需求较少(即基础呼吸)和底物需求较多(即最大呼吸)的条件下研究细胞功能,其中在底物需求较多时细胞更多地依赖特定底物(图 1)。该测定方法基于已被广泛熟知并认可的 Seahorse XF 线粒体压力测试,可提供直观的功能性参数,非常适合研究细胞在基础条件下以及在压力状态下能否升高对底物的需求,从而对细胞底物的偏好性以及依赖性进行全方面评估。使用这些试剂盒能够更方便快速的研究活细胞中特定底物的氧化过程,从而有助于研究细胞如何转换对于特定底物的依赖,以执行关键的细胞功能。图 1. 安捷伦 Seahorse XF 底物氧化压力测试曲线。在添加或不添加抑制剂时,连续添加化合物,测定基础呼吸参数、对抑制剂(Etomoxir、UK5099 或 BPTES)的急性响应以及最大呼吸参数。值得注意的是,虽然在基础条件下可以检测到较小的变化,即急性响应,但在高底物需求条件下(如 FCCP 的加入),往往会出现更大的响应,从而显示出细胞氧化所研究底物的能力的差异。产品信息:每个试剂盒均包含三个一次性试剂袋。每个试剂袋包含各一瓶以下试剂:底物通路抑制剂(Etomoxir 或 UK5099 或 BPTES),寡霉素(oligomycin),FCCP 和鱼藤酮/抗霉素 A(rotenone/antimycin A)混合物。每个试剂袋包含足够的试剂,可用于一块完整的 XF96 或 XF24 测试板。为了获得最佳实验结果,建议使用 pH 7.4 的 Seahorse XF DMEM 或 RPMI 检测液和 Seahorse XF 底物(葡萄糖,丙酮酸和谷氨酰胺)。Seahorse XF 底物氧化压力测试与 XF/XFe96 和 XF/XFe24 分析仪兼容。推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm3. 聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用 https://www.instrument.com.cn/netshow/SH100320/news_523220.htm关注“安捷伦视界”公众号,获取更多资讯。
  • 酱油中氯丙醇含量的测定 气相色谱质谱法
    前言氯丙醇(Chloropropanols)是是一种在化学制作豉油的过程中所产生的毒性致癌物,同时具有抑制雄性激素生成的作用,使生殖能力减弱。对人体危害极大。日常比较常见的为以下三种:1-氯-2-丙醇 (ClCH2CHOHCH3);3-氯-1,2-丙二醇 (3-MCPD)及1,3-二氯-2-丙醇 (1,3-DCP)。本文参考《GB/T 5009.191-2006 食品中氯丙醇含量的测定》,进行了酱油中3-氯-1,2-丙二醇(3-MPCD)的测定,优化改进了用于样品预处理的硅藻土材料,调整活度,成功开发了Cleanert MCPD氯丙醇专用柱,结果表明满足实验要求,并大大简化了材料预处理过程,提高工作效率。 1 仪器及材料仪器:Agilent GC-MS 7890-5975c;涡旋混合器;超声仪;氮吹仪;恒温箱。材料: 3-氯-1,2-丙二醇(3-MPCD)标准品;乙酸乙酯、丙酮、正己烷为色谱纯;七氟丁酰基咪唑;无水硫酸钠;超纯水;氯化钠。固相萃取柱:Cleanert MCPD (氯丙醇专用柱),2.5g/12mL,P/N:LBC2500122 实验方法2.1 标准溶液配制准确称取0.1g氯丙醇标准品于100mL容量瓶中,用乙酸乙酯定容到刻度,得到浓度为1mg/mL的储备液。用丙酮将储备液逐渐稀释,得到1&mu g/mL标准工作液。2.2 饱和氯化钠溶液称取氯化钠290g,加水溶解并稀释至1000mL,超声20min。2.3 GC-MS操作条件色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:230℃,不分流进样程序升温:50℃(1min)2℃/min 82℃进样量:1&mu L流速:1 mL/min接口温度:250℃电离方式:EI电离能量:70eV溶剂延迟:7min离子源:230℃四级杆:150℃检测模式:选择离子检测,SIM离子:253/275/289/291/4532.4 样品处理称取2.5g酱油直接上样Cleanert MCPD固相萃取柱,静置平衡10min,用15 mL乙酸乙酯洗柱,收集洗脱液。将洗脱液在35℃下氮气吹至近干(不可全干)。加入2 mL正己烷,摇匀,快速加入50&mu L七氟丁酰基咪唑,将样品瓶拧紧,涡旋20秒,将样品瓶置于70℃恒温箱中反应30min,取出冷却至室温,向样品瓶中加入2 mL饱和氯化钠溶液,涡旋1min,静置2min,取上层有机相至另一干净的样品瓶中,重复1次洗涤操作以除去杂质。将有机相经少量无水Na2SO4除水后转移至进样样品瓶中,待GC-MS检测3 实验结果3.1 标准溶液色谱图在GC-MS操作条件下(4),得到标准溶液色谱图如图1.图1 标准溶液色谱图(浓度为50ng/mL)3.2 样品色谱图准确称取6份酱油,其中5份分别加入浓度为1&mu g/mL的标准溶液0.1mL,按照样品处理方法(5),将6份样品进行净化衍生,得到酱油样品加标色谱图及酱油样品色谱图如图2、图3.图2 酱油样品加标色谱图(浓度为50ng/mL)图3 酱油样品色谱图3.3 加标回收率及精密度 表1 加标回收率及精密度 1#2#3#4#5#平均回收率(%)RSD(%)n=5回收率(%)88.083.990.583.692.187.603.84 4 结论实验结果表明,Cleanert MCPD氯丙醇专用柱适用于酱油中氯丙醇的预处理,能净化酱油样品,实验加标回收率及RSD能满足定量实验的要求。本实验方案与国标方法相比更简便,使用的化学试剂量仅为国标方法的1/20,有利于操作人员的身体健康及环境;实验时间较国标方法短,更加适合于大批量酱油样品的前处理。 订货信息 产品名称规格、包装订货号价格Cleanert MCPD2.5g/12mL, 20支/包LBC250012580DA-5MS30m*0.25mm*0.25&mu m;1支1525-30024200
  • 硫氰酸钠与牛奶安全
    p  近来,一桩牛奶被检出硫氰酸钠超过“最高限量值”的乌龙事件,成为社会、乳品企业、消费者、政府相关部门、媒体关注的热点,被称是“第二个三聚氰胺事件”。因为,硫氰酸钠这个化学名词不像氯化钠为人们所熟知,特别是又有一个“氰”字,一些人把它误认为是剧毒氰化物,立即引起社会的震动,“毒奶”再次被提起,极大地影响了乳品消费市场。/pp  硫氰酸钠到底是一种什么化学物质,在自然界是如何存在的,它的毒性有多大,如何跑到了牛奶里去,会不会对人体造成伤害?如有,有多大?这些问题,广大消费者和社会各界都急于想知道。本文以作者工作中所了解的知识,来回答这些问题,以期消除公众的疑虑。/pp  strong硫氰酸钠及其毒性/strong/pp  硫氰酸钠是一种用于医药、印染等多种行业的化工原料,为白色结晶或粉末状,易溶于水。/pp  硫氰酸钠属于有毒有害物质,大量摄入有急性致毒作用。硫氰酸钠的急性毒性,主要是由于其在体内释放的氰根离子引起。氰根离子在体内能很快与细胞色素氧化酶中的三价铁离子结合,抑制酶的活性,使组织不能利用氧,引起恶心、呕吐、腹痛、腹泻等肠道功能紊乱,血压波动,心率减慢,重度中毒可致肾功能明显损害。/pp  在医疗临床中,硝普钠用于治疗高血压急症和严重心率衰竭。硝普钠可在体内迅速代谢为氰化物,进一步代谢为硫氰酸盐,血浆中硫氰酸盐的浓度可达100mg/L,急性毒性常常发生在120mg/L浓度以上。在报道的死亡事件中,血浆浓度约在200mg/L。对小白鼠的口服半数致死量为764mg/kg.b.w。/pp  硫氰酸盐的慢性毒性,主要是抑制碘的运转和甲状腺激素合成,恶化碘缺乏症。因此,硫氰酸盐是影响甲状腺疾病发生的一个重要的化合物。/pp  strong自然界中的硫氰酸钠/strong/pp  硫氰酸钠作为硫代糖苷和生氰糖苷的代谢物,而天然存在于各种食品中(包括乳),并在人类的肝脏中合成,是氰化物的解毒代谢产物。/pp  许多植物,尤其是十字花科类植物富含硫代糖苷和生氰糖苷。其中:芸苔属植物(油菜花)可达100mg/kg,甘蓝属(包括油菜、卷心菜、花椰菜)的植物可达250mg/kg,生扁豆100~3100mg/kg,生木薯块10~462mg/kg,生木薯叶68~468mg/kg,干木薯根皮2450mg/kg,杏仁62mg/kg,竹笋尖8000mg/kg,高粱2500mg/kg。/pp  硫氰酸盐被认为是哺乳动物血液中一种常见的电解质,在动物、人类组织和分泌物中都能检测到,它属于防御系统的一部分,例如在初乳和患乳房炎奶牛的乳中浓度高,是对硫代糖苷(葡糖异硫氰酸盐)和生氰糖苷脱毒处理的一种产物。正常人体血浆中硫氰酸钠的浓度在2~3mg/L,吸烟与不吸烟浓度不一样,吸烟者为9~12mg/L。研究表明,乳腺不浓缩硫氰酸盐,但人体的其他分泌液可浓缩硫氰酸盐,特别是唾液和胃液,含量一般高达10~300mg/L。/pp  strong乳中的硫氰酸钠/strong/pp  动物乳腺可以分泌硫氰酸钠,所以牛乳本底含有硫氰酸钠。/pp  奶牛饲养中,十字花科类植物作为青饲料是必不可少的,芸苔属的油菜花籽实榨油后的菜籽饼也常用作奶牛的蛋白补充饲料。十字花科类的植物,因为富含硫代糖苷而成为非人为添加的生鲜乳中硫氰酸钠的主要来源之一。 乳中的硫氰酸钠含量主要取决于饲料中硫氰酸盐及其前体的含量,包括硫代糖苷(葡糖异硫氰酸钠)和生氰糖苷。然而,实验还表明,当十字花科类植物饲喂量达到一定水平后,再提高饲喂量对生鲜乳中的硫氰酸钠含量的提高帮助不大,推测可能是奶牛本身对硫代糖苷和生氰糖苷的吸收转化率有一定的极限。/pp  国际乳联(IDF)公报234号指出,牛乳中的硫氰酸钠含量是不稳定的,可以达到10~15mg/kg,但通常的浓度范围是2~7mg/kg。国内外科学界做的一些研究,认为硫氰酸钠在原料乳的正常浓度:牛乳为6~12mg/L,平均值8.5mg/L 山羊乳为6.6~8mg/L,平均值7mg/L 个体牛之间,乳中的硫氰酸钠浓度在2.3~35mg/L。有的研究则是,牛奶中平均含硫氰酸根离子范围0.4~22mg/kg之间。/pp strong 硫氰酸钠与牛乳保鲜/strong/pp  硫氰酸盐可以激活生鲜乳中过氧化物酶体系,而过氧化物酶体系可以对生鲜乳起到保鲜作用。因此,在上世纪九十年代被用做没有冷却条件的生鲜乳保鲜。1991年,WHO和FAO的食品法典委员会公布了CAC/GL13—1991《乳过氧化物酶体系用于原料乳的保鲜指南》,利用天然存在于牛乳中的过氧化物酶、硫氰酸盐、过氧化氢抗菌体系,再添加一定量的硫氰酸钠和过氧化氢,阻断细菌代谢繁殖,从而对生鲜乳起到保鲜作用。该指南严格规定了此方法的适用范围和使用方法,规定在原料乳收集和运输至加工厂期间,仅在缺乏必要的冷却设施时才可以应用。在发展中国家,由于奶牛场缺乏冷却设施,为防止生鲜乳腐败,此方法提供了一种费用低廉而实用的方法。因而在一些第三世界国家普遍使用。按照CAC使用指南的要求,使用过氧化物酶体系处理原料乳时,补充的硫氰酸钠的浓度为10~15mg/L,因此在散装活化乳中硫氰酸钠总含量约为20mg/L左右,比报道中对碘代谢有影响的浓度低10~20倍。同时,食品法典委员会一致强调,预期用于国际贸易的产品,不使用乳过氧化物酶体系进行处理。/pp  1995年,我国发布了GB/T 15550—1995《活化乳中过氧化物酶体系保存生鲜乳实施规范》,添加15mg/kg硫氰酸钠,利用乳中的过氧化物酶体系保存生鲜乳,防止牛奶腐败变质。1996年,颁布的GB2760—1996《食品添加剂使用卫生标准》,规定使用0.3%的过氧化氢2.0ml/L和15.0mg/L硫氰酸钠,用于原料乳保鲜。GB/T 15550——1995《活化乳中过氧化物酶体系保存生鲜乳实施规范》属于推荐性标准,规定适用范围仅限于交通不便,没有冷却设施的边远地区生鲜乳保鲜。这种方法一开始就受到了乳品行业的普遍抵制,因为对添加物的浓度、数量要求很严,而偏远地可能无法满足这样精准的要求,容易滥用。当时行业统一实施的有效方法是,定时挤奶,限时将奶送到收奶站,奶站配备降温冷却设施,有效保持原奶的新鲜。后来,由于担心硫氰酸钠被滥用,以及其带来的不利影响,2005年GB/T 15550—1995废止,GB2760—2007《食品添加剂卫生标准》也取消了硫氰酸钠的使用。2008年12月12日,卫生部公布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单(第一批)》,明确规定乳及乳制品中硫氰酸钠属于违法添加物质。/pp  我国乳制品行业对生鲜乳保鲜一直是采取低温冷链保鲜技术。在上个世纪,硫氰酸钠被允许当做保鲜剂使用的时候,乳品行业没有一家企业允许奶户使用此法。在今天,现代化的规模奶牛场已超过45%,全部实现机械挤奶,冷却设备、保温储罐齐全 全国基本上没有了散户饲养,饲养小区全部实现机械挤奶,冷却储奶。全国没有企业会使用硫氰酸钠来保鲜原奶。特别是辉山乳业集团,是全产业链模式的企业,所有原料乳均来自本公司办的现代化牛场,牛奶挤下来后马上冷却进入冷藏储罐,在很短的时间内即可到达工厂进行加工,整个过程都在冷链控制之下,加工的产品又属于灭菌乳,根本就用不着加防腐剂来保鲜。/ppstrong  乳中的硫氰酸钠对人类/strong/ppstrong  健康的风险评估/strong/pp  早在1990年,国际食品添加剂专家联合委员会(JECFA)第35次会议的评估得出结论,认为按照CAC指南使用,乳过氧化物酶体系不存在毒理风险。且在乳过氧化物酶体系活化乳的消费人群中,十多年来未发现有不良影响的证据。/pp  国外对乳中硫氰酸钠的临床研究中,仅在200~400mg/L浓度时发现碘代谢的副作用。而且,在对甲状腺功能正常的个体研究中,每天摄入含硫氰酸钠8mg/L的牛奶连续12周,虽然血清和尿中硫氰酸钠浓度提高了,但对甲状腺功能(甲状腺素、三碘甲腺原氨酸和促甲状腺素)无明显影响。/pp  硫氰酸钠乌龙事件,把本底含有硫氰酸钠的牛奶认为是“毒害品”,“少量食入就会对人体造成极大伤害”是没有科学依据的。以乌龙事件中超最高限量值含硫氰酸钠15.2mg/kg的牛奶为例,1人1天喝500g计算,每天摄入的硫氰酸钠为7.6mg,仅相当于30g卷心菜、3g扁豆、20g生木薯块的含量。/pp  综上所述,硫氰酸钠含量在正常范围内的牛奶是安全的,不存在任何风险。/pp/p
  • 海藻酸钠在食品业中的应用
    说到可以提升食品的味道很多人都会想到味精(谷氨酸钠)却很少想到同样来自海藻类植物中产生的海藻酸钠。这两种元素可谓是现代吃货的法宝,谷氨酸钠负责把食物中的鲜味提炼出来,海藻酸钠负责把食物的质感提升上一个等次,对于味精我们都很熟悉,下面就由小编为大家介绍海藻酸钠出现,发展,和怎么才能做高品质的海藻酸钠。 1什么是海藻酸钠 海藻酸钠在1881年,英国化学家E.C.Stanford首先对褐色海藻中的海藻酸钠提取物进行科学研究。他发现该褐藻酸的提取物具有几种很有趣的特性,它具有浓缩溶液、形成凝胶和成膜的能力。基于此,他提出了几项工业化生产的申请。但处在即将到来的第一次世界大战中这项提议被搁浅,海藻酸钠直到50年之后才进行大规模工业化生产。商业化生产始于1927年,多用于食品工业,剩下的用于其它工业,制药业和牙科。 2海藻酸钠在食品中的应用 海藻酸钠改造食物最成功的案例莫过于冰激淋,100多年前的冰激凌企业可比现在苦得多了,那时候的冰激凌只要离开冰箱34分钟就彻底融化,造型也不堪入目如同浆糊一般但聪明的吃货发现冰激凌加了海藻酸钠后发现冰激凌不仅比以前的融化速度变慢了也比以前好塑形,海藻酸钠放在面粉上做出来的面条非常有劲道而且不容易发生断裂,海藻酸钠是做出果冻比不可少的的材料因为海藻酸钠具浓缩溶液、形成凝胶和成膜的能力,我们能吃上美味的果冻这都要归功于海藻酸钠。 3怎么才能做出高品质的海藻酸钠 海藻酸钠简单的来说其实就是一个植物胶,胶状物粘度是审核海藻酸钠好坏,那问题来了凭肉眼的观察很难评定粘度,博勒飞(Brookfield)的DV2TLV-低粘粘度计就完美的解决了这个问题他具有以下几个优点 一 操作简便的5英寸全彩色触屏显示 二 自动回零及范围转换,超限警报,编程控制定时测量,数据比较屏幕,PG Flash自动化操作 三 200种转数选择, USBPC界面可选电脑控制和程序步骤状态,自动搜集数据功能可Rheocalc T 链接软件进行数据分析,PG Flash软件可联机下载客户自定义程序测试 四 内建RTD温度探头实时监控样品温度
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 发布Kikkoman新一代ATP荧光检测仪PD30新品
    为了迎合客户的需求特推出日本Kikkoman公司的新一代洁净度荧光检测仪,ATP荧光检测仪PD-30. 利用专利检测方法A3法(ATP循环转换法)同时检测ATP,ADP和AMP 。ATP在细菌、食物残渣等物质中同时存在,是最适合衡量污垢存在多少的判断标准。但是,根据被测物质不同,ADP、AMP占有较多比例时有可能会被忽略。A3法不仅能检测ATP,ADP和AMP也能同时被检测出来,是一种高灵敏度的检测方法。 ATP+ADP+AMP 拭取检测(A3法)无论何时、何地、何人,只需10秒就可简单地测试出肉眼看不见的污垢!测定对象:ATP在细菌、食物残渣等物质中同时存在,是最适合衡量污垢存在多少的判断标准。但是,根据被测物质不同,ADP、AMP占有较多比例时有可能会被忽略。A3法不仅能检测ATP,ADP和AMP也能同时被检测出来,是一种高灵敏度的检测方法。 何谓ATP、ADP、AMP:ATP(三磷酸腺苷)是体内组织细胞一切生命活动所需能量的直接来源。ADP(二磷酸腺苷)和AMP(一磷酸腺苷)是由ATP经过加热、发酵或酶反应等变化而来的物质。ATP循环转换法:对龟甲万独创技术[ATP循环转换法]不仅能检测出ATP,ADP和AMP也能同时被检测出来,是一种高灵敏度的检测方法(申请专利中)。PK(丙酮酸激酶):把ADP转换成ATPPPDK(丙酮酸磷酸双激酶):把AMP转换成ATP荧光素酶:与ATP反应后生成光PD-30的测定方法:管理基准值及擦拭方法:>根据待测物体的材质、形状等因素决定其固定取样方法,从而减少误差。>最初并不一定要设定非常严格的管理基准值,可以先设定一个目前可达到的管理基准值,然后运用此检测方法慢慢降低管理基准值才是其意义所在。平滑物体:不锈钢、玻璃等200RLU以下凹凸不平的物体:易留划痕的物体(例如树脂制品等)500RLU以下拭取面积较大的物体:任意中心点250px×250px区域内横竖各十次进行拭取拭取面积较小的物体:仔细拭取整个物体请参考下面的表格 手部:推荐管理基准值是2,000RLU。请对手掌的纵向、横向、指缝、指尖等处进行拭取检测。运用方法(举例):合格与否判断标准的设定管理基准值以下 -------- 判断 合格管理基准值的2倍以上 -- 判断 不合格两者之间 -------------- 判断 注意请参考下面的表格应用:餐厅.食堂:掌握现场清洗状况,防止二次污染.现场判断清洗不足之处,即刻进行再次清洗防止事故发生。.检测结果通过数值进行管理,轻松掌握各个店铺/生产现场的清洁状况。食品工厂:对生产线的清洗度进行评价.不仅可对每天的清洗程度进行评比,亦可在紧急状况时查找污垢来源。.通过消除残留污垢,降低过敏源残存的可能性。环境卫生:食品领域以外的卫生管理.对公众浴室、酒店、温泉等沐浴设施中浴池水的清洁度及浴室中卫生状况进行管理。.对于部分需要确认电子部件的清洗水状况的工业领域,可进行快速清洁度确认。卫生教育:对员工及在教育机关进行卫生教育.由于当场可得到测试结果,作为卫生教育的工具拥有超群的说服力。医院管理:医院环境、医疗器具卫生评定.对病房,护士站进行有效的卫生评定。.对循环使用的医疗器具进行卫生评定,减少感染的风险。酒店管理:酒店内环境的卫生评定.对房间的被单、门把等设备,进行有效的卫生评定。博物馆管理:文物保护.及时发现微生物对文物的侵害,制定解决问题措施。清洁评定:清洁效果的检查和评定.公共交通工具(飞机、火车、长途客车、客船)舱内的清洁、消毒后的清洁度检测。.按程序清洁后,检测清洁效果,可有效改善清洁方法。检测物体表面使用含棉棒的一体成型检测棒,检测液体部分使用含取样棒的成型检测棒,检测细长狭窄场所使用专用长轴棉棒。创新点:为了迎合客户的需求特推出日本Kikkoman公司的新一代洁净度荧光检测仪,ATP荧光检测仪PD-30. 利用专利检测方法A3法(ATP循环转换法)同时检测ATP,ADP和AMP 。ATP在细菌、食物残渣等物质中同时存在,是最适合衡量污垢存在多少的判断标准。但是,根据被测物质不同,ADP、AMP占有较多比例时有可能会被忽略。A3法不仅能检测ATP,ADP和AMP也能同时被检测出来,是一种高灵敏度的检测方法。Kikkoman新一代ATP荧光检测仪PD30
  • 天木生物ARTP成功助力耐受高浓度甘蔗糖蜜酿酒酵母的选育
    本期为您推荐广西科技大学生物与化学工程学院牛福星副教授课题组发表在Microbial Cell Factories上面的文章:Key role of K+ and Ca2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses。本研究利用常压室温等离子体进行诱变,筛选出对不同胁迫因素(高渗透压、高醇、高温、高盐离子以及高浓度甘蔗糖蜜)分别具有鲁棒性能的酿酒酵母菌株。其中由此所选育的对高浓度甘蔗糖蜜具有鲁棒性能的酿酒酵母乙醇合成产量达到目前物理诱变高水平(111.65 g/L,糖醇转化率达到95.53%)。最后结合酵母的细胞形态、发酵产能以及组学分析,揭示了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制性因素是K+和Ca2+同时存在的影响。 生物基乙醇的合成原料有很多,从环保、经济、富民的角度研发是重点。我国是人口大国,每年由于食品添加、工业应用等所消耗的糖量位居世界前列。甘蔗是糖分提炼的主要原材料之一,在提料糖分的同时会产生糖蜜,而且早期研究数据表明产3吨糖的同时可产约1吨糖蜜。糖蜜是一种混合物,成分复杂,直接排放或者用于田间施肥是为浪费且会造成环境污染,而且是为资源利用的不充分。但是利用糖蜜(非粮食)生物资源进行酿酒酵母的乙醇合成,却可以在不断满足人们对乙醇用量需求的同时,助推国家绿色低碳能源发展。酿酒酵母利用糖蜜进行乙醇发酵的工艺已经比较成熟,但是在利用高浓度的糖蜜来生产高浓度的乙醇效率方面却是一个挑战,究其原因便是各种胁迫性因素的影响。但是从科学研究的角度确切的阐述哪种才是限制性的关键影响因素早期还未有研究报道。 研究人员借助ARTP(室温等离子体)诱变、适应性进化以及高通量的基于三苯基-2H-四唑氯化铵(TTC)及前体物丙酮酸(或丙酮酸自由基离子)与Fe3+发生络合反应呈现黄色的双重高通量筛选方法(Py-Fe3+)获取了分别对高浓度甘蔗糖蜜(总糖浓度达到300 g/L)以及蔗糖添加模型下的高温(37℃)、高醇(10%)、高渗透压(400 g/L可发酵总糖)以及高浓度K+(15 g/L)、Ca2+(8 g/L)、K+&Ca2+(15 g/L &8 g/L)发酵环境下的七株鲁棒型酿酒酵母菌株(图1、表1)。通过各自鲁棒型菌株在高浓度甘蔗糖蜜环境下细胞形态比较(图2),乙醇合成的产率以及细胞数量(图3、图4)、鲁棒型菌株比较基因组学、比较转录组学GO、KEGG分析研究,得出K+、Ca2+同时存在才是限制酿酒酵母高浓度甘蔗糖蜜乙醇发酵的主要因素。图1 实验流程 表1 在相同发酵条件下与野生型J108相比产量差距图2 在250 g/L糖蜜发酵不同菌株的细胞形态A:NGCa2+-F1 B:NGK+-F1 C:NGK+&Ca2+-F1 D:NGTM-F1图3 不同菌株的乙醇合成率及细胞数图4.在5L发酵罐体系中利用250 g/L甘蔗糖蜜发酵, 菌株NGTM-F1的乙醇产量达到111.65 g/L 总结:甘蔗糖蜜对细胞的影响不仅仅局限于高浓度发酵,在低浓度情况下同样会对细胞的生长造成一定影响。该项目的研究是为初次从科学研究的角度准确阐述了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制因素,其结果对于以甘蔗糖蜜作为底物的生物合成具有重要指导作用。文章链接:https://doi.org/10.1186/s12934-024-02401-5
  • 专家点评Nature子刊|刘兴国组揭示线粒体TCA酶入核调控多能性的全新模式
    点评专家|高绍荣、乐融融(同济大学,干细胞专家),李伟、王思骐(中科院动物所,干细胞专家),吕志民(浙江大学,代谢专家),高平(广东医学科学院,代谢专家)哺乳动物细胞内,存在两个具有遗传物质的细胞器:细胞核与线粒体。这两者自从大约二十亿年前的相遇,开始了相恋相依的进化历程。多能干细胞独特的自我更新能力及分化为多种细胞类型的能力,使其在再生医学和发育生物学研究中受到了极大的关注。胚胎干细胞(embryonic stem cell, ESCs)及诱导多能干细胞(induced pluripotent stem cells, iPSCs)是两种常见的多能干细胞。多能干细胞具有特殊的表观遗传修饰状态,而许多线粒体代谢产物如:乙酰辅酶A、α-酮戊二酸、NAD+等作为组蛋白修饰酶的辅基直接发挥重要作用。刘兴国团队在国际上独辟蹊径,以多能干细胞模型系统的阐明了线粒体氧离子调控组蛋白甲基化与DNA甲基化1,2,线粒体代谢产物调控组蛋白乳酸化、乙酰化3,线粒体磷脂调控组蛋白乙酰化及基因表达4-6等一系列通过反向信号模式调控细胞核的全新模式。三羧酸循环(tricarboxylic acid cycle, TCA cycle)作为需氧生物体内最普遍存在的代谢途径,是物质代谢与能量代谢的重要枢纽。线粒体TCA循环酶正常行驶功能是TCA循环维持的关键。TCA循环酶在一些恶性肿瘤细胞中能从线粒体转运到细胞核内发挥DNA修复和表观遗传调控的作用7。然而,TCA循环酶在多能性获得与转变中时空调控的规律和作用还完全不清楚。2022年 12月2日,Nature子刊 Nature Communications 在线发表了中科院广州生物医药与健康研究院刘兴国课题组持续性工作的最新研究成果“Nuclear Localization of Mitochondrial TCA Cycle Enzymes Modulates Pluripotency via Histone Acetylation”(线粒体TCA循环酶入核通过组蛋白乙酰化调控多能性)8。该研究发现,多种线粒体TCA循环酶在多能干细胞获得、状态转变以及转变为全能干细胞等过程中均存在从线粒体转运到细胞核的现象,并且核定位TCA循环酶调控上述过程。核定位丙酮酸脱氢酶 (Pdha1) 能促进细胞核内乙酰CoA从而促进组蛋白乙酰化修饰,并进一步打开多能性相关基因,促进多能性获得。该研究揭示了线粒体TCA循环酶入核通过表观遗传调控多能性的重要作用,拓展了线粒体反向信号调控干细胞多能性的新模式。刘兴国团队聚焦多能性的各个过程,包括:多能干细胞获得(iPSCs重编程)、始发态-原始态转变(Primed-Naïve转变)、转变为全能干细胞(ESCs-类二细胞期细胞(2CLCs)转变)。在以上过程,均发现线粒体内TCA循环酶类包括Pdha1、Pcb、Aco2、Cs、Idh3a、Ogdh、Sdha、Mdh2等存在从线粒体向细胞核转运的现象。其中,过表达核定位TCA循环酶Pdha1、Pcb、Aco2、Cs及Idh3a能促进干细胞多能性的获得及Primed-Naïve转变。另外核定位的Pdha1还能促进ESCs向2CLCs的转变。Pdha1对多能干细胞命运的作用依赖于其丙酮酸脱氢酶活性。体细胞重编程早期TCA循环酶入核刘兴国团队发现,在多能性获得过程中,核定位TCA循环酶Pdha1不改变细胞的有氧呼吸及糖酵解动态平衡。核定位Pdha1通过促进细胞核内乙酰辅酶A的合成为组蛋白乙酰化提供反应底物,促进组蛋白H3乙酰化, 尤其是H3K9及H3K27两个位点的乙酰化修饰水平。进一步研究发现,核定位Pdha1能促进多能性相关基因的转录起始位点及增强子区域的H3K9ac及H3K27ac水平。核定位Pdha1能促进P300及重编程因子Sox2/Klf4/Oct4对他们下游靶标(多能性基因)的结合,并促进多能性相关基因染色质的重塑,进而促进多能性的获得。这一工作也为目前新的组蛋白修饰如:组蛋白棕榈酰化、巴豆酰化、丁酰化修饰等的研究提供了新的研究思路,这些修饰也依赖于线粒体产生的代谢物。本研究描述了多个 TCA 循环酶的转运入核。除了Pdha1 外,其他TCA 循环酶也可能在调节细胞核中的表观遗传学中发挥类似作用,提示细胞核中可能存在类似于线粒体中的复杂代谢循环,并调控多种表观遗传途径。本研究阐明的Pdha1转运入核为组蛋白乙酰化提供局部乙酰辅酶 A,是一种全新的通过活跃的组蛋白乙酰化维持染色质开放状态的新途径。这一途径对于多能性至关重要,表明在早期发育中重要的生理意义。另一方面,肿瘤干细胞同样表现出开放的染色质结构、过度活跃的组蛋白乙酰化和从氧化磷酸化到无氧糖酵解的代谢转换,这一新途径也可能为肿瘤干细胞的病理研究提供信息。细胞核与线粒体在二十亿年相恋相依中,进化很多的交流方式,其中线粒体代谢物入核作为表观遗传酶的辅基是重要的一种。这就像线粒体与细胞核隔着细胞质的海洋,“一种思念上兰舟,二处闲愁寄红豆”,代谢物就是那舟上相思的“红豆”。而线粒体TCA循环酶则另辟蹊径,作为线粒体的“信物”,到达细胞核,更加精准的对应需求,在细胞核里局部生根发芽,就地利用养料(丙酮酸)结出新鲜茂密的“红豆”,并使局部的核小体松散。正是:“三羧酸酶知我意,四双化作核体柔”。TCA循环酶入核调控多能性获得、多能性转变及全能性获得模式图本研究与香港中文大学合作完成。专家点评高绍荣、乐融融(同济大学,干细胞专家)多能干细胞具有自我更新和多向分化潜能,在发育生物学及再生医学领域有重要的研究价值及广阔的临床应用前景。诱导多能干细胞(iPSCs)技术规避了胚胎干细胞(ESCs)的免疫排斥及伦理问题,极大地推动了多能干细胞在临床治疗中的应用。线粒体对多能干细胞的命运调控有重要作用。除了经典的能量代谢调控功能,近年来的研究也揭示了线粒体对表观修饰重塑具有重要的影响,然而具体的作用机制还知之甚少。2022年 12月,Nature Communications杂志在线报道了中科院广州生物医药与健康研究院刘兴国课题组的题为Nuclear Localization of Mitochondrial TCA Cycle Enzymes Modulates Pluripotency via Histone Acetylation的工作,该研究系统地揭示了多能性转变的多条路径中均存在三羧酸循环(tricarboxylic acid cycle, TCA cycle)酶由线粒体向细胞核转运的现象。研究者进一步探索了核定位的三羧酸循环酶的功能,发现TCA循环酶Pdha1、Pcb、Aco2、Cs及Idh3a的核定位能促进干细胞多能性的获得及Primed to Naïve多能性状态转变。此外核定位的Pdha1还能促进ESCs向类二细胞胚胎细胞(2CLCs)的转变。接下来,研究者解析了Phda1在多能性获得中的作用机制,发现Phda1的入核能促进乙酰辅酶A在细胞核内的直接合成,为组蛋白乙酰化修饰提供反应底物,促进了组蛋白H3的乙酰化。进一步的研究发现,核定位的Pdha1通过提高多能性相关基因转录起始位点和增强子区域的H3K9ac和H3K27ac修饰水平,促进P300及多能性核心调控因子Sox2/ Klf4/Oct4在这些区域的结合,进而促进多能性基因网络的建立。该研究阐明了线粒体调控细胞命运转变的表观调控的新机制,揭示了TCA循环酶可在细胞核内直接合成表观修饰酶辅助因子来调控染色质修饰的重塑,拓展了对细胞核与细胞质协同调控细胞命运转变模式的理解。同时,相关的研究问题也值得进一步探索,除了组蛋白乙酰化,其它的线粒体TCA循环酶及其它表观修饰之间是否存在类似的反向信号模式的调控机制?这些TCA循环酶入核的转运机制是如何发生的?多能干细胞线粒体呼吸能力低下,缺乏成熟的结构,并在细胞核周围富集,这些有别于终末分化细胞的特征是否与TCA循环酶的转运相关。具有相似线粒体特性的其它细胞,如类全能干细胞、成体干细胞或者早期胚胎发育中是否有相似的机制。此外,干细胞的快速自我更新过程中核膜结构的重塑是否与TCA循环酶的入核相关?解答这些有趣的问题无疑将帮助我们进一步揭开核质协同互作调控细胞命运转变的奥秘。专家点评李伟、王思骐(中科院动物所,干细胞专家)多能干细胞具有无限增殖的能力,同时又保留多向分化潜能,在发育生物学和再生医学中拥有广阔的应用前景。多能干细胞的多能性受到基因调控网络的精密调控,其中在细胞核内发生的DNA甲基化、组蛋白修饰、染色体重构等表观遗传调控发挥了关键作用。线粒体作为细胞能量代谢的中心,不仅通过三羧酸循环(TCA)产生细胞所必需的能量ATP,同时产生的中间代谢产物还可以作为表观修饰的底物,通过反向转运进入细胞核中,参与多种蛋白翻译后修饰。这些发现提示线粒体代谢与细胞核内发生的表观遗传调控有着紧密联系,而这些调控是否参与干细胞多能性重编程这一重要表观重编程事件,目前仍然未知。中国科学院广州生物医药与健康研究院刘兴国课题组在Nature Communications上发表的题为Nuclear Localization of Mitochondrial TCA Cycle Enzymes Modulates Pluripotency via Histone Acetylation的研究论文,发现线粒体TCA循环酶-丙酮氨酸脱氢酶Pdha1可从线粒体转运进入细胞核,通过影响组蛋白乙酰化修饰调控细胞多能性,在iPSC重编程、Primed向Naïve多能性转变、以及类二细胞期细胞转变过程中均发挥重要作用。Pdha1是线粒体中催化丙酮酸脱羟产生乙酰辅酶A(Acetyl-CoA)的CTA循环酶,产生的乙酰辅酶A是乙酰化修饰的反应底物。研究发现核定位Pdha1显著增加了细胞核内Acetyl-CoA水平,并上调了多能性相关基因启动子区域的H3K9ac和H3K27ac水平。同时,核定位Pdha1促进P300和重编程因子在多能性相关靶基因启动子区域的结合,进而调控多能性的获取。这一研究非常有意思的发现在于,在体细胞诱导重编程这一剧烈的表观重编程事件中,线粒体TCA循环酶能够直接进入细胞核对参与表观修饰的CoA进行调控,从而拓展了线粒体调控细胞多能性的新模式。考虑到肿瘤发生和诱导重编程都是非自然发生的生物学事件,这一模式在其他重要的发育事件中是否发挥调控功能,值得未来继续探索。专家点评吕志民(浙江大学,代谢专家)新陈代谢是生命的基本特征。作为生命代谢过程的主要参与者,代谢酶除了发挥其经典功能为细胞提供物质与能量外,还能通过一些非经典/非代谢功能调控多种复杂的细胞活动及疾病的发生发展。代谢酶的非经典/非代谢功能在基因表达、DNA损伤、细胞周期与凋亡、细胞增殖、存活以及肿瘤微环境调控中均发挥了重要作用。比如,肿瘤发生过程中,FBP1可以作为蛋白磷酸酶发挥功能,α-KGDH关联KAT2A调控组蛋白H3的琥珀酰化修饰,这为代谢酶作为新的疾病治疗靶点提供了可能性。然而在多能性的获得、转变及全能性获得过程中,代谢酶是否也能通过非经典功能调控细胞的多能性或全能性功能仍不得而知。刘兴国团队研究发现在多能性获得、转变及全能性获得等多个过程中,TCA循环酶能从线粒体转运到细胞核内,并且能调控多能性获得、转变及全能性获得过程。丙酮酸脱氢酶Pdha1能特异性调控细胞核内非经典TCA循环。其中,细胞核内Acetyl-CoA的生成,为组蛋白乙酰化提供了代谢底物,从而调控组蛋白乙酰化。核Pdha1还能通过P300及经典Yamanaka因子(Sox2, Klf4, Oct4)的选择性而特异性结合多能性基因,进一步打开染色质, 并促进多能性相关基因染色质的重塑。该研究结果表明,TCA循环酶通过线粒体-细胞核反向信号调控细胞多能性的机制在细胞多能性获得,以及对表观遗传的调控中起着重要作用。该研究结果丰富了业界对TCA循环酶非经典功能的认知范围,对干细胞干性的调控,以及多能性的获取研究领域具有理论借鉴和指导意义。专家点评高平(广东医学科学院,代谢专家)细胞核和线粒体是细胞内的两类细胞器,长期以来,它们各司其职,结构鲜明。细胞核是真核细胞最大的细胞器,是储存遗传物质并传递遗传信息的主要场所,对细胞的生命活动有着极其重要的作用。线粒体是细胞的能量工厂,是细胞内三大营养物质彻底氧化和能量转化的主要场所,它通过三羧酸循环的系列氧化和磷酸化反应,将储存于有机物中的化学能转化为ATP,为细胞生命活动提供能量。两个细胞器的功能虽然彼此独立,但长期以来,它们之间也互有往来。一方面,线粒体中的许多酶其实是核编码的,在核糖体翻译成熟以后,再转输到线粒体发挥作用。而早至上世纪60年代,人们就发现在线粒体中也存在DNA,后来又发现RNA、DNA聚合酶、RNA聚合酶等进行DNA复制、转录和蛋白质翻译的全套设备,说明线粒体有相对独立的遗传体系,具有自主性的一面。另一方面,从线粒体产生的ATP被运输到细胞核内,为生命的遗传活动提供能量。同时,来自线粒体的多种三羧酸循环的中间代谢产物(乙酰CoA,α-KG,NAD+,琥珀酰CoA等)被运输到细胞核,为染色质的表观遗传学修饰提供底物。尽管礼尚往来,两类细胞器依然各司其职,互不越界,维持着一种默契。但随着研究进展,人们越来越认识到,这种默契在特定情况下是经常被打破的。近来的一些研究表明,来自线粒体三羧酸循环的一些酶进入到细胞核内,直接干预核内的事件。UCLA 的Utpal Banerjee课题组早年的研究发现,在胚胎发育过程中,来自线粒体的一些酶进入核内,通过影响组蛋白的功能及表观修饰,调控细胞命运(Nagaraj R, et al. Cell 168, 210–223) 。在肿瘤细胞中,吕志民团队发现,α-KG脱氢酶复合体 (α-KGDH complex)进入核内,在局部催化产生琥珀酰CoA,后者被乙酰转移酶KAT2A作为底物利用,导致组蛋白H3的琥珀酰化修饰并调控相关基因的表达,影响肿瘤进程 (Wang et al. Nature. 2017 552: 273-277)。有趣的是,刘兴国团队的最新结果表明,在多能性获得、细胞状态转变以及全能干细胞形成等过程中,存在多种三羧酸循环酶从线粒体转运到细胞核的现象,其中定位于细胞核的代谢酶PDHA1 能在核内催化乙酰CoA的产生,并通过调控组蛋白乙酰化修饰,促进基因表达和多能性的获得(Li, W. et al. Nature Communications. 2022)。刘兴国课题组的这一发现,描述了多能性获得过程中,三羧酸循环酶向核内“集体搬家”的现象,拓宽了目前有关线粒体调控细胞核功能的认知。刘兴国团队发现的代谢酶“集体搬家”的现象非常有趣。这唤醒我今年年初的一些回忆。受北京冬奥会的影响,南方的许多地方年初也兴起滑雪和滑冰了。这雪当然不是从南方暖洋洋的天空降下来的,也并非源于美丽的北国雪乡。真实的情况是,如果需要,温暖的南方也是可以造雪的!这或许只是一个costly decision, 正如卡塔尔人可以选择将他们宽敞的露天足球场通过空调维持在摄氏20度。的确,一些看上去并不合理的事情,在特殊情况下为了特定的目的,是可以发生的。同样的,在生命活动与疾病发生过程中,面临着许多命运决定 (Fate decision)的重要时刻,而细胞的每一次 “决定” 几乎都是精致的利己主义行为,一定有其合理性的一面。我们有理由相信,在诸如多能性获得、胚胎发育以及肿瘤发生等重要的关口,细胞 “决定” 将能量工厂的全套设备“集体搬家”,一定有其深刻的内涵,值得深入研究。有一些非常有趣的问题值得进一步探讨:1)还有谁在搬家,为什么搬家,又是如何搬家的?2)他们搬过来就不走了吗?相对于线粒体内稳定舒适的家,核内的新家又在哪里?3)他们会不会从老家(核糖体)出发直奔新家(细胞核),而无需经由工厂(线粒体)转车?
  • 人工甜味剂“阿斯巴甜”会致癌吗?
    【谣言】最近有一则消息引发了中国消费者的担忧:2015年8月起,百事可乐旗下的健怡系列汽水将不再使用有致癌争议的代糖“阿斯巴甜”,改用由三氯蔗糖、乙酰磺胺酸钾混合而成的代糖。这一改变仅限于美国,不涉及中国市场。  【真相】人工甜味剂是否致癌是个老调重弹的问题。多个权威机构都曾为“阿斯巴甜”开出安全证书,包括FDA(美国食品药品监督管理局)、EFSA(欧盟食品安全局)、国际食品添加剂委员会等权威机构都认为,“阿斯巴甜”在推荐剂量内使用不会对健康造成危害,也没有发现对人体有危害或者致癌的案例。唯一需要强调的是,由于“阿斯巴甜”含有苯丙氨酸,有苯丙酮酸尿症的患者不能食用,还有一部分人有“阿斯巴甜”不耐症,会产生诸如呕吐、恶心等类似过敏症状。
  • 2015年度最佳技术文章 TOP10(低温电子显微镜、高通量测序、DNA标记
    p  继1月Cell、Cell Reports先后推出“Best of 2015”合集后,近日Molecular Cell杂志也推出了年度最佳合集,回顾了去年的一些突出技术进展。该合集包括了4篇Review & Perspectivey,以及6篇技术论文。/pp  strongReview & Perspectivey/strong/pp  strongCryo-EM: A Unique Tool For The Visualization Of Macromolecular Complexity/strong/pp  strong3D低温电子显微镜/strong(cryo-electron microscopy ,cryo-EM)是一种结构生物学技术,近期取得了飞跃的发展。由于所需样品量少,不需要结晶,且可在电脑中成像分类,该技术在分析混合物的组成和构象方面有很大的潜能。这一综述主要介绍了cryo-EM的发展历史、Single-Particle EM Reconstruction原则以及近期技术突破等内容。/pp  High-Throughput Sequencing Technologies/pp  人类基因组测序已经深刻地改变了我们对生物学、人类多样性和疾病的理解。过去的十年里,DNA测序技术取得了非凡的进展,基因组医学时代也逐渐成为可能。/pp  这一综述盘点了可选择的商业化strong高通量测序/strong(HTS)平台,来源公司包括Illumina、Life Technologies/ThermoFisher/Ion Torrent、Pacific Biosciences以及Oxford Nanopore Technologies 总结了HTS的用途,包括绘制基因组的3D结构、表征转录组、微生物测序、罕见病测序和癌症基因组测序等 此外,文章还分析了HTS技术目前的限制性以及在个体化a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"strongspan style="color: rgb(255, 0, 0) "医学/span/strong/a时代中的角色。/pp  strongImaging Live-Cell Dynamics and Structure at the Single-Molecule Level/strong/pp  过去十年里,荧光显微镜、荧光关联谱和荧光标记技术的快速发展使得我们能够在高分辨率下观察活细胞中不同分子的Robustness和Stochasticity。这篇综述介绍了strong光学显微镜/strong观察分子结构细节的困难之处(衍射极限)、单分子的定位和追踪、荧光关联谱、Noninvasive单细胞成像原则、单分子成像方式、标记和染色的发展,以及相关技术未来发展的方向和挑战等内容。/pp  strongExpanding the Biologist’s Toolkit with CRISPR-Cas9/strong/pp  关于strongCRISPR/strong技术已经不用做太多的背景介绍,这篇Perspective的作者之一是加州大学伯克利分校的Jennifer A. Doudna,文章介绍了CRISPR/Cas9的发现过程、基因编辑机制、高通量筛选功能、脱靶效应以及未来发展方向等内容。/pp  strongTechnology Articles/strong/pp  strongMonitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect/strong/pp  将丙酮酸运送到线粒体中需要一种特定的载体,即线粒体丙酮酸载体(mitochondrial pyruvate carrier,MPC)。MPC代表了碳代谢的中心节点,它的活性在生物能学中可能发挥着关键的作用。为了确定MPC在恶性细胞中是否仍起作用,领导该研究的科学家小组开发出了一种生物传感器来测量它的实时活性。结果表明,癌细胞中的MPC活性较低 当增加细胞溶质中丙酮酸的浓度时,这种低活性状态可以被逆转。这一生物传感器有望成为研究多种类型细胞中碳代谢和生物能学的独特工具。/pp strong Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry/strong/pp  这篇文章描述了一种标记和纯化4-thiouridine(s4U)-containing RNA的化学方法。研究证明,与常用的HPDP-biotin相比,methanethiosulfonate试剂与s4U形成二硫键更有效。这一改进有望用于基于追踪不同的RNA的研究方法,如标记4-thiouridine研究组织特异性转录。/pp  strongSpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers/strong/pp  这项研究中,科学家们开发出一种Split DamID(SpDamID)技术,能够精确地标记“称为转录因子的调控蛋白”是在活细胞细胞核中的哪个部位与DNA相互作用。作者报道称,SpDamID可标记活细胞中的DNA,并且仅在两个标记的蛋白在相同的DNA链上彼此接近相互作用的情况下。/pp  strongA Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation/strong/pp  基因组学的一个基本目标是鉴定表达蛋白的完整集合。在这项研究中,科学家们展示了一个基于核糖体分析和线性回归的实验和分析框架,用于翻译过程的系统识别和量化。在lipopolysaccharide刺激的小鼠树突状细胞和HCMV感染的人成纤维细胞中使用这一方法鉴定出了许多新型蛋白质编码序列,包括micropeptides和已知蛋白的突变体。这一研究揭示了哺乳动物翻译过程意想不到的复杂性。/pp  strongMeasuring In Vivo Mitophagy/strong/pp  线粒体自噬(mitophagy)的变化与衰老及其相关a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"strongspan style="color: rgb(255, 0, 0) "疾病/span/strong/a的关系越来越紧密。然而,现在依然没有一种很便捷的方法可用于分析体内的mitophagy过程。在这项研究中,科学家们描述了一种转基因小鼠模型,这一模型表达了荧光标记Keima的线粒体靶向形式(mitochondrial-targeted form of the fluorescent reporter Keima,mt-Keima)。广泛比较mt-Keima小鼠的原代细胞和组织揭示了mitophagy过程中的许多重要差异。此外,研究人员还通过mt-Keima小鼠分析了mitophagy如何随条件变化。/pp strong Massively Systematic Transcript End Readout, ‘‘MASTER’’: Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields/strong/pp  这项研究中,科学家们开发了一种strong基于下一代测序的技术,称作MASTER/strong。利用这一技术,研究人员确定了大肠杆菌RNA聚合酶在体外和体内的共同核心启动子全部转录起始位点 定义了决定TSS选择、反复启动和转录量的TSS区域的DNA序列 明确了DNA拓扑学和三磷酸核苷(NTP)浓度的影响。这种快速的测序方法,结合先进的生物化学及化学方法有望帮助揭示转录过程中DNA解链的关键机制。/p
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 阿斯巴甜,福兮祸兮?
    你可能听说过一类食品添加剂,叫“甜味剂”,比如最常见的糖精、阿斯巴甜。但你很可能不知道它们的来历,其实是一些不遵守实验室操作规程的粗枝大叶的理科男无意中发现或发明了它们:1879年一个俄国化学家在实验室倒腾完瓶瓶罐罐,没洗手就回家吃饭,结果发现吃啥都是甜的,“糖精”被发现 1965年一个叫施莱特的化学家在合成药物的时候无意中舔了一下手指,大名鼎鼎的甜味剂“阿斯巴甜”问世。  甜味剂的诞生对于食品工业来说是个天大的好消息,因为它们的甜度数百倍于蔗糖,能大大降低成本。对于消费者来说,其实这也是一个好消息,因为它们提供的热量远低于蔗糖,甚至可以忽略不计,所以既可以满足你对甜食的渴望,又可以避免因能量摄入过多导致的肥胖、糖尿病等慢性疾病。  但是相比那些什么都敢舔的“发明家”,普通人显得谨小慎微,因为大家对“化学合成”的物质总是充满了敬畏、怀疑甚至抵触。所以各国的监管者和研究者都在不断的检验它们的安全性,确保不会对消费者的健康造成损害。当然,科学存在不确定性,科学也在不断发展,随着研究证据的积累,科学界对安全性的诠释也会与时俱进,糖精、甜蜜素、阿斯巴甜等诸多“化学合成”物质都曾在安全和不安全之间多次翻转。  争论其实并不是坏事,自从1976年美国FDA批准阿斯巴甜,围绕它的各种流言、阴谋论、利益绑架疑云甚至漫长的法律诉讼从来没有间断过。这通折腾也许是值得的,后来美国FDA把阿斯巴甜描述为“研究最彻底的食品添加剂之一”,其安全性“毋庸置疑”。美国疾控中心也证实,“没有流行病学证据可以验证阿斯巴甜能引起重大伤害或严重风险”。美国FDA为它制定了每公斤体重50毫克的安全摄入量。  当然,作为阿斯巴甜的主要生产者和推动者,美国拥有很多与之相关的专利,所以始终有人怀疑这里面有利益绑架的嫌疑。但世界各国的权威机构几乎都认可了阿斯巴甜的安全性,世界卫生组织下属的食品添加剂联合专家委员会(JECFA)两次对其安全性进行评估。在动物身上做实验证明,每公斤体重4000毫克也未出现不良反应(NOAEL),考虑到各种不确定因素,设定100倍保险系数,最后确立每公斤体重40毫克为安全摄入水平(ADI)。有100多个国家依此批准它作为食品添加剂使用,包括历来以保守、苛刻着称的欧洲。  最近欧盟食品安全局(EFSA)又一次为阿斯巴甜出具了“安全证明”,之所以说“又”,因为他们在2011年的时候就已经给出结论“阿斯巴甜是安全的”。EFSA对现有证据重新进行了梳理和细致研究,最终再次认定,对于普通人群而言,每公斤体重40毫克的摄入水平是非常安全的,这相当于一个60公斤体重的成年人每天吃2.4克,吃一辈子也没事。  阿斯巴甜是蔗糖甜度的200倍,所以2.4克差不多可以提供1斤白糖的甜度。相对而言,每天2.4克阿斯巴甜或1斤白糖,你会选择哪一个呢?以某品牌的无糖饮料为例,355mL罐装饮料约含有阿斯巴甜180毫克,相当于每天要喝13罐,如果换成含糖饮料呢?对于这样的“吃货”,我真的觉得甜味剂是最后的救命稻草了。  对于网络上传说阿斯巴甜的各种“健康危害”,EFSA的评估结果都予以了否认。他们综合大量研究结果认为,阿斯巴甜不会损伤大脑和神经组织,也不会影响人的行为和认知功能,包括儿童。对于孕妇来说,在当前的安全摄入量下,阿斯巴甜不会影响胎儿的发育(有苯丙酮酸尿症的孕妇除外)。基于动物和人体的充分研究证据,EFSA也排除了阿斯巴甜的致癌可能,这与国际癌症研究中心的资料是吻合的,我没有在致癌物列表中看到它的身影。  对于阿斯巴甜安全性的担忧还来自于它的代谢物,它在体内会降解为苯丙氨酸、天冬氨酸和甲醇。甲醇不是有毒的吗?实际上,水果、蔬菜中也会天然含有少量甲醇,比如果汁生产中,果胶水解会生成甲醇,新鲜果汁甲醇含量可以达到每升一百多毫克,酿制的果酒中甲醇可以达到每升数百毫克甚至更多,而一升无糖饮料中的阿斯巴甜最多生成几十毫克甲醇。所以EFSA的总体结论是,阿斯巴甜的降解产物和我们每天正常吃进去的同类物质相比是“毛毛雨”。当然EFSA也指出,“苯丙酮酸尿症”患者应当避免摄入阿斯巴甜,因为苯丙氨酸的缘故。  我知道还会有人心存疑虑,明明有“科学证据”证明阿斯巴甜有害健康,为什么你故意视而不见?就和法国人做的“转基因玉米导致大鼠肿瘤”一样,个别研究的“惊人”结论往往出自不符合科学规范的实验设计、统计方法等,而搅动舆论的恰恰是它们。相对于个别研究,我更信任经过严格筛选的科学证据集合,比如上述的EFSA评估结果以及之前JECFA的评估。  阿斯巴甜的安全性经历了多年的争论,这次欧盟的评估结论或许能让争论暂时告一段落,但围绕“人造”、“化学合成”物质的安全性争论不会走远,人们对“安全”的渴望也会促使科学界不断的深入研究,去探索人类健康的奥秘。对于我个人来说,我是不担心它的安全性的,在超市选择碳酸饮料的时候还会特意选择使用甜味剂的品种。虽然我也知道平衡膳食、多运动才是王道,但还是义无反顾的选择用甜味剂去平衡我的懒。
  • 近红外光谱法预测双氯芬酸钠球包衣的载药量和释放速率
    与高效液相色谱法(HPLC)等更传统的方法相比,这种研究人员所描述的新方法具有在线和实时监测的优点。《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》杂志上的一项新研究探讨了将双氯芬酸钠球体作为给药系统时,双氯芬酸钠的药物载量和包衣过程中的释放率。该研究通过使用近红外(NIR)光谱技术,不仅对药物负载和释放率进行了监测,还对二者进行了实时在线预测。双氯芬酸在屏幕上展示|图片来源:© JoyImage -stock.adobe.com这项研究由13位来自山东大学和山东SMA制药有限公司的研究人员共同合作完成(均位于中国山东)。他们在报告中首先介绍了近年来制药行业如何将过程分析技术(PAT)越来越多地纳入到生产实践中,无论是使用近红外光谱、拉曼光谱还是光学相干断层扫描(OCT),PAT都被誉为药品生产过程中在线实时监测所不可或缺的工具。双氯芬酸钠肠溶片在美国通常以Voltaren的商品名处方,其也以凝胶形式提供。它是一种非甾体抗炎药(NSAID),用于缓解关节炎,提供抗炎、镇痛和解热作用(根据美国专利申请号5,000,000),美国食品药品监督管理局(FDA)。与此同时,山东的研究小组报告称,双氯芬酸钠微球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放速率,流化床包衣广泛用于工业生产。双氯芬酸钠肠溶片是美国常用的处方药,其品牌名称为 Voltaren,也有凝胶剂型提供。根据美国食品和药物管理局(FDA)的规定,这是一种非甾体抗炎药(NSAID),用于缓解关节炎,具有消炎、镇痛和解热作用。与此同时,山东的研究团队报告称,双氯芬酸钠球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放率,且流化床包衣技术已广泛应用于工业生产中。流化床喷涂是将功能聚合物与涂层分散体喷涂在一起,一般会形成均匀的薄膜涂层。它具有传热传质快、气相固相接触面积大、温度梯度小等优点。研究人员说,作为过程中的一环,对药物负载量和释放率(双氯芬酸钠的关键质量属性(CQAs))的测试和分析可确保给药系统的安全性和有效性,但离线方法耗时过长,影响分析测试效率。在这一应用中,使用近红外光谱的实时在线预测模型具有很强的抗干扰性,进而允许将蔗糖球以不同的投料量引入实验。研究人员说,这种设计将证明模型的稳健性。近红外光谱用于在存在干扰物质的情况下需要进行多组分分子振动分析的场合。近红外光谱由在中红外区域中发现的基本分子吸收的泛音和组合带组成。近红外光谱通常由非特异性和分辨差的重叠振动带组成。尽管存在这些明显的光谱限制,但化学计量学数学数据处理的使用可用于校准定量分析的定性。在流化床涂层过程中使用了带有漫反射模块和高温外部探头的微型近红外光谱仪。据说这次实验的结果是成功的,研究小组发现它能够验证模型的分析能力。因此,作者建议在这一领域开展进一步研究,为智能化的现代药物生产过程提供更多科学依据。参考文献(1) Sun, Z. Zhang, K. Lin, B. et al. Real-Time In-Line Prediction of Drug Loading and Release Rate in the Coating Process of Diclofenac Sodium Spheres Based on Near Infrared Spectroscopy. Spectrochim. Acta, Part A 2023, 301, 122952. DOI: 10.1016/j.saa.2023.122952(2) Voltaren® (diclofenac sodium enteric-coated tablets) – Tablets of 75 mg – Rx only – Prescribing Information. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019201s038lbl.pdf (accessed 2023-09-07).(3) Voltaren Arthritis Pain Relief Gel & Dietary Supplements | Voltaren. https://www.voltarengel.com/ (accessed 2023-09-07).
  • 合川一工厂实验室亚硝酸钠爆炸
    工厂实验室亚硝酸钠爆炸  12日18时20分许,合川区工业园区一工厂实验室内一装有亚硝酸钠的容器发生爆炸,并造成泄漏,工厂二楼冒出滚滚白烟,区公安消防支队接到报警后迅速出动,历经近一个半小时成功处置,事故未造成人员伤亡。  18时22分左右,合川区消防支队接到群众报警:合川区工业园区一工厂车间内冒出白烟,请求消防官兵到场处置。支队接到报警后,迅速出动南津街中队3台消防车,调集特勤中队1台抢险救援车赶赴现场,支队羊绍庭政委、李明副支队长、颜太平副主任、罗献红副处长立即遂行出动,深入一线靠前指挥。  中队官兵到场后,发现工厂车间二楼窗口有白烟不断的向外涌出。中队指挥员立即根据现场泄漏情况,安排人员组成疏散警戒小组对现场群众进行疏散,并设置警戒。随后,指挥员又向该工厂的技术人员进一步了解情况。据技术人员介绍,泄漏的物质为亚硝酸钠,发生泄漏的原因是操作人员在进行试验时容器罐突然发生爆炸。当时,室内存放有4桶亚硝酸钠,1桶发生爆炸造成泄漏。中队指挥员得知泄漏危险品为亚硝酸钠后,立即利用化学灾害处置决策系统,进一步查询其理化性质、处置方法及注意事项。随后,指挥员迅速下令组成侦检组、化危品输转组、洗消组,并安排专人对已泄漏的亚硝酸钠用雾状水进行稀释降毒。  经过近一个半小时的稀释、输转,泄漏的亚硝酸钠得到了成功处置,参战官兵及周围群众无一人发生误吸、中毒情况。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 97.8万!南宁市疾病预防控制中心实验室试剂耗材、标准物质采购
    项目概况南宁市疾病预防控制中心实验室试剂耗材、标准物质采购(第二批) 采购项目的潜在供应商应在政采云平台(https://www.zcygov.cn/)获取(下载)获取采购文件,并于2021年12月22日 09点30分(北京时间)前提交响应文件。一、项目基本情况项目编号:NNZC2021-J1-991969-YZLZ(采购计划文号:NNZC[2021]7871号-003......具体内容详见附件招标公告项目名称:南宁市疾病预防控制中心实验室试剂耗材、标准物质采购(第二批)采购方式:竞争性谈判预算金额:97.7921000 万元(人民币)采购需求:预算金额:合计97.7921万元。A 分标 53.3652万元; B 分标 28.9772万元;C 分标15.4497万元;采购需求:A分标:项号采购标的单位数量简要技术需求或者货物要求1单通道病毒核酸检测类试剂盒(国产)(肠道病毒等)盒9具体详见采购文件《第二章 采购需求》2双通道病毒核酸检测类试剂盒(国产)(包括流感病毒、肠道病毒等)盒343新型冠状病毒2019-nCOV核酸定值质控品支354病毒DNA/RNA提取试剂盒(预封装)盒1085无RNase10µl带滤芯长吸头盒106无RNase250µl长吸头(带滤芯)箱870.1ml八连排定量管(带盖)箱28封口袋(透明)包1009封口袋(透明)包10010G1型消毒剂浓度试纸盒101196孔透明PCR板(适用于ABI)箱41296孔PCR板封口膜箱313N95防护口罩只120014VITEK细菌鉴定卡(ANC)盒115VITEK细菌鉴定卡(BCL)盒316API生化鉴定条(链球菌)盒117弯曲菌培养检测试剂(双孔滤膜法)盒418Karmali选择性平板盒419甘露醇卵黄多粘菌素琼脂平板瓶1020Baird-Parker琼脂平板瓶1021PALCAM琼脂基础瓶622PALCAM琼脂冻干配套试剂盒2023CIN-1培养基基础瓶224CIN-1培养基配套试剂盒825改良Y琼脂瓶226含铁牛奶琼脂瓶227甘露醇卵黄多粘菌素琼脂基础MYP瓶428查氏琼脂培养基瓶129改良月桂基硫酸盐胰蛋白胨肉汤基础(MLST)瓶430万古霉素(改良月桂基硫酸盐胰蛋白胨肉汤配套试剂)盒431改良月桂基硫酸盐胰蛋白胨肉汤-万古霉素(mLST-Vm肉汤)盒232脑心浸萃琼脂培养基瓶133脑-心浸萃液态培养基(BHI)瓶234改良克氏双糖铁琼脂瓶235KF链球菌琼脂培养基瓶236胆汁液态培养基瓶237改良马铃薯葡萄糖琼脂培养基(mPDA)瓶238PCFA培养基基础瓶239PCFA培养基配套试剂盒440改良马铃薯葡萄糖琼脂培养基配套试剂盒441葡萄糖肉浸液肉汤瓶142尿素盒343氰化钾对照管(KCN)盒244改良CCD琼脂基础(mCCD)瓶245改良CCD琼脂添加剂盒1046改良Skirrow氏琼脂基础瓶247改良Skirrow琼脂添加剂盒1048L-shaped Cell Spreader(一次性L棒)盒1049无菌均质袋(带滤膜,半张膜)包1050肠道致病性大肠埃希氏菌核酸检测试剂盒盒351猪链球菌2型核酸检测试剂盒盒152唐菖蒲伯克霍尔德氏菌核酸快速检测试剂盒盒153铜绿假单胞菌核酸实时荧光PCR检测试剂盒盒154血液等组织微量布鲁氏菌核酸DNA检测试剂盒盒155大肠埃希菌Escherichia coli NCTC 12923盒156金黄色葡萄球菌Staphylococcus aureus NCTC 10788盒157铜绿假单胞菌Pseudomonas aeruginosa NCTC 12924盒158巴西曲霉Aspergillus brasiliensis NCPF 2275盒159白色假丝酵母Candida albicans NCPF 3179盒160产气荚膜梭菌NCTC 8798盒161大肠埃希菌NCTC 12923盒162金黄色葡萄球菌NCTC 10788盒163蜡样芽孢杆菌NCTC 7464盒164单增李斯特菌NCTC 11994盒165巴西曲霉NCPF 2275盒166白假丝酵母菌NCPF 3179盒16750%卵黄乳液盒2068API加样滴管箱469Inhalation Solution瓶470一次性悬浮液管箱271一次性定量接种环 (10ul)箱672一次性定量接种环 ( 1ul)箱673蓝盖试剂瓶个1074蓝盖试剂瓶个1075蓝盖试剂瓶个1076蓝盖试剂瓶个10 B分标:项号采购标的单位数量简要技术需求或者货物要求1反应杯箱10具体详见采购文件《第二章 采购需求》2一次性无菌培养皿 φ9cm箱1003200ul国产吸头包504甲型肝炎病毒IgM抗体系列血清(液体)标准物质支205戊型肝炎病毒IgM抗体系列血清(液体)标准物质支106Probe Wash 3盒207SS琼脂瓶2508氯化镁孔雀绿肉汤(MM)瓶609带盖离心管包2010定值生化质控血清(水平2)盒111定值生化质控血清(水平3)盒112临床生化校准血清(定标用)盒113CENTAUR 酸/碱试剂 1&2盒114TIP头箱115样本杯箱116CL-50清洁液瓶517Sysmex血液分析仪用稀释液(PK-30L)桶218GPS套装针(URANUS AE180)箱1019全自动生化仪碱性洗液瓶520加厚不锈钢酒精灯盏1021医用垃圾袋扎50 C分标:项号采购标的单位数量简要技术需求或者货物要求1氨氮标准溶液瓶4具体详见采购文件《第二章 采购需求》2氰化物标准物质瓶13六价铬标准瓶14挥发性酚标准瓶15阴离子表面活性剂标准瓶16磷酸瓶67硫化物标准瓶184-氨基安替比林瓶19丙酮瓶610三氯甲烷瓶12115mL样品瓶架个512耐高温塑料试管架个1513移液器吸头包1014移液器吸头(盒装)盒515硅胶管米5016气相色谱柱根117二硫化碳中邻二氯苯支218甲醇中1,4-二氯苯支219二氯甲烷中1,3-丁二烯支220二硫化碳中2-丁酮支221水中甲醇支222水中甜蜜素支523水中氰成分分析标准物质支22420mL顶空瓶套件(带盖)套1025顶空瓶铝钳口盖包1026熔融石英管根527 气相色谱柱根128标样/水质 硒支529标准样品/水中硒支330标样/水质 砷支331标样/水质 砷支232硫代硫酸钠容量分析用标准溶液支233尿中碘的砷铈催化分光光度法配套试剂盒盒334原子荧光光谱仪的硒元素空心阴极灯个135塑料试管架(可拆卸)个1036聚苯乙烯锥形离心管保5037 32种混合金属标准溶液瓶138Bi,Ge,In,Rh,Sc,Tb,Y 标准溶液瓶139水质锰只240水质 铁标准溶液瓶141水质 铜标准溶液瓶142水质 锰标准溶液瓶143水质 锌标准溶液支644水质 铅标准溶液瓶145水质 镉标准溶液瓶146硝酸钯瓶147标准物质/乙腈中孔雀石绿草酸盐支148标准物质/乙腈中隐色孔雀石绿支149标准品/隐色孔雀石绿-D6同位素支150标准品/隐性孔雀石绿-D5同位素支151标准品/氯霉素-D5同位素支152标准物质/甲醇中氟苯尼考/氟苯尼考胺混标支153丙三醇(甘油)瓶154标准物质/尿素瓶155标样/水质pH瓶556标准物质/氯化钾电导率瓶157水中硝酸盐氮/以氮计瓶258标准物质/4种阴离子混标/氟氯硝酸根硫酸根瓶159氢氧化钠标准溶液瓶160盐酸标准溶液瓶161硼酸标准溶液瓶162硫代硫酸钠标准溶液瓶163甲醇中三氯甲烷溶液标准物质支364甲醇中三氯甲烷、四氯化碳支2065顶空瓶铝钳口盖包2066甲醇中四氯化碳溶液标准物质支367甲醇中一氯二溴甲烷支168甲醇中二氯一溴甲烷支169甲醇中1,2-二氯乙烷支170甲醇中二氯甲烷支171甲醇中1,1,1-三氯乙烷支172甲醇中三溴甲烷支173正己烷中七氯支174丙酮中马拉硫磷支175正己烷中α-666支176正己烷中β-666支177正己烷中γ-666支178正己烷中δ-666支179丙酮中六氯苯支180丙酮中乐果支181丙酮中对硫磷支182丙酮中甲基对硫磷支183丙酮中百菌清支184丙酮中毒死蜱支185丙酮中敌敌畏支186正己烷中溴氰菊酯支187正己烷中o,p' -DDT支188正己烷中p,p' -DDT支189正己烷中p,p' -DDE支190正己烷中p,p' -DDD支191甲醇中1,1-二氯乙烯支192甲醇中顺1,2-二氯乙烯支193甲醇中1,2-二氯苯支194甲醇中1,4-二氯苯支195甲醇中三氯乙烯支196甲醇中1,2,3-三氯苯支197甲醇中1,2,4-三氯苯支198甲醇中1,3,5-三氯苯支199甲醇中四氯乙烯支1100甲醇中六氯丁二烯支1101甲醇中邻苯二甲酸二(2-乙基己基)酯支1102甲醇中环氧氯丙烷支1103甲醇中氯乙烯支1104甲醇中氯苯支1105丙酮中甲胺磷支1106甲醇中灭草松支1107甲醇中2,4-滴支1108甲醇中丙烯酰胺支1109容量瓶个100110容量瓶个100111quechers 萃取盐包包2112陶瓷均质子包5113质控样品/食品中亚硫酸盐/以二氧化硫计瓶2114苹果干中二氧化硫瓶2115蜜饯中二氧化硫标准物质袋2116铝制冰盒个2117小号硅胶套盒个2118ABS封口膜切割器+封口膜套装套2119不锈钢尖直头剪刀把18120有机玻璃容量瓶架个2121有机玻璃容量瓶架个2122有机玻璃容量瓶架个5123有机玻璃容量瓶架个5124圆底玻璃小导管(小试管)包3125二硫化碳中环己酮支3126色标/环己酮-GCS支2127质控样品/硅胶管中乙二醇套2128甲醇中乙二醇支2129色标/丙烯醇-GCS支2130甲醇中丙烯醇和异丙醇混标支2131乙醇中叔戊醇支2132质控样品/滤膜中硒3片/套3133富硒大米粉瓶1134鸭肝粉(681#)瓶1135三文鱼冻干粉成分分析标准物质瓶1136香菇粉成分分析标准物质瓶1137猪肝-生物成分分析标准物质瓶1138扇贝-生物成分分析标准物质瓶1139黄芪-生物成分分析标准物质瓶1140绿茶-生物成分分析标准物质瓶1141菠菜-生物成分分析标准物质瓶1142鸡肉-生物成分分析标准物质瓶1143一次性塑料勺包5144一次性塑料勺包5145石墨管盒1146样品杯包5147单层氧化石墨烯 粉末瓶2148壳聚糖瓶1149纳米二氧化硅瓶2150四氧化三钴纳米颗粒瓶115195%乙醇箱10 合同履行期限:接到采购人供货通知后,国内产品5个自然日内按照采购人要求的物品及数量完成供货;境外生产(进口)、且在国内没有现货的产品,在接到通知后,30个自然日内送达。签订合同后3个月内合同全部货物供应完成。如遇特殊情况,必须按采购人要求时间供货。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:□专门面向中小企业采购的项目(供应商应为中小微企业、监狱企业、残疾人福利性单位)√非专门面向中小企业采购的项目3.本项目的特定资格要求:A分标、B分标:必须具备行政主管部门颁发的有效的证件(生产企业须提供《医疗器械生产许可证》;经营企业经营第二类医疗器械的须提供《第二类医疗器械经营备案凭证》,经营第三类医疗器械的须提供《医疗器械经营许可证》) C分标:必须具备易制毒化学品相关经营许可证和危险化学品等相关经营许可。 4. 本项目的特定条件:无5. 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。6. 对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。三、获取采购文件时间:2021年12月16日 至 2021年12月22日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外)地点:政采云平台(https://www.zcygov.cn/)获取(下载)方式:网上下载。本项目不发放纸质采购文件,供应商可自行在“政采云”平台(http://www.zcygov.cn)下载采购文件(操作路径:登录“政采云”平台-项目采购-获取采购文件-找到本项目-点击“申请获取采购文件”),电子响应文件制作需要基于“政采云”平台(http://www.zcygov.cn)获取的采购文件编制。售价:¥0.0 元(人民币)四、响应文件提交截止时间:2021年12月22日 09点30分(北京时间)地点:(1)响应文件提交方式:本项目为南宁市全流程电子化项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子响应,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目采购文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至南宁市“政采云”平台,供应商在“政采云”平台提交电子版响应文件时,请填写参加远程采购活动经办人联系方式,电子响应文件具体操作流程详见本公告附件2。 (2)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应要尽早完成电子交易平台上的CA数字证书办理(申领流程见本公告附件1),并在首次响应文件提交截止时间前提交响应文件。 (3)为确保网上操作合法、有效和安全,请供应商确保在电子响应过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动......具体内容详见附件招标公告五、开启时间:2021年12月22日 09点30分(北京时间)地点:政府采购云平台开标大厅六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1.谈判保证金:本项目不收取谈判保证金2.采购意向公开链接:http://www.ccgp-guangxi.gov.cn/reformColumn/ZcyAnnouncement10016/LcFC4hx+yh1QIPnKcpuW0A==.html3.网上查询地址www.ccgp.gov.cn(中国政府采购网),http://zfcg.gxzf.gov.cn (广西政府采购网)、http://ggzy.nanning.gov.cn(广西南宁市公共资源交易中心网)4. 本项目需要落实的政府采购政策(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。5.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内以书面形式一次性向采购人和采购代理机构提出同一环节的质疑。否则,逾期的质疑采购人及招标代理机构可不予接受。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。6. 若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。附件:1.CA证书申请方式及操作指南下载地址(现场申请方式见网址:http://www.ccgp-guangxi.gov.cn/OfficeService/DownloadArea/8354055.html?utm=a0003.39a112b4.cmp001.d0002.f0464b20ff2a11eb873141bf9e381949(广西政府采购网)/网上申请方式见网址: http://nncz.nanning.gov.cn/(南宁市财政局官网)-下载专区-“广西政采云西部CA办理方式”或“南宁市政采云CA证书办理操作指南”)2.电子投标文件制作与投送教程(在此网址下载:http://nncz.nanning.gov.cn/(南宁市财政局官网)-下载专区)八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:南宁市卫生健康委员会、南宁市疾病预防控制中心     地址:南宁市青秀区长湖路26号        联系方式:郭俊坤0771-5358161      2.采购代理机构信息名 称:云之龙咨询集团有限公司            地 址:南宁市良庆区云英路15号南宁城建集团总部地块项目3号写字楼6楼             联系方式:0771-2618199、2618118 、2611898             3.项目联系方式项目联系人:唐冰、岑昌桦电 话:  0771-2618199、2618118 、2611898
  • Nature子刊:吃什么,决定了我们会不会患上心力衰竭
    最新研究表明,鼓励心肌细胞消耗葡萄糖,而不是脂肪酸可以帮助治疗心力衰竭德州大学西南医学中心的一项新研究表明,改变心脏细胞的能量消耗,可以帮助心脏死亡时心脏再生。这一发现公布在2月20日的《自然新陈代谢》杂志上,这将为治疗各种心肌受损的疾病(包括由病毒,毒素,高血压或心脏病引起的心力衰竭)开辟全新的途径。随后的研究表明,这种再生能力的变化似乎部分是由于破坏细胞线粒体所产生的自由基所致,这种亚细胞结构为细胞提供动力。这些自由基破坏细胞的DNA,这种现象称为DNA损伤,促使它们停止分裂。UT西南医学研究人员Hesham A. Sadek解释说,当前用于心力衰竭的药物治疗包括ACE抑制剂和β受体阻滞剂,这些都集中在试图阻止心肌丢失的恶性循环上,因为劳损进一步损害了剩余的心肌,导致更多的细胞死亡。 目前尚无用于重建心肌的治疗方法。九年前,Sadek和他的同事们发现,如果哺乳动物的心脏在生命的最初几天受到心肌细胞分裂(这些细胞负责心脏的收缩力)的刺激而受损,它们就会再生。但是,这种能力在7天之后就完全丧失了,这是一个突然的转折点,这些细胞的分裂急剧减慢。Sadek解释说,心肌细胞线粒体消耗能量的方式似乎促进了自由基产生的转变。尽管线粒体在子宫内和出生时都依赖葡萄糖,但它们在出生后的几天会转换为脂肪酸,利用母乳中的这些能量密集分子。Sadek和他的同事们想知道,强迫线粒体继续消耗葡萄糖是否会阻碍DNA损伤,进而扩大心脏细胞再生的窗口。为了验证这个想法,研究人员尝试了两个不同的实验。首先,他们研究了幼鼠,它们的母亲经过基因改造产生低脂母乳,并且在断奶后以低脂食物为食。研究人员发现,这些啮齿动物维持心脏再生的能力比正常情况晚关闭了几周,它们的心肌细胞继续表达与细胞分裂相关的基因,其窗口的时间要比那些定期喂母乳的小鼠长得多。但是,这种作用并没有持续到成年期——它们的肝脏最终通过合成饮食中缺少的脂肪来弥补其不足,这大大降低了心脏的再生能力。在第二个实验中,研究人员创造了转基因动物,其中研究人员删除一种称为丙酮酸脱氢酶激酶4(PDK4)的酶,这是心脏细胞线粒体消化脂肪酸所必需的。当研究人员提供一种药物来关闭PDK4的生产时,即使在成年期,这些动物的心肌细胞也开始消耗葡萄糖而不是脂肪酸。在研究人员模拟心脏病发作后,这些动物的心脏功能得到改善,并伴有基因表达标记,表明它们的心肌细胞仍在活跃分裂。Sadek指出,这些发现提供了原理上的证明,即可以通过控制心肌细胞线粒体消耗的能量来重新打开心脏细胞再生的窗口。他说:“最终,可能会开发出能改变心肌细胞饮食的药物,使它们再次分裂,从而逆转心力衰竭,这代表真正的治愈方法。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制