当前位置: 仪器信息网 > 行业主题 > >

巴拉圭茶

仪器信息网巴拉圭茶专题为您提供2024年最新巴拉圭茶价格报价、厂家品牌的相关信息, 包括巴拉圭茶参数、型号等,不管是国产,还是进口品牌的巴拉圭茶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合巴拉圭茶相关的耗材配件、试剂标物,还有巴拉圭茶相关的最新资讯、资料,以及巴拉圭茶相关的解决方案。

巴拉圭茶相关的资讯

  • 关于巴拉圭冬青叶(马黛茶叶)等9种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对巴拉圭冬青叶(马黛茶叶)等3种物质申请新食品原料、食用单宁等2种物质申请食品添加剂新品种、N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]等4种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年11月23日巴拉圭冬青叶(马黛茶叶)等3种新食品原料.pdf一、新食品原料解读材料(一)巴拉圭冬青叶(马黛茶叶)巴拉圭冬青叶(马黛茶叶)是以冬青科冬青属植物巴拉圭冬青(Ilex paraguariensis A.St.-Hil.)的叶为原料,经采摘、烘烤、切碎、干燥等工艺制成。主要营养成分为碳水化合物、粗纤维、蛋白质、脂肪、维生素、矿物质和氨基酸等,且含有少量的多酚、黄酮和皂苷类等物质。巴拉圭冬青叶(马黛茶叶)在美国被作为“一般认为安全的物质(GRAS)”管理,欧盟批准其作为新食品原料使用,加拿大批准其作为天然健康食品使用,巴西批准巴拉圭冬青的叶和茎可用于制茶。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对巴拉圭冬青叶(马黛茶叶)的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于巴拉圭冬青叶(马黛茶叶)在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。(二)酵母蛋白酵母蛋白是以酿酒酵母(Saccharomyces Cerevisiae)为菌种,经培养、发酵、离心后收集获得菌体原料,经去除核酸、离心、酶解、提取、纯化、分离、灭菌、干燥等工艺制成。主要营养成分为蛋白质(≥70.0g/100g)、脂肪、膳食纤维和水分等。目前,美国已批准酿酒酵母蛋白作为营养补充剂添加到食品中,欧盟已批准酿酒酵母蛋白作为新食品原料,均未做食用量限定。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对酵母蛋白的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于酵母蛋白在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)儿茶素儿茶素是以茶叶为原料,经醇提取、浓缩、分离、萃取、酶解、浓缩、干燥等工艺制成。其中主要成分为儿茶素类,包括表儿茶素(EC)、表没食子儿茶素(EGC)、水合表儿茶素没食子酸酯(ECGH2O)、水合表没食子儿茶素没食子酸酯(EGCGH2O)、没食子儿茶素没食子酸酯(GCG)、儿茶素(dl-C),儿茶素类总含量(以干基计)≥90 g/100g,其中EGCG含量≥50 g/100g。原卫生部2010年第17号公告批准表没食子儿茶素没食子酸酯(EGCG)为新资源食品,每日推荐食用量为≤300毫克/天(以EGCG计)。绿茶儿茶素已被日本批准为特定保健食品用功能配料。本产品推荐食用量为≤300毫克/天(以儿茶素类总量计)(即儿茶素类总含量为100 g/100g的原料的推荐食用量为≤300毫克/天,含量为90-100 g/100g的按照实际含量折算)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对儿茶素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于儿茶素在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)食用单宁1.背景资料。食用单宁作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于黄酒、啤酒、葡萄酒和配制酒的加工工艺,油脂脱色工艺。本次申请扩大使用范围用于制糖工艺。日本厚生劳动省允许其作为加工助剂用于各类食品。2.工艺必要性。该物质作为食品工业用加工助剂用于制糖工艺,提高澄清效果。其质量规格执行《食品安全国家标准食品添加剂食用单宁》(GB 1886.303)。(二)乙酸乙酯1.背景资料。乙酸乙酯作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于配制酒的加工工艺、酵母抽提物的加工工艺。本次申请扩大使用范围用于茶叶提取物的加工工艺。欧盟委员会、澳大利亚和新西兰食品标准局允许其作为提取溶剂用于各类食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-25mg/kgbw。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶提取物的加工工艺,用于提取茶多酚和茶氨酸。其质量规格执行《食品安全国家标准食品添加剂乙酸乙酯》(GB 1886.190)。三、食品相关产品新品种解读材料(一)N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]1.背景资料。该物质在常温常压下为白色固体粉末。《食品安全国家标准食品接触材料及制品用添加剂使用标准》(GB 9685)已批准其作为添加剂用于橡胶和聚乙烯(PE)、聚丙烯(PP)等多种塑料材料及制品中。本次申请将其使用范围扩大至聚氨酯(PU)传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(二)2,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯 四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯1.背景资料。该物质在常温常压下为白色固体粉末。GB 9685批准其作为添加剂用于橡胶、涂料及涂层、黏合剂以及PE、PP等多种塑料材料及制品中。本次申请将其使用范围扩大至PU传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(三)咖啡渣1.背景资料。该物质为烘焙咖啡豆经水萃取咖啡后的剩余物料,在常温下为褐色(棕色)至深咖啡色的粉末状细颗粒,不溶于水。葵花籽壳和木质纤维等类似材料已被美国食品药品管理局和欧盟委员会允许用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为填充料,用于聚乳酸(PLA)和聚丁二酸丁二醇酯(PBS)塑料材料及制品中,可改善材料的综合力学性能、成型加工性能和产品的使用性能。(四)甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物1.背景资料。该物质不溶于水,几乎不溶于正辛醇等有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,可用于水性涂料,涂膜附着力强,耐腐蚀性较好。“三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布17条征求意见,共涉及62种化合物。(2023年“三新食品”公示名单汇总!)点击了解更多“三新食品”》》》关于“三新食品”目录及适用的食品安全标准的公告及解读》》》国家卫生健康委员会关于桃胶等15种“三新食品”的公告》》》解读《关于蓝莓花色苷等14种“三新食品”的公告》》》》关于文冠果种仁等8种“三新食品”的公告与解读》》》关于蓝莓花色苷等14种“三新食品”的公告
  • 农业部发放三个转基因大豆进口安全证书
    日前,根据国家农业转基因生物安全委员会评审结果,农业部批准发放了巴斯夫农化有限公司申请的抗除草剂大豆CV127、孟山都远东有限公司申请的抗虫大豆MON87701和抗虫耐除草剂大豆MON87701× MON89788三个可进口用作加工原料的农业转基因生物安全证书。  据了解,抗除草剂大豆CV127已在美国、加拿大、日本、韩国、澳大利亚、新西兰、菲律宾、墨西哥、哥伦比亚、俄罗斯、南非、巴西、阿根廷等国家批准用于商业化种植或食用。抗虫大豆MON87701已在美国、加拿大、日本、欧盟、墨西哥等国家批准用于商业化种植或食用。抗虫耐除草剂大豆MON87701× MON89788已在欧盟、韩国、墨西哥、阿根廷、巴西、巴拉圭等国家批准用于商业化种植或食用。
  • 农业部官员称民众质疑转基因食品源于无知
    农业部农村经济研究中心副主任邓志喜(资料图)  日前,根据中国农业转基因生物安全委员会评审结果,农业部批准发放了3个进口用作加工原料的农业转基因生物安全证书。时值2013年全国食品安全宣传周,农业部农村经济研究中心副主任邓志喜在接受国际在线记者独家专访谈及于此时表示,农业部此番批准进口三种转基因大豆是完全按照中国食品安全评价程序进行评估、审批的,评价结果安全 中国并非唯一食用国,目前公众的质疑声主要是源于对于转基因食品系统的无知所造成的。  据悉,此次获批的转基因大豆品种为巴斯夫农化有限公司申请的抗除草剂大豆CV127、孟山都远东有限公司申请的抗虫大豆MON87701和抗虫耐除草剂大豆MON87701× MON89788三个可进口用作加工原料的农业转基因生物安全证书,均为转基因大豆新品种,上述三家公司均为跨国公司。  此番农业部批准三种转基因大豆入华的速度之迅速,引发外界对于此次&ldquo 闪批&rdquo 的种种猜测,不少民众也对食用转基因大豆的安全性产生了疑虑。时值2013年全国食品安全宣传周,农业部农村经济研究中心副主任邓志喜在接受国际在线记者独家专访时表示,目前公众对进口转基因食品原料的质疑,主要源于对于其的无知,缺乏对转基因食品系统科学的普及 他说,公众并不了解转基因食品,仅凭感觉认定食用对身体有害,&ldquo 实际上不是这么回事&rdquo 。  邓志喜解释称,此次批准进口的三种转基因大豆主要是作为食用油加工原料使用的。在中国食用油的比重当中,大豆油占很大的比例,而其中三分之二以上的原料都选自进口的美国大豆,由于美国大豆的出油率最高 美国人也同样食用转基因大豆炸出来的油,试验证明并不会对人体健康产生副作用。  邓志喜对本网记者表示,这三种进口转基因大豆食品原料是完全按照中国食品安全评价程序进行评估、审批的,评价结果安全,所以农业部才同意引进。&ldquo 目前,60多个国家都在食用,中国并不是唯一食用国。&rdquo   根据中国《农业转基因生物安全管理条例》,输出国家或地区已经允许作为相应用途并投放市场,是在我国申请进口用作加工原料的转基因生物安全证书的前提条件之一。据国际在线记者了解,抗除草剂大豆CV127已在美国、加拿大、日本、韩国、澳大利亚、新西兰等国家批准用于商业化种植或食用。抗虫大豆MON87701已在美国、加拿大、日本、欧盟、墨西哥等国家批准用于商业化种植或食用。抗虫耐除草剂大豆MON87701× MON89788已在欧盟、韩国、墨西哥、阿根廷、巴西、巴拉圭等国家批准用于商业化种植或食用。
  • 全球食品安全指数报告发布 中国排名中上游
    新华舆情北京7月11日电 历尽风波的中国食品到底安全程度几何?恐怕在不少国人心目中,国产食品早已贴上了质量没有保障、安全问题严重的标签。其实换个角度再看,中国的食品安全水平远没有想象得不堪,甚至领先于其经济发展水平所处的阶段。  英国经济学人智库(Economist Intelligence Unit,简称EIU)近日发布《全球食品安全指数报告》(Global Food Security Index),该指数包括食品价格承受力、食品供应能力、质量安全保障能力等3方面27个定性和定量指标。报告依据世界卫生组织、联合国粮农组织、世界银行等权威机构的官方数据,通过动态基准模型综合评估107个国家的食品安全现状,并给出总排名和分类排名。  结果显示,发达国家继续占据排名的前25%,美国、挪威、法国分列前三位。中国在107个国家中位居42,其中:食品价格承受力排名47,食品供应能力排名41,质量安全保障能力排名43。  中国食品安全水平处于世界中上游、发展中国家前列。  报告将中国列入良好表现(Good Performance)一档,并将质量安全保障能力归为中国得分较高的7个指标之一予以特别提示。而另一发展中人口大国印度排名则在70位,远落后于中国。  食品安全水平与发展阶段密切相关。  从附表中不难看出,指数排名与各国人均GDP构成非常强烈的正相关关系。相对于人均GDP第52位的排名,中国是为数不多的食品安全水平大幅超越其社会富裕程度的国家之一。此外,报告指出,希腊成为排名下降最多的发达国家(下降6位),主要原因就是受累于经济不景气(GDP下跌20%),这也从另一个侧面说明了食品安全保障脱离不开经济基础。  个别事件不足以影响总体质量安全保障水平。  美国、欧洲部分国家在过去一年中曾发生死亡数十人的恶性食品安全事件,甚至引发严重的贸易纠纷,但对衡量一国食品安全长期综合保障能力并不构成实质影响。说明食品安全个别事件虽然引起的国际影响和舆论风波很大,但最终并不能、也不应掩盖食品安全保障的真实水平。  城市化提高新兴经济体的食品安全水平。  报告特别指出,不少新兴经济体的食品安全保障水平正在稳步提升,其中一个重要原因就是快速发展的城市建设,城市化促使政府加强保障工作以满足城市扩张带来的需求变化,同时相对集中的人口也带来食品供给模式的改变。中国目前正在推动形成城镇化与农业现代化相互协调的发展格局,这也有望成为提升中国食品安全水平跻身世界前列的重要契机。  注1:《经济学人》(Economist)杂志创办于1843年,隶属于英国伦敦经济学人集团,其办刊宗旨为“参与一场推动前进的智慧与阻碍我们进步的胆怯无知之间的较量”,这句话被印在每一期《经济学人》杂志的目录页上。  EIU是经济学人集团的全资子公司。  注2:关于《全球食品安全指数报告》详情,请查询报告官方网站:http://foodsecurityindex.eiu.com/  附表:总排名人均GDP排名国家总排名人均GDP排名国家13美国5545多米尼加21挪威5661埃及315法国5754厄瓜多尔46奥地利5840哈萨克斯坦=52瑞士5966摩洛哥=55荷兰=6064斯里兰卡712比利时=6072越南88加拿大6271洪都拉斯921新西兰6360萨尔瓦多1011丹麦6469菲律宾=119爱尔兰6565玻利维亚=1113德国6667印度尼西亚1314芬兰6775加纳1410瑞典=6856阿尔及利亚157澳大利亚=6858危地马拉164新加坡7070印度1720以色列7142阿塞拜疆1816日本7274尼加拉瓜1919西班牙7373乌兹别克斯坦2017英国7476缅甸2125葡萄牙7577巴基斯坦2218意大利7684科特迪瓦2324捷克7792乌干达2422韩国7881喀麦隆2526希腊7968叙利亚2631智利8088肯尼亚2728波兰8186孟加拉国2829匈牙利8283塞内加尔2946巴西8382塔吉克斯坦3033墨西哥8494尼泊尔3123沙特阿拉伯8589贝宁3237乌拉圭8684尼日利亚3344罗马尼亚8799几内亚3435马来西亚8859安哥拉3532阿根廷8980柬埔寨3648哥斯达黎加9097埃塞俄比亚3727斯洛伐克91105尼日尔3839土耳其9294布基纳法索3947南非=9378也门4034俄罗斯=93100莫桑比克4141委内瑞拉9592坦桑尼亚4252中国=96103马达加斯加4336博茨瓦纳=9694卢旺达4430巴拿马9897塞拉利昂4552泰国99103马拉维4638白俄罗斯10089赞比亚=4757乌克兰10187海地=4755突尼斯102100马里4949塞尔维亚103106布隆迪5050秘鲁10479苏丹5143保加利亚105100多哥5251哥伦比亚10691乍得5362巴拉圭107107刚果5463约旦
  • 案例解读:警惕进口板材存在二次污染风险
    勒流港毗邻拥有“中国家具材料之都”“中国家具制造重镇”称号的顺德龙江镇,是顺德主要的木材进口口岸之一。据统计,经勒流口岸进口的木材数量呈逐年增长态势,2010年勒流口岸进口木材2538批,达30.8万立方米。比2009年增长10%,比2008年增长近50%。进口的木材板材主要来自东南亚的泰国、马来西亚、印度尼西亚、缅甸以及南美洲的秘鲁、巴西、玻利维亚、巴拉圭等国,进口品种有用于家具制造和家居装饰的橡胶木方和用于制造木地板的二翅豆木方、油楠木木方、香脂木豆木方、重蚁木木方等硬木类木方。 虽然说很多木材板材产品在加工过程中经过脱脂、蒸煮、烘烤及其他防虫、防霉等防疫处理措施,本身携带昆虫的风险较小,但是近期在口岸查验过程中,检验检疫人员还是相继从进口的木材板材中发现多种林木害虫,其中还包括检疫性有害生物,因此进口木材板材携带害虫问题必须引起高度重视。 案例回放 ■ 2011年4月,顺德检验检疫局勒流办事处的检疫人员在对一批进口橡胶木方进行现场检疫时,发现该批原木表面有大小不一的虫孔危害状,检疫人员立刻进行现场剖木,发现害虫若干,并在集装箱底部发现有少量蚂蚁,虫样经实验室鉴定为检疫性有害生物——长小蠹(非中国种)和入侵红火蚁。 ■ 2011年4月,顺德检验检疫局勒流办事处的检疫人员在对一批进口油楠木板材进行现场检疫时,发现该批油楠木板材表面有些虫孔,并伴有少量虫粉,经解剖发现该板材内部被虫蛀的千疮百孔,截获大量的鞘翅目幼虫和成虫,经实验室鉴定为被称为木材“克星”的检疫性有害生物——双钩异翅长蠹。 ■ 2011年5月,顺德检验检疫局勒流办事处的检疫人员在对一批进口的香脂木豆木方进行现场检疫时,发现该货物的木质包装表面有少量虫粉。检疫人员立刻进行现场剖木,发现活虫若干,虫样经送实验室鉴定为长蠹和粉蠹。 案情分析 为防止有害生物传入,顺德检验检疫局工作人员严格按照有关要求对上述带有疫情的进口木材板材进行了有效的检疫除害处理。据了解,从顺德勒流口岸入境的木材板材都持有官方出具的植物检疫证书,表明在入境前均作了检疫除害处理,何以相继截获多种害虫?这种情况引起检疫部门的高度重视,经专业人员分折出现上述情况的原因可能有以下四点: 一是部分木材板材虽然入境前做了检疫除害处理,但是由于木材板材存放的时间较长或者船期较长,导致二次污染。如案例1中发现的长小蠹(非中国种)。 二是可能与木材板材检疫除害处理时投药仅是表层投药或者是投药量明显不足,造成不能完全杀死板材内部的虫卵而导致害虫再次危害等相关。如案例2中发现的双钩异翅长蠹。 三是木材板材虽然本身经过了有效的检疫除害处理,但是对于其包装材料则使用了一些劣质的木质包装而导致害虫危害。如案例3中发现的长蠹和粉蠹。 四是木材板材虽然经过了有效的检疫除害处理,但是其在装货的过程中未做好检疫防控,导致其他有害生物被携带入境。如案例1中发现的入侵红火蚁。 相关建议 口岸检疫部门不能因为木材板材产品在加工过程中经过脱脂、蒸煮、烘烤及其他防虫、防霉等防疫处理措施,其检疫风险较小而麻痹大意。口岸检疫部门要做好以下几点,才能有效防止有害生物传入我国,保护我国的农林业生产安全: 认真做好进境木材板材的证书核查工作。所有进口木材须附有输出国家或地区官方检疫部门出具的植物检疫证书。无证书的不准入境。 切实加强进境木材的口岸检疫查验工作。必须严格按照国家质检总局关于加强进口原木和木片检疫监管工作的通知和相关要求,做好口岸的检疫查验工作。 加强检疫除害处理工作。查验过程中发现有害生物的,必须做有效的除害处理;无法做除害处理的,作退运处理。各口岸检疫除害处理部门要加强检疫除害技术和方法的研究,确保检疫处理有效和监管到位。 开展木材有害生物的监测和风险分析,做到突出口岸查验重点,防范于未然。 发现有害生物、有毒有害物质或违规情况的,应及时按有关规定和程序报送上级部门。
  • HORIBA|Charles Mann奖获得者:推动拉曼光谱技术与应用的科学,他有自己的节奏
    中文编辑:Lucy安德鲁惠特利Andrew Whitley2018年Charles Mann奖获得者安德鲁惠特利(Andrew Whitley),作为HORIBA 科学仪器事业部美国新泽西销售及业务拓展副总裁,过去十五年间,一直参与拉曼主营产品的营销和开发工作(包括LabRAM IR显微拉曼/ 红外光谱仪、LabRAM ARAMIS全自动显微共焦拉曼光谱仪、LabRAM HR NANO 纳米拉曼光谱联用系统、XploRA Plus显微共焦拉曼光谱仪和LabRAM Evolution高分辨显微共焦拉曼光谱仪。近,MacroRAM和AnyWhereRaman台式拉曼光谱仪在2018年初发布)。此外他还参与吸收 - 透射激励发射矩阵(A-TEEM)新荧光技术的开发和应用。近HORIBA收购了位于加利福尼亚州诺瓦托的AIST-NT Inc.(一家技术领先的原子力显微镜公司),让原子力显微镜(AFM)和纳米光谱技术在应用和产品开发方面都取得了喜人的成果。当然所有的成功都不是一蹴而就的,人生的路没有正确答案,安德鲁有自己的节奏。安德鲁在英国出生并接受教育,他的学历包括杜伦大学化学专业理学士(荣誉学位)及硕士、博士学位,博士论文题目为《模型润滑剂2-乙基己基苯甲酸酯的振动光谱研究》,这项研究后来被应用于推动高性能发动机润滑油的设计。然而也正是这项研究,改变了他一生的科研工作视角。当他从化学专业本科毕业时,参与了英国壳牌研究公司赞助的有关润滑油粘度性能的研究课题,在导师杰克雅伍德(Jack Yarwood)教授带领下,他有机会从全局角度参与分析科学问题的全过程,并攻克了一系列难题,比如把复杂的光谱和大量数据结果转化为终的问题解决方案等。这个过程让他深深领悟到,研究工作真正应该关注的是反向需求,也就是从终用户角度看,技术如何能对用户的研究起到实际帮助。如果仪器无法做到简单方便地给出有意义和可靠的结果,那用户以及其所在行业就不太可能采用,这项技术也无法成为主流技术。这成为安德鲁一直秉承的理念和观点。(英国壳牌,图片源自网络)在20世纪90年代中期,硬盘存储行业的需求发展非常快,用户都希望存储设备可以在体积上越来越小,容量上越来越大。为了证明拉曼光谱仪不但可以改进产品性能,而且可以做质量控制,安德鲁的团队经历了长达五年的辛勤工作,长期穿着洁净室“兔子”防护服,在硬盘存储客户那里与客户一起不断的探索解决方法,终证明:光谱仪可以用来了解和监测碳涂层的摩擦学性能。因为要了解和监测摩擦学性能是需要通过拉曼来了解分子结构的,包括一定程度的氢化作用和特定条件下的氮化作用。它终提升了整个硬盘存储行业的技术水平。而这项应用也成为拉曼光谱仪实现大批量工业应用的一个典型案例。现在,拉曼光谱仪技术越来越成熟,已经可以提供在线拉曼系统用来实时监测设备微型读写头上的DLC膜厚度了。(硬盘,图片源自网络)与终日埋首实验室的专家不同,安德鲁非常热衷演讲和撰写文章。他每年都会在多个科学会议上发表演讲,还撰写并合著了许多论文、文章和书籍,阐述拉曼光谱技术和其他光谱技术在学术界和工业界的研究和应用。他是SciX(FACSS)、Pittcon大会、EAS以及在美国和欧洲举办的众多大会和会议的定期参与者、发言人和会议组织者。安德鲁认为向不同的客户群普及光谱学知识并提升技术认知,既可以拓展市场又能确保用户了解怎样充分地利用好技术。他曾亲身感受到,对于研究人员或企业研发质检人员,如果他们连光谱仪器如何工作的基础知识都不了解,就不可能对光谱技术产生兴趣,也更加谈不上把技术应用得更加出色。此外,操作人员在向上级申请采购时,一般需要解释采购设备的原因,这个环节涉及大量的技术和理论知识。另外安德鲁所在的HORIBA公司的光谱仪器都是业界的高端产品,通常不是市场上便宜的仪器,更需要客户深刻理解仪器的真正价值。通过演讲和发表文章,安德鲁让这个过程变得更简单、更顺畅。自1995年移居美国以来,安德鲁一直是应用光谱学协会(SAS)和SciX(FACSS)的活跃成员。安德鲁多年来组织和协助组织了SciX大会的多次科学会议,当然包括许多拉曼会议,还有AFM/拉曼、纳米光谱学、辉光放电光谱(GD-OES)和荧光会议。自2017年底以来,安德鲁一直担任SAS的市场主席,负责会员、宣传和网络(包括社交媒体)委员会 – 总之,与SAS会员相关的所有联系事宜。这些活动,不仅让安德鲁有更多机会与尊重的科学家们聚在一起工作和发表文章,还获得了很多意外合作的机会。这让安德鲁非常热爱现在的工作。同时,通过RamanFest和SciX会议,安德鲁发现很多并不熟悉光谱技术的参会者,会慢慢成为光谱学领域工作者,并终成为非常成功的专家,这让他非常愉快。(SciX会议现场,图片来源https://www.scixconference.org/)(RamanFest 2018,日本东京,图片来源http://ramanfest.org/ramanfest2018.htm)(RamanFest 2015,中国厦门)此外,安德鲁还经常向更广泛的科学界与光谱仪潜在市场用户分享光谱学知识,目的是搭建双向沟通桥梁,为现有光谱技术寻找可大规模应用的机会,为共同发展创造良机。这也是他们在磁盘驱动器、半导体和制药行业成功应用的经验。 随着利用光谱技术的工业应用不断增加,拥有更多经过培训的光谱技术工作者和获得经认证的光谱知识培训成为工业界的基本需求。然而目前,除获得大学学位以外,还没有经过认证的工业光谱培训项目。安德鲁希望SAS能够与一些供应商以及主要光谱技术领军企业合作,开发这种急需的认证培训。安德鲁所在的HORIBA公司已经推出了继续光谱学教育和支持计划,SAS目前也正在研究一些方法来帮助业界满足这种需求。(SAS, The Society for Applied Spectroscopy,图片来源:https://www.s-a-s.org/)此外,安德鲁认为选择光谱技术领域作为职业发展方向让他感到骄傲,他鼓励更多的朋友将光谱技术作为事业并推动其发展,因为在他看来,这个行业充满着有趣的挑战和机会。安德鲁1995年移居美国,1999年搬到了新泽西,工作繁忙,但他依然有美妙的生活。安德鲁与妻子凯瑟琳有四个孩子,工作之余,他喜欢与家人和朋友在一起,享受海边的夏日、现场音乐会和啤酒。安德鲁是诺丁汉森林橄榄球队和旧金山巨人棒球队的支持者,经常在业余时间参加比赛。他还喜欢打保龄球、听音乐和旅行。毕竟,他也是地道的英国人。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择。
  • 美喷气推进实验室探索用太空技术治疗乳腺癌
    p  数十年来,美国国家航空航天局(NASA)喷气推进实验室(JPL)可谓是航天探索领域的“急先锋”,他们派遣了多种探测器进入太阳系,为人类了解宇宙乃至自身立下汗马功劳。/pp  据《科学美国人》网站18日报道,目前JPL的科学家们正着力探索另外一个神秘的领域:人类的乳腺。他们希望,自己研制的太空探索技术能应用于乳腺癌分析检测,为人类再立新功。/pp  行星探测技术也能“接地气”/pp  JPL的首要目标是设计并制造机器探测器,用于在火星寻找水源,或钻入木星厚厚的云层之中进行探测。但最近几年,这里的顶级科学家意识到,他们强大的探索技术,或许也能更“接地气”地帮助解决地球上令人望而生畏的医学难题,如对付乳腺癌等。/pp  JPL资深科学家利昂· 阿尔卡莱说:“JPL拥有很多‘可上九天观星’的技术,这些技术在医学和健康领域也大有用武之地。”阿尔卡莱曾参与过数项太空探索研究,现在是JPL战略规划办公室的负责人。/pp  首个医学突破来自乳腺癌/pp  资深乳腺癌诊疗医生苏珊· 莱福目前正尝试理解乳腺导管内的微生物菌群。乳腺导管是位于皮肤下的管道,能将乳汁输送到乳头。由于几乎所有乳腺癌均肇始于导管内,因此,莱福一直希望为导管“画像”,弄清导管内是否隐藏着一些在诱发乳腺癌中起重要作用的病原体。/pp  但她在导管内发现了多于预期的微生物,研究遇到了困难。莱福解释称,用来清洁参与实验志愿者皮肤的防腐剂上沾满了死去的微生物,这些微生物不会给志愿者带来危险,但使分析变得很困难。莱福说:“很难弄清哪些是重要的细菌,哪些只是干扰和污染物。”/pp  机缘凑巧。专注于研究行星保护的科学家巴拉圭· 瓦夏帕彦在加州大学伯克利分校读博士后期间,一直研究母亲如何同婴儿分享微生物菌群。尽管很多生物学家们一直假定乳房和导管是无菌环境,但瓦夏帕彦认为,情况可能并非如此。/pp  他说:“当我看到莱福的研究时,我觉得很有趣。乳房中有很多微生物,我们研制出了多种工具来分析微生物的浓度。这些工具极为灵敏,因为它们必须确保NASA的探测器尽可能少地携带地球上的细菌,以免污染遥远的天体,这些工具可以帮助莱福分析乳房导管中的微生物。”/pp  他们携手对23位健康女性和25位得过乳腺癌女性的乳房导管液进行了分析,并用高级测序技术来确定其中的微生物群。结果表明,乳腺导管液的确拥有与众不同的微生物菌群,而且这两种女性乳腺导管液内的微生物群落大相径庭。/pp  科学家们估计,这可能意味着,他们在健康女性身上发现的一种微生物,或许是保护妇女不患乳腺癌的“保护神” 但也有可能是辐射和化疗清除了乳腺癌患者体内的这种微生物。/pp  不管怎样,这种差异让莱福和加州大学洛杉矶分校的德尔菲娜· 李打算进行深入的后续研究。梅奥诊所的微生物菌群研究人员尼克· 奇亚也指出,越来越多的证据表明,微生物菌群的变化,的确在乳腺癌发育和扩散方面起重要作用,改变微生物菌群甚至有望成为一种新疗法。/pp  更多太空技术大显身手/pp  莱福所在的莱福基金一直尝试用常规3D医疗超声波来绘制正在哺乳的健康女性乳腺导管图像,但做到这一点很难。于是,又到了JPL“大显身手”的时候,因为JPL的行星科学家们的第二大任务,正是获得其他天体复杂地形的详细雷达图像。莱福决定,利用JPL的研究来修改乳腺导管系统图谱,她希望,新图谱能使手术专家更精确地进行乳腺癌手术。/pp  鉴于JPL科学家对医学领域的兴趣,阿尔卡莱创办了医疗工程学论坛,其主要宗旨是,汇聚愿意从事医学研究的科学家和工程师并为他们提供少量种子资金。/pp  这一机构目前仍处于发展初期,但JPL的科学家已开展了多项合作,包括同神经外科医生联手,研制更智能的材料用于脊柱手术,以及开发更好的成像技术等。阿尔卡莱表示,JPL拥有“为星系拍照的超精细探测器,这些探测器当然也可以为人脑绘图和用于癌症手术。” /p
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 赛恩思HCS-801型碳硫仪服务巴彦淖尔聚光硅业
    近日,公司售后工程师完成了巴彦淖尔聚光硅业采购的赛恩思HCS-801型高频红外碳硫仪的安装调试工作。巴彦淖尔聚光硅业有限公司位于巴彦淖尔市乌拉特后旗青山工业园区,是东方日升新能源股份有限公司旗下的一家子公司,专业从事单、多晶硅及下游产品的研发、生产与销售。这次客户测试的样品主要是硅。工业硅广泛应用于光伏、有机硅、合金等行业,其品质直接影响下游成品的质量。除了测定铁、铝、钙等元素以外,碳、硫、磷等杂质元素也是关系产品品质的关键。赛恩思HCS-801型高频红外碳硫仪采用红外吸收法,能够快速方便的测定样品硅中的碳、硫含量。其具有检出限低、操作简便、分析速度快等特点,能有效提高企业的生产效率。我公司售后人员在客户现场进行了设备安装调试,并且对操作人员进行了操作培训,保证客户能够顺利开展工作。四川赛恩思仪器专注碳硫分析三十余年,现已开发有HCS系列高频红外碳硫分析仪,此外为满足客户检测需求,同时生产销售OES系列直读光谱仪、ONH系列氧氮氢分析仪。
  • HORIBA | “嫦娥五号”月球样品入驻实验室,HORIBA拉曼助力月壤研究
    编辑| Rita润色| 孙平校阅| Lucy、Joanna12月19日,嫦娥五号采集的月球样品正式交接国家天文台,我国首次地外天体样品储存、分析和研究工作也将在这里拉开序幕。作为检测仪器之一,HORIBA拉曼光谱仪有幸参与其中,助力科研人员开展月球样品与科学数据的应用研究。图1 月球土壤现场交接(图片来源:新华网)01以月壤为支点,撬动宇宙发展奥秘,开发月球资源据悉,经初步测量,嫦娥五号任务采集的月壤约1731克。那么,经过千辛万苦取得的月壤究竟能用来干什么呢?中科院专家表示,月壤是从月球固体岩石圈到太阳系空间的过渡带,包含着相关区域的大量信息。对月壤的研究不仅涉及月球本身,还包含太阳系空间物质和能量的重要信息。其中包括太阳系早期演化的历史记录、月岩和月壤的宇宙线暴露与辐照历史、月球中挥发分的脱气历史、太阳风的组成、太阳表层的成分特征、小天体和微陨石撞击月球的历史记录等。图2 研究人员为月球样本称重(图片来源:新华网)除了探索月球历史之外,研究月球岩石还对开发月球资源意义重大。据全国空间探测技术首席科学传播专家介绍,研究月球样品的重要成果之一,就是发现其中含有氦-3。氦-3是世界公认的高效、清洁、安全的核聚变发电燃料。据计算,100吨氦-3所能创造的能源,相当于全世界一年消耗的能源总量。氦-3在地球上的蕴藏量极少,地球已知且易取用的只有500公斤左右,而在月球浅层的氦-3含量却多达上百万吨,足够解决人类的能源之忧。02现代科技助力科学研究,HORIBA拉曼成开路先锋为迎接月壤的归来,国家天文台已建成国内首个“月球样品实验室”,装备了最先进的仪器设备。目前已亮相的就包括HORIBA 拉曼光谱仪HR Evolution,它有幸成为月壤研究的开路先锋。拉曼光谱作为一种无损、非破坏的分析技术, 可以有效提供样品化学结构、结晶度、晶型等信息,这对于月壤这样稀有而珍贵的矿物样品来说至关重要。一般而言,矿物成分复杂未知,HR Evolution的高分辨有助于更加精准鉴定矿物成分及晶型,且真共焦三维滤光技术可有效去除非样品信号,提高灵敏度,为探测高复杂未知背景下的目标拉曼信号提供保障。另外,SWIFT 快速成像技术能够快速获得矿物整体成分分布信息,可以全面深入地研究矿物地质样品。图3 月球样品实验室的HORIBA拉曼光谱仪(图片来源:新华网)如果您对上述产品感兴趣,欢迎扫描如下二维码留言,我们的工程师将会及时为您答疑解惑。嫦娥五号“探月”归来,实现了我国航天史上多个重大突破,在后续的科学研究中,相信科研人员定会不负众望,倾尽全力,协同攻坚,做出佳绩。HORIBA拉曼光谱仪 HR Evolution有幸为此次科学研究贡献力量,希望能够发挥优势,再立新功。未来,HORIBA将承载着光荣与梦想,继续砥砺前行,奋力开拓,持续为客户提供优质技术产品和服务,助力科研人员接受挑战,铸就不凡。免责说明HORIBA Scientific 公众号所发布内容(含图片)来源于文章原创作者或互联网转载,目的在于传递更多信息用于分享,供读者自行参考及评述。文章版权、数据及所述观点归原作者或原出处所有,本平台未对文章进行任何编辑修改,不负有任何法律审查注意义务,亦不承担任何法律责任。若有任何问题,请联系原创作者或出处。
  • HORIBA 用户动态|硅基底表面单壁碳纳米管的手性指认和含量测定
    撰文:张达奇拉曼光谱学方法是一种无损、便捷的测试方式,是目前广泛被用于基底表面碳管分析的谱学手段,但是在之前的绝大多数应用中,并未涉及到精确的碳管手性指认和含量分析问题。单一结构手性的碳管在高性能的纳电子器件、生物成像等领域具有广阔的应用前景。因而如何可控地制备并表征碳管手性结构的均匀性已经成为研究者目前为关注的问题之一。令人振奋的是,北京大学化学与分子工程学院李彦教授-杨娟副教授团队近年来在碳管手性结构可控制备方面取得了突破性进展,在实验上获得了单一手性碳管高度富集的样品。针对此类样品,他们开发出基于拉曼光谱的碳管手性指认和含量测定方法。这其中horiba拉曼光谱仪又一次大显身手。ωrbm-dt关系式的得出 为了建立拉曼谱峰与碳管结构的对应关系,作者首先选择了低密度的硅基底表面碳管样品(2-6根/100 μm2),以确保聚焦光斑测试范围内只有单根碳管的信号。使用horiba aramis拉曼光谱仪的自动mapping功能测量碳管的g模和rbm模,可以精确定位出单根碳管所在位置,并移动到相应位置采集得到高信噪比的光谱(如图1a)。通过详细分析拉曼谱峰特征,作者建立了适用于硅基底上碳管的rbm模振动频率(ωrbm)与碳管直径(dt)间的数学依赖关系。图1 (a)四个硅基底上单根碳管的拉曼光谱,展示了rbm区间和g模区间,激发波长532 nm。(b)拟合28个碳管的拉曼光谱数据得到的ωrbm-dt关系式。手性含量定量方法的建立由于单一激发波长只能共振激发很小比例的碳管,为了获取更多不同手性碳管的信息,作者使用了六个不同的激发波长对样品进行了测试,总计可以覆盖~85%的碳管手性。在这里需要特别指出,通过使用duoscan大光斑+自动平台扫描模式,可以在相对短的时间内获得较大面积的碳管统计结果。在经过校正碳管密度和共振激发比例后,得到样品中为富集的手性(12,6)含量为93%,该数值与吸收光谱等手段测得的含量相吻合。图2 (a)1330个分布于193.5–198.5 cm-1范围内的rbm被指认为(12,6)。(b)样品中主要(n,m)的含量。该方法的建立为单一手性碳管制备提供了有力的表征工具,提出的ωrbm-dt关系式也为硅基底上碳管样品的直径测量提供了重要参考,可以让研究者更加精确地获得样品的直径分布和手性含量,从而推进手性结构可控制备等研究。 本工作使用的aramis型拉曼光谱仪,新替代型号为xplora plus和labram hr evolution等拉曼光谱仪。此项研究工作得到了国家自然科学基金委员会、科技部、北京高等学校青年英才计划项目和北京市科学技术委员会的支持。相关成果发表于《nanoscale》上:daqi zhang, juan yang, feng yang, ruoming li, meihui li, dong ji, yan li, (n,m) assignments and quantification for single-walled carbon nanotubes on sio2/si substrates by resonant raman spectroscopy. nanoscale, 7, 10719-10727 (2015).相关背景还可参见作者撰写的综述文章:daqi zhang, juan yang, yan li. spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphenenanoribbons. small 9, 1284-1304 (2013).北京大学化学与分子工程学院简介:始于1910年成立的京师大学堂格致科化学门,是国立大学中早设立的化学系,1994年更名为化学与分子工程学院(以下简称化学学院)。北京大学化学学科是国家一级重点学科和“国家理科基础科学研究和教学人才培养基地”;在历次教育部全国高校一级学科评估中均名列榜首;在全球高校化学院(系)的相关学科评估与排名中位列15名左右。化学学院始终以培养具有独立思辨能力和国际竞争力的杰出人才为使命;针对化学中的关键科学问题开展研究;同时注重与生命和材料等学科的交叉融合。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 霸王茶姬茶多酚过敏?茶叶里面除了这些,还有什么?莱奥来解答
    近来,网友爆出喝完“霸王茶姬”新品茶出现了心慌心悸等不适症状。霸王茶姬客服表示,可能顾客是对茶多酚过敏了。但莱奥认为,更多的是咖啡因含量(含量为31.8mg/100ml)超标导致,值得注意的是,市售很多奶茶都是直接用浓缩茶粉,所以咖啡因含量通常很高。那么,茶叶里面除了含有茶多酚,咖啡因还有什么呢?还有我们常见的农药残留。 在茶叶农残的检测过程中,其提取物较为复杂,对净化过程要求较高,随着发达国家和我国对茶叶农残限量要求的逐步提高,高效率、低检测限成为茶叶农残检测的趋势。本文介绍茶叶基质中常见农残测定的高效前处理解决方案,可采用Leowlab Purifier A48正压固相萃取仪实现茶叶复杂基质高效萃取,搭配Leowlab SmartVap N48全自动氮吹浓缩仪使用,无需样品转移,减少样品的损失 仪器设备前处理仪器设备萃取仪Leowlab Purifier A48正压固相萃取仪浓缩系统Leowlab SmartVap N48全自动氮吹浓缩仪搭配浓缩系统仪器Leowlab NG-MP系列氮吹用氮气发生器分析仪器气相色谱仪配有双火焰光度检测器(FPD磷滤光片)前处理流程图实验方法概要1、称取5g茶叶,加入乙腈提取,加Nacl除水;2、采用Leowlab SmartVap N48全自动氮吹浓缩仪在80℃下,按程序自动将样品氮吹近干;3、加乙腈-甲苯溶解残余物,采用Leowlab Purifier A48正压固相萃取仪进行净化处理;4、将(固相萃取仪配套的)过柱后的收集管直接放至Leowlab SmartVap N48全自动氮吹浓缩仪,80℃水浴,设置程序,自动氮吹近干。5、用1.00ml丙酮复溶样品,涡旋混合,待上机。结论茶叶是比较复杂的基质,在前处理过程,利用半自动正压固相萃取仪代替负压萃取装置,大大减少前处理时间,样品均匀过柱,获得极佳的重复性和回收率;方案特点1、 48个样同时过柱:Leowlab Purifier A48正压固相萃取仪可一次性同时处理48个样品,大大减少实验时间;2、复杂基质,轻松过柱:针对复杂的基质茶叶,正压最大承受压力100psi,远超过负压,轻松更快过柱;2、 很好的重复性和回收率:氮气作为气源,正压过柱,保证每个柱子压力均匀性,保证极佳的回收率;3、 净化到浓缩收集管直接转移:全自动氮吹浓缩仪,接收管体积0-40mL,净化完的接收管可直接转移至Leowlab SmartVap N48全自动氮吹浓缩仪氮吹,减少样品在转移过程中的损失。4、涡旋斜吹技术:Leowlab SmartVap N48采用涡旋剪切气流技术,样品浓缩快速、平和;5、智能化浓缩:Leowlab SmartVap N48气流可自动控制,支持梯度自动控制,优化浓缩进程;6、多种支架可供选择:Leowlab SmartVap N48适应不同直径不同高度的试管、离心管
  • HORIBA | 拉曼用户福音,这些仪器使用教学视频及手册,赶紧收藏起来啦!
    作为一名技术小白,初遇HORIBA拉曼仪器,面对这些问题,是否会感到手足无措:如何开、关机?如何准备固液气样品及如何有效聚焦样品如何进行自动或手动校准峰位置检查激光位置是否是真实拉曼测试位置如何设置拉曼谱图采集参数进行拉曼单谱采集如何进行面成像、深度成像、SWIFT成像及3D成像?… … 别害怕,针对这些常见使用问题,HORIBA已准备了全套教学视频及手册:总计21篇拉曼使用手册,27个教学视频,涉及光谱技术基础原理、仪器日常维护、软件操作、样品制备、数据分析等,帮助您快速掌握拉曼仪器操作知识要点,晋升成为老司机。所有教学视频及手册均已同步更新至Wikispectra 光学光谱技术学习平台,HORIBA仪器用户注册成为用户账号后,即可解锁全部学习资源。如何成为用户账号,解锁Wikispectra 平台全部学习资料?简单三步,完成注册!扫码注册Wikispectra 会员 绑定Lab 账号,升级成为用户账号成功注册后,进入个人中心,选择绑定Lab 账号,审批通过后即可获得用户账号权限。注:LAB账户仅为已购买HORIBA仪器客户开通,您可以联系您所在实验室管理员,获取LAB账户信息。如有疑问可联系李女士 chuan.li@horiba.com开启学习之旅关于WikispectraWikiSpectra 是由 HORIBA Scientific 打造的专业学习和交流光学光谱技术经验的平台。在这里,无论是光学光谱学习者还是HORIBA仪器用户,都可以通过线上线下多种学习方式,全面系统的学习相关知识,提高仪器使用水平,解决应用问题,进而提升科研水平,更好地去探索未知世界。免责说明HORIBA Scientific 公众号所发布内容(含图片)来源于文章原创作者或互联网转载,目的在于传递更多信息用于分享,供读者自行参考及评述。文章版权、数据及所述观点归原作者或原出处所有,本平台未对文章进行任何编辑修改,不负有任何法律审查注意义务,亦不承担任何法律责任。若有任何问题,请联系原创作者或出处。
  • 拉曼光谱在宫颈癌转移前哨淋巴结活检中的应用
    文献分享-拉曼光谱在宫颈癌转移前哨淋巴结活检中的应用一、研究背景宫颈癌是全球范围内女性生殖系统最常见的恶性肿瘤之一,广泛性全子宫切除加盆腔淋巴结清扫术仍为宫颈癌的常规术式。然而此类手术可能会导致神经损伤、淋巴水肿等并发症的发生,同时也明显降低了患者的生活质量。前哨淋巴结是恶性肿瘤发生淋巴转移的第一站淋巴结,对恶性肿瘤区域淋巴结的转移情况及指导淋巴结清扫具有重要意义,通过前哨淋巴结活检可以判断区域淋巴结的转移状态。目前,前哨淋巴结示踪技术仅能做到对前哨淋巴结的定位,尚无法在术中直接评估淋巴结的转移状态。因此,能在术中示踪前哨淋巴结的同时实现对宫颈癌前哨淋巴结转移状态的评估,将具有非常重大的临床意义。(图片来源于网络)目前临床中应用的前哨淋巴结示踪技术包括染料法、放射性核素法和近红外荧光成像法,但均有其局限性,没有任何一种技术具有绝对优势。表面增强拉曼光谱(SERS)纳米探针因其特有的指纹图谱具有非常高的灵敏性和特异性,使其在生物医学成像方面有明显优势。SERS纳米探针作为肿瘤成像技术已得到了极大关注,但其在示踪前哨淋巴结中的研究几乎空白。本文分享了上海交通大学团队使用如海便携式拉曼光谱仪(SEED3000)在前哨淋巴结拉曼成像中的应用案例。老师通过在活体内探索介孔硅包被的缝隙增强拉曼探针(GERTs)进入前哨淋巴结的动态过程,明确其示踪前哨淋巴结的时间窗口;并利用便携式拉曼光谱仪在活体动物体内进行前哨淋巴结示踪实验,实现术中实时探测的目的。二、研究内容2.1测试方法实验以BALB/c小鼠为实验样本。取小鼠4只,分别于左侧后足爪垫皮下注射1 nM MS-GERTs探针生理盐水溶液25μL,自由活动24h。1%戊巴比妥钠腹腔注射,麻醉小鼠。麻醉成功后,小鼠仰卧位固定,分离暴露左侧后足腘窝淋巴结,用如海光电的SEED3000便携式拉曼探测仪对前哨淋巴结部位进行拉曼信号探测。检测参数设置为:使用激光为785 nm激发波长,激光功率密度为2.4×103 W/cm2,积分时间5 s,每个淋巴结检测5个单点(上、下、中、左、右),收集拉曼光谱。2.2测试结果小鼠麻醉后,用手持式拉曼探测仪对前哨淋巴结区域进行定点检测,每个淋巴结检测5个部位(图1)。结果发现淋巴结任何一个部位都能探测到非常明显的探针拉曼信号,表明使用如海便携式拉曼光谱仪SEED3000可以对前哨淋巴结进行实时定位。图1 手持式拉曼探测仪示踪前哨淋巴结。(a)活体内拉曼探测,图中比例尺为1 cm;(b)前哨淋巴结检测的5个部位(7上,8右,9下,10左,11中),图中比例尺为400 μm;(c)b中5个部位7-11相对应的拉曼光谱文献来源参考文献[1]包州州. 缝隙增强拉曼探针在宫颈癌转移前哨淋巴结中的成像研究[D]. 上海交通大学, 2020.四、SEED3000便携式拉曼光谱仪SEED3000便携式拉曼光谱仪是一款高性价比的785 nm小型拉曼光谱仪;结构简单,检测快速,预留USB和串口通信,方便多功能系统集成,可满足实验室、野外以及工业现场等多种实验场景。已被广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。产品特点◆ 高度集成,应用灵活,轻巧便捷,方便携带;◆ 可适配光谱范围在200 cm-1~3200 cm-1 ◆ 高稳定性,光谱响应稳定性2% @ 2hrs ◆ 高分辨率,分辨率最佳可达4 cm-1。
  • 热烈祝贺本昂仪器MA-1A和ZD-3A出口到乌拉圭
    随着海关部门对MA-1A全自动卡尔费休水分测定仪和ZD-3A自动电位滴定仪检验的顺利通过,上海本昂科学仪器有限公司将又有五台仪器跨出国门,出口到乌拉圭。公司的总经理李先生表示此次的合作是中乌两家企业的在技术层面上的跨国合作,强强联合。在全球经济一体化这个大舞台下本昂仪器这个国产品牌走向世界的一个重要见证,特别是“国产仪器走出去”更具有十分重要的意义。乌方也表示非常高兴与我公司顺利达成交易,同时与我公司建立了长期的合作伙伴关系。http://www.ba17.com/KFMA/Category210.aspx 在全球经济一体化这个大环境下,本昂仪器抓住这一机遇,不断的开阔自己的视野,壮实自己,将向全球提供优良的产品和服务做为不断追求的目标!我们坚信天道酬勤,通过我们的不懈努力必将抒写本昂的辉煌篇章。
  • HORIBA前沿用户报道 | 复旦巧用增强拉曼“识”雾霾
    供稿| 张立武编辑 | Qian霾污染一直广受公众和媒体的注意,2013年“雾霾”更成为年度关键词。其实,从全世界范围来说,雾霾是已经困扰了人们两个多世纪的全球性难题,可以说雾霾之痛,全球之痛。当下,人们已经意识到研究大气雾霾不仅要研究它的危害,还要终落实到控制和预防,这就牵涉到雾霾的核心物质——大气气溶胶。“识别”大气中气溶胶颗粒物的形成机理、污染物组分成为当务之急。那么有哪些方法可以快速“识”雾霾呢?复旦大学环境科学与工程系张立武研究员课题组,利用表面增强技术结合拉曼光谱实现了对实验室模拟气溶胶和大气气溶胶成分的快速检测,相比传统拉曼技术,这种方法更灵敏、更快速,很好地克服了在拉曼研究大气颗粒物中增强效果差和稳定性差的难点,颇具潜力。相关研究成果以《Surface Enhanced Raman Spectroscopy: a Facile and Rapid Method for the Chemical Components Study of Individual Atmospheric Aerosol》 为题发表在ACS的Environmental Science & Technology杂志。下面,让我们一起来看看复旦大学是如何巧用增强拉曼“识”雾霾的。“倒金字塔”基底承载雾霾颗粒&增强拉曼信号大气气溶胶中的颗粒物成分复杂,有些污染物含量低、毒性大,并且很少能够直接检测出来。例如用传统拉曼技术检测大气气溶胶,就具有峰强弱、重复性差等劣势。令人兴奋的是,复旦大学张立武研究员课题组巧妙地利用表面增强技术结合拉曼光谱突破了难点,实现了对实验室模拟气溶胶和大气气溶胶的快速检测。研究人员利用“倒金字塔”型的表面增强基底Klarite,通过沉积法采集单颗粒气溶胶,如下图。因为其倒金字塔型的碗状结构非常适合承载~1 μm的单颗粒,因此拉曼增强因子平均可以达到6倍。表面增强拉曼检测雾霾颗粒示意图从模拟大气检测到真实大气检测探明“倒金字塔”状Klarite表面增强基底的拉曼增强效果后,研究人员分别对气溶胶在实验室模拟状态下、大气中实际状态进行了对比检测。与传统拉曼检测法相比,这项研究表明,表面增强拉曼表现出了出色的增强效应和稳定性。而在此次拉曼测试过程中,研究人员使用的是 XploRA Plus激光拉曼光谱仪,进行拉曼分析。接下来,我们就来分别看看两种条件下的测试结果。首先,我们来看一下实验模拟状态下的结果。 张老师团队分别对模拟硫酸铵气溶胶以及含萘气溶胶进行拉曼检测,如下图。相比于使用金、银纳米溶胶,Klarite增强基底表现出增强因子高和重复性好的特点。这样,研究人员对利用表面增强拉曼技术检测大气中单颗粒气溶胶充满信心! 实验室模拟的硫酸铵气溶胶在不同基底上的增强效果接下来,在真实大气气溶胶的研究中,研究人员分别采用了拉曼点扫描和拉曼面扫描。点扫描采用785 nm激光、600线每毫米的光栅和1024 × 256像素的CCD,得到3 cm-1的光谱分辨率。利用Mapping扫描时间快的特点(1 μm作为步径),研究人员快速地在采集到的颗粒物的面上识别化学组分,可以识别出如 1000~1700 cm-1的不定型碳、~1000 cm-1的NO3-和SO42-无机盐组分以及一些PAHs。以上研究表明,表面增强拉曼有出色的增强效应和稳定性,对于研究雾霾以及相关问题具有十分重要的作用。参考文献:Environ. Sci. Technol. 2017, 51, 6260?6267值得一提的是,张老师课题组积累了丰富的增强拉曼检测雾霾颗粒物的测试经验,不仅有拉曼光谱数据,还进行了拉曼光谱成像表征。团队介绍张立武课题组 博士/研究员 (青年千人)理学博士,入选国家青年千人计划,上海市“东方学者”特聘教授。2009年毕业于清华大学化学系,同年获德国“洪堡学者”基金资助在汉诺威大学从事研究工作。于2012年获玛丽居里欧盟内研究基金资助前往剑桥大学卡文迪许实验室从事研究工作。主要研究兴趣为大气化学,CO2资源化利用及环境污染物的检测。2014年加入复旦大学环境科学与工程系。实验室课题组主要研究方向1. 大气光化学过程2. 环境气固界面化学3. 环境污染物检测及控制 点击标题,查看往期精华文章上交大新拉曼探针有望精准定位肿瘤君,助力攻克医学难题只有发丝直径十万分之一的量子点,如何解析它的“光”拉曼光谱技术测定二硫化钼层数的两种方法免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 城市环境所在单细胞拉曼追踪细菌抗性进化轨迹研究中取得进展
    抗生素抗性的频繁出现对现代医学提出挑战。探讨抗性的进化过程对遏制其全球传播至关重要。抗性进化过程涉及高度复杂的表型异质性响应。在抗生素处理下,基因完全相同的微生物菌群中会出现小部分可耐受抗生素的细胞亚群。该存活的亚群在抗生素存在时不能生长,但在去除抗生素后可恢复生长,造成长期复发性感染,也是后续发生抗性基因突变的关键储库。然而,由于耐受亚群的复杂异质性响应且生长停滞,从大量细菌群体中识别耐受亚群并追踪其生理进化轨迹仍是挑战。 近日,中国科学院城市环境研究所朱永官院士团队与崔丽研究组在《德国应用化学》上,发表了题为An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance的研究论文。该研究通过发展单细胞拉曼-氘标同位素-多元统计分析等多种技术联用的方法,在单细胞的高精度水平原位解析了细菌响应的异质性,并从大量细菌群体中灵敏识别出表型亚群的分化及动态变化,实现了抗性突变前细菌表型生理轨迹的快速原位追踪,为遏制抗性进化提供重要指导。 该研究将细菌多次循环暴露于临床治疗剂量的抗生素,进化出抗生素抗性。研究利用重水标记的单细胞拉曼光谱以不依赖培养的方式,检测进化过程中细菌的原位活性。结果发现,在未发生抗性突变的情况下,细菌在抗生素压力下的活性随处理循环逐渐增加,说明其表型耐受性逐渐提高。进一步,研究利用UMAP多元统计算法对所有进化阶段的上千个细菌的单细胞拉曼指纹区间进行分析。根据拉曼指纹指示的细菌表型生理响应,从初始基因型完全相同的细菌群体中,研究识别出随抗性进化发生分化的四个表型亚群,即敏感菌群、原生耐受菌、进化耐受菌和进化抗性菌,并灵敏捕捉到四个亚群随进化过程的动态变化。至此,基于单细胞拉曼所揭示的细菌原位表型异质性响应,科研人员绘制出抗性进化的生理轨迹图。细菌全基因组测序对所揭示的表型进行交互验证,并解析了表型产生的遗传基础。表型分化对维持整个菌群的生存和进化至关重要。由于表型分化远早于抗性突变,识别表型分化对指导临床用药以及减少抗生素耐受性和抗性突变的发生具有重要意义。研究利用明显区分的四个亚群的拉曼图谱,挖掘出耐受性和抗性突变的拉曼标记峰,促进了抗性进化不同阶段尤其是表型耐受性的快速精准识别。 该单细胞分析平台可以拓展到更广泛的抗生素或非抗生素化学品诱导的抗性进化研究。未来可以将该单细胞拉曼与靶向单细胞分选和多组学技术联用,实现耐受性和抗性表型与基因型的精确关联,促进进一步阐释进化机制。研究工作得到中科院“从0到1”原始创新项目、国家自然科学基金创新研究群体项目、福建省自然科学基金等的支持。 单细胞拉曼-同位素标记-多元统计分析追踪细菌抗生素抗性进化的轨迹
  • HORIBA拉曼学院开课啦(第一轮通知)
    作为全球大的拉曼光谱仪供应商,HORIBA Scientific(Jobin Yvon光谱技术)一直与全球活跃在科学前沿的研究者保持着密切的合作,不断拓展拉曼的应用范围,共同推进了拉曼技术的提升。 为期5天的课程将带您从光谱基础知识到全面深入地了解拉曼世界!届时HORIBA的国内外技术专家将为您讲授基础课程;业内著名的拉曼专家则会围绕众多应用领域展开授课;在就业指导环节,HORIBA Scientific中国区总经理Ramdane Benferhat(欧美产线)将从企业(招聘方)角度为大家讲解如何规划职业、选择企业、撰写简历、成功面试等,帮助您更好地应对未来职场发展。 日程安排· 第1天 拉曼光谱仪的原理(单色仪、探测器、激光器)· 第2天 SERS/TERS技术及拉曼在催化剂领域的应用· 第3天 拉曼在化学、生命科学领域的应用· 第4天 拉曼在艺术、刑侦、地质领域的应用· 第5天 拉曼在材料领域的应用;就业指导;参观HORIBA应用中心 (注:详细课程安排敬请留意第二轮通知)主讲人名单· 田中群 院士 厦门大学,固体表面物理化学国家重点实验室(以下以姓氏拼音排序)· 成小林 副研究员 中国国家博物馆,文物科技保护部· 黄巍 教授 英国谢菲尔德大学, Kroto Research Institute· 胡继明 教授 武汉大学,测试中心· 李剑锋 教授 厦门大学,化学化工学院· 陆云 教授 南京大学,化学化工学院· 李青会 研究员 中国科学院上海光学精密机械研究所,高密度光存储技术实验室· 刘照军 教授 洛阳师范大学,物理与电子信息学院· 梁鲁宁 研究员 公安部物证鉴定中心,经济犯罪侦查技术处· 刘冰冰 教授 吉林大学,超硬材料国家重点实验室· 倪培 教授 南京大学,地球科学与工程系· 潘秀莲 研究员 中国科学院大连化学物理研究所, 催化基础国家重点实验室· Edmond PAYEN 教授 法国里尔科学与技术大学,催化剂和固态化学实验室· 任斌 教授 厦门大学,固体表面物理化学国家重点实验室· 谭平恒 研究员 中国科学院半导体研究所, 半导体超晶格国家重点实验室· 王翔 博士 厦门大学,固体表面物理化学国家重点实验室· 许凤 教授 北京林业大学,材料科学与技术学院· 姚建林 教授 苏州大学,材料与化学化工学部· 杨海峰 教授 上海师范大学,生命与环境科学学院· 尤静林 教授 上海大学,材料科学与工程学院· 张锦 教授 北京大学,化学与分子工程学院 课程费用· 6月15日前完成在线报名及付款可享受优惠价格: HORIBA仪器用户:RMB 1800元 非HORIBA仪器用户:RMB 2300/人· 6月15日后及现场报名价格:RMB 2800/人 (本价格包含午餐、教材等费用,住宿费等需客户自理)报名网址:https://www.surveymonkey.com/s/HORIBA-School-201407-Raman-SH联系人:沈小姐 电话:021-6289 6060-161 邮箱:yilei.shen@horiba.com HORIBA Optical School简介 HORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。 以光谱为核心、热点技术为扩展,课程覆盖分子光谱(拉曼、荧光)、表面测量(椭偏)、元素分析及粒度表征等诸多产品及应用领域。课程将邀请HORIBA国内外资深专家对基础知识进行讲解,同时邀请行业内知名教授、学者与大家分享应用经验。强大的线上平台拥有各类技术资料,您可按需选择参加在线课堂,结合线下各类培训及交流活动,让学习更加轻松、深入!光谱学堂正在报名中! 时间:2014年5月19-21日 点击查看关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 表面增强拉曼光谱:无创筛查前列腺癌新方法
    2014年9月2日华盛顿 癌症筛查是预防癌症死亡的极其重要的工具,越早发现病例越可及早治疗。尽管现存已有很多对不同类型的癌症的筛查方法,仍然需要更安全,廉价,和有效的筛查方法来挽救更多的生命。  前列腺癌是全球男性中最常见的癌症,近日,由中国广东医学院的李绍新博士领导的研究团队证实了一种无创筛查前列腺癌的新方法的潜力。研究人员在实验室里成功测试了这项方法&mdash 它结合了已存的表面增强拉曼光谱和一种新的精密的分析算法技术&mdash 支持向量机。  如研究人员发表在美国联合物理协会(AIP)出版的《应用物理快报》中的新文章 所述,他们对68个健康志愿者和93个被临床确诊罹患前列腺癌的病人的血液样本进行了表面增强拉曼光谱结合支持向量机分析,研究结果表明该新技术对癌症病例识别的准确率高达98.1%。  如果该项技术在临床实验中被证明安全有效,那么它将有可能成为一种新的工具,帮助医生和患者促进前列腺癌症的早期检测和诊断,李博士说。  &ldquo 结果表明, 无标记血清的表面增强拉曼光谱分析结合支持向量机有很大潜力被应用于前列腺癌的无创筛查,&rdquo 李博士说。&ldquo 和传统的筛查方法相比,这种方法的优势在于非创伤性,高敏感性和简单。&rdquo   一种常见的癌症  根据世界卫生组织(WHO)的报道,在世界范围内,前列腺癌是男性中最常见的癌症之一,也是首要癌症死因。每年有899,000新增病例,死亡人数达260,000,占全球范围内癌症致死人数的6%。1/6的男性会在他们的一生中罹患这种癌症。  多年来, 尽管通过检测蛋白质标记物--前列腺特异性抗原(PSA)的浓度提升就可以筛查前列腺癌症的早期病例,但这种方法远不完美,因为前列腺特异性抗原浓度的提升可以是由很多和癌症无关的因素引起的。这样就会导致过度诊断,不舒服的组织活检和其他不必要的治疗,价格昂贵而且会有严重的副作用。 正因为如此, 美国预防服务工作组目前(USPSTF)不建议基于PSA的前列腺癌筛查方法。  据李博士所说,已经有很多科学家在考虑将表面增强拉曼光谱技术应用在癌症检测方面,因为这种具有表面敏感性的光谱技术已经问世好多年,其敏感性可识别低丰度关键分子,如污染物表面的杀虫剂残留。这就使得这项光谱技术可完美的应用于辨别DNA, 蛋白质和脂肪分子的细微信号, 也是李博士的团队所致力研究的方向。  李博士说,挑战在于如果有光谱信号的改变,变化往往是非常细微的。对比从68个健康志愿者和93个前列腺癌症病人身上抽取的血清样本,二者光谱信号的差别十分微小几乎探测不出来。为了准确地区分这些血清样本,李博士的研究组使用了强大的光谱数据处理算法技术&mdash 支持向量机, 这样才有效地显示出了样本光谱信号的区别。  李博士说,尽管这项工作还是处于初步研究阶段,研究结果已经显示出血清拉曼光谱结合支持向量机在无创前列腺癌症的筛查方面的潜力。李博士补充说,下一步的研究将对现有方法做进一步的改进,并探索该技术是否能被用于区分癌症的分期。  该研究文章, "Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine" is authored by Shaoxin Li, Yanjiao Zhang, Junfa Xu, Linfang Li, Qiuyao Zeng, Lin Lin, Zhouyi Guo, Zhiming Liu, Honglian Xiong and Songhao Liu,于2014年9月2日发表在《应用物理快报》。过此日期,可通过http://scitation.aip.org/content/aip/journal/apl/105/9/10.1063/1.4892667在线访问。  文章的作者来自广东医学院,广东省医学分子医学诊断重点实验室,中山大学肿瘤防治中心,华南师范大学。
  • 神州八号飞船成功发射 进入预定轨道
    中广网北京11月1日消息 神舟八号飞船于北京时间11月1日5时58分发射升空,并顺利进入预定轨道。飞船将在两天内与天宫一号进行首次空间交会对接。目前天宫一号运行稳定,满足交会对接任务要求。  神舟八号起飞瞬间 中广网记者路林强摄  中国载人航天工程新闻发言人武平表示,与以往飞船发射不同,这次交会对接任务要求飞船“零窗口”发射。为确保将飞船发射到与目标飞行器共面的轨道,神舟八号必须在天宫一号轨道面经过发射点后的一定时间内准时点火起飞,否则就需要消耗很多的推进剂来修正两者之间的轨道面偏差。  点火瞬间:轰鸣声震动大地 橘红色火焰照亮夜空  记者:让我们直接进入最激动人心的点火时刻,现场点火时间是5点58分07秒,这与此前预设的火箭发射零窗口时间分秒不差。我的位置是距离发射塔架15 公里的指控大厅里,当零号指挥员发出最后的点火口令时,我看到火箭底部两边喷出火焰。几秒钟之后火箭升空,橘红色的火焰把黑色的黎明照亮,天空好像变成一幅桔红色的泼墨画,我甚至能看清云彩的轮廓。  还有一个有意思的现象是,火箭升空的开始,我听不到任何的声音,过了一段时间以后指控大厅才传来轰隆隆的轰鸣声,玻璃也开始明显的颤抖。神舟八号打入云层之后就消失在了我的视线里,但是巨大的轰鸣声和玻璃的颤抖仍然持续了数十秒,这种感觉非常奇妙。[详细]  3日凌晨与天宫首次交会对接  据北京飞控中心副总工程师周建亮介绍,神八这次任务的重点是完成交会对接。也就是为接下来的飞船能够载人上天而进行模拟飞行,所以在神八的前端加装了交会对接装置,同时神八入轨轨道也与前几次有很大的不同。  周建亮:神舟七号飞船入轨的轨道高度是近地点高度200公里,远地点高度350公里,现在神舟八号入轨远地点高度是330公里,之所以采取这样一个轨道的方案,主要是出于交会对接的需要。  周建亮:后面有两次交会对接工作,第一次是在3号凌晨,另一次是在14号。也正是因此,神八升空之后的控制动作将非常的密集,在今天中午12点左右,神八运动到第五圈届时将进行第一次轨道控制,抬升它的近地点高度。此后在明天当它运行到第13圈、16圈、19圈、24圈时,还将进行4次轨道控制。这样经过5次远距离的导引控制,在3号凌晨时就可以进行第一次交会对接。然后进行锁紧,也就是我们之前所说的让天宫和神八的接吻能够更加紧密更加严丝合缝。  此后在天宫一号与神舟八号组合飞行12天之后,也就是在本月14号时,神八将撤离天宫一号,然后再进行对接,他们共同飞行2天之后,16号神八将第二次撤离天宫一号,17号返回地面,这样天宫其神八交会对接工作就算圆满完成。  “成都造”仪器将控制神八飞船安全返回  备受关注的神舟八号飞船于今日5时58分发射。“神八”飞天,而“成都造”的“静压高度控制器”,则控制着其安全着陆。记者10月31日获悉,由中航工业成都凯天电子股份有限公司研制生产的静压高度控制器,从“神一”一直应用到“神八”!  据专家介绍,静压高度控制器是飞船回收系统的核心部件之一,被定为飞船的A级产品,是飞船回收舱打开降落伞系统的关键控制单元。飞船返回舱进入大气层,到达距地面11公里高度时,安装在返回舱内壁的静压高度控制器发出开伞指令,飞船的控制操作系统收到信号后,拉出引导伞、降落伞、减速伞和主伞。飞船下降到6公里和5公里高度时,静压高度控制器再次发出信号,监测主伞是否工作正常,如果主伞出现意外,静压高度控制器将再次发出指令,启动备份伞,确保飞船回收舱百分之百安全降落。  除此之外,该公司还为“神八”提供了两种型号的压力信号器,主要使用于飞船对接压控装置和目标飞行器供氧组件。作为对接压控装置的功能部件,这两种信号器安装于运输飞船轨道舱内 作为供氧组的功能部件,安装在目标飞行器实验舱内。其主要功能是感受并指示组件的压力变化,为飞船的控制系统提供有力的压力数据保证。(成都日报)  神八天宫交会对接系统上海研制  与以往神舟系列飞船单独飞行不同,神八肩负着“交会对接”新任务,因此在它的轨道舱和天宫的实验舱前面,都各有一个对接机构,分别称为主动对接机构和被动对接机构。主、被动两套对接机构上,总共有13个电机、243个齿轮、680个轴承、5个电磁拖动机构、5个电子单机和2套结构本体,各自承担着他们的重要角色。  十多分钟的空间对接,却让上海航天人忙了12年。从1999 年开始,对接机构就进行了方案论证,以及大量研制、试验工作,神八和天宫两套对接机构在上海航天人“老中青”三代的目睹下成长起来。樊萍回忆道,“从方案论证到正样产品出厂,对接机构的结构外形没有变动过,但是里面部件几乎全部被改进了。”  记者获悉,上海航天技术研究院作为承担我国载人航天工程任务的主要单位之一,承担了神舟八号对接机构分系统、电源分系统、推进舱结构与总装、测控通信子系统以及总体电路分系统相关设备的研制工作。  据悉,天宫与神八此次要完成两个重要任务,一是完成交会对接 二是完成组合体运行,收集遥测数据、大气环境以及温度控制。试验结束后,神八返回舱将返回地面,天宫继续在太空服役,等待神九和神十飞船前来对接。只有三次都对接成功,中国的载人航天工程第二步战略目标才全部达到。  1992年,中国就正式确立了载人航天工程分三步走。第一步,发射两艘无人飞船和一艘载人飞船,开展空间应用实验。第二步,在第一艘载人飞船发射成功后,突破载人飞船和空间飞行器的交会对接技术,并利用载人飞船技术改装、发射一个8吨级的空间实验室,解决有一定规模的、短期有人照料的空间应用问题。第三步,建造载人空间站,解决有较大规模的、长期有人照料的空间应用问题。  据外媒报道,有美国学者认为,天宫一号相当于美国1973 年发射、1979年坠落的首个空间站天空实验室。这个载人空间站上拥有“阿波罗”望远镜和其他仪器,主要观测太阳和地球,还从事人类在失重状态下生理和心理反应等各种科学研究工作。对此,《国际太空》杂志副主编庞之浩却打趣道,与国外20吨级以上的同类试验性航天器相比,天宫一号在功能和用途方面有相似之处,但质量较小,只有8吨,因此称为“迷你空间实验室”更妥当。  下一步,中国还将建造较大规模的空间站。有消息称,中国空间站预计在2020年左右建成。(东方网)
  • HORIBA 用户动态 | 基于电子拉曼散射谱的金属性单壁碳纳米管手性结构测定
    撰者:张达奇拉曼光谱是探测单壁碳纳米管性质的重要手段。通过G模的峰型判定碳管的导电性(金属或半导体)和通过RBM模的拉曼频移计算碳管管径,是碳管拉曼光谱的两大主要应用。但是要通过分析拉曼光谱精确获得碳管的手性指数(n,m)仍然具有挑战,尤其是在仅有少波长激发的情况下。北京大学化学与分子工程学院李彦教授-杨娟副教授团队利用实验中观察到的金属管两个电子拉曼散射峰(ERS),发展了一种便捷、精确的金属管(n,m)指认方法。利用此方法,研究者可以只通过单一波长激发的拉曼光谱精确指认出金属管的(n,m),从而进一步建立起金属管光学、电学性质的手性结构依赖性。两个ERS峰的发现实验中作者首先对悬空的单根金属管进行了透射光谱测试以确定其电子跃迁能(Mii)的数值。在同一根碳管的拉曼光谱中可以分辨出分别位于M11+和M11-的两个ERS峰(图1a),这是对单根金属管两个ERS峰的报道。该峰源于金属管费米能级附件的电子对光生激子的非弹性散射作用,并在Mii处发生共振增强(图1b)。图1. (a)单根(13,7)碳管的拉曼光谱(红线:激发波长633 nm;绿线:激发波长532 nm)和透射光谱(黑线)。(b)碳管的声子拉曼散射(紫色箭头)和电子拉曼散射(蓝色与红色箭头)过程示意图。18种不同手性碳管Mii数值的获得基于以上发现,作者对不同(n,m)的碳管进行了测试。利用HORIBA Aramis拉曼光谱仪自动线mapping功能可以对悬挂于镂空沟槽上的碳管进行有效的定位和光谱测试。实验中一共得到了18种不同(n,m)的Mii数值,并拟合得到了定量关系式,为今后金属管指认提供了重要参考数据。此外,作者收集了11个(12,9)碳管的数据,发现管束、积碳等因素对碳管拉曼光谱有较为显著的影响。统计获得的ωRBM和M11波动差标示在图2b中。虽然M11受环境影响较大,但是M11的裂分值(即M11+- M11-)受环境影响的变化仅有±4meV。图2 (a)2n+m=33金属管的拉曼光谱,激发波长633 nm。蓝色虚线表示对ERS峰的拟合。(b)通过ERS指认的18个金属管(红色数据点)。基于ERS的拉曼光谱的优势相比于现有的瑞利散射光谱、偏振吸收光谱、可调激光拉曼等适用于单根碳管测试的谱学方法,基于ERS的拉曼光谱拥有以下三大优势:1仪器需求简单,测试便捷在该工作中,作者使用了HORIBA Aramis拉曼光谱仪,配备532nm、633nm、785nm三个常见的激发波长,通过仪器全自动切换,即可测试得到1.4-2.3 eV范围内的跃迁能数值。类似的显微拉曼光谱仪还有HORIBA XploRA, LabRAMHR Evolution型光谱仪,均可以满足相关研究者的需求,测试不再依赖于复杂的仪器搭建和调试。2测试精度高得益于HORIBA拉曼光谱仪的高分辨率和良好的噪声抑制水平,通过ERS测定Mii的误差仅为±1meV,远优于常见的瑞利散射光谱等电子光谱学手段~10 meV的误差。 3样品适用范围广针对硅基底上、表面活性剂包裹的、管束中的碳管作者在实验中均能测试得到ERS峰。图3 (a)单根(12,9)碳管(黑线)及含有(12,9)碳管的管束(绿线)的拉曼光谱,激发波长633 nm。(b)同一根金属管在悬空部分(黑线)和硅基底上部分(红线)的拉曼光谱,激发波长633 nm。此项研究工作得到了国家自然科学基金会和科技部的支持。相关工作发表在《Physical Review B》和《ACS Nano》上:Daqi Zhang, Juan Yang, EddwiHasdeo, Can Liu, Kaihui Liu, Riichiro Saito, Yan Li, Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B, 93, 245428 (2016).Daqi Zhang, Juan Yang, Meihui Li, Yan Li, (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 10, 10789–10797 (2016). HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • HORIBA拉曼/SPRi及椭偏光谱技术交流会
    HORIBA Scientific 暨华南理工大学测试中心拉曼、SPRi及椭偏光谱技术交流会邀 请 函  主办:HORIBA Scientific (Jobin Yvon光谱技术)  协办:华南理工大学分析测试中心  时间:2011年4月27日(周三)上午8:30  地点:华南理工大学人文馆报告厅日程安排  上午:拉曼光谱及SPRi在化学、生物领域的应用专场  8:30~9:00 来宾签到  9:00~9:10 开幕词  9:10~10:00 拉曼光谱仪新进展以及应用 (HORIBA Scientific 沈婧 博士)  10:00~10:50 拉曼光谱在生物医学领域的应用(暨南大学 黄耀熊 教授)  10:50~11:00 提问及茶歇  11:00~11:30 拉曼光谱在食品化学领域的应用(华南理工大学 宋国胜 博士)  11:30~12:00 SPRi技术以及在生物、食品和卫生安全领域的应用(HORIBA Scientific 沈婧 博士)  12:00~13:30 午餐及休息  下午:拉曼光谱及椭圆偏振光谱在新能源、新材料领域的应用专场  13:30~14:00 来宾签到  14:00~14:30 拉曼光谱在新材料领域的应用(HORIBA Scientific 武艳红 应用工程师)  14:30~15:30 椭圆偏振光谱测量技术以及HORIBA Jobin Yvon新型椭偏仪(HORIBA Scientific Dr. Ramdane Benferhat)  15:30~15:45 提问及茶歇  15:45~16:45 椭偏仪在新能源材料领域的应用(HORIBA Scientific Dr. Ramdane Benferhat)  因本次会议场地有限,为方便我们对会议的组织与安排,请您与4月25日前确认参加  (请点击如下按钮完成网络提交)     如果您对会议有任何疑问,欢迎您随时与我们联系:  联系人:Li Su邮件地址:info-sci.cn@horiba.com  电话:021-62896060-101  会议地址地图   HORIBA Scientific(HORIBA集团科学仪器事业部)  HORIBA Scientific隶属 HORIBA 集团。一直致力于为用户提供先进的测和分析仪器:包括激光拉曼光谱、椭圆偏振光谱、元素分析、荧光、ICP、粒度表征、油中硫分析、水质和XRF等分析仪器。结合旗下知名品牌的技术优势,包括拥有近200年发展历史的世界光谱制造技术的Jobin Yvon。  今天,HORIBA Scientific 的各种高端检测分析仪器已经遍布全球各地,并在中国实现了销售和服务的本土化,位于上海、北京、广州三地的产品专家、售后服务团队以及全国各地的代理商机构可充分保障国内用户的技术咨询以及售后服务需求。  www.horiba.com/cn华南理工大学分析测试中心(计量认证合格单位)  组建于1982年10月,现有专业技术教师和管理人员共27人分析测试工作十年以上人员占80%,整体的检测分析能力强。中心装备了高分辨透射电镜、热场发射扫描电镜、超导核磁共振谱仪、液-质联用仪、多功能化学电子能谱、电子探针、X 射线荧光光谱仪、拉曼光谱仪、多功能生物质谱、气- 质联用仪、单晶衍射仪等大型精密贵重仪器30台,仪器总价值5000多万元 拥有独立且相对集中的现代化实验室,使用面积达3000m2 是华南地区规模宏大、设备先进、富具特色、  队伍精良的现代分析测试中心。  www.scut.edu.cn/test/   HORIBA科学仪器快讯第13期第12期
  • Milli-Q:电子级水在半导体行业硅晶圆、湿电子化学品和溅射靶材中的应用和解决方案
    p style="text-align: justify text-indent: 2em "10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。/pp style="text-align: justify text-indent: 2em "会议期间,来自默克化工技术(上海)有限公司的高级应用专家李子超分享了电子级水在半导体行业中的应用及解决方案。/pp style="text-indent: 0em text-align: center "script src="https://p.bokecc.com/player?vid=B2A5F3FC42E9871E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: justify text-indent: 2em "据介绍,纯水是实验室应用最广泛的试剂!水中含有大量的污染物,可大致分为有机物(腐殖质、核酸酶、三聚氰胺、PCB)、无机离子(Nasup+/sup/Casup2+/sup/Fesup3+/sup/SOsub4/subsup2-/sup/Clsup-/sup)、颗粒&胶体(硅胶体、泥沙、灰尘、管路剥落)、微生物和气体(COsub2/sub、Osub2/sub),这些污染物的存在可能会导致实验的失败,浪费大量的时间、试剂和原材料。而纯化后的水等级可大致分为实验级纯化水、分析级纯化水和超纯水,其中超纯水还可分出更高一级的电子级水以满足一部分要求更高的仪器或生产工艺需求。/pp style="text-align: justify text-indent: 2em "李子超表示,国内纯水标准体系中GB/T11446规定的电子级水是工业用水的最高规格标准,主要用于电子和半导体工艺过程中。电子级水的高标准对采样、存储与运输、检测频次提出了更高要求,需要注意容器选择、容器清洗、防止污染、贮存与运输等问题,例行检查至少每年一次,当制水条件发生改变时也应进行例行检查。报告中,李子超还介绍了电子级水的水质检测方法、注意事项和检测仪器。/pp style="text-align: justify text-indent: 2em "电子级水在半导体行业主要应用于硅晶圆、湿电子化学品和溅射靶材中。在多晶硅生产中涉及的提纯工艺,多晶硅质量检测中的精密仪器和晶圆清洗都离不开电子级水。半导体对湿电子化学品的微量金属杂质、颗粒粒径和数量、阴离子杂质含量等方面有严格要求,且集成电路线宽越窄,所需标准越高,这对相应的电子级水提出了越来越高的要求。在靶材的生产过程中,靶材原材料纯化提纯过程中的检测和后期靶材的清洗也对电子级水提出了需求。/pp style="text-align: justify text-indent: 2em "报告最后,李子超介绍了Milli-Q的电子级水解决方案。电子级水的制备有一个完整的流程,首先自来水通过Milli-Q HX 70XX可以得到纯化水,进一步利用Super Q纯化可以得到超纯水,最后再利用IQ 7000+ Element纯化即可得到电子级水。值得注意的是,电子级水必须在洁净空间中进行取水,以避免环境干扰。/p
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • HORIBA 新款立式SPRi-Lab+系统
    为您的实验室节约更多空间!HORIBA Scientific发布了新款的SPRi-Lab+系统,一款实时监控多通道平行、无标记生物分子相互作用的紧凑灵活的仪器。 现在,SPRi-Lab+具有两种构造,为您提供更多选择! 标准卧式构造,垂直插入生物芯片 立式构造,占据更小空间,水平插入生物芯片SPRi-Lab+是开发无标记和多通道平行生物检测与生物分子分析的理想解决方案。 该设备可靠精巧,操作简便,检测便捷,并能对物理化学相互作用及其动力学进行实时的监测。 其开放式结构以及方便的操作,便于全面和充分的开展多种类型的实验:其中涵盖化学、物理化学、生物化学和生物分子相互作用等。 点击查看,更多信息
  • 从哈佛到科学岛:八位博士后的无悔归途
    p  2009年8月2号深夜,在安徽合肥科学岛一所临时租来的房子里,从哈佛归来的博士后王俊峰,见到了在那里守候的中国科学院合肥物质科学研究院强磁场科学中心的同事。/pp  一个多月前,在科学岛仅仅见到了强磁场科学中心的规划蓝图,王俊峰就决定将14年国外学习、生活的历程打包进12件行李,和爱人一起带着两个孩子,飞行十几个小时,结束海外的漂泊,成为了一名强磁场人。他的归来,也奏响了后续7位哈佛博士后归国历程的序曲。/ppstrong  回国:凭直觉做的决定/strong/pp  在美国求学近十年之后,王俊峰在2007年面临着职业规划的关键转折,留美工作还是回国寻找机会,是当时他一直考虑的问题。/pp  “当时思考回国或留在美国,那时中国经济发展迅速,在科技方面投入非常多。”王俊峰说。中国发展的趋势,特别是科技迅猛的发展速度,让王俊峰身边许多在海外求学的中国学子,都在思考回国这件事。/pp  “当时,从科研条件来讲,美国条件会相对好一些,很多人都在挣扎纠结。”王俊峰回忆道。/pp  同样是2007年,在太平洋西岸,王俊峰的祖国,强磁场实验装置国家重大科技基础设施项目得到国家发改委的批复,并进入开工前的准备阶段。/pp  经过一年多的筹备,2009年4月10日,稳态强磁场实验装置配套基建工程正式开工。/pp  “2009年,朋友介绍说中国要建自己的强磁场实验室,并且有一个非常宏大的计划,很兴奋。”王俊峰说。那一年,他在国内多个城市获得面试机会,第一站便是合肥。/pp  “6月17号面试,当天晚上就说希望我来。”王俊峰说。/pp  1个多月后,王俊峰踏上了归程。/pp  “很多人觉得是很仓促的决定,但我是凭直觉做的决定。”他说。/pp  王俊峰归国时,在美国一同求学的中国学子中也有人“蠢蠢欲动”。为王俊峰践行时,他们开玩笑叮嘱他,“你回去给我们趟趟路”。/pp  王俊峰确实趟出了一条从哈佛到科学岛的归国路,并成功用强磁场的吸引力吸引到了哈佛博士后刘青松的注意。/ppstrong  自信:归来是对的选择/strong/pp  2010年,强磁场的“戏台子”已经搭起来,为了配齐唱戏的“角儿”,在全球范围的科研人员招聘也大规模展开。/pp  同一年,“身体出国,思想没出国”的哈佛博士后刘青松,正密切关注着国内相关生命科学研究的进展,并寻觅着归国的机会和可能性。/pp  “必然中的偶然”将刘青松引回了国内,指向了安徽合肥科学岛。/pp  那一年,刘青松随哈佛归国代表团到上海考察,从上海到合肥开通高铁的便利,让刘青松偶然踏上了奔赴合肥探访朋友的路,并与已在强磁场工作一年多的王俊峰取得联系,成功踏上了“科学岛”这片具有魔力的土地。/pp  “当时就觉得热血沸腾,觉得这就是创业的好地方。”刘青松说,“回来几年发现,是对的选择。”2012年7月,刘青松归国,他在哈佛医学院的整个团队也陆续随他一起踏上了科学岛。/pp  在刘青松之后归国的6位哈佛博士后,基于王俊峰和刘青松的判断,回到了这个当时仍在建设中的实验室。用刘青松的话说,这是“自信”。/pp  “没有比较就没有自信。”在刘青松比较的天平两端,一端是科学研究冉冉升起的中国,一端是经济危机后学术研究不断下挫的美国。这样的比较,让海外学子看到了中国科技发展的前景,而对科研规律的准确认识和把握,也让他们有信心自己做的是对的选择。/ppstrong  八剑客:构建完整研究链条/strong/pp  科学研究从来不是一场单打独斗的“独角戏”。而强磁场的人才聚集效应,吸引八位哈佛博士后,也让这里形成了强磁场生命科学研究的人才“小气候 ”。/pp  王俊峰与张钠从事蛋白质、核酸层面的研究,张欣研究放在细胞层次,林文楚专注做模式动物、组织层面的研究,而刘青松、刘静、任涛和王文超则重点在药物研发的层面攻关。/pp  “从分子到细胞,再到模式动物,最后到人体。”王俊峰告诉《中国科学报》,如今的强磁场中心在生命科学领域搭建了完整的研究链条,并形成了癌症研究和磁生物学相关研究两条研究线路。/pp  与此同时,稳态强磁场实验装置也于2010年起投入掀起试运行至今,并屡创记录。与此同时,稳态强磁场实验装置也于2010年起投入掀起试运行至今,并屡创记录。2015年6月16日,水冷磁体WM1调试成功并刷新世界纪录,获得38.52 T的磁场强度,创造了32mm孔径磁场强度最高的世界纪录 2016年11月5日,混合磁体外超导磁体励磁成功,实现了10万高斯的设计指标 11月13日,混合磁体首次调试达到工程验收指标-40万高斯稳态磁场,是国际第二强的稳态场。/pp  不断再攀新高的实验平台,自试运行至今,已为国内40多所高校、研究机构和企业的1200多个实验课题提供了实验条件,其中用户发表论文成果达500余篇。而对于八位哈佛博士后而言,它更是带来了无限的研究可能性。/pp  “从研究来讲,我在美国还是做比较传统的生物学研究,而这里因为强磁场平台,在硬件条件上,比绝大部分美国实验室条件会更好。”张欣说。/pp  更重要的是,在科学岛这个科学小王国中,不仅研究链条上下游的交流合作广泛,更令张欣兴奋的是与物理、技术等领域的跨领域交流碰撞出的火花。/pp  “比如做磁性材料,我们与磁体运行与实验测量部的同事合作,用生物办法合成新材料,应用到生物体内,比传统化学方法拿到的材料有特殊的优势。”张欣说。/ppstrong  身份:我们是强磁场人/strong/pp  在科学岛不断建设的高楼中,一座红色砖瓦结构的二层小楼十分显眼,刘青松称它为“小红楼”。/pp  穿过小红楼一层狭长的通道,爬上铁制楼梯,到达二楼实验室。这里是科学岛的磁共振生命科学部的主要实验场所之一。/pp  在安徽8月的骄阳下,即使开着空调,实验室内仍闷热的让人透不过气,仅仅十几分钟的时间,室内工作的科研人员头上便渗出了细密的汗。而他们在这里做实验一直到深夜是常态。/pp  如今,在科学岛生命科学研究分散在几处,从条件艰苦的小红楼,到行政楼专门为他们腾出来的半层,再到10年年底建好的强磁场中心大楼。不断建设的生命科学基础设施,始终追不上高速发展的生命科学研究队伍。/pp  然而,吸引哈佛八博士后和许多国外科研人员不断到这里集聚的,“是科研本身”,是“很吸引人的事业”。/pp  自然,对于回国,总有质疑。团队中第八位归国的哈佛博士后任涛,就曾遭到朋友的质疑,“你能适应吗?说不定没几天又跑回来了”。/pp  “但我觉得不会,我是想,回来就要沉下来。”任涛说。/pp  任涛一来到合肥,就买了一张公交卡,把这个城市大大小小的地方走了个遍,在他心里,自己早已经是个合肥人。/pp  “以前总是不停在不同的地方漂,每个地方平均下来,多得六七年、少得三四年,很少对自己有身份定位。”到科学岛已经八年的王俊峰,如今找到了自己的身份定位——科学岛的强磁场人。/pp  “在强磁场建设中付出了很多心血,达到了世界最高水平的装置,作为中国科研人员,我们的骄傲、自信来自于我们共同看到的结果。”王俊峰说。/pp  对于强磁场而言,哈佛八博士后是研究的中流砥柱,但对于归国的大潮,他们只是沧海一粟。/pp  根据2017年留学人员回国服务工作部际联席会议公布的数据,中国留学回国人员由2012年的72.38%,2016年的82.23%,这5年的海归人数更是占到了总留学归国人数的70%。越来越自信的中国科研平台,正吸引越来越多的海外学子加入中国科技发展的大潮中。/p
  • 【助力科研】伊睦(上海)流体科技有限公司与巴基斯坦喀喇昆仑国际大学举行科研仪器捐赠仪式
    夏末秋至,温暖同行 8月26日,伊睦(上海)流体科技有限公司-喀喇昆仑国际大学科研仪器捐赠仪式在伊睦流体公司总部举行,此次捐赠推动了中国和巴基斯坦在科研领域的深层次合作。伊睦流体CEO杨琪女士、巴基斯坦喀喇昆仑国际大学化学系副教授Iftikhar Ali(伊夫季哈尔阿里)博士、山东省分析测试中心王岱杰研究员出席捐赠仪式。王岱杰研究员主持仪式。人物简介捐赠方代表:伊睦流体CEO——杨琪被捐赠方代表:Iftikhar Ali(伊夫季哈尔阿里)博士巴基斯坦喀喇昆仑国际大学化学系副教授,入选科技部发展中国家杰出青年科学家来华工作计划,主要从事天然产物药物化学、结构修饰和绿色合成研究,目前已发表高水平论文50余篇,2017和2018年度巴基斯坦药用植物研讨会发起人,2017年度巴基斯坦第67届林道诺贝尔奖会议提名。Ali博士在齐鲁工业大学(山东省科学院)从事博士后研究过程中,在天然产物研究领域取得了非常出色的科研成绩,与中国建立了深厚的友情和联系。捐赠推动人及仪式主持人:王岱杰研究员山东省分析测试中心研究员、工学博士、硕士生导师,山东省重点区域引进急需紧缺人才,泉城产业领军人才,现任山东省分析测试中心中药资源可持续利用研究室主任、学术委员会委员。捐赠仪式精彩瞬间左右滑动查看更多依次为捐赠仪式视频连线,巴基斯坦方会议画面,捐赠平流泵讲解并试用左右滑动查看更多依次为捐赠仪式合影,EMO-Mutil系列平行反应器讲解,EMO—AP系列高精度平流泵讲解左右滑动查看更多依次为平流泵演示讲解,EMO公司进程介绍 捐赠仪式开始,阿里博士介绍到,巴基斯坦具有丰富的药用植物资源,与中国的中医药资源一样,都是世界制药领域的瑰宝。学校所在的吉尔吉特地区与中国新疆接壤,海拔跨度大,特殊的地理位置造就了珍稀的药用植物资源,民间也有广泛的应用历史。但是,受制于科研力量相对薄弱,特色药用植物资源有待于深入研究,进一步发现结构新颖化合物。 巴基斯坦喀喇昆仑国际大学拥有非常优秀的师资力量、教学能力和科研能力,在生命科学、自然科学与工程、人文与社会科学方面取得了很大的成就,培养了成绩优异的毕业生,为巴基斯坦各地服务。 而伊睦流体与天然药物纯化有着很深的渊源,CEO杨琪女士有着十多年的天然药化领域经验,为药物发现和纯化提供解决方案,并与齐鲁工业大学(山东省科学院)山东省分析测试中心结下了深厚的友谊,在此次山东省科学院“‘一带一路’倡议及中巴经济走廊等背景下,杨琪女士代表伊睦流体向巴基斯坦喀喇昆仑国际大学捐赠了一套纯化制备系统,希望此次捐赠能进一步加强中国和巴基斯坦在科研领域的深入合作,推动喀喇昆仑国际大学天然药物研发水平的提升。捐赠交流过程中01王岱杰研究员指出,天然化学,合成化学,生物化学等学科其实是交叉并且融汇贯通的。通过快速精致纯化得到有效的化学分子,用各种分析手段去比较分析,找出共同点,建立类似化合物库,再根据化合物库,用合成化学或者生物合成方式去筛选药物,这应该是中药和西药的桥梁。02杨总表示,天然有效成分的分离纯化是一项艰苦的工作,如屠呦呦教授在青蒿提取纯化出2000种中药,发现其中有640种可能有抗疟效果,这个工作量在当时纯化设备简陋的那个年代,耗时耗力可想而知。而当今,我们更希望用现代化自动设备,更快捷高效地来解决纯化过程中的耗时和低效问题,以多维纯化方式根据不同的工艺来搭建不同的纯化路线,从1周的反复提取压缩到1天,从一天的慢速纯化压缩到1小时的快速纯化,从上样量mg级扩大到上样量g级甚至百g级,从高压制备昂贵降低到低压中压高压结合多维柱分离。钻研精神未来 伊睦流体将会与山东省分析测试中心及巴基斯坦喀喇昆仑国际大学继续开展紧密合作,共同推进药用植物化学发展与领域合作。 特别感谢这次捐赠仪式的推动者兼主持人王岱杰研究员。使命Mission 谨借此文感谢那些在药用植物化学科研上做出贡献的科研工作者!伊睦流体作为一个开放的平台,也将不遗余力协助该领域专家们在研究领域的发展与合作。
  • 新研究展示自旋-轨道耦合的拉比振荡行为
    近日,暨南大学研究员陈振强团队揭示了自旋-轨道光学拉比振荡现象,首次在理论和实验上同时展示了自旋-轨道耦合的拉比振荡行为。相关研究论文发表于Light:Science & Applications。陈振强带领的光场调控科研团队研究无发散结构光场与人工晶体相互作用,在高阶光学体系下构建赝自旋-1/2模型,分别在强、弱耦合条件下实现自旋-轨道拉比振荡。此外,通过外场调控等效磁场,实现拓扑荷可调的角动量光场。研究结果有望在经典和量子光学中找到应用。拉比振荡是二能级量子波包在外磁场驱动下发生周期性振荡的现象,是物理学中重要的基本物理效应之一,已在诸多领域得到应用,如核磁共振成像。目前,拉比振荡已逐渐扩展到其它物理体系,包括原子分子物理、声学、凝聚态物理、光学等。在现有研究工作中,拉比振荡只涉及两种独立的振荡形式:自旋态振荡和轨道态振荡。如何在高阶物理体系实现自旋-轨道耦合的拉比振荡?针对这一基本问题,研究人员通过类比量子力学自旋1/2系统,利用左、右旋圆偏振涡旋光场构建高阶光学体系的赝自旋1/2系统,并导出相应的等效磁场模型。在等效磁场的作用下,高阶赝自旋态(结构光场模式)在两“能级”间发生周期性振荡。研究人员进一步利用外电场调控等效磁场,操控拉比振荡光场的演化行为。在电场的驱动下,实现不同拉比振荡模式的切换,这一现象为光场多维调控提供新的技术原理。上述研究得到国家自然科学基金项目、广东省重点项目、广州市科技计划项目、珠江人才计划项目等的支持。
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • 表面增强拉曼光谱技术对茶叶中百草枯与敌百虫农药残留的快速检测
    我国是茶叶生产和消费大国,茶文化历史悠久,2021年全国18个主要产茶省茶园面积为326.41万hm2,干毛茶产量306.32万吨,产值约2928.14亿元。作为一种人们日常饮品,其质量安全至关重要。在茶叶种植生长过程中,为防治病虫害,经常会使用一些除草剂和杀虫剂,但不合理用药可能会带来一系列的食品安全风险问题。百草枯是一种快速灭生性除草剂[1],可以使植物快速枯萎,除草效果好,见效快,但百草枯有剧毒,残留的百草枯能够导致人体不同程度的肾功能损害以及衰竭[2]。敌百虫是一种乙酰胆碱酯酶抑制剂,可对节肢类害虫起到灭活作用[3],但该药物同时又对人体有很强的毒害作用,会严重损伤人体生殖与神经系统[4]。因此,控制茶叶中农药残留量对守护居民健康有着重要意义。常用的农残检测方法有气相色谱法、液相色谱法、气相色谱-质谱法、液相色谱-质谱法等。色谱与质谱方法检测结果准确可靠,具有较高的精确度和可重复性,常作为仲裁法使用,但是存在检测时间长、仪器体积大、设备昂贵且操作复杂,无法应用于生产现场等问题。相对于传统的检测技术而言,表面增强拉曼光谱(SERS)技术具有灵敏、快速、便携和准确等优势,被广泛应用于环境监测、食品监督、生物医学、药品检验和刑事技术等领域。将SERS技术应用于茶叶中的农药残留检测,有助于茶叶现场快速检测,保障茶叶的质量安全。2试验方法本文采用上海如海光电仪器公司生产的RMS1000手持式拉曼光谱仪进行数据采集,通过上海如海光电提供的预处理算法进行光谱预处理。测试参数:激发波长785 nm;激光功率150 mw;积分时间为1 s~5 s。为提高实验准确性,每个样品均取10个不同的点进行测试,并计算10个点的平均拉曼光谱强度,得到所测农药的SERS光谱。3研究内容3.1 茶叶中百草枯的SERS检测图1 4种茶类中不同浓度百草枯的SERS光谱: (a) 绿茶;(b) 红茶;(c) 乌龙茶;(d) 黑茶分别对绿茶、红茶、乌龙茶、黑茶4种茶汤中百草枯进行SERS检测,检测结果如图1所示。图中可明显观察到百草枯843和1656 cm-1 两处拉曼特征峰,并且其拉曼峰强随百草枯的浓度的减小也依次降低。由图可知,绿茶、红茶、黑茶的最低可检测浓度为 1.86×10‒ 2mg/kg,乌龙茶的最低可检测浓度为1.86×10‒ 1mg/kg。最低检测浓度符合GB 2763-2021中关于百草枯在茶叶中的最大残留限量0.2mg/kg规定,表明SERS方法能够用于茶叶中百草枯残留的定性定量检测。以百草枯在 843 cm‒ 1处的特征峰值强度取对数(lgX)为横坐标,百草枯浓度取负对数(-lgY)为纵坐标建立线性回归方程,线性拟合结果如表1所示,线性相关系数r2均能超过0.9。表1不同茶类中不同浓度百草枯SERS光谱的线性分析3.2 茶叶中敌百虫的SERS检测图2 4种茶类中不同浓度敌百虫的SERS光谱: (a) 绿茶;(b) 红茶;(c) 乌龙茶;(d) 黑茶绿茶、红茶、乌龙茶、黑茶4种茶汤中敌百虫残留SERS检测结果如图2所示,从图中看到茶汤中的部分物质成分随着添加的敌百虫浓度增大,644、741、1328、1601 cm‒ 1等特征峰强度呈规律性降低,拉曼特征峰强与敌百虫浓度呈显著负相关性,可通过特征峰强度变化间接反映敌百虫浓度。在这项研究中,绿茶、红茶和乌龙茶中敌百虫检出限为 2.57×10‒ 2mg/kg,黑茶为2.57×10‒ 1mg/kg。根据GB 2763-2021规定茶叶中的敌百虫最大残留限量为2mg/kg,通过SERS方法得出的检出限可以达到敌百虫国家最大残留限量要求。在绿茶、乌龙茶、黑茶中,以644 cm‒ 1处的特征峰值强度,红茶检测中以740 cm‒ 1处的特征峰值强度建立线性回归方程,线性拟合结果如表2中所示,线性相关系数r2也均超过0.9。表2不同茶类中不同浓度敌百草SERS光谱的线性分析文献来源参考文献[1] 黄文倩. 水稻RMV1同源基因的鉴定与突变分析[D]. 浙江大学, 2021.[2] 朱伟, 范偲, 肖敏, 张光辉, 陈萍, 王可. 草铵膦和百草枯混合中毒1例报告[J]. 中国工业医学杂志, 2022, 35(1): 35‒ 36.[3] 范一文, 陈辉, 姜建国. 农业杀虫剂敌百虫对杜氏盐藻的毒性作用[J]. 现代食品科技, 2011, 27(8): 877‒ 880.[4] 黄航星, 陈燕敏, 郭海柔, 何焜鹏. 气相色谱法测定蔬菜中敌百虫的含量[J]. 食品安全质量检测学报, 2020, 11(12): 4127‒ 4131.本研究中用到的RMS1000,现已升级为RMS2000微型共聚焦拉曼光谱仪。RMS2000微型共聚焦拉曼光谱仪产品介绍RUHAIRMS2000是一款微型的785nm同轴共聚焦拉曼光谱仪,其采用全空间光设计,优化散热接口。可配置超短焦、线扫描、浸入式探头,支持Linux和Windows多种操作平台和主控系统,配备手机端(Andorid)和电脑端采集分析软件。具备非凡的分辨率、灵敏度、穿透能力和抑制荧光干扰能力。既可以单独使用也可以作为核心部件集成进拉曼自动化系统,满足科研院所,相关监管机构与企业在无机/有机材料、生物生命,化学/化工、药物分析,食品安全,刑侦鉴定,环境污染检测等研究中的需求。产品特点积小巧,重量轻,仅100×80×26mm和280g。空间光、微型共聚焦设计,最小光斑≤30μm。高分辨率(~6cm-1),高抑制荧光能力,能够轻松测量高荧光样品,获取拉曼光谱。高灵敏度,500ms即可实现常规化学品的拉曼光谱,最低可以检测0.3%的分析纯酒精。可配置线扫式探头,可以采集4.5mm*1mm的线扫光斑,降低样品照射功率密度。可配置浸入式拉曼探头,用于过程分析检测。支持手机和电脑双平台,方便户外现场直接测量。强大的软件分析功能,支持常规的HQI,峰位检索,深度学习神经网络等算法。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制