当前位置: 仪器信息网 > 行业主题 > >

丙三醇与

仪器信息网丙三醇与专题为您提供2024年最新丙三醇与价格报价、厂家品牌的相关信息, 包括丙三醇与参数、型号等,不管是国产,还是进口品牌的丙三醇与您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙三醇与相关的耗材配件、试剂标物,还有丙三醇与相关的最新资讯、资料,以及丙三醇与相关的解决方案。

丙三醇与相关的资讯

  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB 30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 氯丙二醇兴风作浪,岛津方案让您一招全搞定
    导读近日有媒体报道,香港婴儿配方奶粉检出致癌物氯丙二醇(3-MCPD)及可致癌的环氧丙醇,其中不乏有惠氏、美赞臣、雅培、meiji等知名品牌。此事牵动着广大宝妈对婴幼儿奶粉质量安全及婴儿身体健康等的担忧。当晚,香港食安中心在专页澄清指出,根据联合国粮农组织及世界卫生组织专家委员会的相关参考值,全部奶粉均无超标,市民可放心按奶粉建议食用分量给婴儿食用。这使得宝妈悬着的心又一次平静下来。但此事也反映了广大民众对食品安全质量的又一次警钟长鸣。 什么是氯丙二醇类物质 氯丙二醇类物质是包括3-MCPD(3-氯丙二醇)、2-MCPD(2-氯丙二醇)、3-MCPDE(3-氯丙二醇脂肪酸酯)、2-MCPDE(2-氯丙二醇脂肪酸酯)以及GE(缩水甘油脂肪酸酯)。其中氯丙醇酯是氯丙醇在食品中与各种脂肪酸形成的一大类物质的总称,主要为3-MCPDE及2-MCPDE。缩水甘油又称环氧丙醇,是一种环氧化合物,在食品中与脂肪酸结合形成较为稳定的缩水甘油酯(GE)。这类物质中3-MCPD毒性最大,对人体的肝、肾、神经系统及血液循环系统会造成毒害,具有潜在致癌性,国际癌症研究机构(IARC)将其定2B级,即“可能的人类致癌物”。 表1 氯丙二醇类物质相关信息 氯丙二醇类物质属于是食品原料中带入的一种污染物,目前还无法完全避免。食品在加工生产过程中,酸水解植物蛋白或者高温油脂精炼过程中,均会产生氯丙二醇及相关污染物。婴幼儿配方奶粉脂肪含量大约为25%,添加的多数为精炼油脂,因此受到了氯丙二醇污染。同时媒体报道的奶粉中可疑致癌物环氧丙醇,在食品中以缩水甘油脂肪酸酯(GE)的形式存在。 因氯丙二醇类物质的致癌性,各国也推出了其建议的限量要求。 FAO/WHO及欧盟建议3-MCPD的最高日允许摄入量为2μg/Kg体重。美国FDA建议食品所含3-MCPD不应超过1mg/kg干物质;欧盟食品污染限量法规(EC)规定:酱油、水解植物蛋白(干物质含量为40%的液体产品)最大限量要求为20μg/Kg;干物质产品为50 μg/Kg。我国GB 2762-2017《食品安全国家标准 食品中污染物限量》中规定了3-MCPD的限量为:添加酸水解蛋白的液态调味品≤0.4 mg/Kg;固态调味品≤1.0 mg/Kg。 氯丙二醇类物质检测方法 目前对氯丙二醇类物质的检测国际上没有统一的标准,采用较多的为AOCS(美国油脂化学协会)官方方法 cd 29a-13;我国国标GB 5009.191-2016、SN/T 5220-2019也对氯丙二醇类物质规定了检测方法。以上标准均采用气相色谱-单四极杆质谱法(GC-MS)进行测定,但会出现复杂样品杂质干扰大的缺点,从而影响结果的准确定性定量;同时为了提高灵敏度需要复杂的样品前处理及净化过程。而采用气相色谱-三重四极杆质谱法(GC-MS/MS)的多反应监测模式(MRM)检测,定量目标物更加准确,是目前复杂基质中微量化合物最有效的检测手段,也是氯丙二醇类物质测定的最佳选择。 岛津整体解决方案 岛津公司秉承以“为了人类及地球的健康”的公司理念,结合自身仪器特点,在氯丙二醇事件发生后,快速应对,为食品中氯丙二醇类物质的检测提供完整的解决方案。在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪 氯丙醇的检测方法 使用岛津公司独有的在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪(GPC-GCMS-TQ8040),食品样品简单的提取后,经在线GPC净化去除掉样品中的脂肪、蛋白等大分子干扰物,采用GC-MS/MS的MRM方式无需衍生的条件下分析食品中的氯丙醇含量,同时采用氘代同位素内标法进行校正。相关MRM条件及色谱图如下 表2 氯丙醇类化合物MRM参数 图1 氯丙醇及氘代同位素内标溶液色谱图 在0.005~1 mg/L范围内,通过同位素内标法得到的线性其相关系数R均大于0.999,其各物质的检出限及定量限见下表所示: 表3 氯丙醇类化合物线性相关系数、检出限、定量限 注:以上数据来源于易青,苗虹,吴永宁,《在线凝胶渗透色谱-气相色谱-串联质谱非衍生化法测定食品中氯丙醇》,分析化学研究报告,2016,5(44):678~684. 气相色谱-三重四极杆质谱联用仪(GCMS-TQ8040 NX) 氯丙醇酯及缩水甘油酯的检测方法 食品中的脂肪经溴代反应后,其中的缩水甘油酯转变成溴丙醇酯;溴丙醇酯以及样品中的氯丙醇酯在酸性条件下发生酯交换反应,并被水解为相应的氯丙醇,同时经基质分散固相萃取净化后,氮吹并经七氟丁酰基咪唑(HFBI)衍生后,上GC-MS/MS仪器进行分析,采用同位素内标法定量,可一次性同时测定样品中的3-MCPDE、2-MCPDE和GE的含量。相关MRM条件及色谱图如下: 表4 氯丙醇酯类化合物MRM参数 图 2. 氯丙醇酯及缩水甘油酯标准色谱图(100 ng/mL) 在0.01~0.3 mg/L范围内,通过同位素内标法得到的线性相关系数(R2)均大于0.997,其各物质的检出限及定量限见下表所示: 表5 氯丙醇类化合物线性相关系数、检出限、定量限 结论 岛津公司提供全面应对食品中氯丙二醇类致癌物质检测的整体解决方案,结合自身独有技术特点,方便、快捷地让您轻松应对食品污染物分析,在婴儿奶粉氯丙二醇事件中乘风破浪!
  • 丙二醇在牛奶界“出圈”了,热度蹭蹭的
    近日,某品牌纯牛奶检测出丙二醇的词条冲上热搜,引发了社会公众的关注。那么,丙二醇是什么?对人体危害性如何?食品中是否需要添加该物质?如何检测等等一系列疑问浮现在脑海中。丙二醇是什么? 丙二醇(Propylene glycol),中文名1,2-丙二醇、1,2-二羟基丙烷、丙二醇或α-丙二醇。在塑料、注射类药物、合成树脂、化妆品、食品等众多领域有着广泛的应用。在GB2760-2014《食品安全国家标准 食品添加剂使用标准》中,丙二醇被用作稳定剂、凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂、增稠剂等食品添加剂或食品工业中冷却剂、提取溶剂等加工助剂使用。在生湿面制品和糕点中的用量限值分别为1.5g/kg和3g/kg。丙二醇对人体的危害丙二醇在我国作为食品添加剂,其添加的范围是明确的,并不包含牛奶。有报道称长期过量摄入可能会损伤肾功能。遵守国家法律法规,合法使用食品添加剂是每个企业的责任和义务。丙二醇检测食品中丙二醇的检测标准参考GB5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》,标准中针对不同物质规定了详细的检测方法,涉及气相和气质两款产品。 东西分析作为一家拥有三十多年分析仪器设备生产、研发企业,对食品安全检测有丰富的经验,可为食品中丙二醇检测提供全套解决方案。方法一:气相色谱法 (GC+FID检测器)GC-4100气相色谱仪该方法适用于糕点,膨化食品、奶油、干酪、豆制品、奶片、生湿面制品、冷冻饮品、液体乳、植物蛋白饮料、乳粉、黄油、奶油中丙二醇检测。 参考条件色谱柱:DB-WAX柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持10min。进样口温度:230℃;检测器温度:240℃;氢气流量:40mL/min;空气流量:350mL/min;进样量:1μL;分流比:10:1。方法二:GC-MS 气质法 GC-MS3200气相色谱(四极)质谱联用仪该方法适用糕点、膨化食品、干酪、豆制品、奶片、生湿面制品中丙二醇的检测。参考条件色谱部分色谱柱:PEG柱,60m x 0.25mm,0.25μm;载气:高纯He;流速:1.0mL/min;程序升温:初始温度80℃,保持1min,以20℃/min速率升温至160℃,保持2min,再以15℃/min速率升温至220℃,保持5min。进样口温度:230℃;检测器温度:240℃;进样量:1μL;分流比:10:1。质谱条件EI源;电离能量:70eV;离子源温度:230℃;溶剂延迟:8min扫描方式:SIM,选择离子m/z31、45、61,定量离子:m/z45。
  • 酱油中氯丙醇含量的测定 气相色谱质谱法
    前言氯丙醇(Chloropropanols)是是一种在化学制作豉油的过程中所产生的毒性致癌物,同时具有抑制雄性激素生成的作用,使生殖能力减弱。对人体危害极大。日常比较常见的为以下三种:1-氯-2-丙醇 (ClCH2CHOHCH3);3-氯-1,2-丙二醇 (3-MCPD)及1,3-二氯-2-丙醇 (1,3-DCP)。本文参考《GB/T 5009.191-2006 食品中氯丙醇含量的测定》,进行了酱油中3-氯-1,2-丙二醇(3-MPCD)的测定,优化改进了用于样品预处理的硅藻土材料,调整活度,成功开发了Cleanert MCPD氯丙醇专用柱,结果表明满足实验要求,并大大简化了材料预处理过程,提高工作效率。 1 仪器及材料仪器:Agilent GC-MS 7890-5975c;涡旋混合器;超声仪;氮吹仪;恒温箱。材料: 3-氯-1,2-丙二醇(3-MPCD)标准品;乙酸乙酯、丙酮、正己烷为色谱纯;七氟丁酰基咪唑;无水硫酸钠;超纯水;氯化钠。固相萃取柱:Cleanert MCPD (氯丙醇专用柱),2.5g/12mL,P/N:LBC2500122 实验方法2.1 标准溶液配制准确称取0.1g氯丙醇标准品于100mL容量瓶中,用乙酸乙酯定容到刻度,得到浓度为1mg/mL的储备液。用丙酮将储备液逐渐稀释,得到1&mu g/mL标准工作液。2.2 饱和氯化钠溶液称取氯化钠290g,加水溶解并稀释至1000mL,超声20min。2.3 GC-MS操作条件色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:230℃,不分流进样程序升温:50℃(1min)2℃/min 82℃进样量:1&mu L流速:1 mL/min接口温度:250℃电离方式:EI电离能量:70eV溶剂延迟:7min离子源:230℃四级杆:150℃检测模式:选择离子检测,SIM离子:253/275/289/291/4532.4 样品处理称取2.5g酱油直接上样Cleanert MCPD固相萃取柱,静置平衡10min,用15 mL乙酸乙酯洗柱,收集洗脱液。将洗脱液在35℃下氮气吹至近干(不可全干)。加入2 mL正己烷,摇匀,快速加入50&mu L七氟丁酰基咪唑,将样品瓶拧紧,涡旋20秒,将样品瓶置于70℃恒温箱中反应30min,取出冷却至室温,向样品瓶中加入2 mL饱和氯化钠溶液,涡旋1min,静置2min,取上层有机相至另一干净的样品瓶中,重复1次洗涤操作以除去杂质。将有机相经少量无水Na2SO4除水后转移至进样样品瓶中,待GC-MS检测3 实验结果3.1 标准溶液色谱图在GC-MS操作条件下(4),得到标准溶液色谱图如图1.图1 标准溶液色谱图(浓度为50ng/mL)3.2 样品色谱图准确称取6份酱油,其中5份分别加入浓度为1&mu g/mL的标准溶液0.1mL,按照样品处理方法(5),将6份样品进行净化衍生,得到酱油样品加标色谱图及酱油样品色谱图如图2、图3.图2 酱油样品加标色谱图(浓度为50ng/mL)图3 酱油样品色谱图3.3 加标回收率及精密度 表1 加标回收率及精密度 1#2#3#4#5#平均回收率(%)RSD(%)n=5回收率(%)88.083.990.583.692.187.603.84 4 结论实验结果表明,Cleanert MCPD氯丙醇专用柱适用于酱油中氯丙醇的预处理,能净化酱油样品,实验加标回收率及RSD能满足定量实验的要求。本实验方案与国标方法相比更简便,使用的化学试剂量仅为国标方法的1/20,有利于操作人员的身体健康及环境;实验时间较国标方法短,更加适合于大批量酱油样品的前处理。 订货信息 产品名称规格、包装订货号价格Cleanert MCPD2.5g/12mL, 20支/包LBC250012580DA-5MS30m*0.25mm*0.25&mu m;1支1525-30024200
  • 【培训】要开班啦——食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 【培训】食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测培训通知
    p  食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测/pp  培训班简介/pp  中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!/pp  适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员 2.各级食品安全监管部门及检测机构技术人员 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员 4.其他相关行业意向本次培训班的机构及个人/pp  主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会/pp  协办单位:天津阿尔塔科技有限公司/pp  培训基地:中粮集团营养健康研究院/pp  费用说明/pp  培训费: 课程A 3500元/人(含食宿),时间: 2天/pp  课程B 3000元/人(含食宿),时间:2天/pp  课程A依据新颁布国家食品安全标准GB5009.191-2016/pp  课程B依据美国油脂化学协会AOCS Official Method Cd 29a-13/pp  课程A与课程B分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书/pp  培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)/pp  培训内容:/pp  课程A:食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法 (食品安全国家标准 GB5009.191-2016)/pp   GC-MS基本原理及应用/pp   3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解/pp   演示实验/pp   实际操作/pp  课程B:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(AOCS Official Method Cd 29a-13)/pp   3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解/pp   演示实验/pp   实际操作/pp  报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。/pp  联系人:姜平月/pp  电话:15620189828/022-65378550/pp  QQ: 2850791078/pp  培训要点/pp  氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。/pp  目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为AOCS的标准。而国内近期刚刚颁布了GB 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。/pp  3-氯丙醇及2-氯丙醇检测方法:/pp  方法一:国标GB 5009.191-2016方法/pp  采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用GC-MS测定。该方法用时较短。/pp  方法二:基于AOCS Official Method Cd 29a-13方法/pp  采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用GC-MS测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。/pp style="text-align: center "img width="479" height="109" title="11.png" style="width: 390px height: 86px " src="http://img1.17img.cn/17img/images/201708/insimg/3967d1a0-e05d-4afe-9c20-075b41169847.jpg"//pp  缩水甘油酯检测方法:/pp  基于AOCS Official Method Cd 29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用GC-MS测定。该方法具有较好的稳定性,精密度、重复性及回收率。/pp style="text-align: center "img width="479" height="92" title="12.png" style="width: 422px height: 73px " src="http://img1.17img.cn/17img/images/201708/insimg/f90cb986-2897-4c72-b6c3-9c8fadaf68e4.jpg"//pp  附件 培训申请表/ptable width="549" border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 27px "td width="549" height="27" valign="top" style="background: none padding: 0px border: 1px solid black " colspan="2"p style="background: white text-align: center line-height: 27px "strongspan style="color: rgb(47, 47, 47) "span style="font-family: 宋体 "附件/span/span/strongstrong /strongspan style="font-family: 宋体 "strongspan style="color: rgb(47, 47, 47) "培训申请表/span/strong/span/p/td/trtr style="height: 27px "td width="549" height="27" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "姓名:/span/p/td/trtr style="height: 23px "td width="549" height="23" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "单位(及邮编):/span/p/td/trtr style="height: 29px "td width="549" height="29" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "地址:/span/p/td/trtr style="height: 34px "td width="287" height="34" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px "p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "手机:/span/p/tdtd width="262" height="34" valign="top" style="background: none border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px "p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "传真:/span/p/td/trtr style="height: 37px "td width="549" height="37" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: " new="" times=""Email:/span/p/td/trtr style="height: 42px "td width="549" height="42" valign="top" style="background: none border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px " colspan="2"p style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: 宋体 font-size: 16px "您还希望接受哪一类主题的培训?我们将尽力安排相关课程/span/pp style="line-height: 150% text-indent: 32px "span style="line-height: 150% font-family: " new="" times=""span style="font-family: 宋体 " /span/span/pp style="line-height: 150% text-indent: 32px "span style="text-decoration: underline "span style="line-height: 150% font-family: " new="" times="" /span/span/p/td/tr/tbody/tablep/p
  • 纯牛奶检出丙二醇不合格,美正检测助力牛奶安全
    近期网红牛奶麦趣尔检出丙二醇引发大家关注,小编帮大家整理此事时间线如下:2022/06/28麦趣尔两批次纯牛奶检出低毒类添加剂丙二醇不合格。2022/06/30麦趣尔深夜回应「监管部门进驻,相关产品封存」。2022/07/03市场监管总局要求严查麦趣尔纯牛奶检出丙二醇问题。2022/07/03麦趣尔被立案调查:牛奶生产过程中超范围使用香精。2022/07/03麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶。丙二醇为何物?丙二醇属于有机化合物,通常是略有甜味、无臭、无色透明的油状液体,吸湿,并易与水、丙酮、氯仿混合,其黏性和吸湿性好,广泛应用于食品、医药和化妆品工业中,长期过量食用丙二醇可能引起肾脏障碍。丙二醇加入的来源有两个,一是作为添加剂(GB 2760)使用,起到稳定消泡凝固等表面活性剂功能,应用范围比较小。在2022年食品安全监督抽检实施细则中只对生湿面制品和糕点有使用限量要求,其他产品禁止使用。应用范围更大的来源是,丙二醇是最为常用的水溶性液体香精基质(溶剂)(GB 30616)。所以牛奶中丙二醇不是当前监督抽检细则项目,没有常态监管。虽然麦趣尔发布沟通函称,系未有效清洗罐线的残留调制奶,导致丙二醇成分混入纯牛奶,但是浙江省庆元县查出麦趣尔2个批次纯牛奶丙二醇检出量高达0.318g/kg和0.321g/kg,远远高于一般残留带入水平。此外,调制乳的残留受影响的理应只是一个批次,监管部门在 6 个不同批次中都检测到了丙二醇,含量还特别接近(0.0264%~0.0363%),很难让消费者信服。目前现行有效的检测标准为GB 5009.251-2016 食品安全国家标准 食品中1,2-丙二醇的测定,代替GB/T23813—2009《食品中1,2-丙二醇的测定》、NY/T1662—2008《乳与乳制品中1,2-丙二醇的测定 气相色谱法》。美正为中国的牛奶安全保驾护航美正致力于食品健康领域检测与服务,针对此次牛奶检出丙二醇不合格事件,美正检测迅速推出相应的标准品和基体质控样,帮助检测单位迅速建立方法,快速完成检测项目,为中国的牛奶安全保驾护航。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • GERSTEL守护食用油安全——应对矿物油、氯丙醇酯及缩水甘油酯污染
    近期,“罐车混用”事件再次将食品安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。有专家表示,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。鉴于此,仪器信息网特此发起“油罐车混装事件:仪器检测如何护航食用油安全?”主题征稿活动。此次邀请到GERSTEL分享食用油中矿物油、氯丙醇酯及缩水甘油酯污染的解决方案。 01 请介绍贵单位有哪些仪器成果或解决方案应用于食用油安全检测? GERSTEL 一直以来关注食品安全,以精密的样品前处理设备助力检测结果的准确性和高效性、以智能的控制软件提高使用感受并灵活满足应用需求、以强大的分析软件解决复杂繁琐的数据处理。我们成熟的矿物油污染HPLC-GC-FID检测方案、氯丙醇酯和缩水甘油酯污染检测方案,提供高效、准确的食用油安全的检测和评估,深受全球消费者的欢迎。 同时使用同一个平台还可以实现更多的检测项目,如PAHs,橄榄油中的烷基酯、蜡、甾醇、萜烯醇、豆甾二烯进行高效,准确的分析。GERSTEL矿物油污染HPLC-GC-FID 检测方案:GERSTEL 矿物油污染MOSH MOAH 解决方案实现了对食品、饲料、个人护理产品和包装提取物中矿物油残留的高效自动样品制备和分析。该系统基于在线耦合的 HPLC-GC-FID 系统,使用 GERSTEL 多功能进样器 (MPS)进行自动样品制备和进样。首先在 LC 步骤中,矿物油残留被分离成两个部分:矿物油饱和烃(MOSH)和矿物油芳香烃(MOAH)。然后,这些部分被分别转移到两个独立的 GC 柱中,在一个组合的双通道GC 系统中进行单独分析。该解决方案符合 DIN EN 16995:2017-08 标准的要求。双通道 GC 分离和 FID 检测使得MOSH MOAH 的完整分析仅需30分钟。此方法的关键是在 MOSH 和 MOAH 进入 GC 色谱柱前,需要准确的去除大量溶剂(LC洗脱液)并保证两个馏分精确的被分配到两个 GC 色谱柱中。GERSTEL 使用保留间隙技术(通过色谱前柱保留组分)和自主研发的 “溶剂汽化出口 Early Vapor Exit(EVE),可以精确控制 MOSH 和 MOAH 馏分的分配以及汽化溶剂的排出时间和体积。GERSTEL供完整的自动化样品前处理方案,包括环氧化、皂化、氧化铝净化以及馏分收集,大大提高结果的正确性和更低的检测限,同时大大降低繁琐的手动操作的工作量和时间。数据分析软件ChroMOH,帮助自动分析MOSH和MOAH的组分,提供100%可靠、稳定、快速的数据结果并自动生成报告,降低手动处理可能造成的误差,节省时间。HPLC-GC-FID 检测方案带有自动环氧化、氧化铝、皂化样品前处理功能的HPLC-GC-FID检测方案通过ChroMOH 软件自动积分MOSH和MOAH的各组分,并生成到最终报告中。GERSTEL氯丙醇酯和缩水甘油酯污染检测方案:GERSTEL 提供全面的3-MCPD和缩水甘油的检测自动化方案,可高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯含量。&bull 同位素稀释-气相色谱-串联质谱法 (对应 ISO18363-4法)&bull 碱水解-气相色谱-质谱法 (对应 ISO18363-1法)&bull 酸水解-气相色谱-串联质谱法 (对应 ISO18363-3 法)GERSTEL的自动化解决方案,严格遵守标准方法GB 5009.191-2024第二篇第一法,使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的3-MCPD酯、2-MCPD酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997。有回收率高,转化率稳定可靠,样品通量高的优势。02请分享1-2个仪器检测技术在食用油安全检测中的最新应用与进展举例1:鉴定橄榄果渣油中的矿物油实际含量两个(右和左)橄榄果渣油样品中 MOSH 和 MOAH 的一维 HPLC-GC-FID 色谱图。在 MOSH 和 MOAH 馏分的顶部分别可以看到植物来源的碳氢化合物和烯烃。较暗的区域对应于矿物来源的碳氢化合物。粗橄榄果渣油中的饱和烃类矿物油 (MOSH) 和芳香烃类矿物油 (MOAH) 含量。以 mg/kg 为单位并具有两位有效数字的结果针对C组分总和给出。举例2:意面、麦片、面包干、葡萄干及其包装中的矿物油实际含量上图分别为意面、麦片、面包屑、葡萄干(依次从上到下)的MOSH和MOAH色谱图,每个样品检测三次,重现性非常好。举例3:实现食品安全国家标准 GB 5009.191-2024 -高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯、缩水甘油酯GB 5009.191-2024第二篇第一法,即13C同位素稀释-气相色谱-串联质谱法,使用13C3-3-MCPDE 作为内标,准确量化转化为缩水甘油的3-MCPD的量,修正由碱水解所带来的缩水甘油测定值偏高的问题,并且可以直接从样品中测定缩水甘油。基于分析前建立的校准曲线在一次测定中确定3-MCPD酯、2-MCPD酯、和缩水甘油酯3种分析物。GERSTEL的自动化解决方案,严格遵守标准方法 GB 5009.191-2024第二篇第一法, 使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的 3-MCPD酯、2-MCPD 酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997,有回收率高,转化率稳定可靠,样品通量高的优势。循环对比试验中样品的成功分析证明了自动化样品制备过程、方法和分析系统的高质量。 不同基质中所有分析物的 RSD 介于0.1%和10%之间。 自动化可实现24/7全天候运行,优先样品可轻松插入运行序列。03您认为哪些检测技术可能会进入食用油检测标准中?目前经典的检测方法是德国BfR推荐方法,即使用手工SPE过柱实现MOSH和MOAH的分离,然后使用GC-FID和GC-MS进行定量分析。很多方法如ISO17780-2015 和中国出入境检验检疫行业标准SN/T 4895-2017 都与德国的BrR类似。在此方法基础上的自动化在线LC-GC-FID法,欧盟标准方法EN16995-2017《基于植物油和以植物油为基础的食品的在线HPLC-GC-FID分析测定矿物油饱和烃(MOSH)和矿物油芳烃(MOAH)》,我认为将会进入食用油中矿物油的检测方案。此标准方法通过自动的LC柱在线净化和分离,大大提高了MOSH和MOAH的分离效率和准确率,并且大大降低一次性的耗材和人力劳动的使用,是未来分析方法的方向。
  • 【ISCO】手动与自动化 Flash 色谱法: 合成(2S-3S)-环氧香叶醇的纯化
    01 摘要通过使用手性催化剂对烯丙醇香叶醇进行环氧化反应,可以通过夏普莱斯不对称合成法选择性地制备出(2S,3S)-环氧香叶醇。合成后的(2S,3S)-环氧香叶醇通过自动化 Flash 色谱法和手动玻璃柱色谱法进行了纯化。为了确定哪种纯化方法对化学家在专业和教学环境中更有益处,我们对每种纯化方法的成功率、效率、质量和经济性进行了分析和比较。结果发现,使用 Teledyne ISCO CombiFlash NextGen 300+ 系统的自动化色谱法在成功率、效率和成本效益方面均优于传统的手动玻璃柱色谱法。02 背景 Flash 色谱法通常作为本科生实验室实验的一部分而被广泛使用。在研究生研究中,由于需要对合成化合物进行纯化,它也是常规使用的技术。Flash 色谱法是一种简单、低成本的色谱技术入门方法,它在纯化化合物方面非常有效。 开放柱的优点开放柱的缺点 尽管自动化 Flash 色谱系统的出现,开放柱在大学中仍然非常流行。它们的初始资金成本很低,因此可以同时使用多个。它们还提供了一种直观的感受,展示了 Flash 色谱是如何进行的。 开放柱由易碎的玻璃制成,一旦破损,需要清理尖锐的碎片和松散的硅胶。在实验结束时,需要对玻璃柱进行填充和拆卸,这会使学生们接触到硅胶粉尘、溶剂以及柱子上残留的任何化合物。开放柱只能使用等度或阶梯梯度。柱子运行需要更多时间,并且需要持续监控,管理溶剂和组分。由于缺乏任何检测器,需要大量的 TLC 板来识别感兴趣的组分。 自动化 Flash 柱的优点自动化 Flash 柱的缺点自动化 Flash 柱是自成一体的,因此在实验完成后,不会接触到硅胶或柱子上残留的任何产品或溶剂。这些柱子填充得当,提高了分辨率,减少了共洗脱峰的可能性。尽管这些柱子是用塑料包装的,但由于检测器可以显示哪些组分应该合并,而不是使用薄层色谱(TLC)板来观察化合物何时被洗脱,因此减少了固体废物。自动化系统允许对梯度进行实验(以梯度冲洗进行纯化测试),并且比开放柱更好地展示了梯度改变与分辨率之间的关系。由于无需填充或清洁柱子,而且纯化过程更快,所以在给定时间内可以处理更多样本,开放柱可同时运行的优势因此被抵消了。 自动化系统的主要缺点是 Flash 色谱设备的初始投资较高,因此与开放的玻璃柱相比,可用的色谱系统数量更少。此外,还需要持续投资预装填的柱子,以及与设备相关的任何维护成本。 03 结果与讨论测试编号 手动(管柱)纯化回收率或产率(%)自动(管柱)纯化回收率或产率(%)#429.0452.85#549.7356.14产率和时间分析成功合成了(2S,3S)-环氧香叶醇,并通过手动与自动化 Flash 色谱法进行了纯化。为了评估两种方法的优劣,我们对比了它们的成功率、效率、产物质量和成本。 通过分析产率,我们发现自动化纯化的产率较高,实验显示分别为 52.85% 和 56.14%,而手动纯化产率仅为 29.04% 和 49.73%。自动化纯化使用预装填柱,紧实充填的硅胶提高了分离效率,减少了样品在柱中的停留时间,避免了环氧环的潜在不稳定。 从纯化质量来看,自动化纯化也表现更佳。NMR 谱图显示,自动化纯化的产物杂质和溶剂残留较少。尽管两种方法都去除了大部分杂质,但自动化技术在纯化效果上更为出色。 在时间效率方面,自动化纯化显著优于手动纯化。自动化过程仅需 26 分钟,而手动纯化需 135 分钟,大大节省了时间和劳力,并减少了操作错误的风险。自动化系统还提供用户友好的操作界面,减少了人为错误并提高了重现性。 经济效益分析表明,自动化纯化的总成本低于手动纯化,为教学实验室提供了一种经济有效的解决方案。此外,自动化纯化减少了对环境的负担,使用了更少的一次性材料,更易于处理废物,并且更安全,因为操作人员无需直接接触硅胶。 综上所述,自动化 Flash 色谱法不仅提高了纯化效率和产物质量,而且更加经济和环保,是化学家们在专业及教育环境中的理想选择。 04 经济分析 平均来说,每个手动玻璃柱纯化所需的材料如表 1-3 所示,用量一致。而自动 Flash 色谱纯化的溶剂用量则根据所选参数和柱子大小(在本例中为 12 克和 4 克柱子)而定。以下是每次纯化所用的材料和溶剂详情。需要注意的是,初始需要的可重复使用设备未包含在价格明细和比较中,如手动纯化用的玻璃器皿和自动纯化用的 Teledyne ISCO CombiFlash NextGen 300+,未包含在价格明细和比较中。 以下比较中使用的化学产品供应商是 Sigma Aldrich;因此,列出的所有价格都基于这家供应商。 表 1:一次手动玻璃柱纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) 70% hexane/30% EtOAc (600 mL)49.59230-400 mesh Silica Gel (100 g)10.90Dust mask2.37Sand (5 g)0.39TLC plates (7 total)11.48Pipette tips (26 total)0.39KMnO4 (100 mL) (TLC plate detection)4.39一次纯化的总材料成本:79.51£ 表 2:使用 4 克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) Hexane (100 mL)9.80EtOAc (100 mL)4.694 g RediSep Gold silica column5.00Hexane chaser (1 mL)0.0981 mL Syringe (2 total)0.22一次纯化的总材料成本:19.81£ 表3:使用12克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used(£ )Hexane (300 mL)29.40EtOAc (200 mL)9.3812 g RediSep Gold silica column500Hexane chaser (3 mL)0.291 mL Syringe (1 total)0.1110 mL Syringe (1 total)0.52一次纯化的总材料成本:44.70£ 05 实验步骤 将粉末状分子筛(0.28克)和无水二氯甲烷(15毫升)一起加入并混合,同时冷却至 -10°C。然后在前述混合物中加入 L-(+)-二乙基酒石酸酯(0.13毫升)和钛(IV)异丙醇盐(0.15毫升),随后再加入叔丁基氢氧化物的癸烷溶液(5.5 M,约3毫升)。混合物在 -10°C 下搅拌 10 分钟,然后冷却至 -20°C。将香叶醇(1.54克)溶解在无水二氯甲烷(1毫升)中,并确保温度不超过 -15°C 的情况下加入到混合物中。加入后,混合物在 -15 至 -20°C 下搅拌 60 分钟。然后将混合物升温至 0°C,并加入水(3毫升)。当溶液升温至室温时,加入饱和氯化钠的氢氧化钠溶液(30%,0.7毫升)。混合物搅拌 10 分钟。然后用二氯甲烷(2 × 10毫升)萃取水层。合并的有机层用 MgSO4 干燥,并在减压下浓缩以得到粗制的(2S,3S)-环氧香叶醇。 表4:实验 4(使用4克柱)的固定参数项目所用参数 Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate13 mL/minEquilibration Volume7.0 CVGradient% Solvent B0.00.0100.0100.0100.0MinuteInitial0.510.03.52.8Run Length11.4 min, not includingequilibration timeNotesELSD used表5:实验 5(使用12克柱)的固定参数项目所用参数Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate30 mL/minEquilibration Volume6.0 CVGradient% Solvent B0.00.0100.0100.0MinuteInitial0.510.03.5Run Length8.3 min, not includingequilibration timeNotesELSD used 06 结论 通过手动和自动 Flash 色谱法纯化了合成的(2S-3S)-环氧香叶醇。研究发现,与手动纯化相比,自动 Flash 纯化在纯化合成的粗产品方面更为成功,因为它能从产品中去除更多的杂质和残留溶剂峰。这一点通过分析获得的 NMR 光谱得以证实。此外,通过分析获得的产量比较了每种纯化技术的效率。结果表明,自动纯化的产量更高。此外,自动柱纯化比手动柱纯化耗时少得多,从而蕞大化了实验室的时间利用。这消除了采用手动玻璃柱纯化所需的劳动力投入,并避免了可能发生的高风险错误。与自动纯化相比,手动纯化成本更高、对环境更不友好,并且对用户的危险更大。因此,可以得出结论,自动纯化仪器(如Teledyne ISCO CombiFlash NextGen 300+)是一项值得投资的设备,因为它效率更高,能更成功地纯化合成产品,并且是一种更经济、对环境更有意识的投资。这一结论适用于专业环境中的化学家,如研究或工业领域,以及本科化学教学设施中的化学家。07 补充信息 实验4 手动纯化使用的粗产品 = 1.000 g获得的纯手动纯化产品 = 0.2933 g产率 = 0.2933/1.000 × 100 = 29.33 %自动纯化使用的粗产品 = 0.4 g获得的纯自动纯化产品 = 0.2114 g产率 = 0.2114/0.4 × 100 = 52.85 % 实验5 手动纯化使用的粗产品 = 1.0441 g获得的纯手动纯化产品 = 0.2855 g产率 = 0.2855/1.0441 × 100 = 49.73 %自动纯化使用的粗产品 = 1.0 g获得的纯自动纯化产品 = 0.5614 g产率 = 0.5614/1.000 × 100 = 56.14 % 自动 Flash 管柱纯化结果:实验4(上图,4克柱)和实验5(下图,12克柱)参考文献1. Purification of Delicate Compounds with RediSep Gold Diol and Cyano Columns Retrieved 19 Nov 2021
  • CBIFS 2021丨仪真分析携全自动氯丙醇酯和缩水甘油酯分析系统亮相
    2021年6月3日-4日,CBIFS 2021第十四届中国国际食品安全技术论坛在杭州国际博览中心隆重召开。作为中国领先的食品安全技术推广平台,CBIFS 2021吸引了数百名专家学者及业界同仁到场,共同推动食品安全技术的发展。仪真分析多年来深耕食品安全领域,本次携全自动氯丙醇酯和缩水甘油酯分析系统参会,更是聚焦氯丙醇酯和缩水甘油酯分析的热点议题,为广大用户献计献策。在粮油质量安全专题论坛上,来自福建省疾病预防控制中心卫生检验检测所的专家——傅武胜老师分享了题为《氯丙醇酯和缩水甘油酯的检测方法和标准修订进展》的报告。傅老师介绍了3-氯丙醇酯和缩水甘油酯的定义,危害,来源及形成机制,并介绍了欧盟对这两种污染物已有定量要求,目前中国对其风险评估工作,即国家标准GB 5009.191-2016的修订工作正在紧密开展中。傅老师还分享了使用德国AS技术开发的全自动样品前处理分析方案,对大量的油脂样品的检测结果表明该方案具有优良的重复性和准确度。展会期间,至仪真分析展台咨询的访客络绎不绝,反响热烈。据介绍,全自动氯丙醇酯和缩水甘油酯分析系统用于全自动分析油脂中氯丙醇酯和缩水甘油酯含量,可自动完成内标添加、酯交换反应、液液萃取、衍生化反应和进样等步骤。每个样品分析时间可以缩短到45min,具备全自动,快速,准确和重复性高的优点。解决了手动分析费时,费力以及测量准确性差的问题。除此之外,仪真分析还带来了农残分析、兽残分析、重金属分析等一系列食品安全解决方案,为我们的安全饮食保驾护航。
  • 日本拟将2-戊醇、丙醛等纳为食品添加剂
    2009年7月22日,日本发布拟修订食品卫生法及食品和食品添加剂标准规范执行条例的通报。  日本健康劳动福利部拟将2-戊醇、丙醛、6-甲基喹啉纳为食品添加剂并制定这些物质的标准规范。
  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:  1. 省令:  根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。  2. 告示:  (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。  (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。  该修订自发布之日起实施。
  • 【瑞士步琦】通过SFC(超临界流体色谱)分离三萜香树脂醇的方法
    分离三萜香树脂醇的方法香树脂醇属于三萜类的天然产物,它们有一个双键,结构为五环三萜醇。自然界中的香树脂醇通常以 α-香树脂醇和 β-香树脂醇形式存在,它们互为同分异构体。其中 β-香树脂醇,又称白桦酯醇,具有较高的药用价值,能抑制胆固醇和甘油三酯合成,有效预防肥胖症、动脉粥样硬化症和 2 型糖尿病。α-香树脂醇β-香树脂醇作为两个极性接近的同分异构体,如何利用色谱法有效分离和收集 α-香树脂醇和 β-香树脂醇一直是天然产物界的研究课题之一。由于香树脂醇的化学结构特性,在 HPLC-UV 上会采用 200nm 左右的吸收波长来检测,很容易受到溶剂或其他杂质的影响,而且分离时间也比较长。如图 1 采用 250×3mm I.D,3μm 的 C18 色谱柱分离一系列三萜化合物的混合物。 M. Martelanc et al. / J. Chromatogr. A 1216 (2009) 6662–6670图1、用 HPLC-UV 分离羽扇豆醇(L1),羽扇烯酮(L3),α-香树脂醇(αAm),β-香树脂醇(βAm),δ-香树脂醇(δAm),乙酸环阿屯酯(C2), β-谷甾醇(S2)以及豆甾醇(S1)混合物,流动相为 6.5%水/93.5% 乙腈。本文介绍了一种利用 BUCHI Sepiatec SFC 仪器分离 α-香树脂醇和 β-香树脂醇的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲ BUCHI Sepiatec SFC-50 1实验条件设备Sepiatec SFC-50色谱柱Reprosher C30 10um 100x10mm流动相种类A=CO2B=甲醇流动相条件A/B=85%/15%,等度 18min流速30 mL/min背压150 bar柱温40℃样品25 mg/mL 香树脂醇甲醇溶液进样量11 次叠层进样,每次 100uL▲ 图2、香树脂醇经过 11 次叠层进样,分离为 α-香树脂醇和 β-香树脂醇 2结果与讨论由于 α-香树脂醇和 β-香树脂醇之间没有基线分离,所以分为三组馏分收集,中间部分重新注入以提高回收率。在图 1 的 HPLC-UV 分离方法中,α-香树脂醇和 β-香树脂醇的出峰时间为 20-25 分钟,基线部分波动较大。在图 2 中,SFC-ELSD 采用 11 次叠层进样,总时长为 18 分钟,相比 HPLC 法效率更加高,基线也更加平稳。在馏分收集方面,得益于叠层进样和主要溶剂为 85% CO2,可以在收集大量样品的同时减少溶剂后处理的时间。 3结论α-香树脂醇和 β-香树脂醇可以用 Sepiatec SFC-50 有效分离,结合 ELSD 可实现高产率的检测和连续分馏。 4文献来源Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatographyMitja Martelanc, Irena Vovk, Breda SimonovskaNational Institute of Chemistry, Laboratory for Food Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
  • 中国食品工业协会立项《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准
    近期我会拟组织制定《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准,现将立项说明如下:目的:建立一种针对造纸化学品中氯丙醇含量的测试方法,为造纸化学品生产企业提供一种有效的检测技术手段,为食品接触用纸的生产企业在选择原材料和上游供应商时提供技术性参考依据,确保食品接触用纸的安全性,保障消费者健康与安全。意义及必要性:自从新修订的GB 4806.8-2022《食品安全国家标准 食品接触用纸和纸板材料及制品》于2022年6月30日正式发布以来,标准中新增加的氯丙醇水提取物指标受到行业和监管部门的高度关注,因为这个项目不仅在当前的食品接触用纸制品中检出率和不合格率都较高,而且在检测方法上也具有较大的难度和挑战性。因此对于食品接触用纸制品的生产企业来说,如何做好产品中的氯丙醇含量管控、确保产品复合新修订的GB 4806.8-2022产品标准要求、保障消费者健康与安全成为亟待解决的重要任务。对于造纸企业来说,产品中氯丙醇的来源主要有聚酰胺多胺环氧氯丙烷树脂型湿强剂(PAE湿强剂)、聚酰胺多胺环氧氯丙烷树脂型粘缸剂(PAE型粘缸剂)、环氧氯丙烷改性松香、环氧氯丙烷改性淀粉、环氧氯丙烷改性纤维素等造纸化学品,因此确保这些造纸化学品中不含或尽量少含氯丙醇成为确保纸制品中不含或尽量少含氯丙醇的关键。但是到目前为止,国内外对于造纸化学品中氯丙醇的测试方法并没有官方检测标准,这对造纸化学品生产企业有效管控造纸化学品中氯丙醇的残留、以及造纸企业选择尽量低氯丙醇残留的造纸化学品原材料都带来巨大的挑战,也为检测机构对相关产品和原材料提供检测技术服务造成困难。因此亟需尽快建立造纸化学品中氯丙醇含量的检测方法标准,为造纸和造纸原材料生产企业做好各自的产品质量控制提供技术支持。本标准的制定和实施,将有效填补国内尚无造纸助剂氯丙醇检测标准的空白,为造纸和食品包装行业及相关机构提供一种科学有效的定量检测手段,并将在提升企业的产品质量合格率、引领行业发展、保障消费者健康等方面发挥积极作用。我会现就以上立项计划征求意见,如有不同意见,请于2023年7月14日前将意见及理由返回至我会邮箱:cnfia@vip.163.com到期无回复视为同意。中国食品工业协会标准化工作委员会2023年6月30日
  • 三孩政策来了!优生优育,先来了解下新生儿疾病筛查
    三孩时代,出生缺陷一级预防显得尤其重要。在符合三孩政策条件的妇女当中,有60%是超过35岁以上的高龄孕产妇。这些高龄产妇生育三孩将面临怀孕难、容易流产等风险,出生缺陷发生率也更高。专家表示,35岁以上的女性有生育计划的,一定要找有资质的医疗机构,做好孕前、产前的相关检查,最大程度减少出生缺陷儿的发生。什么是新生儿疾病筛查新生儿疾病筛查是指通过血液检查对某些危害严重的先天性代谢病及内分泌病进行群体过筛,使患儿得以早期诊断,早期治疗,避免因脑、肝、肾等损害导致生长、智力发育障碍甚至死亡。欧美、日本等发达国家新生儿疾病筛查覆盖率近100%。我国新生儿疾病筛查始于1981年,目前覆盖率已接近50%。新生儿疾病筛查的应用筛查对象:所有出生72小时(哺乳至少6~8次)的新生儿。筛查内容:我国目前筛查疾病仍以苯丙酮尿症(PKU)和先天性甲状腺功能减低症(CH)为主,某些地区则根据疾病的发生率选择如葡萄糖-6-磷酸脱氢酶(G6PD)缺陷病等筛查或开始试用串联质谱技术进行其他氨基酸、有机酸、脂肪酸等少见遗传代谢病的新生儿筛查。【疾病小常识】先天性甲状腺功能低下症:又称“呆小病”,患儿由于先天性甲状腺发育障碍,不能产生足够的甲状腺素,引起生长迟缓、智力发育落后。相关症状在新生儿期往往是隐匿的,不引起家长甚至医生的注意而延误了诊治,常导致脑发育产生不可逆的损害。苯丙酮尿症:是一种染色体遗传病。患儿不能正常代谢苯丙氨酸,使苯丙氨酸及其代谢产物在体内蓄积,引起脑萎缩和智力低下。患儿刚出生时外表没有特殊症状,常在出生后3个月左右出现头发由黑变黄、小便有难闻的臭味、患儿不能抬头。几乎所有未经治疗的患儿都有严重的智力障碍。筛查流程1、填写采血卡信息:记录采血卡片编号、产妇姓名及住院号、出生时间、采血时间、采血人、联系地址、邮编、电话、样本送出时间及特殊情况记录等。2、采血取样:采血部位宜选择足跟内、外侧缘。采血人应清洗双手,佩戴无滑石粉手套,用75%乙醇消毒采血部位,待乙醇自然挥发或用无菌棉球擦掉多余乙醇后开始采血。采血使用一次性采血针刺足跟,刺入深度3 mm,用消毒过的干棉球擦掉第1滴血,取第2滴血,将滤纸片接触血滴,使血自然渗透至滤纸背面,共需3个血斑(血斑直径8 mm)。禁止在1个圆圈处反复多次浸血。采血后用无菌棉球轻压采血部位止血,胶布固定。3、打孔取样:使用自动打孔仪或手动打孔器将干血斑样本打3 mm孔,置于96孔板内。每个96孔板中前2~4个孔用于空白对照。4、临床检测:将96孔板置于自动进样器中,启动程序,创建工作列表,选择合适的数据采集方法运行。由于采血人员技术、血片保存条件、递送方式差异等各种原因,各地新生儿疾病筛查中心都会有不合格血片出现。我们针对此问题设计了SAP 20自动干血斑(DBS)打孔仪,能够为用户提供精确、安全、高效、便捷的 打孔操作。该仪器集控制系统,图像采集设备,条码信息采集设备,打孔装置于一身,用户可实时的在控制软件上观测打孔样本的收集结果,大大提高了样本打孔流程的可靠性。只需将滤纸干血片放到相应打孔区域,即可完成打孔操作,可降低纯手工操作误差并大大降低操作人员的劳动强度,提高工作效率。
  • 武汉大学宋保亮团队揭示胆固醇代谢新机制,对治疗心血管等疾病有重大潜在应用
    胆固醇作为具有四环的脂质,是一种难以分解的强促炎分子,可加速动脉粥样硬化和非酒精性脂肪性肝炎。高胆固醇是心血管疾病的主要危险因素,目前没有药物能够通过直接促进胆固醇排泄来降低胆固醇。人类遗传学研究发现,功能丧失的去唾液酸糖蛋白受体1 (Asialoglycoprotein receptor 1, ASGR1) 变体与低胆固醇和降低心血管疾病风险有关。ASGR1仅在肝脏中表达并介导血液去唾液酸糖蛋白的内化和溶酶体降解。然而,ASGR1影响胆固醇代谢的机制尚不清楚。2022年8月3日,武汉大学宋保亮团队在Nature 在线发表题为“Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion”的研究论文。该论文发现Asgr1缺乏通过稳定肝X受体α (liver X receptor α, LXRα) 来降低血清和肝脏中的脂质水平,LXRα上调ABCA1和ABCG5/G8,这分别促进胆固醇转运到高密度脂蛋白和排泄到胆汁和粪便。ASGR1缺乏阻断糖蛋白的内吞作用和溶酶体降解,降低溶酶体中的氨基酸水平,从而抑制mTORC1并激活AMPK,一方面AMPK通过减少其泛素连接酶BRCA1/BARD1来增加LXRα;另一方面,AMPK抑制控制脂肪生成的甾醇调节元件结合蛋白 (sterol regulatory element-binding protein, SREBP1)。抗ASGR1中和抗体通过增加胆固醇排泄来降低血脂水平,并显示出与阿托伐他汀或依折麦布这两种广泛使用的降胆固醇药物的协同有益作用。总之,该研究表明靶向ASGR1可上调LXRα、ABCA1和ABCG5/G8,抑制SREBP1和脂肪生成,从而促进胆固醇排泄并降低血脂水平。胆固醇稳态是通过肠道胆固醇吸收、血浆脂蛋白摄取、从头生物合成以及胆固醇分解代谢和排泄之间的复杂相互作用实现的。迄今为止,降胆固醇药物主要分为三大类:他汀类药物是3-羟基-3-甲基戊二酰辅酶A还原酶 (HMGCR) 的竞争性抑制剂,通过降低胆固醇生物合成和上调低密度脂蛋白 (LDL) 受体 (LDLR) 提高低密度脂蛋白 (LDL) 摄取来降低血浆胆固醇;依折麦布是一种肠道胆固醇吸收抑制剂,通过抑制Niemann-Pick C1样1的内吞作用来阻止胆固醇摄入;PCSK9抑制剂通过稳定LDLR4增加肝脏LDL摄取。尽管这些药物已被广泛使用,但仍有很大一部分患者患有复发性心血管疾病 (cardiovascular disease, CVD),他们的 LDL 胆固醇水平未能达到指南中推荐的目标水平。最重要的是,这些现有的降胆固醇药物都没有通过直接促进胆固醇分解代谢或排泄来降低胆固醇。mTORC1和AMPK是感知细胞营养和控制新陈代谢的两个主要调节器,它们通过多种机制受到反向调控。尽管AMPK已被提议作为代谢疾病的潜在治疗靶点,但泛AMPK激动剂会导致心脏肥大,从而阻碍其临床应用。除了激活AMPK的组织特异性作用外,细胞AMPK还受药物、营养物质和AMP的不同调节,导致不同靶点的磷酸化。因此,选择性激活AMPK对于在没有副作用的情况下开发药物至关重要。胆固醇通过ABCG5和ABCG8异二聚体排泄到胆汁和肠腔。ABCG5或ABCG8突变导致谷甾醇血症,这是一种以甾醇积累和过早动脉粥样硬化为特征的罕见疾病。小鼠肝脏中过表达ABCG5/G8基因增加了肝胆分泌胆固醇同时降低了血浆胆固醇。ABCG5/G8的表达主要受LXR在转录水平上的调节,LXR的药理激活通过上调ABCG5/G8增加胆固醇流出。然而,LXR也增加了SREBP1(也称为 ADD1),它驱动脂肪酸生物合成基因的表达,导致肝脏脂肪有害变性和高甘油三酯血症。因此,在临床上直接使用LXR激动剂不能用于治疗高胆固醇血症。该研究揭示mTORC1和AMPK可以被ASGR1所调控。mTORC1被去唾液酸糖蛋白的溶酶体消化释放的氨基酸激活,这些氨基酸通过ASGR1介导的内吞作用进入肝细胞。抑制ASGR1会阻断受体介导的内化和随后的去唾液酸糖蛋白的溶酶体消化,从而激活AMPK并抑制mTORC1。这种机制为选择性激活AMPK提供了高度定位的信号。ASGR1的调控LXR的机制模型(图源自Nature )胆固醇流出通过增加LXRα和ABCG5/G8,LXRα使ABCA1升高,显示更高的高密度脂蛋白 (HDL) 胆固醇和更低的低密度脂蛋白 (LDL) 胆固醇,也改善了脂蛋白谱。由于mTORC1抑制和AMPK激活,SREBP1被抑制,因此阻止了脂肪生成。此外,缺失Ttc39b增加了LXRα和ABCG5/G8而没有激活SREBP1,证实ABCG5/G8的表达可以与SREBP1的表达分离。由于ASGR1几乎只在肝细胞中表达,因此靶向ASGR1绕过了泛AMPK激动剂的不良副作用,为肝脏特异性激活AMPK和抑制mTORC1 铺平了道路。总之,该研究提供了一种独特的降低胆固醇的方法,抑制ASGR1会增加胆汁和粪便中的胆固醇排泄,ASGR1的功能丧失变体与降低非HDL胆固醇和减少复发性心血管疾病相关,这提示抑制ASGR1是治疗心血管疾病安全有效的方法。原文链接https://www.nature.com/articles/s41586-022-05006-3
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 欧盟撤销农药活性物质联苯三唑醇的许可
    2013年8月9日,欧盟委员会发布实施条例(EU)No 767/2013,修改条例(EU)NO 540/2011附件,撤销农药活性物质联苯三唑醇(Bitertanol)的许可,欧盟成员国应自2014年3月1日起撤销含有联苯三唑醇活性物质的植物保护产品的授权,赋予成员国的宽限期最晚在撤销许可后的12个月。法规自公布20日起生效。  (EU)No 767/2013详见:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:214:0005:0006:EN:PDF
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf关键词:三氟化硼甲醇 脂肪酸 甲酯化上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 美国博纯将参加第二十次全国呼吸病学学术会议
    全球呼吸气体采样管线专家美国博纯将于2019年9月6至8日参加在武汉国际会议中心举办的2019中华医学会呼吸病学年会(第二十次全国呼吸病学学术会议),会议期间博纯公司将提供展位E36交流平台。美国博纯是首家使用Nafion膜渗透技术,为呼吸类OEM医疗设备制造商提供气体水分管理解决方案的厂家。博纯具有 ISO 13485 以及FDA注册认证,ISO Class 8洁净室,供应独特的呼吸气体采样管线、呼吸气体干燥管和吸入性气体加湿器。这些产品广泛应用于麻醉监护、肺功能监测、ETCO2、FeNO等样气除湿、提高分析仪器监测精度;Nafion气体加湿应用可增加吸入性气体湿度,缓解病人鼻腔干燥,从而提高治疗的呼吸舒适度。Nafion产品高性能湿度管理技术已获得全球GPS (GE, Philips和SIEMENS)医疗客户一致认可。此次,博纯将在现场展出ME-050,ME-070,ME-110及呼吸气体采样线等产品。博纯全球医疗业务发展总监Jessica Light女士也将携博纯中国区销售骨干全程参与次会议并分享前沿的成功案例,博纯团队期待您的莅临指导!关于博纯:美国博纯有限责任公司(Perma Pure)提供创新的高性能气体预处理解决方案,产品包含呼吸气体干燥管和气体加湿管。作为Nafion™ 管指定生产商,我们在各种广泛的应用如呼末二氧化碳、麻醉监护、肺功能检测、吸入性气体治疗、制氧和先进的创伤护理中提供高品质和可靠性的产品。这也是医疗市场先行者们信任选择博纯的原因所在。参观博纯展位# E36来了解更多我们所能为您做的。
  • 抗体药物质量和成本遇瓶颈:下游分离纯化技术明显滞后
    漫谈离子交换层析之生物大分子分离纯化应用——江必旺博士全球生物制药产业发展迅猛,根据Frost&Sullivan市场调研,2018年全球生物制药市场规模约为2642亿美元。单抗类药物由于特异性好,靶向性高,副作用小,疗效显著,成为发展最快的一类生物药。单抗药物在2020年市场已达到1550亿美金。生物药的生产可分为上游发酵过程和下游纯化分离过程,上游工艺主要包括细胞复苏、传代、发酵生产。而下游工艺主要包括膜过滤及多步层析分离纯化。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/L 到现在普遍达到5g/L,有的甚至超过10g/L。这些进步是由细胞表达载体的开发,单克隆筛选以及细胞培养基优化等技术创新所驱动的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低。与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗体主要生产成本也转移到下游。下游纯化在整个生物药生产中占据主要生产成本,也被认为是最需要改进的技术领域。下游工艺先进性决定了药品的质量,及药品生产效率和成本。生物药生产的技术瓶颈:实现高效、经济的分离纯化生物制药下游生产工艺目的就是把目标药物分子从复杂发酵液体系中分离出来以满足药品纯度及质量的需求。一方面监管部门对生物药的纯度和质量要求越来越高,另一方面用于治疗用的生物分子种类越来越多,结构越来越复杂,且生物分子对外部条件敏感,稳定性差,杂质多,使得生物制药分离纯化的挑战更大。比如说治疗用抗体不仅对其含量有严格的要求,还必须去除工艺相关杂质如HCP, DNA,Endotoxin, 聚集体及降解片段等(表2)。 因此如何经济、高效的从发酵的复杂组分中浓缩、分离和纯化目标生物分子已成为全球生物药生产的技术瓶颈。在蛋白类生物药生产过程中,分离成本可占总生产成本的50~80%,分离纯化技术还对生物药的分子形态、收率、质量和成本具有关键作用。色谱或层析技术对复杂生物分子具有极高的分离纯化效率, 且条件温和, 在分离纯化过程中容易保持目标生物分子的活性,因此层析技术是目前生物药分离纯化最重要的手段,甚至是唯一的手段,几乎所有生物分离纯化都离不开层析技术。离子交换层析技术的优势生物分子的分离可以根据其尺寸大小、表面电荷、疏水性能、及与配基的亲和作用性能的差异分别采用分子筛,离子交换,疏水,亲和等层析分离模式。由于蛋白类生物分子是由氨基酸组成,几乎都带有电荷,因此蛋白分子在不同pH 条件下其带电状况不同,当pH等于蛋白的等电点时,蛋白处于电中性,当pH 小于等电点时,蛋白带正电荷,当pH 大于等电点时,蛋白带负电。不同生物分子带的表面电荷正负性质及表面电荷数量不同而且会随着流动相的pH改变而改变,使得不同组份的生物分子在离子固定相的电荷作用力有较大差异,因此绝大多数生物分子可以通过离子交换进行分离纯化。离子交换层析在生物分离纯化具有较多优点:第一,载量高,离子交换对蛋白的吸附量可超过100 mg/ml, 有利于提高批处理量及大规模纯化效率;第二,离子交换分离纯化选择条件比较多,既可选择不同的离子强度,也可选择不同的pH值作为分离条件。而且色谱出峰顺序可根据蛋白质的等电点进行预测。第三,离子交换层析操作简单,流动相便宜,蛋白质活性回收率高,综合成本低。第四,离子交换在蛋白的纯化过程中可同时实现产品的浓缩,有利于低浓度蛋白样品的分离纯化。减少后续浓缩工艺。总之,离子交换具有交换载量高,适用性广,且容易保持生物分子的活性而使得离子交换成为生物大分子分离纯化最常用的分离模式,根据Markets and Markets 市场报告离子交换介质用量已超过所有其它层析介质(包括SEC,亲和,疏水、复合模式及其它)用量总和。离子交换层析介质的种类离子交换色谱(IEC)是利用带有不同电荷的样品组分与固定相的离子功能基团形成电荷作用力而吸附在固定相上, 然后通过增加流动相的盐的浓度或改变pH来以降低样品组分与固定相的电荷作用力从而达到洗脱分离的目的。因此离子交换过程是低盐上样,高盐洗脱的过程。按所使用的离子交换介质所带基团的不同,可分为强碱性阴离子型(含季胺基,Q型)、弱碱性阴离子型(含伯、仲胺基,DEAE型)、强酸性阳离子型(含磺酸基,SP型)和弱酸性阳离子型(含羧酸基,CM型)等四种类型。为了增加离子交换的选择性,同时含有离子和疏水功能基团的混合模式离子交换介质也已问世,由于混合模式离子交换层析可以同时提供疏水作用力和静电作用力,因此其具有独特的选择性在分离纯化上具有广泛的应用。另外由于有疏水作用力混合模式离子交换介质耐盐性好,生物样品可以在高盐条件上样。离子交换基团要发挥离子交换作用,必需在溶液中解离成离子。季胺盐(Q)强阴离子交换介质和磺酸型(SP)的强阳离子交换介质离解的pH范围很大,在水溶液中几乎百分之百离解。而羧甲基(CM)型弱阳离子型交换介质和二乙胺乙基(DEAE)型弱阴离子交换介质离解的pH范围小得多。羧甲基(CM)弱阳离子型交换介质在pH 变大后逐渐离解成羧基负离子,pH大到一定程度就可完全离解;二乙胺乙基(DEAE)弱阴离子交换介质在pH 变小后氮原子上逐渐结合质子,pH小到一定程度就可完全让氮原子都结合上质子,达到完全离解。离解度越大,对应的柱子吸附量也大,不离解的弱离子交换介质是无吸附能力的。当然,吸附量还与目标蛋白质在此pH下的电荷情况有关。从羧甲基(CM)弱阳离子型交换介质在pH 变大后离解度逐渐变大看,pH值大有利于弱阳离子型交换介质使用。但是此时蛋白质带的正电荷减少,不利于蛋白质的吸附。当pH值大到一定程度,蛋白质可能带负电荷,就不被弱阳离子型交换介质吸附。从二乙胺乙基(DEAE)弱阴离子型交换介质在pH 变小后离解度逐渐变大看,pH值小有利弱阴离子型交换介质使用,但是此时蛋白质带的负电荷减少,不利于蛋白质的吸附。当pH值小到一定程度,蛋白质可能带正电荷,就不被弱阴离子型交换介质吸附。很多情况下,只要介质在使用pH范围,也就是在离子状态,蛋白质的带电性质和电荷多少是影响蛋白质吸附量的决定因素。另外,蛋白质样品一般要求在分离后保留生物活性,而保留蛋白质活性需要一个合适的pH值。所以选择离子交换分离纯化生物分子时,要综合考虑样品组分的等电点、蛋白质稳定的pH 范围和交换基团离解范围选择交换基团类型。常规四种离子交换结构图基质组成对离子交换层析介质的影响目前市场上用于生物分离层析介质主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的天然高分子层析介质;第二类是以聚苯乙烯和聚丙烯酸酯为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。但如果软胶在干燥状态下脱去水孔道结构容易塌陷,因此,软胶填充的层析柱一般不能干,否则介质容易孔道结构容易塌陷从而失去分离性能。软胶是生物大分子分离纯化应用历史最悠久,应用最广泛的层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,其市场应用增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度、高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。未来离子交换层析介质的发展方向就是融合软硬胶的优点,做成载量高,机械强度大的介质。介质孔径大小及孔隙率对生物分离的影响除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求。不同孔径大小的单分散聚合物色谱填料图层析介质粒径大小及均匀性对生物分离的影响单分散与多分散层析介质分离性能对比示意图层析介质粒径大小和分布是影响其分离性能最重要的参数之一。粒径越小,分布越均匀,柱效越高,分辨率越高。因此制备精确的粒径大小及高度的粒径均一性单分散层析介质一直是业界追求的目标。纳微成功开发出单分散大孔聚合物层析介质可以用于高效分离生物大分子。另外粒径均匀,填充的柱床稳定,重复性好,不容易堵塞筛板,而且可以使用更大孔径的筛板以降低反压。表面亲水改性对离子交换性能的影响大分子分离纯化介质的一个共性要求就是介质表面亲水性要好,以达到降低蛋白的非特异性吸附并保持生物分子的活性的要求。因此商业化的聚合物层析介质一般有两种合成方法:第一种就是选择具有足够亲水的单体直接合成亲水聚合物多孔微球,然后通过表面键合不同功能基团以制备离子、疏水、分子筛及亲和层析介质。比如说日本Tosoh 和美国 Biorad公司都是采用亲水较强的带多羟基丙烯酸酯或丙烯酰胺单体,这类介质与糖基组成的软胶类似不需要进行表面亲水化处理就可以直接键合功能基团做成离子交换层析介质。第二种方法是用疏水性较强的单体如苯乙烯,丙烯酸酯合成疏水聚合物多孔微球。这种微球由于疏水性较强不能直接用于蛋白分离纯化的层析介质,而是要先经过表面亲水化改性,才可以键合功能基团制备生物大分子分离纯化用层析介质。Thermofisher 生产的POROS 离子交换层析介质就是在疏水的聚苯乙烯微球表面通过亲水化改性后再键合不同功能基团制成离子交换层析介质。多孔聚苯乙烯微球表面亲水化改性是由Purdue 大学 Regnier教授研究组发明的专利技术( US Patent No. 5503933)。因此Thermofisher利用该技术成功地开发出用于蛋白药物如抗体分离纯化的亲水化聚苯乙烯层析介质,该介质目前已被广泛地用于抗体及疫苗的纯化,在去除抗体多聚体等杂质方面具有明显优势。显然,第二种方法制备聚合物层析介质步骤多、工艺复杂、技术门槛高、成本高,但其制备的介质具有更高的机械强度,更小的压缩系数和更低的溶胀系数,可耐受更高的压力和流速,而且具有传质速度快、寿命长等优势。间隔臂对离子交换层析介质的影响除了介质基质材料组成,表面亲水性能及功能基团种类及密度会影响离子交换层析介质分离效果外,其功能基团与基球表面之间的间隔臂长短以及接方式也很重要。尤其是对于生物大分子的分离纯化,由于生物分子体积大,相比于小分子,其表面电荷的可及性差,因此间隔臂越长,越有利用介质表面离子功能基团与生物大分子带电功能基团起作用。对于小分子的分离纯化,由于空阻比较小,离子交换载量与离子功能基团的密度基本成正比,与基团与介质表面之间手臂长短关系不大。因此用于小分子分离纯化的离子交换介质,其离子功能基团可以直接连接到介质表面,中间不需要长间隔臂。但对于大分子分离纯化的离子交换介质,间隔臂对载量和分离效果都有较大影响。 德国默克开发出触角型的离子交换介质就是把离子功能基团通过高分子链从微球表面延伸出来,这种触角型的离子交换介质更容易与生物大分子有效结合,同时也有利于孔道空间的利用,解决了聚合物由于表面积比软胶小从而导致聚合物离子交换介质载量低的问题。触角型离子交换不仅载量高,而且传质速度快,分辨率高。单分散离子交换层析介质的最新进展为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。粒径分布与流速特征关系图另外粒径大小一致,可以保持分子在填料微球的扩散迁移路径基本保持一致,相应的保留时间也一致,减少分子扩散系数,从而获得更高的柱效。因此高度粒径均一的单分散色谱填料既可以降低涡流扩散系数又可以减少分子扩散系数,从而提高柱效。另外粒径越精确、分布越窄、其柱床越稳定、反压越低、批间稳定性好。纳微生产的单分散色谱填料不仅完全可以替代SOURCE 系列产品,而且粒径,孔径及材质的选择都远远超过SOURCE产品种类和规格。纳微单分散聚合物层析介质包括聚苯乙烯和聚丙烯酸酯系列。聚苯乙烯表面改性层析介质系列可以替代POROS用于抗体和蛋白的分离纯化,而聚丙烯酸酯系列可以替代Tosoh, Merck, Biorad等生产的聚丙烯酸酯或聚丙烯酰胺层析介质。层析介质关系到药品生产的成本和质量。不同厂家生产的离子交换层析介质都有各自的特点,没有最好的,只有选择最合适的。但层析介质的国产化无疑对中国生物制药产业链安全供应至关重要。越来越多像纳微这样的中国公司已经具备生产一流的层析介质的能力,这些国产化的层析介质也得到越来越多的药企认可。后记在问及江必旺博士对该技术的期望时,他表示:“色谱和层析是药物分离和分析最重要手段,尤其是生物制药领域,层析几乎是生物制药分离纯化的唯一方法。中国生物制药快速崛起会带动中国色谱和层析介质的发展,同时色谱和层析技术的进步及国产化会降低中国生物药的成本,提高药品的纯度和质量。因此中国的色谱和层析技术遇到千载难逢的发展机遇, 相信一定会得到迅猛的发展。”作者简介苏州纳微科技董事长 江必旺博士 江必旺博士,国家特聘专家,获北京大学化学系学士, State University of New York at Binghamton博士学位,在University of California at Berkeley 从事博士后研究。 回国后创建了北京大学深圳研究生院纳微米材料研究中心并任该中心主任。于2007年,江必旺博士创建了苏州纳微科技股份有限公司,专门从事高性能微球材料的研发及产业化。江博士带领团队突破了单分散硅胶色谱填料精确制备技术难题,成为全球唯一一家可以大规模生产单分散硅胶色谱填料的公司。江博士团队还开发出世界领先的单分散聚合物层析介质、如离子交换、亲和,疏水及分子筛等系列亲和层析介质,打破国长期垄断。江博士创建的纳微科技成为色谱领域第一家在科创板上市公司。【专家约稿招募】若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!Webinar预告(点击报名)
  • 欧盟修订双苯三唑醇等农残最大残留限量
    p  2016年7月7日,欧盟委员会发布G/SPS/N/EU/168通报,拟修订法规(EC)396/2005号附件II和V中部分食品的双苯三唑醇(bitertanol)、吡螨胺(tebufenpyrad)和矮壮素(chlormequat)等3种农残最大残留限量。部分限量修订情况见下表:/pp/ptable border="1" cellpadding="0" cellspacing="0" width="600"tbodytrtd width="38"p style="text-align:center "序号/p/tdtd width="104"p style="text-align:center "农残名称/p/tdtd width="227"p style="text-align:center "产品名称/p/tdtd width="123"p style="text-align:center "现行残留量(mg/kg)/p/tdtd width="116"p style="text-align:center "拟修残留量(mg/kg)/p/td/trtrtd width="38"p style="text-align:center "1/p/tdtd width="104"p style="text-align:center "双苯三唑醇/p/tdtd width="227"p style="text-align:center "荞麦、小米、黄米、燕麦、大米等/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "2/p/tdtd width="104"p style="text-align:center "吡螨胺/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.05/p/tdtd width="116"p style="text-align:center "0.01/p/td/trtrtd width="38"p style="text-align:center "3/p/tdtd width="104"p style="text-align:center "矮壮素/p/tdtd width="227"p style="text-align:center "杏仁等树生干坚果/p/tdtd width="123"p style="text-align:center "0.1/p/tdtd width="116"p style="text-align:center "0.01/p/td/tr/tbody/tablep/p
  • 优普携纯水机参加"三省一市"城镇供水水质应急监测与应急处理技术培训暨研讨会
    四川优普超纯科技有限公司携实验室超纯水机参加"三省一市"城镇供水水质应急监测与应急处理技术培训暨研讨会! 四川优普超纯科技有限公司隶属优普集团。目前拥有一个研发制造中心、三个事业部(纯水/污水/仪器)及遍布全国各省的市场服务分支机构,申请并获批国家专利130余项(其中发明专利9项),公司秉承“专业、创新、卓越、服务”之经营理念,为客户提供纯水/超纯水/污水处理/中水回用/水质分析仪器等专业解决方案。 针对实验用水处理,我们有很成熟的技术,欢迎合位同仁前往参观了解! 地址:成都市家园国际酒店(双流区机场路188号)一楼10号 会议时间:2018年5月23-25日会议现场展会现场优普实验室超纯水机
  • 中国成为默克密理博纯水业务全球第三大市场
    仪器信息网讯 2013年10月23日,BCEIA 2013在北京展览馆隆重召开。在本次展会上,仪器信息网编辑(以下简称&ldquo Instrument&rdquo )有幸采访了默克密理博纯水业务部门总监高健先生,就默克密理博纯水业务在中国的发展现状进行了访问。默克密理博纯水业务总监高健先生   Instrument:近年,默克密理博纯水产品在中国的发展情况?   高健:近年,得益于国家在食品安全、环境分析、医药研究等方面的重视和投入,默克密理博在中国的业务获得了较快的发展。主机销售方面,我们已经在年销售机台数上成为默克密理博纯水事业部全球冠军,在业务总量方面,也仅次于美国、日本,中国已经成为默克密理博全球第三大市场。  Instrument:整合后的默克密理博,保持了各业务部门的独立性并获得很好发展,未来默克密理博纯水业务在中国市场将如何发展?  高健:的确如你所言,独立创新的发展,是默克密理博一直注重和强调的。纯水业务也一样,这也保证了默克密理博不断有新的纯水产品推出,同时,我们也非常专注纯水业务在中国市场的拓展,不论在并购前和并购后,我们始终保持对中国市场的关注并坚持制定本部门在中国的&ldquo 五年规划&rdquo ,今年我们已进入默克密理博第二个五年计划的第四个年头。在过去九年间,默克密理博成功地实施了两个&ldquo 五年规划&rdquo ,在中国市场的发展都达到或超出了公司的期望要求,同时也为我们下一个五年规划夯实了基础,保证了我们在中国市场有一个更大更好的发展平台,能够与中国科技整体发展和科学仪器市场始终保持同步,更好地满足中国科研用户的需求。  尽管经历了数年的快速增长,我们也认识到中国市场仍是一个发展中的市场。在纯水领域,默克密理博不单会推出各种纯水产品,还积极致力于推动纯水行业标准的建立。在中国,默克密理博已经与一些科研院所的专家学者一起,共同参与拟定与纯水相关的国家标准、行业标准。我们也非常希望通过对标准拟修订的参与,促进行业管理水平的整体提高,并利用默克密理博在纯水领域的丰富经验和先进技术更好地为中国的科学研究和体系保障提供服务。  Instrument:默克密理博之前一直占据高端纯水市场,&ldquo 明澈&rdquo 产品的推出,表明默克密理博开始注重中国的中低端市场,今后是否还有相似的纯水产品推出?  高健:&ldquo 明澈&rdquo 产品是2012年3月份推出的,产品核心可以被形容为&ldquo 法国设计,德国品质,中国制造,专供中国&rdquo 。这一产品主要针对国内的一些基础实验室用户,并取得了很好的用户反馈。默克密理博将继续秉持客户为先的理念,不断推出满足不同用户应用需求的优质纯水制备系统。  Instrument:默克密理博今后还将为中国科研用户带来怎样的应用解决方案?  高健:默克密理博分布在各地的应用实验室和位于上海的亚太培训中心致力于为中国客户提供多样化的应用和培训方案, 以满足用户的多种需求。 同时,就有关环境监测,食品安全、药品安全等热点民生问题,我们也密切关注,针对国内出现的一系列食品安全问题,如奶粉三聚氰胺污染、瘦肉精、毒胶囊等等迅速反应,及时为广大科研用户及检测机构提供纯水应用领域的专业解决方案,以期为解决问题、走出困境略尽我们的绵薄之力,做出我们的贡献。  Instrument:全球领先的默克密理博纯水产品多年来一直得到广大用户的认可和信任,在产品使用和维护方面,您是否可以提供一些建议?  高健:首先感谢中国的用户多年来对我们的支持! 要获得高品质的纯水,从而确保实验结果的精确性, 不仅需要高质量的纯水制备系统,同时还需要使用者有良好的用水习惯和对系统的有效维护。  默克密理博非常重视培养实验室用户科学用水的观念与用水习惯,包括如何取水、如何制备纯水、如何保存纯水以及如何维护纯水系统等方面,从而确保所用纯水品质,以减少试验结果误差。  还要特别说明的是,作为纯水制备系统的核心之一:所有默克密理博的纯化柱耗材,均在法国总部工厂生产,符合GMP生产的相关规定,确保了所有耗材的高品质。这些产品看似简单,但其设计、生产和质量保障各环节都经过了数十年的经验累积、技术沉淀、不断集成新技术新理念,具有其难以超越的先进性。  Instrument:日前,关于某国产纯水仪器厂商侵犯默克密理博专利一案,北京市高级法院判定默克密理博胜诉,对此,您有何看法?  高健:我们对这个结果非常满意。该结果表明了中国政府在知识产权保护方面,对待跨国公司和本土企业是一视同仁的。这也使我们更加坚定对产品知识产权保护的决心,我们将继续加大力量对默克密理博创新发明的专利进行保护以及维护广大默克密理博用户的利益, 我们会努力使客户更充分地体验到我们产品的优良品质,让优越的默克密理博品质深入客户理念,相信有些东西绝不是简单抄袭就可以复制的。  Instrument:今年是Milli-Q 40周年,对此,默克密理博在中国举办了一系列的市场活动,您能简单地介绍一下吗?高健:默克密理博纯水制备系统在全球得到了数十万用户的信任和支持,今年恰逢Milli-Q系列产品推出40周年。而Milli-Q作为超纯水的代名词,已在中国拥有数以万计的用户。值此40周年之际,默克密理博举办了丰富多彩的市场活动,比如今年我们在北京、上海、广州分别举办了Milli-Q 40周年感恩主题活动,特别邀请默克密理博纯水产品的新老用户共同见证我们纯水产品和技术的发展与成长历程。各地的庆典活动取得了很好的效果,,超过300名专业客户参加了这一系列的庆祝活动,部分资深专家用户还在各地的庆祝会上分享了默克密理博纯水产品的应用经验和宝贵心得。通过这些活动,我们进一步加强了与客户的联系,从客户那里更好地了解到中国市场的需求和对我们的希望,取得了非常大的收益。  今后,默克密理博将继续致力于为中国市场提供高品质的纯水应用及解决方案, 并和广大科研工作者一起推动纯水行业的健康发展!默克密理博在BCEIA 2013上的展位默克密理博本次展出的纯水系统及耗材配件
  • 重庆市南岸区疾病预防控制中心149.00万元采购超纯水器
    详细信息 南岸区疾病预防控制中心仪器设备购买(包一)第三次(NAQ22A00156)公开招标公告 重庆市-南岸区 状态:公告 更新时间: 2023-01-17 招标文件: 附件1 附件2 南岸区疾病预防控制中心仪器设备购买(包一)第三次(NAQ22A00156)公开招标公告 发布日期: 2023年1月17日 项目概况: “南岸区疾病预防控制中心仪器设备购买(包一)第三次”项目的潜在投标人应在“凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。”获取采购文件,并于 2023年2月7日 14:30(北京时间)前递交投标文件。 一、项目基本情况 项目号:NAQ22A00156 项目名称:南岸区疾病预防控制中心仪器设备购买(包一)第三次 采购方式:公开招标 预算金额:1,490,000.00元 最高限价:480,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 包1:超纯水系统 480,000.00元 3 套 1.进水水源:一般城市自来水,进水TDS≤500ppm的水源,水压0.1~0.4MPa,水温5-35℃。※2.纯水产水水质:高效EDI模块制水,EDI制水量:≥20 L/h。电阻率5-15 MΩ●cm@25℃、EDI出水总有机碳含量(TOC) ≤30ppb等详见招标文件。 最高限价总计:480,000.00元 合同履行期限:中标人应在采购合同签订后30个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2023年1月17日 至 2023年1月29日。 每天上午09:00:00至12:00:00,下午13:00:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:300.00元/包 获取文件地点:凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。 方式或事项: 1、投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 2、凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。 3、各投标人递交投标文件时在投标(开标)地点向采购代理机构缴纳招标文件购买费。 4、投标人须满足以下两种要件,其投标才被接受: (1)按时递交了投标文件; (2)按时报名签到。 5、招标文件公告期限:自采购公告发布之日(2023年1月17日)起五个工作日。 6、招标文件提供期限 (1)招标文件提供期限:2023年1月17日至2023年1月29日。 (2)报名方式:招标文件提供期限内,投标人将《重庆智南项目管理有限公司采购文件发售登记表》(加盖投标人公章)扫描后发送至2622508143 @qq.com(邮箱),视为具备报名资格,否则视为无效。 (3)招标文件售价:人民币300元/包,招标文件费在投标现场缴纳。 四、投标文件递交 投标文件递交开始时间: 2023年2月7日 14:00 投标文件递交截止时间: 2023年2月7日 14:30 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2023年2月7日 14:30 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自采购公告发布之日起五个工作日。 七、其他补充事宜 采购项目需落实的政府采购政策 1、按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 2、按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)和《关于进一步加大政府采购支持中小企业力度的通知》(财库〔2022〕19号)的规定,落实促进中小企业发展政策。 3、按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。 4、按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。 八、联系方式 1、采购人信息 采购人:重庆市南岸区疾病预防控制中心 采购经办人:王婷婷 采购人电话:023-62906976 采购人地址:重庆市南岸区烟雨路410号 2、采购代理机构信息 代理机构:重庆智南项目管理有限公司 代理机构经办人:张欢 代理机构电话:023-63206045 023-67461776 代理机构地址:重庆市渝北区星光大道82号天王星D1-2栋7楼 3、项目联系方式 项目联系人:王婷婷 项目联系人电话:023-62906976 九、附件 《重庆智南项目管理有限公司采购文件发售登记表》.doc 公开招标-NAQ22A00156-南岸区疾病预防控制中心仪器设备购买(包一)第三次-定稿-20230117.doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 《重庆智南项目管理有限公司采购文件发售登记表》.doc 公开招标-NAQ22A00156-南岸区疾病预防控制中心仪器设备购买(包一)第三次-定稿-20230117.doc × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:超纯水器 开标时间:2023-02-07 14:30 预算金额:149.00万元 采购单位:重庆市南岸区疾病预防控制中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆智南项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 南岸区疾病预防控制中心仪器设备购买(包一)第三次(NAQ22A00156)公开招标公告 重庆市-南岸区 状态:公告 更新时间: 2023-01-17 招标文件: 附件1 附件2 南岸区疾病预防控制中心仪器设备购买(包一)第三次(NAQ22A00156)公开招标公告 发布日期: 2023年1月17日 项目概况: “南岸区疾病预防控制中心仪器设备购买(包一)第三次”项目的潜在投标人应在“凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。”获取采购文件,并于 2023年2月7日 14:30(北京时间)前递交投标文件。 一、项目基本情况 项目号:NAQ22A00156 项目名称:南岸区疾病预防控制中心仪器设备购买(包一)第三次 采购方式:公开招标 预算金额:1,490,000.00元 最高限价:480,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 包1:超纯水系统 480,000.00元 3 套 1.进水水源:一般城市自来水,进水TDS≤500ppm的水源,水压0.1~0.4MPa,水温5-35℃。※2.纯水产水水质:高效EDI模块制水,EDI制水量:≥20 L/h。电阻率5-15 MΩ●cm@25℃、EDI出水总有机碳含量(TOC) ≤30ppb等详见招标文件。 最高限价总计:480,000.00元 合同履行期限:中标人应在采购合同签订后30个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2023年1月17日 至 2023年1月29日。 每天上午09:00:00至12:00:00,下午13:00:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:300.00元/包 获取文件地点:凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。 方式或事项: 1、投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 2、凡有意参加投标的投标人,请在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人下载与否,均视为已知晓所有招标内容。 3、各投标人递交投标文件时在投标(开标)地点向采购代理机构缴纳招标文件购买费。 4、投标人须满足以下两种要件,其投标才被接受: (1)按时递交了投标文件; (2)按时报名签到。 5、招标文件公告期限:自采购公告发布之日(2023年1月17日)起五个工作日。 6、招标文件提供期限 (1)招标文件提供期限:2023年1月17日至2023年1月29日。 (2)报名方式:招标文件提供期限内,投标人将《重庆智南项目管理有限公司采购文件发售登记表》(加盖投标人公章)扫描后发送至2622508143 @qq.com(邮箱),视为具备报名资格,否则视为无效。 (3)招标文件售价:人民币300元/包,招标文件费在投标现场缴纳。 四、投标文件递交 投标文件递交开始时间: 2023年2月7日 14:00 投标文件递交截止时间: 2023年2月7日 14:30 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2023年2月7日 14:30 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自采购公告发布之日起五个工作日。 七、其他补充事宜 采购项目需落实的政府采购政策 1、按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 2、按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)和《关于进一步加大政府采购支持中小企业力度的通知》(财库〔2022〕19号)的规定,落实促进中小企业发展政策。 3、按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。 4、按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。 八、联系方式 1、采购人信息 采购人:重庆市南岸区疾病预防控制中心 采购经办人:王婷婷 采购人电话:023-62906976 采购人地址:重庆市南岸区烟雨路410号 2、采购代理机构信息 代理机构:重庆智南项目管理有限公司 代理机构经办人:张欢 代理机构电话:023-63206045 023-67461776 代理机构地址:重庆市渝北区星光大道82号天王星D1-2栋7楼 3、项目联系方式 项目联系人:王婷婷 项目联系人电话:023-62906976 九、附件 《重庆智南项目管理有限公司采购文件发售登记表》.doc 公开招标-NAQ22A00156-南岸区疾病预防控制中心仪器设备购买(包一)第三次-定稿-20230117.doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 《重庆智南项目管理有限公司采购文件发售登记表》.doc 公开招标-NAQ22A00156-南岸区疾病预防控制中心仪器设备购买(包一)第三次-定稿-20230117.doc
  • 国内首套千万方三甘醇脱水装置性能考核达标
    2月22日至2月27日,国内首套千万方三甘醇脱水装置——西南油气田公司相国寺储气库千万方三甘醇脱水装置分别以1000万立方米和1200万立方米日处理量运行72小时,各项运行指标达到设计要求,顺利通过性能考核。这套千万方三甘醇撬装脱水装置,是相国寺储气库扩压增量工程的关键设备。去年11月底,装置顺利投运,相国寺储气库日最大冲峰能力由原来的2800万立方米提升至3800万立方米,调峰能力再创新高。为保障装置考核期间安全平稳运行,自千万方三甘醇脱水装置投产以来,西南油气田公司与设计、施工、调试单位及设备厂家高效合作,开展设备调试,确保设备处于最佳状态。同时,组织相关技术人才开展技术研讨,结合装置特点和储气库生产运行条件,制定《相国寺集注站千万方脱水装置性能考核方案》,进一步明确考核内容和要求,并开展培训,确保相关人员熟悉掌握操作流程和考核参数要点,顺利推进考核工作。落实专人专岗负责全过程,完善人员组织、应急物资准备,切实加大巡检力度,细化巡检要求,明确吸收塔压差、闪蒸罐液位等关键点,密切监控各压力容器的压差、液位变化情况,全力保障设备运行安全平稳。严格检测考核指标,每日对干气水露点、贫富液浓度进行两次对比,确保产品气质量达标、装置溶液系统稳定。同时,按照装置性能考核方案要求,跟踪装置考核运行全过程,及时分析讨论异常数据,优化运行工况,针对循环泵发生喘振问题,立即联系相关单位整改,全力确保性能考核工作稳步推进。下步,西南油气田公司将在此次装置性能考核基础上总结经验,形成性能考核报告,为三甘醇优化运行和检修提供支撑。同时,进一步加强重点设备安全生产管理,全面落实设备全生命周期管理要求,做好后续技术改造,为三甘醇脱水装置高效、平稳、安全运行奠定坚实基础。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制