当前位置: 仪器信息网 > 行业主题 > >

法舒地尔

仪器信息网法舒地尔专题为您提供2024年最新法舒地尔价格报价、厂家品牌的相关信息, 包括法舒地尔参数、型号等,不管是国产,还是进口品牌的法舒地尔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法舒地尔相关的耗材配件、试剂标物,还有法舒地尔相关的最新资讯、资料,以及法舒地尔相关的解决方案。

法舒地尔相关的资讯

  • 赛默飞发布盐酸法舒地尔药品中高哌嗪含量检测方案
    2014年12月8日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布盐酸法舒地尔药物中高哌嗪含量检测方案。盐酸法舒地尔作为高效的血管扩张药物,可以有效缓解脑血管痉挛,是一种具有广泛药理作用的新型药物。高哌嗪是盐酸法舒地尔合成过程的中间体杂质,其测定方法鲜有文献报道,主要原因是高哌嗪含量较低,在常规的反相色谱柱上保留较弱,同时没有紫外吸收。因此本检测方法采用离子色谱的方法,电导作为检测器测定盐酸法舒地尔药品中高哌嗪的含量。盐酸法舒地尔的结构图 赛默飞发布离子色谱法检测盐酸法舒地尔中高哌嗪含量,采用ICS-2100系统,配备EG淋洗液发生装置,在前处理过程中将药物盐酸法舒地尔去除,采用与流动相浓度一致的17 mmol/LMSA作为溶解样品的最佳溶液,配备Ion Pac CS17色谱柱,选择15%含量的乙腈作为淋洗液条件,在此分析条件下,采用离子色谱技术分析盐酸法舒地尔中高哌嗪的含量,方法简单,分离柱效高,测定结果满足要求。高效离子色谱方法在药物杂质离子的测定中有比较广泛的应用前景。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html应用纪要:《离子色谱法测定盐酸法舒地尔药物中高哌嗪含量》下载地址:www.thermo.com.cn/Resources/201410/30102057126.pdf --------------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • “脱发克星”米诺地尔,你真的了解吗?
    谁说成年人的世界没有“容易”二字,容易秃、容易胖、容易单身没对象。要说让成年人最“痛心”的事,那无疑是脱发,根据最新调查数据显示,我国脱发人数已经超过2.5亿,其中占比最大的为26-30岁人群,高达41.9%,可以看出,脱发年龄已经呈现年轻化趋势。说起脱发,那就不得不说近几年众suo周知的“脱发克星”-米诺地尔。米诺地尔作为临床上使用最为广泛的药物,具有促使毛发增生的效用,外用可以治疗脱发症。米诺地尔主要用于治疗雄激素性脱发与斑秃引起的脱发,且米诺地尔搽剂是目前美国FDA唯yi批准上市的治疗脱发的非处方药,也是《中国雄激素性脱发治疗指南》推荐使用的药物之一。但是需要注意的是,这是一种受管制的西药,必须在医生或者药剂师指导下才能使用。米诺地尔在临床应用中,的确具有促使毛发增生的效用,但是用在育发产品中,会出现过敏性表现,包括头皮脱皮、毛囊炎、荨麻疹等问题,所以该物质在我国化妆品中属于禁用成分。然而近几年某些化妆品打着生发的旗号,在其中偷偷添加米诺地尔,那么如何对化妆品进行管控呢?可参考《化妆品安全技术规范》中收录的米诺地尔的检测方法,针对于毛发用液态水基类化妆品中米诺地尔进行测定与分析。月旭实验室按照《化妆品安全技术规范》中收录的米诺地尔的检测方法,流动相使用磺基丁二酸钠二辛酯溶液,使用月旭Ultimate LP-C18 (4.6×250mm,5μm)色谱柱对米诺地尔进行分析,结果如下图所示。米诺地尔保留时间约为13min,理论塔板数19841,不对称度1.05,峰型良好。色谱柱:月旭Ultimate LP-C18(4.6×250mm,5μm)。流动相:磺基丁二酸钠二辛酯溶液;流速:1mL/min;柱温:30℃;检测波长:280nm;进样量:10μL。2 标准曲线的绘制按照《化妆品安全技术规范》中收录的米诺地尔的检测方法配制浓度为:1µ g/mL、5µ g/mL、25µ g/mL、50µ g/mL、100µ g/mL的标准工作溶液,浓度由低向高依次进样分析,以峰面积-浓度作图,绘制标准工作曲线,如下图所示。标准曲线在浓度范围内线性良好,线性系数R2=1。3 回收率按照《化妆品安全技术规范》中收录的米诺地尔的检测方法对洗发水样品进行加标回收实验,计算得到回收率结果如下图所示。洗发水加标回收率为102.3%,回收率较好,无基质干扰。4总结按照《化妆品安全技术规范》中收录的米诺地尔的检测方法使用月旭Ultimate LP-C18 (4.6×250mm,5μm)色谱柱可以得到良好的分析结果,线性和回收率良好,符合检测要求。5相关产品信息
  • 中国政府代表团出席《关于消耗臭氧层物质的蒙特利尔议定书》第30次缔约方大会
    p  关于消耗臭氧层物质的蒙特利尔议定书》(简称议定书)第30次缔约方大会于2018年11月5日至9日在厄瓜多尔基多召开,来自170个国家以及相关国际组织600余名代表与会。由生态环境部和外交部组成的中国政府代表团出席会议。/pp  中国代表团团长在高级别会议上介绍了中国在生态文明建设和生态环境保护方面的成就,以及中国履行议定书工作进展,强调中国政府对涉及消耗臭氧层物质的违法行为始终采取“零容忍”态度,发现一起,打击一起。/pp  会间,代表团分别会见了议定书秘书处负责人以及美国代表团团长,就共同关心的议题交换了意见。/pp  议定书是国际社会公认最成功的多边环境条约。30多年来,在各缔约方的不懈努力下,臭氧层耗损得到有效遏制,并实现了巨大的环境和健康效益。中国累计淘汰消耗臭氧层物质约28万吨,占发展中国家淘汰总量的一半以上,为议定书的履行做出了重要贡献。/p
  • Aeroqual和上海迪勤签署战略合作协议 联手发布AQX微型空气监测仪
    深度融合,精耕中国——Aeroqual和上海迪勤签署战略合作协议 联手发布AQX微型空气监测仪 6月1日,在上海展览馆盛大举行的“2021浦江创新论坛-全球技术转移大会”上,Aeroqual与合作伙伴上海迪勤传感技术有限公司(“迪勤科技”)签署了战略合作协议,并联手发布AQX微型空气监测仪——集成了享誉世界的Aeroqual臭氧传感器的空气监测产品。外交部南南合作促进会上海办事处主任洪涌清、上海市虹口区科学技术委员会主任万建辉、新西兰贸易发展局(NZTE)商务官苏曼曼(Sherry Su)等领导和嘉宾出席见证了签字仪式和AQX发布会。签字仪式上,苏曼曼女士代表新西兰贸易发展局(NZTE)登台致辞,她表示非常高兴见证上海迪勤与Aeroqual自2014年起的良好合作关系,这次战略合作签约标志双方的合作将进入新的发展阶段,祝福双方的合作关系能“再上一层楼”。迪勤科技CEO刘思坦致辞时回顾,在过去七年,迪勤科技与Aeroqual联手在许多地区构建了空气质量监测网络,在城镇空气质量管理、污染预警预报、污染源排查、单点污染源控制等方面发挥了切实作用,为国家打赢蓝天保卫战做出了重要贡献。刘思坦先生说,2021年是“十四五”规划的开局之年,未来五年大气环境监测网络在进一步扩大到街道乡镇、工业园区、交通路边站的同时,也对空气质量监测仪器的性能指标提出了更高的要求。为此,迪勤科技与Aeroqual依托在环境监测领域多年的技术积累,联合开发了AQX微型环境空气质量监测系统,助力形成高时空分辨的动态环境监测网络,强力支撑污染防治攻坚,以实现整体环境质量的改善。“十四五”是碳达峰的关键期和窗口期,迪勤科技还将积极布局碳监测、碳中和领域,助力我国环境质量与碳排放实现“双达标”。Aeroqual首席执行官Mark Templeton(马克坦普尔顿)先生从新西兰发来致辞。Mark用中文向现场各位嘉宾亲切问候。他评价这份战略合作协议“肯定了Aeroqual支持中国推行‘蓝天保卫战’等政策的承诺,并建立在我们与上海迪勤的长期合作关系之上。”他同时也简要评价了AQX这款新产品:“集成了Aeroqual享誉业界的臭氧传感器模块,构建了一台高性价比的多参数空气质量监测仪,提供准确的实时监测数据和污染警报。”关于AQX的应用前景,Mark接着说:“AQX的推出,连同我们与上海迪勤的合作伙伴关系,将为环保部门、工业园区、生态或公共卫生领域的研究人员以及各种终端用户提供更可靠的空气质量数据。更好的数据将使决策者能够采取更明智的行动,保护他们的社区。”Mark乐观地展望了双方合作对于帮助监测和改善中国空气质量的前景:“我们对Aeroqual的未来、与上海迪勤持续合作的未来以及整个中国空气质量监测的未来很乐观。我们期待着发挥我们所长,生产基于高性能前沿技术的空气监测系统,帮助控制和减少空气污染,让中国人民呼吸更自如地呼吸。”Aeroqual在生态、科研、卫生、商用等领域的合作伙伴联祥环保、点将科技和对中工业也派代表出席并见证了这场仪式。随着AQX的新品发布,以及Aeroqual与上海迪勤的又一战略合作协议的签署,相信双方的合作不断深入,并能够更好地用他们的技术和产品服务于中国的环境保护事业,守护着我们每日呼吸的清洁空气,在十四五期间及更远的未来赢得更广阔的发展空间。
  • 化妆品中米诺地尔检测方法(暂行)发布
    为做好化妆品中米诺地尔检测工作,国家食品药品监督管理局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经化妆品标准专家委员会审评通过,日前予以印发。  附:关于印发化妆品中米诺地尔检测方法(暂行)的通知各省、自治区、直辖市食品药品监督管理局(药品监督管理局),新疆生产建设兵团食品药品监督管理局:  根据《化妆品卫生规范》(2007年版)规定,6-(哌嗪基)-2,4-嘧啶二胺-3-氧化物(米诺地尔)为禁用组分。为做好化妆品中米诺地尔的检测工作,国家局组织有关专家对《化妆品中米诺地尔的检测方法(暂行)》进行了论证,并经国家局化妆品标准专家委员会审评通过,现予印发,请遵照执行。                            国家食品药品监督管理局                            二○一○年八月二十三日
  • 普析通用把关北京新发地果蔬安全
    日前,北京普析通用仪器有限公司加入了“首都食品安全科技服务联盟”,并作为该联盟中惟一一家食品安全设备生产企业,与新发地签订了《新发地农产品安全检测系统》合作协议,为其食品安全把关。 “首都食品安全科技服务联盟”是由从事食品安全生产、加工、储运、流通等方面的龙头企业、科研院校、科技服务机构发起组建的,通过构建“从农田到餐桌”全程农产品使用安全生产体系和科技服务体系,保障首都食品安全生产。 摘自《北京日报》09年7月15日讯 网页地址:http://newepaper.bjd.com.cn/bjrb/html/2009-07/15/content_166126.htm
  • 刘淑莹研究员:利用MALDI-MS研究含有二硫键的蛋白质和多肽问题
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  中科院长春应化所的刘淑莹研究员选取了含有二硫键的蛋白质和多肽为研究对象,详细研究了其测定分析的问题。二硫键是一种常见的蛋白质翻译后的修饰,文献报道的研究方法有:NMR、部分还原与烷基化、Edman降解与MS相结合(FAB、ESI-MS、MALDI-MS),但是NMR方法需要相当多的被拆分物,部分还原与烷基化需要耗费相当长的时间,因此课题组选择Edman降解与MS相结合中的MALDI-MS方法进行研究。中科院长春应化所的刘淑莹研究员  课题组利用MALDI-MS研究了胰岛素、β2-微球和溶菌酶的二硫键断裂,发现MALDI线性和反射模式下均观察到了二硫键的快速裂解,并且这些裂解碎片是在气相中产生的,而不是来源于样品制备时在液相中的分解。在上述研究的基础上,课题组建立含有二硫键蛋白/多肽的新方法——还原后巯基与特定基质加成反应。实验中发现了样品与某些基质发生了加合反应,并进一步研究了基质、pH等对加合反应的影响,确定了其反应的机理,最后用于实际样品的研究。  最后,刘淑莹研究员与大家相约长春,邀请大家参加明年在长春举办的第三届世界华人质谱大会。
  • 岛津新员MALDImini-1线上发布会圆满结束
    2020年5月20日,岛津企业管理(中国)有限公司(以下简称“岛津”)通过线上直播的形式正式发布了全新MALDImini-1基质辅助激光解吸电离数字离子阱质谱仪,新品采用岛津独有的MALDImini-1数字离子阱(DIT)原创技术,紧凑迷你的体积,即可实现MS多级的检测,从聚合物分析到未知生物分子结构分析,适用于大量应用。此次发布会,军事医学研究院仪器测试分析中心杨松成研究员受邀助阵岛津新品的亮相。 主持人开场,发布会直播正式开始,岛津分析计测事业部市场部胡家祥部长率先为新品进行了致辞,在对参加直播的用户表示热烈欢迎的同时,提到岛津公司以1970年和瑞典LKB公司合作推出世界上首台扇形磁场型GCMS LKB-9000为起点,开始了长达50年的质谱技术探索和研发之路,并取得了丰硕成果,尤其是在基质辅助激光解吸电离质谱也就是俗称的MALDI产品开发和研制上。岛津也于1987年推出世界首台商品化MALDI-TOF LAMS-50K,并在1989年收购专业质谱制造公司KTRAOS。KRATOS作为岛津全球质谱生产研发中心之一,连续推出了AXIMA QIT、MALDI-7090、MALDI-8020等多款经典产品。2010年开始,快速飞行时间质谱法拉开了微生物高通量鉴定的新纪元。岛津MALDI-TOF技术在微生物鉴定、核酸检测、蛋白鉴定、组织成像、疾病标志物筛查、糖蛋白、聚合物分析等应用领域发挥着越来越重要作用。 随后,军事医学研究院仪器测试分析中心杨松成研究员也为新品的揭幕送上了祝福,杨松成老师长期从事生物质谱学研究,曾任中国质谱学会副理事长,他提到岛津全新MALDImini-1具有体积微小、功能强大、灵敏度高及分析快速的特点并希望在国内得到大力推广。 致辞结束后,军事医学研究院仪器测试分析中心杨松成研究员与岛津分析计测事业部市场部胡家祥部长共同为新品进行了揭幕,宣告岛津全新MALDImini-1基质辅助激光解吸电离数字离子阱质谱仪正式发布。 揭幕过后,岛津分析计测事业部市场部MALDI高级产品经理胡晓慧进行了新品讲解,详细介绍了岛津MALDI-TOF发展史和岛津MALDImini-1特点,并提到了MALDImini-1在糖肽结构分析、聚糖分析、蛋白鉴定及识别抗体药物结合物位点等四个方面的应用示例。 最后,胡晓慧经理针对用户在线提问的问题进行了详细解答,并与用户进行了深入的线上交流至发布会圆满结束。 目前,岛津全新MALDImini-1基质辅助激光解吸电离数字离子阱质谱仪询价咨询通道已经开放,扫描下方二维码参与岛津“询价有礼”活动,岛津相关工作人员会第一时间与您联系~询价有礼活动回顾:岛津询价有礼
  • 《双碳》白皮书发布,6条核心路径助力绿色低碳发展
    推动绿色低碳循环发展的六条路径 诺维信供图5月26日,生物技术公司诺维信发布《诺维信助力中国实现双碳目标》白皮书(以下简称白皮书),通过剖析能源、农业、食品、洗涤等传统行业,以及替代蛋白、生物基材料、碳捕集与利用等新技术领域的减碳挑战与机遇,结合该公司在科研、应用及市场开发的探索和实践,展示了生物科技推动低碳发展的潜力。白皮书指出,作为前沿的绿色科技,生物技术的创新与发展将推动中国双碳目标的实现。该公司结合了自身的技术解决方案,提出六条核心路径,探索用生物科技的力量助力中国实现绿色低碳循环发展。这六条路径包括:助力传统产业转型升级、提质增效;助力交通系统能源结构优化、替代传统化石能源;助力有机废弃物综合利用、变废为宝;变革食物生产体系、保障粮食安全;减少化石基产品的使用和污染;助力二氧化碳捕集和利用。根据对六条路径中涉及的主要技术产品的生命周期评估法(LCA)测算,在一定的市场条件和政策框架下,诺维信推算其绿色生物解决方案的应用可为中国减少每年约5475万吨的二氧化碳排放量。
  • 帝斯曼在华成立复合材料树脂新研发中心
    全球复合材料行业树脂领导者帝斯曼(DSM)公司昨日宣布在对其南京现有的技术服务队伍进行扩充的同时,将在上海帝斯曼中国园区内成立一个全新的复合材料树脂研发中心,进一步提升其在中国的创新实力。新的研发中心将于2010年11月正式启用。  媒体发布会上,帝斯曼复合材料树脂总裁MichaelEffing先生表示,中国和亚洲地区的经济正在迅速增长,本地的产品创新和应用发展已经成为关键的驱动力,需要更多更深入的专业技术。而此前,这些研发项目都是由帝斯曼在荷兰Zwolle以及Geleen的性能材料研究中心来完成。  “我们预计未来中国市场强劲增长的势头将会继续,为了更好地向客户提供本地化支持和专业技术,我们增加了在中国的投资,包括在上海设立新的研发中心,以及在南京扩充技术服务能力。”帝斯曼复合材料树脂亚洲业务总监唐航初说。  新的研发中心拥有从树脂配方到复合材料应用开发的一系列研发能力,以及高素质的技术人员。此外,它也将成为帝斯曼全球拉挤工艺和FST(燃烧,烟雾生成和毒性)研究的卓越中心。
  • TESCAN发布双束FIB-SEM新品AMBER和AMBER X
    pstrong仪器信息网讯/strong 2019年10月15日,合肥市,在2019全国电子显微学学术年会期间,泰思肯(中国)有限公司(TESCAN)发布了双束FIB-SEM新品。2018年,TESCAN先后发布了S9000G超高分辨型Ga离子FIB-SEM和S9000X超高分辨型Xe Plasma FIB-SEM 1年后,TESCAN再次发布双束FIB-SEM新品——TESCAN AMBER和TESCAN AMBER X,这两款新品都是基于S8000平台的升级版。发布会上,TESCAN为来宾准备了捷克风情的啤酒、红酒以及点心,让来宾在轻松愉快的气氛下品尝美食的同时,了解TESCAN的历史和最新产品。/pp  本次活动,TESCAN特别邀请到中国科学院院士、浙江大学学术委员会主任张泽出席并致辞,并与泰思肯(中国)有限公司总经理冯骏一起为TESCAN AMBER揭幕。/pp style="text-align: center "  img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/cdf6afae-c3b5-44e7-bb1d-5185f75ef2b2.jpg" title="揭幕.jpg" alt="揭幕.jpg"//pp style="text-align: center "  张泽院士和冯骏总经理共同为新品TESCAN AMBER揭幕/pp  TESCAN AMBER作为基于S8000平台的升级版,是一款结合了高分辨分析型FIB和超高分辨扫描电镜的综合分析平台。从现场获取的产品展示页上看到,TESCAN AMBER与S9000系列相比较,配置电子镜筒有很大不同,S9000系列配置的是Triglav™ 超高分辨SEM 镜筒,TESCAN AMBER系列则是无漏磁动态加速BrightBeam™ 型超高分辨SEM镜筒,对于分析磁性样品、电子束敏感样品以及不导电材料等有较大优势。TESCAN AMBER 配置了2套镜筒内探测器系统,具有多种SE和BSE探测模式。TESCAN AMBER X的FIB使用了Xe等离子源,相较使用Ga离子的FIB-SEM, 在同样工作条件下,Xe离子的作用速度为Ga离子的50~60倍 另一方面,Ga离子可以获得比Xe更小的束斑:Ga 离子分辨率约为2.5nm, Xe等离子约为15nm。Ga离子FIB是要要求高精度刻蚀的首选方案,而Xe 等离子FIB对于需要高效率、大体积加工的样品,则具有更大的吸引力!/pp  产品经理Ondrej Nezhyba在《Background, Current Business and Product Overview》报告中把TESCAN AMBER系列具有的特点归纳为以下几个方面:/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  超高分辨聚焦离子束扫描电镜/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  BrightBeam™ 扫描电子镜筒提供无磁场的超高分辨成像/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  高效率、截面宽度达到1mm大面积FIB样品加工/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  可灵活选择镜筒内SE和BSE探测器/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  自动优化电子束,实现高通量、多模态FIB-SEM断层扫描/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  超大视野、便捷的导航/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 364px " src="https://img1.17img.cn/17img/images/201910/uepic/73a56733-7bdc-4c0b-ba4c-f52cb2847c30.jpg" title="TESCAN AMBER.jpg" alt="TESCAN AMBER.jpg" width="600" vspace="0" height="364" border="0"//pp style="text-align: center "  双束FIB-SEM新品TESCAN AMBER/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/e47faf46-c68f-4c83-a623-6570550800c5.jpg" title="现场.jpg" alt="现场.jpg"//pp style="text-align: center "  新品发布会现场/pp  自称从2014年开始被公司内部“封杀”——不许公开发言的冯骏,在今天的新品发布会上出人意料地并未有多少笔墨言及新产品TESCAN AMBER,却从2014年那一场风波开始讲起,分享这5年来带领泰思肯(中国)有限公司深入思考用户的需求并制定、践行“聚焦TESCAN客户,创新服务内容,提升服务品质”发展战略的历程。在实践中,TESCAN采取了调整维修工程师的管理制度、加强用户应用支持、增加零备件库存、电话回访售后现场服务、建立用户群等措施,在用户和厂家之间建立良好互动。冯骏表示,TESCAN中国的特色服务已经广受TESCAN中国用户的赞誉。5年,冯骏终于被“解封”了!仪器信息网也见证了兰州大学等TESCAN用户“解封”的点点滴滴!/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/b64d8ddd-6b80-442f-a86c-8cc4c8d9dc6c.jpg" title="现场1.jpg" alt="现场1.jpg"//pp  本次新品发布会简短而隆重,并未对仪器的各项参数指标、具体应用案例展开详细介绍。仪器信息网编辑从现场了解到,16-18日,TESCAN将连续3天开展现场Demo演示和技术交流会(合肥丰国际大酒店1楼百合厅),内容包括:原位高温拉伸成像演示、TESCAN新一代通用型 FIB -SEM 演示。TESCAN AMBER产品的详细内容和产品亮点,在3天的现场演示和交流中,等待着用户去亲身体会!/ppstrongspan style="color: rgb(0, 112, 192) "了解更多会议同期报道,点击下图进入会议报道专题!/span/strongbr//ppa href="https://www.instrument.com.cn/zt/CEMS2019" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/e99648a8-d873-45af-8e0e-47d22ef36aa0.jpg" title="专题logo.png" alt="专题logo.png"//a/p
  • 雪迪龙发布2017年年度董事会经营评述
    p  3月28日消息,雪迪龙(002658)2017年年度董事会经营评述内容如下:/pp  strong一、概述/strong/pp  (一)公司总体经营情况/pp  (1)营业收入:完成10.84亿元,与去年同期9.98亿元相比,增长8.63%。/pp  (2)归属于上市公司股东的净利润:完成2.15亿元,与去年同期1.94亿元相比,增长10.77%。/pp  (3)总资产:至2017年末21.99为亿元,与去年年末19.78亿元相比,增长11.15%。/pp  (4)归属于上市公司股东的净资产:至2017年末为18.91亿元,比去年年末17.16亿元相比,增长10.20%。/pp  (二)2017年度各项财务指标/pp  报告期内公司偿债能力方面,流动比率和速动比率分别为6.72、5.46,与去年同期相比,变动幅度分别为-0.34、-0.36 在营运能力方面,应收账款周转率(次)和存货周转率(次)分别是2.22、1.88 在盈利能力方面,基本每股收益为0.36元,净资产收益率达到11.95%。/pp  (三)经营情况分析/pp  公司2017年度利润增长10.77%,增长幅度稍低于公司业绩预期,主要原因是环保产品销售收入略低于销售预期,而公司研发投入增加1,241万元,投资收益同期减少1,429.6万元。公司各业务板块经营情况如下:环境监测业务实现营业收入6.42亿元,较去年同期增长8.71%。/pp  2017年度,国家开展中央环保督察力度空前,实施环保限产和淘汰落后产能,导致部分中小锅炉领域的CEMS监测业务受到影响。同时由于电力行业CEMS监测市场需求趋于稳定,电力行业对传统CEMS的需求增长有所放缓,但电力行业超低排放业务及非电领域CEMS监测业务的需求随着环保要求的提高,有着明显的上升。 2018年度,随着工业企业的升级改造及开工生产,以及国家振兴实体经济措施的推进,非电领域的CEMS监测及超低排放业务仍会有更为广阔的发展空间。/pp  2017 年度,公司对大气、智慧环保、水质监测产品的投入初见成效,2017年度虽然其业务未达预期,但实现了培养队伍、奠定基础的目的,由于这些业务的客户群体以政府部门为主,单个项目金额较大、项目跟踪落地周期较长、公司业务基础稍弱等因素导致业绩增速较慢 随着公司近几年在上述业务领域做的积极布局和投入,预计2018年度会有较好的业绩兑现。/pp  VOCs监测业务较去年同期业绩增长显著,主要客户群集中于厂界监测、石化化工等领域,随着大气治理的进一步推进,VOCs作为" 十三五" 的约束性指标之一,其监测市场将得到陆续释放。/pp  工业过程分析系统实现营业收入8,156万元,较去年同期增长69.09%。主要是公司积极拓展水泥、钢铁、化工、石化等领域的工业过程分析业务。/pp  气体分析仪及备品备件业务实现营业收入1.32亿元,较去年同期下降4.34%,主要是面向客户开展的二次销售。/pp  运营维护改造业务实现营业收入2.13亿元,较去年同期下降3.95%。/pp  公司旗下全资子公司" 北京雪迪龙环境工程技术有限公司" ,自2016年组建专业的团队开展环境工程业务,2017年度环境工程公司实现销售收入2,956.4万元,为公司在环境工程业务领域的发展奠定了良好的基础。/pp  (四)对外投资概况/pp  2017年,公司未开展重大对外投资。/pp  (五)员工持股计划/pp  员工持股计划是中长期的激励政策,计划连续推出五年,目前已实施三期,具体内容如下:第一期员工持股计划资金总额约为2,512万元,购买完成日期为 2015年4月22日,购买均价为27.43元/股,购买数量为915,805股,占公司总股本的比例为0.15%,锁定期自2015年4月22日至 2016年4月22日,存续期为2015年4月22日至2017年4月22日。经2017年1月17日召开的第三届董事会第三次会议审议通过,第一期员工持股计划延长一年,即存续期至2018年4月22日止。经2018年1月22日日召开第三届董事会第十四次会议审议通过,将第一期员工持股计划存续期再次延长一年,即第一期员工持股计划存续期延长至2019年4月22日。/pp  第二期员工持股计划资金总额约为3,662万元,购买完成日期为2016年7 月22日,购买均价为16.804元/股,购买数量为2,180,325股,占公司总股本的比例为0.36%,锁定期为2016年7月22日至2017年 7月22日,存续期为2016年7月22日至2018年7月22日。/pp  第三期员工持股计划资金总额约为1,002万元,购买完成日期为2017年7 月11日,购买均价为16.502元/股,购买数量为607,300股,占公司总股本的比例为0.1004%,锁定期为2017年7月12日至2018年 7月12日,存续期为2017年7月12日至2019年7月12日。/pp  2017年度的考核增长率Rn低于20%,故第四期员工持股计划不从公司2017年净利润中提取奖励基金,经员工持股计划委员会征求第四期持有人建议后,提请董事会终止实施第四期员工持股计划。/pp  (六)公开发行可转债/pp  2017 年5月,公司筹划公开发行可转换公司债券并向中国证监会报送相关申报材料。2017年12月5日,公司收到中国证监会下发的《关于核准北京雪迪龙科技股份有限公司公开发行可转换公司债券的批复》(证监许可[2017]2206号)。2017年12月27日,公司公开发行52,000万元可转债,2018年 1月3日完成发行,募集资金到账。2018年1月29日,公司可转债上市流通,债券代码为" 128033" ,债券简称为" 迪龙转债" 。/pp  (七)募集资金情况/pp  2012年3月9日,公司首次公开发行股票募集资金的总额为7.05亿元,净额6.49亿元(以下简称" 前次募集资金" ),截至2017年末,前次募集资金余额为5,235.78万元,募投项目" 运营维护网络建设项目" 尚需继续投入。/pp  2017年12月27日,公司公开发行可转换公司债券,募集资金总额5.2亿元,净额为5.07亿元。本次公开发行可转债募集资金将应用于VOCs监测系统生产线建设项目和生态环境监测网络建设项目。/pp  (八)风险分析政策风险/pp  环境监测设备行业是政策驱动型行业。国家对环境保护、节能减排政策及相关法律、法规的制定和调整对公司的生产经营将产生较大影响,但市场的实际释放程度依赖政府的实际执行进度。请投资者关注政策执行进度落后于预期的风险。/pp  市场竞争风险随着环境监测设备行业的快速发展,智慧城市、智慧环保等项目的落地实施,更多的市场竞争者进入本行业,市场竞争日益加剧。在公司业务扩张及智慧环保项目推广过程中,如果在全国范围内的市场开发不力,或在项目招投标过程中连续不能成功中标,可能对公司未来业绩的增长产生不利影响。/pp  技术和人才流失风险公司所处的仪器仪表行业属于技术密集型行业,需要大量的研发投入、长期的技术积累,同时需要专业化的销售、运维团队来满足客户的需求。公司多年来积累了丰富的管理经验、生产技术,建立了较为完善的销售渠道和服务网络,培养了一大批中高级管理人员、技术骨干、销售骨干及服务工程师。如果公司的管理、技术、销售、运维方面的骨干人员流失,或发生技术秘密泄露,将对公司的生产经营及募投项目的建设、效益的实现产生不利影响。/pp  业务整合风险公司通过对环境监测行业及相关政策发展的研判,先后收购了英国的KORE公司、比利时的ORTHODYNE公司,同时也参股了多家境内公司,设立了多家子公司,补充完善环境监测产品体系。由于公司设立至今,主要人员、组织机构及业务均在国内,且公司在海外经营、管理的经验不够丰富,对技术的吸收和与境外子公司的融合存在一定的风险。对境内子公司尤其是新设成立的子公司,需要从头开始,投入大量的精力进行管理运作,能否及时的开发成功的产品并推向市场,获得市场的认可,存在一定的风险。/pp  strong二、核心竞争力分析/strong/pp  (一)行业经验与品牌优势公司是我国从事环境监测和工业过程分析领域的市场先入者之一,成立十多年来,公司不遗余力的为国内外多行业多领域的/pp  客户提供着优质的产品及服务,在国内环境监测仪器市场销售业绩位居前列。多年来通过产品的应用、维护与反复改进提高,积累了大量的技术资料和现场实践经验,雪迪龙的品牌也覆盖了多个行业及领域,公司能够针对不同行业、不同领域的客户的不同需求提供从方案设计、部件加工、系统集成、安装调试到后续运维服务的全方位定制化专业服务。随着公司产品体系的不断丰富与完善,客户结构也逐渐向多元化发展," 雪迪龙" 品牌在多个行业及领域深入人心,稳定的产品品质和及时的综合服务造就了公司良好的口碑与信誉。/pp  (二)人才和研发创新优势/pp  人才和研发创新是公司处于市场竞争优势的关键因素。公司一直将研发创新作为公司的核心发展战略,培养了一支拥有200余人的专业研发团队,公司通过不断完善人才引进和培养策略,吸引并留住人才,调动其积极、主动、创造性,为公司研发创新贡献力量。/pp  公司被认定为国家级高新技术企业、北京市级企业技术中心 2014年,公司被北京市发展和改革委员会认定为在线环境监测技术及系统应用北京市工程实验室,2015年公司获批设立了中关村科技园昌平园博士后科研工作站分站 与国内著名大学共同成立研究院,集结了国内环境领域的专家资源,并参与了多项国家、行业标准制定,拥有200余项专利及软件著作权 公司致力于通过收购并购、技术合作等多种手段寻求和引进海外高端产品和技术,壮大公司的技术发力量,取得了较好的成果。/pp  (三)运维服务优势目前市场竞争日益激烈,竞争的形式已经从产品层面逐步扩展到产品的全生命周期,作为仪器产品产业链的延伸,运营服务/pp  是为客户提供综合解决方案的重要一环,在提高客户忠诚度的同时,又提升了单位客户资源的产值,在存量市场空间开辟了稳定的收入来源。公司在行业内已率先开展了运营服务的业务,通过在全国范围内设立技术服务中心,配备专业服务人员,可以根据客户的个性化需求和现场情况,在最短的时间内给予客户及时有效的专业化服务。公司设立专门子公司,致力于为政府、企业和社会提供专业的第三方服务。/pp  (四)平台优势/pp  经过多年发展,公司已由单一监测设备供应商逐渐发展为环境综合服务提供商,并由设备运营商逐渐发展为数据运营商。长期以来,公司在监测技术、污染源解析、环境监测设备制造及升级等方面积累了丰富的实践经验,形成了多条成熟产品线,并拥有上万套多领域监测设备的成功应用经验 公司业务范围已涵盖环境监测的废气、大气、废水、水质、环境信息化、环境大数据及工业过程分析等诸多领域,监测要素已覆盖SO2、NOx、VOCs、PM2.5、COD、TN/TP/DO/pH、噪声、扬尘等诸多监管指标,监测类别已涵盖在线监测、实验室监测、应急监测及第三方检测。2015年起公司引进的国外高端技术与先进产品,如飞行时间质谱仪、XRF荧光光谱仪及气溶胶单颗粒飞行时间质谱仪等,正在逐步向环境、食品、工业分析等领域推广,公司将持续从横向上丰富完善监测产品,致力于打造综合物联网感知、传感体系 纵向致力于打造专业化综合型的环境服务平台。利用上市公司强大的投融资能力,给予公司资金、技术、产品、销售、人才等全方位的稳定投入,公司完全可以以多种模式为城市和工业园区提供智慧环保综合解决方案从而提供整体的" 一站式" 服务。/pp  strong三、公司未来发展的展望./strong/pp  (一)宏观政策持续驱动行业发展./pp  2017 年12月20日,中央经济工作会议确定,按照党的十九大的要求,今后三年要重点抓好决胜全面建成小康社会的三大攻坚战,即防范化解重大风险、精准脱贫、污染防治。在打好污染防治攻坚战方面,会议要求,要使主要污染物排放总量大幅减少,生态环境质量总体改善,重点是打赢蓝天保卫战。/pp  2018年1月31日,环保部举行的2018年首场例行新闻发布会指出,将继续推进燃煤电厂超低排放改造、研究推进钢铁等非电行业超低排放改造,在重点区域实施大气污染物特别排放限值,全面加强工业企业无组织排放管理,……狠抓环境监测质量管理,确保数据真、准、全。/pp  2018 年3月,李克强总理在政府工作报告中指出,“坚决打好三大攻坚战,推进污染防治取得更大成效。具体内容为,巩固蓝天保卫战成果,2018年二氧化硫、氮氧化物排放量要下降3%,重点地区细颗粒物(PM2.5)浓度继续下降,推动钢铁等行业超低排放改造,提高污染排放标准,实行限期达标 深入推进水、土壤污染防治,2018年COD、按单排放量要下降2%。/pp  加强生态系统保护和修复,全面划定生态保护红线,严格环境执法。/pp  十九大报告中将生态文明建设提高至前所未有的高度,伴随生态环境监测网络建设方案的和环保税的推进落实,环境监测行业将会有更加广阔的应用和市场空间。/pp  目前,我国环境监测的基本框架以污染源监测、大气环境监测、水环境监测为主,持续完善生态环境监测网络将是十三五的发展趋势。而环保税法要求监测的参数除污染源监测等常规参数外,还有VOCs、重金属、有毒有害气体等多种特征污染物监测参数,监测指标进一步增加,由环保税法的实施引发的环境在线监测设备的需求也会大幅增加。/pp  近年来,环保产业也逐渐与云计算、大数据等技术相结合,由单一的终端设备监测向智慧环保综合方案迈进,在“以提高环境质量为核心”的目标驱动下,预计2018年,以提供科学决策、智慧管理的智慧环保业务将快速发展,包含环境咨询、规划设计、环境监测、环境治理、项目投资、设施运营等多个方面的“一站式”综合解决方案将会有巨大的市场潜力。/pp  (二)机构改革激发污染防治新格局./pp  2018年3月13日,十三届全国人大会议审议国务院机构改革方案,将原有环境保护部,发改委、国土资源部以及水利等部门环境管理职责予以整合,组建了生态环境部。/pp  “生态管理”成为新部门的重要职责之一,环境管理也将由单一的污染要素约束上升为系统化的调控,环境政策也从污染物排放控制发展为改善环境质量和污染物控制并重。此次大部制落定,将把生态保护与污染治理有效结合,真正形成大环保、实现大协同,从而促使环保行业健康发展。/pp  (三)公司的经营管理计划./pp  公司主营业务始终立足环保领域,围绕水、气、土三大战役展开,以环境监测业务为核心领域,着力拓展环境监测、环境信息化、环境服务、环境治理四大领域。 2018年,公司着重巩固拓展污染源监测、大气环境监测、水环境监测和环境信息化业务领域,以污染源监测、大气环境监测、水环境监测各类监测终端设备为基础,结合信息化、物联网、智能化,实现监控、质控、运维的智能化升级,完善智慧环保综合解决方案,坚定推进城市与园区智慧环保业务的开展落实,坚定不移地保持环境监测领域的行业领先地位,引领行业发展。/pp  公司将加大子公司与各业务部门的融合力度,关注品质与服务,提升综合竞争力与品牌价值 建设完善政府项目营销网络,积极拓展政府业务 持续开展营销队伍能力建设,提升业务拓展质量和效率 实施信息化管理,简化业务流程,注重用户体验,提升客户满意度。/pp  公司针对下属子公司及各业务板块,开展更加科学化、规范化、标准化、制度化的统筹管理 完善薪酬考核体系,以能力定级定薪,让不断提升能力创造业绩的员工有更大的成就感 加强团队凝聚力,营造良好工作氛围,引导员工形成共同的企业价值观,共同塑造优秀上市企业品牌。/pp  (四)可转债募集资金投资项目建设./pp  公司公开发行可转债募集资金52,000万元已于1月3日到帐,2018年起全面开展募投项目建设。/pp  VOCs监测系统生产线建设项目由生产工厂主导实施,计划半年内投产,一年内全部投产,实现预计新增产能。/pp  生态环境监测网络建设项目分为三个子项目实施,环境监测网络综合应用平台研发、环境监测网络项目建设和生态环境监测数据中心建设。2018年起,公司全体员工将共同努力,推广“智慧环保”综合解决方案,以环境质量改善为核心,以环境质量和污染排放总量双控为手段,通过采用BOT、BOO、PPP等模式,构建城市、工业园区天地一体化的生态环境监测网络,帮助地方政府、工业园区和企业提升整体环境质量,帮助环境管理者实现科学决策、智慧管理,顺利完成募投项目建设/p
  • #直击CYTO2022#BD FACSDiscover™ S8 全球发布!
    BD在美国费城举办的第36届国际先进细胞术大会(International Society for Analytical Cytology,ISAC,06.03-06.07)CYTO 2022上推出新的细胞分选仪FACSDiscover™ S8,这是全世界首台搭载BD CellView™ 高速图像技术的光谱流式分选设备!使研究人员能够以前所未有的速度观察和分类细胞,这为改变病毒学和肿瘤学等一系列领域的研究和基于细胞的治疗开发创造了潜力。细胞术(Cytometry)涉及广泛的尖端技术,其中大多数测量的是细胞的分子特性,通过使用荧光标记抗体、指示染料、荧光报告分子(如GFP),以及核酸特异性探针等检测细胞特异性抗原、细胞内离子、DNA和RNA等。CYTO作为该领域内的全球交流盛会,融合最新技术和科研成果为一体,涉及到流式细胞术、图像细胞术、数据分析、荧光试剂等,备受细胞研究领域科学家们的瞩目。本届CYTO主题聚焦在创新研究和前沿技术,探讨细胞和免疫治疗近十年的蓬勃发展以及着眼未来可能带来的惊喜发现。BD Biosciences深耕流式技术达半个世纪,不断突破极限、引领行业变迁。此次发布的FACSDiscoverTM S8可谓十分契合大会主题,加载了研发数十年的CellView™ 高速图像专利技术,不仅大幅提升图像分析速度,更是突破现存技术壁垒,率先从图像分析跨越到难度更高的精准图像分选,可望且可及。同时载BD ASU光谱解析技术,通过捕获真正完整的光谱,科学家可以在其实验中使用更多参数。碧迪医疗与早期用户EMBL发表的文章,获得Science封面专题报道,推动了基于细胞的功能研究、疾病进展和免疫治疗新发现。早期合作(EAU)用户揭幕FACSDiscover™ S8神秘面纱专题学术报告“High speed image-based cellsorting”“BD Cellview™ 新技术,不仅能识别细胞中某种生物标志物的含量,还能根据每个细胞的详细显微图像分析识别其位置或在细胞内的分布情况。在智能化的工作流中发现和分选以往在常规流式细胞术实验中无法识别的细胞,帮助我们以前所未有的速度进行细胞观察和分选。”
  • 丹迪发布热舒适度分析仪新品
    描述ComfortSense系统由一个主机组成,该主机带有最多16个探头的输入通道。 全向探头可测量空气流速和温度。 软件支持最多可以连接六个主机,从而可以同时监视多达96个探头。ComfortSense主机具有带USB 2.0接口的内置A / D转换器。 通过从用户库中选择探头,我们可以轻松设置测量序列和测量网格。 该软件根据用户定义的测量周期提供统计结果。 坚固耐用的探头和电缆非常适合大型测试室。ComfortSense是世界上唯一同时满足EN 13182, ISO 7726, ISO 7730, ASHRAE standards 55 及113 ,五大标准的热舒适度分析仪器。创新点:该仪器是目前世界上唯一的全时在线热舒适度分析仪器。该仪器的主要特点包括:1. 计算机记录数据,并实现PMV, PPD, 温湿度图,时间历程2D曲线,空间三维图等多种复杂后处理。2. 提供包括通风探头、温湿度探头及操作温度探头在内的热舒适度分析全种类探头。3. 支持最高达96个通道的实时数据记录及分析。其他同类产品有些支持全种类探头,但无计算机数据记录分析功能;有些可以实现计算机记录的速度温度测量,但无湿度及操作温度测量方案,也无法实现热舒适度分析;没有任何其他同类产品可以实现高达96个通道的同步数据记录。热舒适度分析仪
  • 果蔬近红外检测技术中的点点滴滴
    本文题目之所以叫“果蔬近红外检测技术中的点点滴滴”,就是因为近红外技术的大理论、大思维、大方法诸位早已熟知,一些没有覆盖着的小理论、小思维、小方法也很重要,有待大家共同挖掘,以期弥补不足 另外一个含义是所有内容都与近红外相关,但相互间关系不大,甚至无关,敬请谅解。中国农业大学 韩东海教授  1、用心感悟样品光物性  图1是2019年6月23日在微信朋友圈发的信息,得到众人点赞。这是我第一次看到这么形象地描述水果光物性的图。这张图清晰地告诉人们,哪些水果容易检测,哪些比较困难,可以帮助人们在研发水果品质无损检测过程中,及时采取应对措施,减少失败,争取时间。  通常我们希望物料透光性要好,可是过于透光,近红外光谱中待检成分信息变弱,不利于分析。例如,葡萄、迷你西红柿。此时,通常采用加大光程的办法加以解决。AMAICA手持仪2),多种果实检测硬件是通用的,只有西红柿在加大光程后,硬件进行了单独设计,独立使用。  透光度低,难以获得有效信息,后续分析无法进行,例如,红薯。在众多物料中,红薯透射性极差,以至于很难实现透射检测。现有研究中,红薯主要采用漫反射采集近红外光谱3,4),受制于透射深度有限,一旦径向待检成分分布差异大,就很难得到正确结论。再就是在红薯断面上采集近红外光谱5),虽然这种方法也具有一定的意义,但已经不属于无损检测了。此类物料要实现在线近红外检测,难度更大。  2、 定量利用光谱强度,定性利用光谱形状  有关近红外吸光度谱的论述很多,也很成熟。多数情况下,利用近红外吸光度谱的强度进行定量分析,而关于原始光谱的探讨少之又少,所以原始光谱容易被忽略。实际上,利用原始光谱形状在一些问题的分析处理上也具有一定的优势。  图2是几种果蔬的近红外原始光谱图。总体来讲,原始光谱波形比较简单,通常就是两个峰,一个谷。个别情况只有一个峰,如葡萄。因为苹果皮薄,质地均匀,内部品质多种多样,特性稳定,故以苹果为基准论述原始光谱特性。两个峰一左一右,左峰在710nm附近,右峰在810nm左右(注释:仪器不同,多少有些差异,无标准而言)。右峰的位置基本在810nm±5nm范围内,而左锋有时则相差很大,大则右移15nm。  苹果、柿子、梨和桃等波形相似,710nm峰值高于810nm 西瓜、甜瓜、蜜桔、葱头、绿蜜桔、柠檬、圆白菜、土豆的波形相像,共同特点是710nm峰值低于810nm。葡萄、迷你西红柿、草莓、牛油果、枇杷、甜椒最特殊,只在810nm处有一个明显高峰。  类别相同但品质不同果蔬的710nm峰值上下变化大,而810nm峰值略微上下浮动。例如三种内部品质不同的正常苹果、褐变苹果、糖心苹果的810nm峰值相差不大,而710nm处的峰值规律为糖心苹果正常苹果褐变苹果三种中的任一810nm峰值(图3)。由此可知,内部品质在原始光谱上主要显现在710nm峰值上,这样就可以利用这个特点进行定量分析或定性判别。  为什么710nm处既有上下变化,又有左右位移呢?现无定论。我认为,一是受水分影响,例如糖心苹果水分高于一般苹果,水分高则光易通过,所以糖心苹果的710nm峰值最高;二是受颜色影响,710nm为红色波长,红色的补色是绿色,当果实不论是瓜皮还是果肉呈现绿色时,则吸收红光,透射光减少,710nm峰值降低。未成熟苹果的710nm峰值与810nm不相上下,就是因为果肉呈浅绿色,吸收了红光,透过光减少,导致710nm峰值降低。西瓜的710nm低于810nm就是因为厚厚的绿色瓜皮阻挡了红光透过,而810nm这些属性不显著。左右位移是否受果实质构的影响有待进一步论证。  关于葡萄等物料只在810nm处有一个明显高峰的解释,暂且无人讨论。本人认为,这些果实透光性极好,很小的功率即可满足要求,710nm的能量尚未达到透过物料时,810nm处已接近饱和。  所以,果蔬原始谱更多地反映了样品的质构信息、形状差异更为突出。  现在的在线果蔬品质判别多数是先定量后定性。例如褐变苹果的判别大致程序是光谱预处理、二阶导、建立PLS模型、计算预测值、确立阈值、按照阈值区分正常还是褐变。如果采用原始光谱就可以直接进行定性分析,这样的研究案例曾多次报道。特举三个案例,具体如下。  1)当公式(1)和(2)的IBrowning都大于0时,为褐变苹果;当IBrowning都小于0时为正常果6)。  2)Seo利用原始谱尝试了多种组合进行糖心苹果、正常苹果、褐变苹果的判别,如表1所示,(T710-T800)/T675的效果最好7)。  3)王加华基于原始谱利用PADA、PCADA、PLSDA三种算法进行了定性判别,获得PLSDA的效果最佳(表2)8)。  3、 一点测量很重要,两点测量更完美  在实验室进行实验时,由于水果的糖酸度分布不均,用漫反射进行近红外光谱采集时,往往在赤道上选择2个或4个点求平均,这确实是两点或多点测量。但本文要介绍的两点测量不同以往,另有含义,如图4所示9)。  这是苹果在线分选线上的实际情况。苹果果柄冲上放置在移动托盘上移动,在第一个位置进行糖酸度、褐变、糖心等的检测,一般水果到此为止足以,但富士苹果有果柄根部裂果现象,必须在第二个位置进行果柄根部裂果检测,所以才有了两点检测一说。有人可能会说,如果果柄冲下放置的话,一个位置就能解决了。如果苹果分选只进行这几个指标的检测确实如此即可,但苹果还要进行外观颜色的评价,因为苹果受太阳的照射,果柄周边颜色艳丽,所以日本苹果装箱时果柄都是冲上的,这样才能获得最佳商品性。又有人会说,所有检测项目都由上面的检测器承担了,这些问题就可在一个工位解决了。确实,有些单位就是这么做的,但是,上位检测遮光问题难以彻底解决,而现在的方法,很方便放心地解决了杂散光干扰。  葱头分选时,葱头根部冲下放置。当葱头内部腐烂严重时,只通过光纤2(图5)的检测就能胜任。不过,对于常发生在上半球的轻微腐烂,光纤2接收不到上半球的信息,漏检现象严重。为此专门设置了光纤1,这样就能把轻微和严重一并检出。这种两点检测设计,是由物料的性质所决定的。两点测量后,轻微腐烂检出率由79.5%提升到95.7%。  苹果检测是一台光谱仪在两个不同工位采集光谱,葱头检测是在一个工位同时采集两条光谱。苹果检测一台光谱仪约50万人民币,为了降低成本,采取了一台两工位。  葱头检测为了避免杂散光进入检测器实施了挡板措施,苹果检测无任何遮挡。据说,苹果检测虽有杂散光影响,仍能获得正确检测结果。  4、日常生活与专业兼顾的Brix和SEP  食品的甜度测量采用高效液相色谱法和气相色谱法,两种仪器价格贵,操作要求高。另外,物料还需要繁琐的前处理,仪器稳定需要数十分钟的等待。近红外技术检测的果蔬糖度是包括酸在内的可溶性固形物,单位是Brix。因为构成Brix的多数水果的主要成分是糖,所以把Brix称为糖度,与日常生活中的甜度不完全一样。  破坏性检测Brix可用折射仪测量。业界常用的PAL系列测量精度一般在±0.2%,而非破坏的近红外方法达到这个精度绝非易事。折射仪有标准蔗糖溶液校正,可明确规定其检测精度,而近红外方法没有基准物,加之影响近红外测量的干扰因素过多,不能用最大误差而只能用标准误差表达。折射仪测量一个群体的果实糖度是抽样先榨汁再测量,而近红外方法无法严格规定测量范围和测量部位,特别是对于成分分布不均的果实而言难上加难。再加上,果实细胞大小、纤维多少、果皮薄厚均影响着光的传播。因为存在着这么多的影响因素,近红外方法只能用统计误差SEP表示11)。  如果近红外方法检测某种果实100个的标准误差SEP是1°Brix,实测糖度为15°Brix,则实际意义为16个高于16°Brix,16个低于14°Brix,68个在15±1°Brix,如图6所示。这一点特别需要向用户解释清楚,不然日后会受到责怪,而通俗易懂地解释清楚并非易事。  参考文献  1) http://mechatronics.co.jp/   2) http://www.astem-jp.com/   3) 農業総合センター農業研究所:「ベニアズマ」生いもデンプン含量の非破壊測定技術,2012年  4) 卜晓朴,彭彦昆,王文秀,王凡,房晓倩,李永玉:生鲜紫薯花青素等多品质参数的可见-近红外快速无损检测,《食品科学》2018年39卷16期  5) 松尾美紅?上野敬一郎?宮原照昌?北原兼文?紙谷喜則?河野澄夫:近赤外透過法を用いた安納いも糖度等の迅速測定に関する基礎的研究  6) 高井 秀悦:光によるリンゴの褐変判別法に関する研究,職業能力開発報文誌VOL.30 No.1(49),2018  7) Y. W. Seo:Nondestructive Detection of the Internal Defects of Fuji. Apple using VIS/NIR Transmittance Spectroscopy. An ASABE Meeting Presentation,Paper Number: 066121,2006  8) 王加华:苹果、洋梨内部品质无损检测信息基础及数学模型的开发,中国农业大学博士论文,2010  9) 蔦 瑞樹, 吉村 正俊, 葛西 智, 松原 和也, 和田 有史, 池羽田 晶文:選果機を用いた可視-近赤外分光スペクトルによるリンゴ‘ふじ’の内部褐変発生予測,日本食品工学会誌 2019年 20 巻 1 号 7-14  10) 西野 勝:近赤外分光法によるタマネギ内部腐敗球の非破壊判別技術  11) 立石 賢二:青果物の糖度を非破壊で計測する簡便な糖度計,計測と制御52 巻 (2013) 8 号(中国农业大学 韩东海教授)
  • 新规丨这一地方发布认证机构信用分类管理评分标准
    《江苏省认证机构信用分类管理暂行办法》苏市监认证〔2021〕271 号第一条 为规范认证行为,提升监管效能,加强认证机构信用分类管理,依据《中华人民共和国认证认可条例》《江苏省社会信用条例》《认证机构管理办法》《国务院关于加强质量认证体系建设 促进全面质量管理的意见》(国发〔2018〕3号)《关于加快推进社会信用体系建设构建以信用为基础的新型监管机制的指导意见》(国办发〔2019〕35号)等规定,制定本办法。第二条 本办法所称认证机构信用分类管理,是指市场监管部门在依法归集认证机构信用信息基础上,按照本办法规定的分类标准,利用江苏省认证监督管理系统(以下简称“省认证监管系统”)对认证机构的信用状况进行评分,并据此实施分类管理的活动。第三条 江苏省范围内开展认证活动的认证机构信用信息的归集、认定、评分、分类结果应用以及监督管理,适用本办法。认证机构信用分类管理是市场监管部门内部管理措施,信用分类结果作为各级市场监管部门合理配置监管资源、优化认证监管的依据,不向社会公开。第四条 省市场监督管理局(以下简称“省局”)统一负责全省认证机构信用分类管理工作。负责认证机构信用分类指标体系的建设,认证机构信用监管档案信息化建设,指导和推进全省认证机构信用分类监管工作。各设区市、县(市、区)市场监管局依据信用分类结果,负责本行政区域内认证机构分类管理及相关工作。第五条 江苏省认证机构信用分类管理坚持依法依规、客观公正、动态评价、有效监管的原则。第六条 省局依托省认证监管系统建立认证机构信用档案,根据信用信息目录清单,记录、归集认证机构信用信息。各级市场监管部门按照“谁产生、谁归集、谁负责”的原则,及时、准确、规范、完整地记录认证机构信用信息。第七条 认证机构按照本办法要求如实提供相关资料和信息,并对资料和信息的合法性、真实性、准确性负责。第八条 认证机构信用信息目录清单包括下列内容:(一)基本信息。认证机构注册资本、成立年限、认证业务种类等信息。(二)信用承诺信息。鼓励认证机构在省认证监管系统自主自愿填报信用信息,并对信息真实性作出公开信用承诺。(三)监管信息。认证机构日常监督检查、专项监督检查等信息;认证机构或认证人员受到行政处罚、认证机构被列入严重违法失信名单等信息;认证机构报送工作报告和社会责任报告、经营异常、投诉举报等信息。(四)认可信息。认证机构获得CNAS认可的信息。(五)其他信息。认证机构获得行政管理部门涉及认证的表彰或荣誉等信息;承担或参与政府部门认证项目、入选中国认证认可协会良好认证审核案例等信息;参与长三角一体化、“一带一路”倡议、质量基础设施“一站式”服务等引领行业发展信息;参与非盈利性社会项目、承担社会责任等信息。第九条 省局依托省认证监管系统,对数据进行汇聚整合和关联分析,对认证机构信用状况进行评分,并根据评分划定信用类别,实现认证机构信用自动分类和动态调整更新。认证机构信用分类从高到低划分为A、B、C、D四类,对应的分值为:A类(优秀):信用分值90分及以上;B类(良好):信用分值75分—89分;C类(一般):信用分值60分—74分;D类(较差):信用分值60 分以下。第十条 省认证监管系统首次开展信用评分时,认证机构初始信用评分分值为75分。在此基础上,设置扣分项、加分项两类指标。第十一条 认证机构信用评分分为实时评分和年度评分两种方式。(一)实时评分,是指省认证监管系统每天对认证机构发生的信用信息进行量化加减,计算出认证机构实时信用得分。(二)年度评分,是指省认证监管系统以每年12月31日为年度评价截止日,对截止日前一年内录入系统的信用信息进行量化加减,计算出认证机构年度信用得分。第十二条 全省各级市场监管部门应将认证机构信用分类结果与“双随机、一公开”监管、重点监管有机结合,科学合理配置监管资源,提升监管精准化和智能化水平。对A类认证机构,合理降低抽查比例和频次;对B类认证机构,按常规比例频次开展抽查;对C类认证机构,实行重点关注,适当提高抽查比例和频次;对D类认证机构,实行严格监管,有针对性大幅提高抽查比例频次。第十三条 省局依据实时评分结果开展风险监测,及时发出风险预警。对C、D类认证机构,由省局或其委托的设区市、县(市、区)市场监管局对认证机构采取提醒、警示、约谈、检查等措施,督促和帮助其立即整改。第十四条 认证机构在省认证监管系统注册后,可查询本机构动态信用评分状况。根据《市场监督管理信用修复管理办法》等相关规定申请信用修复工作。第十五条 省局积极推动长三角地区认证机构信用分类结果共享共用。第十六条 本办法自2022年1月1日起施行。附件:江苏省认证机构信用分类管理评分标准.docx附件 江苏省认证机构信用分类管理评分标准一、扣分目录清单序号评分信息扣分项扣分分值依 据修复期限修复确认方式备注1信用承诺信息认证机构作出虚假信用承诺或者未履行信用承诺3认证机构在江苏省认证监管系统自行上传的信用承诺书 / /2监督检查信息存在轻微问题,要求自行整改2各级市场监管部门公布的监督检查结果3个月 书面确认。按要求改正,提交书面整改材料。 存在一般问题,要求限期整改36个月存在严重或较严重问题,移交执法稽查部门依法依规处理5/3行政处罚信息年内受到行政处罚10江苏省市场监管综合执法平台、国家企业信用信息公示系统、国家认证认可监督管理委员会网站依据《市场监督管理信用修复管理办法》相关规定。国家企业信用信息公示系统、国家认证认可监督管理委员会网站获取。包括认证机构和认证人员年内受到较重行政处罚被列入严重违法失信名单分值扣为0//4 其他监管信息未提交上一年度工作报告和社会责任报告3国家认监委认证监管系统3个月书面确认被列入经营异常名录5国家企业信用信息公示系统依据《市场监督管理信用修复管理办法》相关规定。国家企业信用信息公示系统获取。投诉举报查实并处罚后,当年度内再次被举报并查实的1012315查询系统、举报投诉材料等 1年书面确认。按要求改正,提交书面整改材料。5认可信息认证机构CNAS认可被暂停2 国家认可委公告//认证机构CNAS认可被撤销3//二、 加分目录清单序号评分项目加分项加分分值有效期确认方式备注1信用承诺信息自愿在线公示信用承诺2当年书面确认2基本信息注册资本1000万元及以上2国家认监委认证监管系统注册资本500万-1000万元1成立年限5年及以上1认证业务种类(5个领域及以上)13认可信息认证机构获得CNAS认可2 书面确认认证机构认可风险级别评价为A级2认证机构认可风险级别评价为B级14其他信息获得国家级行政管理部门涉及认证的表彰、奖励3获得省级行政管理部门涉及认证的表彰、奖励2承担、参与并完成政府部门,认证行业相关管理部门的项目2入选CCAA良好认证审核案例1引领行业发展(参与长三角一体化、一带一路倡议、质量基础设施“一站式”服务等)1参与非盈利性社会项目、承担社会责任(参与志愿服务、慈善捐赠活动、重大疫情、自然灾害服务治理等)1
  • 滴定分析“新技术”:光谱滴定概述及进展
    摘要:光谱滴定方法作为滴定领域的新技术,是替代颜色滴定(感官滴定、人工滴定)的新一代革新技术。在可见光范围内,采用全波长同步监控+色空间算法+曲线算法技术,建立了试剂量与单一计量参数的在线二维滴定曲线坐标,从而使颜色滴定方法提升为自动化仪器分析方法。与电位方法、温度方法相比,应用面广、不干扰被测定反应、测量无延迟、无接触性传感器、不受温度影响、反应灵敏、沿用颜色测量方法原理等诸多优点,未来将在滴定分析技术中占主导地位。表1.四种滴定技术比对表滴定技术发明人时间距今优缺点滴定分析方法(感官滴定方法)法国化学家,Joseph Louis Gay-Lussac19世纪上半叶约150年现况:建立了深厚的理论、标准体系。优点:简单,至今仍是滴定分析的主流方法。缺点:主观方法,误差大,无法量值溯源。前景:逐步被淘汰。电位滴定德国化学家,Rorber Behrend1893127年现况:历史久,研究充分。优点:测量精确,图形化操作,可量值溯源。缺点:属间接测量,操作条件多、需要根据测量对象适配器材、要求高、受温度影响大、干扰化学反应、信号延迟。前景:应用受限,市场有限。温度滴定P.迪图瓦和E.格罗贝特192298年现况:目前通常作为电位滴定仪的附件。优点:反应灵敏,不干扰反应过程,可量值溯源。缺点:属间接测量,应用于简单反应体系。前景:应用面狭小,市场很有限。光谱滴定中国20183年现况:新技术,理论不完善,仪器未商品化。优点:属直接测量技术,高准确度、高可靠性、不受温度影响、不干扰化学反应、终点明显,可量值溯源,操作简单,应用面广。缺点:不能分析混浊、固体和半固体及终点无色变的化学反应溶液,应用尚不普及。前景:逐步替代感官滴定方法,成为滴定分析的主导技术,市场广阔。滴定分析法作为化学分析经典方法,是各领域的通用分析方法,目前有几千种颜色分析方法应用在药品、食品、农产品、土壤、化工、石油、冶金、机械、试剂、环保、生物、医疗、… 等各种行业,只要有化学物质分析的工作,就离不开滴定分析技术。高精度的滴定终点判别和自动化判别技术,直接决定了光谱滴定技术的高准确度和可靠性。光谱滴定的用途:1、替代原有的光度滴定分析方法;2、替代广泛应用的感官滴定方法;3、建立系列新的光谱滴定检测方法和标准;4、偶氮、稀土、苯基荧光酮等显色剂的研究;5、分子开关或分子机器的光化学性能研究;6、光辐射化学研究;7、应用于化学分子形态;8、生物酶活性研究;光谱滴定方法为近几年新研发的技术,尚未推广,科普宣传、仪器制造、方法原理、应用案例等方面属于初创状态,仅有原理样机和《化学光谱滴定技术》著作面世。研究人员和投资者不会立即看到技术体系的应用和效益,但目前的工作是实现后期专利技术独占的前期工作,是实现大规模替代感官滴定的理论、方法、标准、仪器提供关键的前瞻性基础。其经济价值方面,与电位滴定仪的中国十亿市值市场、世界70亿市值(瑞士万通,2015)相比,该技术属滴定行业内国内外首创,目前没有任何型号的商品机问世,故无法对其市场前景做出明确评价。参考滴定分析仪器的市场,光谱滴定技术的应用领域远远大于电位分析技术。一旦仪器商品化,研发机构将在该投入上取得知识产权保护和大于电位滴定仪的长期的效益。目前亟待解决与存在的问题建议:采取联合申请课题,取得科技部、基金、协会、企业的政策和资金支持,共同进行理论体系、测量原理、商品机型仪器生产、应用技术研究与方法推广、国际专利申报等方面的研究,尽快保持我国现有的国际领先地位。本资料简单介绍光谱滴定原理、算法、技术应用和案例分析,供制造商、技术研究者、合作者参考。滴定分析法发展历程滴定分析法(titrametric analysis)的研究历史可追溯到18世纪晚期。19世纪上半叶,法国化学家Joseph Louis Gay-Lussac命名了滴定分析方法,因此被认为是滴定分析法的发明者。如今,滴定法成为最重要的化学分析技术之一,应用普遍而频繁。其方法采用人工操作、眼睛观看颜色、大脑对颜色变化做出判断、语言形容滴定过程的额颜色变化,属于主观判断的感官分析方法,简单、应用广、速度快、成本低,也存在受色评价环境影响大、语言描述模糊、眼睛感受的个体差异大、手工控制滴定准确度差等缺点,这种建立在主观观察基础上的方法已经不适应现代检测技术的需求。只是由于历史过于悠久,其建立海量检测方法、技术标准以及应用领域的习惯,致使其还在广泛应用。化学反应过程的颜色变化,是化学结构变化的可见光表现,颜色变化代表反应过程的进程,是结构对光谱吸收的性质,所以测量的颜色变化可以准确表征反应中物质结构的变化,这也是与感官滴定方法一脉相承。现代研究证明,颜色的最精确的测量方式是分光式测量方法,颜色可以用CIE 1976(L*a*b*)彩色均匀空间的三维坐标位置标识,每个颜色都有其唯一指标位置,颜色的变化可以在CIE 1976(L*a*b*)彩色均匀空间的三维坐标中描述出变化轨迹,从而将主观的颜色变化描述转变为客观测量数据,进而实现化学分析过程的光谱滴定测量技术。光谱滴定方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性、可量值溯源的优点。计入相关变量因子算法的滴定曲线的凸变峰型非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,计算方法复杂、数据量庞大,严重依赖于数据处理系统,这在计算技术高速发展的今天已经不是问题了。而其替代逐步替代感官滴定方法的发展趋势,将成为滴定分析的主导技术,技术应用和仪器市场及其广阔。一、滴定原理与分类目前的滴定分析(titrametric analysis),按测量原理主要分为可见光颜色滴定、电位滴定、温度滴定等三种滴定方法,光谱滴定属于可见光颜色滴定的仪器分析方法,可以替代可见光颜色滴定的大部分方法。1、可见光颜色滴定法颜色测量包括光源颜色的测量与物体色的测量两大类,滴定分析领域关注反应液的颜色变化,属于非荧光物体测量。化学滴定分析反应中的可见光颜色测量属于非荧光物体测色,为感官颜色滴定法和传统仪器颜色滴定法两大类。其中,仪器颜色滴定法包括光密度法、紫外光度滴定、可见光光-电积分法和分光光度滴定(光电滴定)。仪器颜色滴定法测量反应液体颜色是测定液体在测量时的光谱光度特性反应液体光谱反射比P(λ)或者反应液体的光谱透射比τ(λ)等,计算出色刺激函数φ(λ)之后,根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z(标准照明体Y= 100)。 1.1 感官颜色滴定法其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。是依靠反应过程中的颜色的变化,用人眼作为感受器、大脑判断颜色变化程度,在被测量溶液中加入指示剂或者依靠反应过程中的颜色感官颜色滴定法直观、简便、快速等优点,是滴定实验中最常用的方法之一,是一种完全主观评价方法,同时也是最简单的一种方法。眼睛是一种光学系统,能够在视网膜上产生图像。它由包括角膜、水状体、虹膜状体以及玻璃体等实体组成,使眼睛能够针对以105系数变化的照明水平简单而快速地做出反应。眼睛能够感知的最小照度为10-12Lx(相当于夜空中黯淡的星光)。为了能够感知到光,人眼中包含了锥状细胞和杆状细胞两种感光器:锥状细胞感受到各种颜色(“明视觉”),对波长555 nm的黄绿光谱区域,其灵敏度最高;杆状细胞使我们看到的是黑白的画面(“夜间视觉”),在波长507 nm的绿光谱区域,其灵敏度最高。人眼对光谱灵敏度曲线见图1。图1.人眼对光谱灵敏度曲线其弊端在于观察变色阈值是借助人眼,经验和心理、生理因素的个体差异引起较大的判断误差,无法溯源,受环境条件影响大,可变因素太多,且无法进行定量描述,从而影响到评估的准确性和可靠性。虽然感官颜色滴定法是应用面最广的分析方法,但其主观测量结果的缺陷致使其处于被逐步淘汰的趋势。1.2、可见光-光密度检测分析法 光密度测量是测量反射光量和入射光量的大小,光密度计提供的光之间的差别是光的吸收量,也即被测液体表面层的吸收光量大小,吸收特性的度量,只表示黑或灰的程度。该方法只要应用在印刷行业,“彩色密度”是指测量时,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于印刷行业的颜色和墨层厚度控制当中。 1.3、可见光光-电积分法 光电积分法是20世纪60年代仪器测色中采用的常见方法。是测量整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z,再由此计算出样品的色品坐标等参数。通常用滤光片把探测器的相对光谱灵敏度S(λ)修正成CIE的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片必须需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:此类型仪器的测色准确度是与仪器符合卢瑟条件的程度有直接关系的,要做到完全符合上述条件是很困难的。在实际的滤色修正中,由于色玻璃的品种有限,仪器不可能完全符合卢瑟条件,只能近似符合应用部分滤光片法可使x(λ)和z(λ)曲线的匹配积分误差小于2%,y(λ)曲线的匹配积分误差小于0.5%。光电积分式仪器不能精确测量出被透射液体的三刺激值和色品坐标,但能准确测出被透射液体的色差,因而又被称为色差仪。所以,色差仪原理也可以进行颜色滴定分析,受其依据的原理限制,误差大、应用范围有限。 1.4、可见光-分光光度法 分光光度滴定(spectrophotometric titration),又称光电滴定(photoelectric titration)。通过测量滴定过程中吸光度又称分光光度滴定法。它是通过样品液体的透射光能量与同样条件下标准样品透射的光能量进行比较,得到样品液体在每个波长下的光谱吸收率,然后利用CIE提供的标准观察者和标准光源公式计算,从而得到三刺激值X、Y、Z,再由X、Y、Z按CIEYxy,CIELab等公式计算色品坐标x.y,CIELAB色度参数等。该方法以待测组分、滴定剂、反应产物在滴定过程中吸光度的变化确定滴定终点的分析方法。它能在底色较深的溶液和无色溶液中滴定,检测微弱吸光度变化、可准确确定滴定终点。该方法通过测量探测样品的光谱成分确定其颜色参数,不仅可以给出X、Y、Z的绝对值和色差值△E,还可以给出物体的分光透射率值和分光透射率曲线。采用此类仪器可实现高准确度的色测量,可对光电积分测色进行定标,建立色度标准等,故分光式仪器是颜色测量中的权威仪器。1.4.1光度滴定法光度滴定(photometric titration) 是在滴定过程中,用光度计记录特定波长的吸光度的变化(非颜色变化)。要求滴定过程中,溶液吸光度Abs的变化遵循朗伯-比尔定律。滴定时,每加入一定量的滴定剂,都同步在相同波长下记录其吸光度。然后以吸光度A为纵坐标,标准溶液的体积V为横坐标,绘出光度滴定曲线,从两条切线的交点可求得滴定终点。光度滴定方法要求被滴定溶液的吸光度的变化必须遵循朗伯-比尔定律。光度滴定法对于某些纯净液体和波长吸收特征性强的反应,非常方便,适用于滴定有色溶液、略微混浊的溶液、微量物质,有较高的灵敏度和准确度。由于采用单波长检测,不能适合反应前后由于结构改变导致的特征吸收波长偏移,而且当化学反应出现多次多个吸收波长时,无法获得多滴定终点的光度信号,可靠性和适用性差。1.4.2紫外光度滴定(ultraviolet photometric titration)利用溶液紫外光吸收的变化观察终点的一种光度滴定。例如,被测物是无色的,伴随滴定的进行,其紫外光吸收在改变。1.4.3浊度滴定(turbidimetric titration )又称比浊滴定法。利用沉淀的生成或消失,溶液浊度发生变化进行的滴定。用通常的光度滴定装置可进行滴定,由于沉淀粒子吸收光、沉淀的反应滴定。1.4.4可见光光谱滴定技术新一代可见光光谱滴定法技术(Visible Spectral Titration Technology, VSTT)是在可见光-分光光度法的基础上发展的。它是测量反应液体的多个设定波长的光谱透射比τ(λ),计算出光谱滴定曲线。在曲线上的凸变峰对应的体积值均为颜色突变点。该颜色突变点视为物质结构改变点,对应的加入试剂体积数为滴定终点的体积数。该方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性的优点。而采用现代数据处理技术剔除高速测量产生的噪音干扰,分离出的信号计入相关变量因子的算法,使滴定曲线的凸变峰型号非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,不能分析混浊、固体和半固体、终点无色变的化学反应溶液及其过程,而且计算方法复杂、数据量庞大,严重依赖于数据处理系统,这个缺点仅相对于其他方法相比,对于现代计算技术的发展根本不是问题。光谱滴定方法是2015年搭建成原理验证机、2018年提出光谱滴定的概念。依据该方法原理研发的设备和方法应用业内尚未普及,出版的文献著作仅有《化学光谱滴定技术》(王飞,著)。依据其原理和应用,光谱滴定方法可以替代感官颜色滴定法、可见光光-电积分法、单波长可见光分光光度法,与电位滴定方法、温度滴定方法一起成为滴定分析领域的3种仪器分析方法,相互补充。2、电化学分析法电化学分析法(electrochemical analysis)是以,测量原电池的电动势为基础,根据电动势与溶液中某种离子的活度(或浓度)之间的定量关系(Nernst 方程式)来测定待测物质活度或浓度的一种电化学分析法。是滴定领域中出现最早、应用最广的仪器测量技术。它是以待测试液作为化学电池的电解质溶液,比较其中一只电极电位随试液中待测离子的活度或浓度的变化而变化,与另外另一支是在一定温度下电极电位基本稳定不变之间的电动势来确定待测物质的念量。 1893 年德国学者 Rorbert Behrend 首次使用在滴定实验中应用电位分析方法做为判定终点方法。20 世纪中期自动电位滴定法在化学分析中开始流行,万通公司于 1949 年推出第一台用于酸度滴定的自动电位滴定仪 Titriskop。1957 年首创第一支活塞滴定管取代玻璃滴定管,1961 年诞生能够自动记录滴定曲线的自动电位滴定仪 Potentiograph。1971 年出现联用计算机的高性能电位滴定装置,1978 年,微处理技术与动态滴定技术结合,缩短分析时间的同时增强滴定精度。本世纪自动电位滴定仪的生产商较为著名的还有美国布鲁克海文公司、瑞士梅特勒-托利公司、英国马尔文公司、上海仪电科学仪器、上海雷磁科技公司、江苏新高科等。电位滴定法能有效减少人眼判断产生的主观误差,不需样品指示剂,无关溶液颜色和混浊度。是当前世界上最常用的自动化滴定方法。但其缺点在于电极使用不便、无法高温测定和滴定终点与颜色标准不一致。同时无法测定无离子参与、低浓度溶液、滴定产物稳定性小的单组分、滴定产物稳定性接近的多组分溶液浓度,严重影响的其使用范围。电分析法包括:电解法(electrolytic analysis method):电重量法(electtogravimetry):库伦法法(coulometric)库仑滴定分析法(coulometric tiyration):测定电解过程中所消耗的电量,按法拉第定律求出待测物质含量的分析方法称作库仑分析法。库仑分析法还可分为控制电位库仑分析法和恒电流库仑滴定法。电导法(conductometry) :电导分析法(conductometric analysis) :电导滴定法(conductometric titration):电位法(potentiometry) :直接电位法(dirext potentiometry):通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程由所测得的电极电位值计算出被测物质的含量。电位滴定法(potentiometric titration):在滴定过程中通过测量电位变化以确定滴定终点的方法。和直接电位法相比,电位滴定法不需要准确的测量电极电位值,因此,温度、液体接界电位的影响并不重要,其准确度优于直接电位法。与感官颜色滴定法相比,对于待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。电位滴定法是靠电极电位的突跃来指示滴定终点。在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n个数量级,在等当点附近发生电位的突跃。被测成分的含量仍然通过消耗滴定剂的量来计算。因此测量工作电池电动势的变化,可确定滴定终点。电位滴定法无主观误差,是当前世界上最常用的自动化滴定方法。缺点在于必须针对不同化学反应类型选用特定电极、电极表面胶体与溶液交换接触交换电荷的接触式测量致使对含量低的样品测定产生较大影响、受温度影响大且不能高温测量、信号延迟、滴定终点与颜色滴定终点难以一致。伏安分析法(voltammetry):利用电解法过程中测得的电流-电压关系曲线(伏安曲线)进行分析的方法称作伏安分析法。极谱分析法(polarography):是用滴汞电极的伏安分析法称作极谱分析法。溶出法(stripping method):电流滴定法(amperometric titration):3、温度滴定法温度滴定法是非接触式传感探测技术。是一种量热分析技术,即用一种反应物滴定另一种反应物,随着加入滴定剂的数量的变化,测量反应体系温度的变化。滴定一般在尽可能接近绝热的条件下进行,被滴定物可以是液体或悬浮的固体;滴定剂可以是液体或气体。温度变化是由滴定剂与被滴定物间的化学作用或物理作用(例如一种有机分子吸附于固体表面)引起的。1922年P.迪图瓦和E.格罗贝特建立热滴定法,用于容量分析。1924年P.M.迪安和O.O.瓦茨最早使用测温滴定这一术语;以后又有人采用热滴定、焓滴定、测温焓滴定、量热滴定和测温滴定等术语,至今仍未统一。70年代以来,由于与滴定量热计相关的一些技术(如恒温浴、恒速滴定装置、反应容器、温度传感电路以及数据分析手段等)获得迅速发展,连续滴定法结果的精度已可与常用溶液量热计比美,而且能够滴定少于毫克级的试样。因此热滴定不仅可用于分析目的,而且已成为一种精密量热技术。滴定量热法特别适用于下述目的:在有连串反应或并行反应存在的情况下,测定焓变ΔH;用于包含微弱相互作用物种的反应,求吉布斯函数改变ΔG;鉴别络合反应中存在的物种等。还用于测定混合热、物质在两相中的分配系数和吸附容量等,并可用于生物化学、微生物学和环境化学等方面。实验数据以热谱图形式表示,它提供了有关反应中物质的量(滴定终点)和反应物质的特性(焓变)的数据。对图进行分析,可以得知反应容器中发生的反应的类型和数目,以及溶液中存在的各物种的浓度等信息。这部分内容称为热滴定,同时还可以确定反应的化学计量关系,计算反应的热力学量,如平衡常数K(ΔG°)、标准状态下的焓变ΔH°和熵变ΔS°,这部分内容称为滴定量热法。测温滴定法以热效应为基础,与溶液的许多性质(如粘度、光学透明度、介电常数、溶剂强度、以及离子强度等)无关,因此可以用于气相、液相、非水溶液、有色溶液、胶体溶液和粘稠浆状等体系。温度滴定法的特殊优点是不干扰滴定反应,如离子强度或溶剂等,则在很大程度上与它们无关。同时可以操作有色溶液,胶体溶液或浆液。同电化学方法中的电极比较,作为测量器件的温度传感器是惰性的,并且它不伪示试样成分参与反应的结果。但无法应用于同时放热和吸热复杂化学反应过程,应用受限。温度滴定方法利用滴定反应的热效应测定滴定度容量,弥补了电位滴定的缺陷。最早的温度滴定方法应用报道在 1913 年,作者是 Bell 和 Cowell。1969 年,L.S.Bark 等在著作中介绍了温度滴定方法。1973 年E.VanDalen 应用拜耳法进行氢氧根和氧化铝的滴定。自 20 世纪 70年代以来,自动电位滴定方法占据了主导地位,而温度滴定在工业过程和质量控制等领域温度滴定技术一直未得到充分利用。90 年代,温度滴定较大的发展,在工业过程和质量控制等领域温度滴定技术得到充分利用。温度滴定技术的优势是非接触式传感探测,不接触被测量液体、不需要更换电极,测量与离子强度或溶剂无关,能用于胶体溶液或浆液的浓度滴定。但温度滴定仪无法应用于放热和吸热两种复杂反应过程均存在的化学反应,大大限制其应用领域。经典颜色滴定、温度滴定、电位滴定分析技术,已远远不能满足前沿科学研究对化学分析准确度、便捷性和可靠性要求。因此,发展采用可见光连续光谱测量的技术技术手段,弥补已有电位分析、温度分析的不足,通过对呈色化学反应进行连续光谱分析,实现被测定物质化学反应过程中形态变化的用光信号进行滴定的方法由可能成为化学研究、各行业检验检测需求提供解决问题的新技术手段。二、滴定技术的发展化学研究者和仪器制造厂商也积极进行研究,试图客观的进行化学分析测定。上世纪 30 年代,Muller 等率先在滴定分析中使用光度计设备,最早的实用化光度滴定设备是瑞士万通公司于 60 年代研制的数字滴定管和数字化滴定仪,70 年代已有将滴定仪和计算机控制相结合的研究出现。随着机械加工和光学探测器的发展,光度滴定装置引入了 LED 光源、光电二极管、光电倍增管、光谱仪等光电探测设备。ManoelJ.A.Lima 等使用自制的 LED 光度计搭建多流分析全自动光学滴定设备,用于测定果汁、醋、葡萄酒酸度。中国储备粮管理总公司成都粮食储藏科学研究所研发了测定粮食油脂酸价的仪器。2008 年,姜能座使用便携式光纤光谱仪用最大吸光度为滴定终点,得到了多个波长的光度滴定,实现了最大波长的寻找,但无法应对多波长变色(出现 2 个以上的波长)。由于采用单波长吸收峰分析滴定过程的技术缺陷无法满足化学反应的全光谱变化“蓝移”和“红移”需求,极大限制了光度滴定仪器的应用。此外,近年来,将图像技术应用于滴定技术的研究也进行了研究。使用 CCD 或 CMOS 设备获取溶液的图像信息,通过图像特定区域的彩色信息 RGB 值和滴定剂消耗体积的映射关系判断滴定终点。Alexander Y.Nazarenko 使用 USB 摄像头滴定测量废水的硬度。王晓丽开发摄像头滴定仪。朱自兰基于视觉特性的图像处理技术将24bit 彩色转换成 8bit 的伪彩色进行量化。图像滴定方法具有工作稳定、实验易于跟踪,但是对混浊溶液的滴定终点判断较差,无法数字化溯源、不同图像处理技术差异显著,严重影响系统一致性和测量精确度要求。滴定技术发展简史见图2,滴定分析仪器的发展见图3。.图2.滴定技术发展简史图3.滴定分析仪器的发展光谱滴定仪在滴定领域的优点:没有与溶液接触的电极而不干扰测定,颜色变化只与被测物结构变化有关,颜色变化曲线与物质结构变化致光谱变化相对应,CIELAB滴定曲线清晰、终点突变显著技术,路线新颖,测量结果稳定,测量精度高,量值可溯源,沿用颜色突变原理而与传统方法/标准吻和,可以广泛应用在化学分析的诸多领域,将取代手工滴定为自动滴定。在可见光光谱滴定的基础上,可以开发出紫外光谱滴定技术、红外光谱滴定技术、可见光光谱物质形态结构分析技术等等。其缺点是由于目前技术刚成型,尚缺乏深度的研究,局限于测量可见光谱范围内有颜色变化的化学反应。该技术在以下方面尚待深入研究:广泛应用的技术应用、光谱曲线与化学结构关系、光谱滴定的国际/国家/行业/团体/企业的标准/方法/文献、新数学模型、专用仪器开发。化学光谱滴定技术通过化学反应形态光谱分析关键技术的研发与应用,为研究化学反应物质结构形态变化、揭示形态与光谱信号产生的机理提供一种新的可见光全光谱分析技术。未来的市场需求量极大,有极大的实用价值与新领域的开发前景。三、新技术——光谱滴定技术化学反应光谱滴定检测技术(Chemical Reaction Spectrometric Titration Detection Technology,STCRM)是在化学反应中,基于化学基团形态结构的变化对光谱中某波长的吸收,引起初始光谱变化,从光谱变化信号的过程分析滴定过程和物质结构变化。本文所指的光谱滴定技术是可见光光谱滴定技术(Visible Spectral Titration Technology, VSTT),从光谱变化特征推断化学反应进程。在380 nm~780 nm范围内,采用CIELAB色空间技术对光谱变化即时测量、处理,与化学反应进程同步。这是利用化学反应过程发生的光谱变化表征物质结构的一种新技术。光谱滴定技术是2018年中国人在世界上首次公开的原创新技术。光谱滴定技术是在可见光可见光-分光光度法的基础上:1、引入CIALAB彩色均匀空间算法,将溶液的颜色变化采用色空间的色度值进行标识;2、与体积等因子关联,研发了突变峰曲线算法,使滴定终点清晰明了; 3、特殊的光学通道,配合混合技术,将扰流降低的同时达到反应充分的目的;光谱滴定技术在滴定领域的优点:没有与溶液接触的电极而不干扰测定,颜色变化只与被测物结构变化有关,颜色变化曲线与物质结构变化致光谱变化相对应,CIELAB滴定曲线清晰、终点突变显著技术,路线新颖,测量结果稳定,测量精度高,量值可溯源,沿用颜色突变原理而与传统方法/标准吻和,可以广泛应用在化学分析的诸多领域,将取代手工滴定为自动滴定。从历史的发展看,光谱滴定技术可以完全替代感官滴定和光度滴定,从而与电位滴定技术和温度滴定技术共享未来滴定领域。从目前的研究进展看。目前,光谱滴定分析技术在世界上处于初始理论、原理机探讨研究阶段,未查到系统研究化学光谱检测技术的文献和实际应用的光谱滴定分析仪器,没有从可见光光谱的角度提出新的研发路线。2012 年起,中国工程师在这方面率先开展了探索研究,以酚酞为指示剂、氢氧化钠溶液滴定邻苯二甲酸氢钾配置氢氧化钠标准溶液为例,验证了光谱滴定技术的可行性。2015年搭建了原理验证机,确定了光谱滴定技术的技术路线。2016年申请了《化学分析用氢氧化钠标准溶液配制的CIE 1976 L*a*b*色空间法》(201610090734.2)等十余个相关专利。2019年出版了《化学光谱滴定技术》(中国标准出版社)著作。3.1 光谱滴定原理CIELAB(为国际照明委员会,International Commission on illumination,法语:Commission Internationale de l´Eclairage,简称为CIE)在1976年年会上批准的一个非照明的彩色均匀空间计算体系L*a*b*彩色均匀空间(其中L*是CIELAB色度值的明度,a*是CIELAB色度值的红-绿色品指数,b*是CIELAB色度值的黄-蓝色品指数)。L*a*b*彩色均匀空间的色度值参数在化学滴定分析中的映射模型,是CIE非照明标准方法在化学滴定领域的应用。3.1.1 可见光光谱中每一种色光不能再分解出其他色光,称它为单色光。由单色光混合而成的光叫复色光。在光照到物体上时,一部分光被物体反射,一部分光被物体吸收。透过的光决定透明物体的颜色,反射的光决定不透明物体的颜色。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。比如一个红色的光照在一个绿色的物体上,那个物体显示的是黑色。因为绿色的物体只能反射绿色的光,而不能反射红色的光,所以把红色光吸收了,就只能看到黑色了。2)光的吸收定律的适用范围布给-朗伯定律广泛成立,而朗伯-比尔定律则在许多情形下不成立。朗伯比尔定律必须满足下列全部条件:入射光为平行单色光且垂直照射、吸光物质为均匀非散射体系、吸光质点之间无相互作用、辐射与物质之间的作用仅限于光吸收(无荧光和光化学现象发生)、吸光度在0.2~0.8之间、适用于浓度小于0.01 mol/L的稀溶液。实际上的化学反应条件,不可能全部满足以上条件,这种情况叫偏离光吸收定律。偏离光吸收定律是指吸光度对溶液浓度作图所得的直线的截距不为零或吸光度与浓度关系是非线性的现象造成偏离光吸收定律的原因有:1、单色光不单纯:入射光为一很窄波段的谱带,其光谱带宽度大于吸收光谱带时,则投射在试样上的光就有非吸收影响;2、溶液性质引起的偏离:浓度高时,吸光粒子间的平均距离减小,受粒子间电荷分布相互作用的影响,他们的摩尔吸收系数发生改变;3、溶质和溶剂的性质:由于溶质和溶剂的作用,生色团和助色团也发生相应的变化,使吸收光谱的波长向长波长方向移动或向短波长方向移动,即所谓的红移和蓝移;4、介质不均匀性:被测试液不均匀,是胶体溶液、乳浊液或悬浮液,则入射光通过溶液后,除了一部分被试液吸收,还会有反射、散射使光损失,导致透光率减小,使透射比减小,使实际测量吸光度增大,使标准曲线偏离直线向吸光度轴弯曲;5、溶质的变化:化学反应的解离、缔合、生成络合物或溶剂化等,致使吸光度与浓度的比例关系便发生变化;6、化学反应的呈色影响:溶液中有色质基团的聚合与缔合,形成新的化合物或互变异构等化学变化以及某些有色物质在光照下的化学分解、自自身的氧化还原、干扰离子和显色剂的作用等。所以,单波长的光度滴定方法使用范围是十分有限的。3)光谱滴定原理在化学光谱滴定中,溶液中试剂因子的变化引起被测物结构的改变,这种改变伴随着其吸收光谱某些波长的变化(颜色变化),该变化点为滴定终点。测量吸收光谱的改变,可以推算其结构的变化条件。具体技术路线是:用突变峰同步对应的体积量为反应物质加入量,采用连续同步测量技术,测量可见光光谱的吸光度、试剂加入体积、CIE 1976(L*a*b*)均匀彩色空间的参数值。该技术用于分析物质结构,用于滴定领域的光谱滴定技术,为化学分析引入了新的测量分析技术。研究者提出了以下6个光谱滴定的定理:⒈ 光谱-结构变化定理:化学反应中可见吸收光谱的改变,一定是参与反应中呈色物质中的至少一种物质结构或者浓度发生了变化。⒉ 光谱-结构不变化定理:化学反应中,物质的结构和浓度的变化不一定引起可见吸收光谱的改变。⒊ 突变峰-结构定理:化学光谱滴定的坐标曲线参数的突变峰只与结构有关,与呈色物质的浓度无关。⒋ 色空间曲线-结构定理:呈色物质结构或浓度的改变与CIELAB彩色均匀空间直角坐标系的参数曲线变化对应。⒌ 曲率测定定理:CIELAB彩色均匀空间直角坐标系的参数曲线的曲率发生变化,一定对应着被测量溶液中的2种以上物质发生了浓度或者结构上的变化。⒍ 光谱-化学光谱分析的颜色定理:CIELAB彩色均匀空间测量的参数是溶液中全部呈色物质混合的可见吸收光谱呈现的颜色参数。3.2 光谱滴定计算依据与公式3.2.1 CIE 1976(L*a*b*)均匀彩色空间的参数值计算CIE 1976(L*a*b*)色度值,由光谱滴定仪的数据处理软件读取的吸光度值后,按公式计算出样品在CIE 1964标准色度系统的三刺激值X、Y、Z,再按照公式计算CIE 1976(L*a*b*)色空间的心理明度L*、心理彩度坐标a*和心理彩度坐标b*。3.2.2 光谱滴定参数计算程序化学反应光谱CIELAB色空间的参数值与物质量关系计算方法,吸光度与CIELAB彩色空间参数值算法示意图见图4。计算步骤包括:对化学反应溶液在可见光波长范围内测量加入的不同反应物体积V值对应的一组波长的吸光度值,计算出CIELAB色空间的参数值,建立平面直角坐标系,该平面直角坐标系中的曲线即为化学反应参数与反应物体积V代表的物质特征量的坐标曲线;3.3光谱滴定仪的基本结构3.3.1 基本结构图 光谱滴定仪的光路结构示意图见图5、光谱滴定仪系统工作原理见图6、光谱滴定仪结构示意图见图7、光谱滴定仪设计示意图见图8、光谱采集中的背景噪声去除路线图见图9。图5.化学光谱滴定仪光路结构示意图图6.光谱滴定仪系统工作原理光谱滴定仪(可见光光谱化学滴定分析仪,Visible Spectrochemical Titration Analytical Instrument,简称VSTAI)由以下系统/装置组成:光路系统、试剂流量控制装置、搅拌装置、反应容器、控制系统。光谱仪性参数见表1。表1.光谱滴定仪性能参数表3.3.2 独有技术与所有权光谱滴定技术部分知识产权见表2。表2.专利申请与PCT统计表(部分)技术与仪器主要创新点1、首次研发化学光谱滴定技术,并将其首次应用于呈色化学滴定过程,实现了被测定物质量的光谱滴定自动化测定。2、首次研制光谱滴定仪,为精确化学反应溶液中分子、离子、官能团的反应过程提供了仪器测量基础。3、首次应用光谱滴定仪结合色空间光谱同步测量技术,发明了化学滴定终点的色空间光谱突变曲线计算方法,实现了可见光光谱滴定技术的自动化。实现了多参数精确测量化学反应过程中物质变化的过程,为化学分析的精确研究提供了一种新仪器、新技术、新方法。图10.光谱滴定仪(原理验证机Ⅱ型)3.4 不同滴定方法的优缺点图11.光谱滴定方法与其它方法的优缺点比较3.5 光谱滴定应用案例3.5.1理论、技术及预实验对研究方案的可行性保障光谱滴定分析仪的研制分为四个部分:一是温控防扰动搅拌测量分离式靴型反应器的设计加工。该反应器的合理设计是确保待测溶液光谱信号的稳定获取以及光程值高精度测量的关键保障,其加工、装校和缺陷影响的补偿,是仪器研发的技术核心,重中之重;第二是仪器光学元件和机械件的集成;第三是利用多维光谱彩色空间映射模型渐进式滴定终点可控方法,构建化学反应滴定模型;第四是将研制的光机电模块化组件配合化学滴定,要求协同高效工作。第一、二部分的工作涉及硬件较多,关系到是否能研制出达到设计要求的测量装置;第三部分是算法模型,决定拟研制的仪器能否真正实现反馈式自动滴定,达到准确实时的测量要求;第四部分涉及拟研制的仪器能否真正用于化学分析的高精度光谱滴定,具有实际应用及推广价值。只有将以上问题全部解决,才能研制出参数符合要求且具有广阔实际应用前景的仪器。1)、分离式反应器关键元器件加工及缺陷补偿的可行性。在前期研究中,设计加工了反应器样品模型,用独特的粘合方法将平行光学透镜粘合固定,制作了光程10 mm的反应器样品。将其应用于实际的化学反应《SN/T 4675.25-2016 出口葡萄酒颜色的测定 CIE 1976(L*a*b*)色空间法》测试中,结果表明其加工误差造成的测量值误差L*值<0.1、a*值<0.01和b*值<0.01,符合标准要求。在后继仪器研制中,有信心沿用已有的质量控制体系,对分离式靴型反应器的加工方式采用工业标准化的浇筑模具成型和激光焊接/化学粘结,成品会优于标准化要求。同时,将研发光程测量仪器及相关操作程序,可以更好的完成靴型反应器的质量控制。2)、光谱滴定分析仪光机电模块集成的可行性。前期的实验研究中已尝试将试剂控制装置、分离式反应器、光路与光源及测量元件、主控电路板及搅拌控制装置固定在仪器底座上,方法验证采用氢氧化钠滴定邻苯二甲酸氢钾、酚酞为指示剂测量氢氧化钠溶液的浓度(《GB/T 601-2016 化学试剂标准滴定溶液的制备》中“4.1 氢氧化钠标准滴定溶液”),四平行标定结果相对极差不大于相对重复性临界极差[CR0.95(4)r=0.15%],两人共八平行标定结果相对极差不大于相对重复性临界极差[CR0.95(8)r=0.18%],与标准方法进行比对(t检验)符合性。案例1:待标定的氢氧化钠溶液的滴定表3. 光谱滴定法滴定氢氧化钠标准滴定溶液的体积数序号滴定时消耗的体积数ml20℃标准温度消耗的体积数ml空白0.04320.043241————————235.601435.6334336.417336.4105435.327235.3590535.867335.8896636.267736.3003735.990236.0226835.792535.8247935.840735.87301036.098336.13081135.998636.03101236.417336.4105人工标定0.1 mol/L的氢氧化钠溶液时的温度为23℃,换算为20℃标准温度系数为-0.6 L。标定数据见表1。表1. 0.1 mol/L的标定数据序号滴定时消耗的体积数ml20℃标准温度消耗的体积数ml邻苯二甲酸氢钾的摩尔质量氢氧化钠溶液浓度mol/L00.050.05003————————135.4035.421240.75020.10386235.9035.921540.75810.10349335.8035.821480.75670.10358435.8035.821480.75640.10354535.4035.421240.75020.10386635.8035.821480.75440.10327735.5035.521300.75030.10358835.9035.921540.75750.10340平均值0.1036单人四平行标定结果:相对重复性临界极差[CR0.95(4)r0.140.201、光谱滴定方法与标准物质、人工滴定结果分析实际测量数据与结果见表3-1、浓度差值见图1。表3-1.理论计算与光谱滴定方法标定0.1 mol/L氢氧化钠溶液序号邻苯二甲酸氢钾(g)理论光谱滴定理论与光谱滴定测定值的浓度差值(mol/L)消耗的体积(mL)浓度(mol/L)消耗的体积(mL)浓度(mol/L)10.7527————0.1036————————————20.752235.657135.63340.10349-0.0000830.755036.275636.41050.10166-0.0019140.741935.982635.35900.10287-0.0007050.755435.2490 35.88960.10319-0.0003860.749536.585736.30030.10122-0.0023570.751635.922136.02260.10229-0.0012880.748735.963335.82470.10246-0.0011190.755835.536435.87300.10329-0.00028100.756736.087936.13080.10268-0.00089110.753536.183836.03100.10253-0.00104120.754036.386436.41050.10152-0.00205平均值0.10250.0011标准偏差(S)0.000748相对标准偏差(RSD%)0.7298图1.光谱滴定法标定氢氧化钠标准溶液(0.1 mol/L)在不同的技术验证过程中,有符合性很好的案例,也有偏离的案例。分析其原因,自主搭建的原理验证机的稳定性不是很好应该是主要原因,如果该用一致性好、稳定性优于手工搭建的的商品化机型,可以解决该问题。后续的研究工作中将继续沿用此集成方案,但由于标准化机型要求的引入,滴定精度增大,制造的技术难度将会相应提高。2、光谱映射模型结合滴定终点可控方法构建化学反应滴定模型的可行性。化学反应速度快、结构变化复杂,需要处理的数据量大、逻辑关系复杂,而仪器本身光电结构件多且运动轨迹复杂。因此系统控制软件需要实现毫秒测量周期。项目组前期开展的工作采用C++语言,将光谱彩色空间映射模型结合快速渐进式精细化滴定终点可控方法和运动功能部件建立了耦合模型,实现了即时、高速、高精度的亚秒级初步测量。后期的工作要求同步显示降噪后数据图谱,拟增加多个设定周期内降噪、计算、滴定结束的降噪和计算,可达到同步要求。3、将研制的光机电模块化组件配合化学滴定要求协同高效工作的可行性。不同溶液化学反应光谱彩色空间映射模型的轨迹不尽相同。前期已完成的初步映射模型通过实验数据验证了其对简单颜色变化的适应性。通过分析化学反应颜色变化类型,发现一些反应其颜色峰值变化7次以上才能达到滴定终点。从测量原理上分析,非滴定终点的峰值控制可通过调节光机电模块化组件参数实现,需要在不同化学反应测试中寻找变化参数,有了前期工作基础,仪器协同工作最优参数的确定在技术上可以实现。3.5.2科研能力对研究方案的技术保障1)CIE LAB彩色均匀空间技术研究2012年起,项目团队在化学反应中颜色变化与滴定终点的研究中尝试引入了CIE LAB彩色均匀空间技术研究。a. 初步完成了光谱滴定方法的原理测试。包括光信号发生及传输装置、信号转换处理装置、反应池,以及初步探索的CIELAB彩色均匀空间的色度值测量数据算法、测量数据人工智能识别算法、试剂加入量与关联衍生参数的色度滴定曲线算法、光谱突变峰辨识技术的滴定终点反馈控制技术等新的尝试。b. 进行了原理验证测量分析探索。在数据原位读取、足够短的测量间隔、可见光谱多波长同步测量、对被测量体系不产生影响、测量结果与反应条件可以关联、测量结果数字化、量值可溯源等诸多优点,进一步研究发现,测量数据可以精确的标识物质结构变化过程,纠正传统测量分析数据。用光谱滴定技术建立了酚酞在不同pH环境下的CIELAB色空间曲线。4 预期成果4.1 化学反应的颜色变化作为化学反应进程的标识。4.2 化学反应临界点4.3 新技术。在滴定领域替代颜色反应监测和光度反应,与电位、温度互为补充,成为先点仪器分析的。。。5应用领域5.1 在食品中的应用5.2 在农产品的应用5.3在石油化工的应用5.4 在医药的应用5.5 在矿产冶炼的应用5.6 在应用领域的应用6、生产与市场该技术尚未投入市场。产品定位为国内外的粮食、油脂、化工、医药、冶金、颜料、石化、食品等行业,潜在用户仅CNAS(中国合格评定国家认可委员会)注册实验室就有几万家,国外也有相同需求。由于此技术属于化学湿法分析领域的新技术领域,目前没有竞争对手。目前,光谱滴定技术的应用仪器是检测领域的空白,基于光谱滴定的理论、参数计算方法、应用方法、原理验证和商品化仪器均是我们率先开发填补空白的。根据“中国知网”的文献检索,目前仅有零散的光度技术研发,尚未发现光度系列研究成果和产品。我们开发的光谱自动滴定产品克服了感官滴定、电位滴定、光度滴定的缺点,每一步试剂的加入和引起的颜色变化都可以在显示屏上的坐标上精确的表示并画出颜色变化轨迹,颜色数字化标识,滴定精度提高至少10倍,摆脱了人眼作为传感器的弊端,环境光对测定光程无干扰,被测物含量自动计算。整个过程可追溯与复现,是一项颜色分析领域的更新换代技术,也是首次将颜色反应进行量值表示和数字化溯源的产品。由于该技术是我公司首创,是替代感官颜色滴定分析的唯一,目前还没有直接或潜在的竞争对手。但在应用市场上,与电位滴定技术及其产品在滴定分析应用领域有交叉。经过技术和产品的深入研发和应用推广,预计在5年左右,将与电位分析技术有激烈的冲突,重新划分滴定领域技术的占有率。根据标准应用范围,感官滴定标准占分析方法的约50%~60%,电位滴定方法占20%左右,是电位滴定方法的2倍~3倍。根据电位滴定的市场调研(2015),中国市场容量在10亿、世界在70亿。估算光谱滴定技术的市场容量,中国市场容量不低于20亿(估算电位滴定仪的市场容量在3000台/年~5000台/年)、世界140亿左右。瑞士万通、梅特勒等电位滴定仪的价格在25万/台~70万/台不等,光谱滴定仪的功能远超电位滴定仪、市场定价与此相当,估算光谱滴定仪的市场容量在6000台/年~10000台/年。2018年提出了“光谱滴定”概念并确定了概念的内涵,搭建了原理验证仪器,研究了光谱滴定的理论依据,撰写了化学史上第一部《化学光谱滴定技术》著作,对光谱滴定原理、微量试剂控制、反应容器结构、CIELAB彩色均匀空间的色度值映射算法光谱突变峰辨识技术的滴定终点反馈控制技术等方面开展了理论研究和初步试验验证。首次获得了实时动态光谱与试剂量、全谱吸光度、颜色变化之间的耦合关系,突破了化学反应光谱测量技术瓶颈,达到了预期效果,已初步具备将化学光谱滴定技术仪器化的条件。结束语面对化学分析滴定领域每年上几十亿的需求,1893年电位滴定技术解决了电位变化测定,1913年温度滴定技术解决了能量转换量化,1960年的光度滴定可以看成是光谱滴定技术的简化应用,2018年诞生的光谱滴定技术作为新技术的典型,将是下一个滴定技术的研究发展热点。任何一项新技术的发展,都经历过雏形——初始——发展——加速——普及这几个阶段,这个阶段有的技术需要上百年的时间。光谱滴定技术,打破了滴定领域历经30年~40年没有原创革新性技术出现的沉默阶段,用光物理量去分析物质结构变化过程、完成检测领域的滴定应用,将会出现:新的理论:光谱—化学形态理论新的应用技术:食品、化工、环境、医药、地质、粮食、农产品等分析方法新的检测分析仪器:光谱滴定分析仪、物质形态在线分析仪器新的标准方法:新国标、新行标、新团体标准、新国际标准新的专利与专有技术:国内专利、PCT、巴黎协议、国外专利新的产业热点:光谱滴定技术仪器生产、元器件研发、整机与专有商业技术光谱滴定技术的出现,国内外同行相互积极支持配合,研制在化学滴定分析中将光谱信号测量方法用于化学反应中物质含量、形态环境关联变量的实时动态测定仪器,即“光谱滴定仪”和相应的应用技术。将光谱时变信号与滴定过程中试剂注入量精准对应,实时动态记录呈色物质结构在不同环境变量中由量变到质变的进程。研究成果将为化学分析技术提供新的光谱分析测量手段,填补国内外滴定领域中光谱滴定分析的理论和仪器装置的空白。发挥各自的优势,尽快将该项技术应用到具体应用中去。作者:秦皇岛海关技术中心 王飞
  • 弗尔德仪器多地齐开花,活动精彩纷呈
    忙碌的十月,弗尔德仪器市场活动多地开花,精彩纷呈,于河北唐山、上海和北京三地同时进行推广活动。弗尔德仪器带着满满的诚意与各地的专家学者一同交流最新的样品前处理技术、元素分析仪技术应用、分享最新的热处理技术,以及石墨烯行业的前沿科技成果。第十七届中国国际粉体加工/散料输送展览会IPB上海粉体展是由中国颗粒学会和纽伦堡会展集团共同举办,与粉体行业上下游企业携手十六载,为中国粉体行业智能绿色安全方向发展共同努力。IPB不仅是粉体加工/散料输送领域首屈一指的一站式专业展会,更在整个粉体,颗粒,散料,流体,环保与回收领域提供最前沿的技术与创新。弗尔德仪器再次应邀参与盛会,介绍粉末颗粒粒度粒形分析的先进仪器——CAMSIZER M1,采用静态图像法对样品颗粒进行全面、准确表征的粒度粒形分析仪。弗尔德旗下品牌Carbolite Gero(卡博莱特 盖罗)还能提供粉末制备中需要用到的真空炉、高温气氛炉,实现粉末加工检测的一条龙服务。 10月25日唐山技术交流会唐山因唐太宗李世民东征高句丽驻跸而得名,素有“北方瓷都”之称。水泥、钢铁等重工业出名的唐山,自然是德国ELTRA(埃尔特)元素分析仪和德国RETSCH(莱驰)发展的重点地区。弗尔德仪器携旗下品牌Eltra(埃尔特)元素分析仪、德国Retsch(莱驰)粉碎筛分设备来到唐山世德花园酒店举办学术交流会,重点介绍碳硫、氧氮氢元素分析仪操作、维护和应用技术,面对面解答客户仪器使用问题,交流仪器使用经验,提供一份完美的硬性样品前处理与检测方案。特邀国家钢铁产品质量监督检验中心(唐山)的陈洁老师做关于检测标准和应用的主题报告,与参会专家一起对钢铁产品的检测标准和相关应用进行了深入浅出的讲解和应用分享。 10月25日上海技术交流会10月25日上海讲座内容除了涉及客户耳熟能详的热处理技术、研磨筛分技术以及粒度粒形分析技术之外,还额外加入了2019年度炙手可热的新产品——德国Retsch(莱驰)高能混合型球磨仪MM 500和Retsch Technology(莱驰科技)全自动静态图像分析仪CAMSIZER M1。高能振荡撞击式球磨仪MM500是一台小型高通量桌面型样品研磨仪,适用于干磨,湿磨和冷冻研磨。MM500强大的研磨混合能力能够快速处理粉末及悬浮液样品至纳米级别。讲座结束,部分感兴趣的客户直接来到弗尔德仪器上海总部实验室参观样机,带给客户更加高科技的产品设计与应用、更加优质的产品使用体验。 北京石墨烯论坛2019为加强石墨烯领域国际学术交流与合作,推动石墨烯前沿技术与产业深度对接融合,由北京石墨烯研究院(BGI)主办的“北京石墨烯论坛2019”与10月24日-26日在北京稻香湖景酒店举办。“北京石墨烯论坛”已成为聚焦石墨烯前沿科技与产业化高质量发展的国际高端论坛。弗尔德仪器与石墨烯领域顶尖专家学者、企业家、政策专家和投资人仪器,交流全球石墨烯最新的前沿技术成果,分享石墨烯产业进展,共享石墨烯产业高质量发展大计。德国ELTRA(埃尔特)的CHS-580是一台理想的同时测定有机样品的碳、氢和硫分析仪。可快速精确测定石墨烯样品碳、氢、硫分含量,最高工作温度到1550℃以确保硫分分析结果的可靠性。和传统的球磨仪相比,德国Retsch(莱驰)的高能球磨仪Emax工作几个小时也常常不需要间歇来降温,独有的水冷设计保证了研磨过程的高效和石墨烯样品的温度安全性。 福利来了! 2019年还有最后两个月,弗尔德仪器的Superhero英雄联盟抽奖活动,每月送出1个大奖和10个幸运奖,快来抽取黄金、刀具组合、美颜相机、食品料理机、空气净化器、高级电饭煲等惊喜大奖吧!凡是参加弗尔德仪器线下活动,填写客户反馈表,即可参与抽奖。期待您的参与,也许下一个中奖的就是你!
  • 【综述】碲锌镉衬底表面处理研究
    碲锌镉(CZT)单晶材料作为碲镉汞(MCT)红外焦平面探测器的首选衬底材料,其表面质量的优劣将直接影响碲镉汞薄膜材料的晶体质量以及成品率,故生产出外延级别的碲锌镉衬底表面是极其重要的。目前,碲锌镉单晶片的主要表面加工处理技术包含机械研磨、机械抛光、化学机械抛光、化学抛光以及表面清洗。其中,机械研磨、机械抛光以及化学机械抛光工艺都会存在磨料残留、磨料嵌入、表面划痕较多、粗糙度较高等一系列问题,要解决这些问题需要对相应的表面处理技术进行了解和掌握,包括表面处理技术的基本原理以及影响因素。近期,昆明物理研究所的科研团队在《红外技术》期刊上发表了以“碲锌镉衬底表面处理研究”为主题的文章。该文章第一作者为江先燕,通讯作者为丛树仁高级工程师,主要从事红外材料与器件方面的研究工作。本文主要从碲锌镉表面处理工艺及表面位错缺陷揭示两个方面对碲锌镉衬底的表面处理研究进行了详细介绍。表面处理工艺碲锌镉单晶作为生长外延碲镉汞薄膜材料的首选衬底材料,要求其表面不能存在机械损伤及缺陷密度大于10⁵ cm⁻²的微观缺陷,如线缺陷、体缺陷等。衬底表面的机械损伤可通过后期的表面处理工艺进行去除[18],而微观缺陷只能通过提高原材料的纯度以及合理调控晶体的生长过程方能得到有效改善。经垂直梯度凝固法或布里奇曼法生长出的低缺陷密度的碲锌镉体晶会先被切割成具有固定方向(如(111)方向)和厚度的碲锌镉晶片,然后再经过一系列的表面处理工艺才能用于碲镉汞薄膜的生长。通常情况下,碲锌镉晶片会经历机械研磨、机械抛光、机械化学抛光及化学抛光等表面处理工艺,通过这些工艺处理后的晶片才能达到外延级水平,因此本部分主要详细介绍上述4种表面处理工艺。机械研磨机械研磨工艺的研磨机理为:加工工件与研磨盘上的磨料或研磨剂接触时,工件表面因受到形状不规则磨料的挤压而产生破裂或裂纹,在加工工件与研磨盘的相互运动下,这些破裂的碎块会随着不规则磨料的滚动而被带离晶片表面,如此反复,从而达到减薄晶片厚度及获得低损伤表面的加工目的,机械研磨装置及磨削原理示意图如图1所示。图1 机械研磨装置及研磨机理示意图碲锌镉体晶切割成一定厚度的晶片后首先经历的表面处理工艺是机械研磨工艺。机械研磨的主要目的是去除机械切割对晶片表面造成的损伤层,从而获得一个较低损伤的晶片表面。表面处理工艺中,机械研磨还可细分为机械粗磨和机械细磨,两者的主要区别在于所使用的磨料粒径不一样,粗磨的磨料粒径大于细磨的磨料粒径。机械细磨的主要目的是去除机械粗磨产生的损伤层,同时减少抛光时间,提高工艺效率。研究报道,机械研磨产生的损伤层厚度通常是磨料粒径的3倍左右。影响机械研磨工艺对加工工件研磨效果的因素有磨料种类、磨料粒径及形状、研磨盘类型、磨料与溶剂的配比、磨料滴速、研磨盘转速、工件夹具转速以及施加在加工工件上的压力等。磨料种类一般根据加工工件的物理及化学性质(如强度、硬度、化学成分等)进行合理选择。常用于机械磨抛的磨抛料有MgO、Al₂O₃、SiC及金刚石等,其中,为了避免在碲锌镉衬底上引入其他金属杂质,MgO和Al₂O₃这两种研磨剂很少在碲锌镉表面处理工艺上进行使用,使用最多的是SiC和金刚石两类磨料。磨料的形状可分为规则(如球状、棒状、长方体等)和不规则(如多面体形状)两类,如图2所示。通常情况下,磨料形状越不规则,材料去除速率越快,同时造成的表面损伤也大,反之,磨料越规则,去除速率越慢,但造成的表面损伤也越小。图2 不规则磨料及规则磨料的扫描电镜图毛晓辰等人研究了这3种不同形状磨料对碲锌镉衬底机械研磨的影响。当磨粒形状为板片状时,材料的去除模型将不再遵从李岩等人提出的“不规则磨料研磨去除模型”,即三体磨粒去除模型,如图3(a)所示,而是会发生变化。基于此,毛晓辰等人提出了如下的去除模型,即:当磨粒为板片状时,磨粒以一定的倾斜角度平躺于磨盘表面,如图3(b)所示,当加工工件(晶片)与磨盘发生相互运动时,磨粒被短暂的固定在磨盘表面,形成二体磨粒,板片状磨粒便以其片状边缘对加工工件表面进行磨削,最终实现去除材料的目的。图3 不规则磨料及板片状磨料去除机理示意图常见的研磨盘类型可简单分为开槽和不开槽两类,如图4所示,开槽和不开槽研磨盘对晶片研磨效果的影响如表1所示。图4 磨盘示意图表1 开槽和不开槽研磨盘对晶片研磨效果的影响机械抛光机械抛光工艺的抛光机理为:加工工件与柔性抛光垫上的抛光粉或抛光颗粒接触后,工件表面将受到形状不规则的抛光颗粒的挤压而产生破裂或裂纹,在加工工件与抛光盘的相互运动下,这些破裂的碎块会随着不规则抛光颗粒的滚动而被带离晶片表面,反复如此,从而达到降低加工工件表面粗糙度和获得光亮、平整表面的目的。抛光粉是一种形状不规则且粒径很小的微纳米级颗粒,故而对加工工件造成的表面损伤较小且加工后的工件表面像镜面一样光亮。抛光垫的柔韧性削弱了抛光颗粒与加工工件表面的相互磨削作用,从而进一步降低了抛光颗粒对工件表面的损伤。机械抛光装置及抛光原理示意图如图5所示。图5 机械抛光装置及抛光原理示意图机械抛光的主要目的是去除机械研磨工艺对晶片表面造成的损伤层,同时降低晶片表面粗糙度和减少表面划痕,获得光亮、平整的表面。影响机械抛光工艺对加工工件表面抛光效果的因素有抛光粉种类或者抛光液种类、抛光粉粒径大小及形状、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。图6所示为碲锌镉晶片经不同厂家生产的同种抛光液机械抛光后的表面形貌图,如图所示,在相同的抛光条件下,不同厂家生产的抛光液的抛光效果差别较大。因此,机械抛光工艺中对抛光液的合理选择是极其重要的。图6 不同厂家生产的同种抛光液的机械抛光表面抛光粉的粒径大小和形状主要影响加工工件的表面质量和材料去除速率,通常,粒径越大以及形状越不规则,则材料的去除速率越快,表面质量也越差,如表面粗糙度大、划痕多等;反之,则去除速率慢,表面质量好。抛光垫具有贮存抛光液及去除抛光过程产生的残留杂质等作用,抛光垫的种类(或材质)也是影响工件抛光效果的主要因素之一。图7为目前一些常见抛光垫的表面纹理及根据仿生学理论研究设计的抛光垫表面纹理图,主要包括放射状纹理、栅格状纹理、同心圆状纹理、放射同心圆复合状纹理、螺旋状纹理及葵花籽状纹理。图7 抛光垫表面纹理图化学机械抛光化学机械抛光工艺的抛光机理为:加工工件表面与抛光垫上的抛光液接触后,将同时受到来自抛光液中的不规则抛光颗粒的挤压作用和强氧化剂的腐蚀作用,即工件表面同时受到机械作用和化学作用。化学机械抛光的主要目的包括去除工件表面损伤层、降低表面粗糙度、消除或减少表面划痕以及工件表面平坦化等。影响化学机械抛光工艺对加工工件表面抛光效果的因素有机械作用和化学作用的协同情况、抛光粉种类、抛光粉粒径大小及形状、氧化剂种类及浓度、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。抛光粉的粒径大小及形状、抛光垫的种类(或材质)、抛光垫的使用时长、抛光盘转速、工件夹具转速、施加在工件上的压力大小以及抛光时间等因素对工件抛光效果的影响原理与机械抛光工艺中所述影响原理类似。化学抛光化学抛光工艺的抛光机理为:当加工工件与抛光垫上的化抛液接触后,化抛液中的氧化剂将对工件表面进行腐蚀,在抛光垫与工件表面的相互运动作用下,工件表面上的损伤层以及浅划痕等都会被去除,得到光亮、平整且无任何划痕及损伤的外延级衬底表面。化学抛光工艺中使用的抛光液只包含氧化剂和溶剂,没有磨料颗粒或抛光颗粒。同时,对工件进行化学抛光时,没有对工件施加额外的压力,只有抛光夹具的自身重力。因此,化学抛光工艺中几乎不涉及到机械作用,只有纯化学腐蚀作用。化学抛光工艺的装置及抛光原理如图8所示。图8 化学抛光装置及抛光原理示意图化学抛光的主要目的是去除化学机械抛光或机械抛光工艺对晶片表面造成的损伤层,并同时为生长碲镉汞薄膜提供新鲜、洁净、无损的外延级表面。影响化学抛光工艺对加工工件表面抛光效果的因素有氧化剂种类及浓度、抛光垫种类、抛光盘转速、抛光夹具自重、化抛液滴速以及抛光时间等。表面位错揭示与硅等几乎无缺陷的单晶材料相比,碲锌镉单晶材料具有较高的位错密度(10⁴~10⁵/ cm⁻²)。目前,观察位错的主要手段是化学腐蚀法,虽然透射电子显微镜法(TEM)也能对材料的位错进行检测,但因其具有设备成本太高、制样非常困难、视场太小等原因而无法作为常规的位错检测手段。化学腐蚀法因具有成本低、制样简单、操作简单且所观察的视场较大等优势而成为了目前主要的表面位错检测手段。碲镉汞薄膜主要是通过在碲锌镉衬底的(111)面和(211)面上外延得到,因此,要求碲锌镉衬底表面不能存在损伤及大量的微观缺陷。衬底表面的损伤主要来自于表面处理工艺,而微观缺陷如沉淀物、位错、空位等则是在晶体生长过程中产生的。事实上,表面损伤对应的是晶格的周期性被破坏,即晶体表面形成大量的位错。所以,对于外延衬底而言,不管是损伤还是微观缺陷,只要超过一定的数量都会直接影响碲镉汞外延薄膜的质量,故而需要对碲锌镉衬底表面的缺陷(包括损伤和微观缺陷)进行检测,从而筛选出优质的外延级衬底。如上所述,化学腐蚀法是目前最常用的位错检测手段,因此这部分主要介绍用于揭示碲锌镉表面位错缺陷的腐蚀液。(111)A面位错揭示腐蚀液1979年,K. Nakagawa等人报道了一种可用来揭示碲化镉(111)A面位错缺陷的化学腐蚀液,其组分为20 mL H₂O:20 mL H₂O₂:30 mL HF。(111)和(211)B面位错揭示腐蚀液1995年,W. J. Everson等人报道了一种可用于揭示碲锌镉(111)和(211)B面位错缺陷的化学腐蚀液,其组分为6 mL HF: 24 mL HNO₃:150 mL C₃H₆O₃(乳酸),即体积比为1:4:25。由于这种化学腐蚀液是W.J.Everson首次提出并验证其有效性的,所以作者将这种腐蚀液命名为“Everson腐蚀液”。其他晶面位错揭示腐蚀液1962年,M. Inoue等人报道了一种可揭示碲化镉(CdTe)不同晶面上位错缺陷的EAg腐蚀液,EAg腐蚀液的组成为10 mL HNO₃ : 20 mL H₂O : 4 g K₂Cr₂O₇ 😡 g AgNO₃总结与展望本文主要从碲锌镉表面处理工艺及表面位错揭示两个方面对碲锌镉衬底的表面处理工艺研究进行了详细介绍。表面处理工艺主要包括机械研磨、机械抛光、化学机械抛光以及化学抛光,研磨或抛光工艺中的参数选择直接影响最终的衬底表面质量。碲锌镉衬底的表面位错缺陷主要通过Everson或Nakagawa两种化学腐蚀液进行揭示,Everson腐蚀液主要揭示碲锌镉(111)B面的位错缺陷,Nakagawa腐蚀液主要揭示(111)A面的位错缺陷。另外,随着碲镉汞红外焦平面探测器技术的发展,碲锌镉衬底的尺寸逐渐增大,这意味着获得外延级碲锌镉衬底表面将会更加困难,这对晶片表面平整度、晶片面型控制及表面清洗等都提出了更高的技术要求。因此,如何在现有的基础上探索出适用于大尺寸碲锌镉衬底的表面处理技术是至关重要的,这也是接下来亟待解决的技术问题和努力的方向。
  • 全球第二大生物安全柜供应商Esco首次递交招股书 拟香港上市
    益世科生物有限公司于2022年11月18日首次向港交所递交招股书,拟在香港主板上市。2019-2021年以及2022年上半年,益世科生物的营收分别为1.17亿、1.55亿、1.71亿和0.87亿新加坡元。S&TLiveReport获悉,成立源于1978年的益世科生物有限公司Esco Life sciences Group Ltd(以下简称“益世科生物”)于2022年11月18日首次在港交所递交上市申请,拟香港主板上市。这是该公司首次递交上市申请,联席保荐人为摩根大通 、杰富瑞 和美银。益世科生物是一家全球领先的生命科学、制药及生物加工工具供应商,总部设于新加坡,旨在开发、发现及商业化技术驱动生命科学、制药及生物加工工具。公司为亚洲、北美洲及欧洲的全球客户群提供全面的产品线及服务,致力于透过帮助公司的客户解决复杂的分析难题及提高实验室生产力从而推动科学发现。按2021年的总收益计,益世科生物是全球第二大生物安全柜供货商及第三大延时培养箱供货商。公司在位于太仓(中国)、民丹(印度尼西亚)、考纳斯(立陶宛)、宾夕法尼亚(美国)及班士利(英国)的制造工厂生产及装配产品。公司设计、开发、制造及分销广泛的实验室设备及医疗器械。通过利用公司的全球分支及全球分销商网络,公司向客户提供四类产品及服务,包括:(i)由EscoScientific提供的生命科学实验室设备;(ii)由EscoMedical提供的用于体外受精治疗的设备、耗材及相关服务;(iii)由EscoHealthcare提供的制药设备及生物加工工具;及(iv)由EscoServices向上述产品的客户提供的售后及支援服务。来源:招股书来源:招股书投资亮点•全球化的运营及深入的本地业务布局,令公司能够有效挖掘所有主要市场产生的增长机会及成功执行策略收购,从而进一步扩展公司的业务;•借助有机增长公司的业务以及整合已收购产品及业务的成熟能力,有能力利用快速增长及不断整合的生命科学、制药及生物加工工具行业机会;•提供全面及优质的产品以及本地化的售后服务,提高客户忠诚度及提升品牌知名度;•业务单位之间的强大协同效应可促进客户参与,有助于实现强劲增长、稳健利润率及现金流;•不断增长的研发能力及新产品开发的良好往绩记录;•经验丰富及敬业的管理团队,加之享有盛誉及乐于支援的股东,提供一个经验互补的组合及保障可持续增长。财务分析截至2021年12月31日止3个年度及2021-2022年前6月:收入分别约为新加坡元1.17亿元、1.55亿元、1.71亿元、0.84亿元及0.87亿元,年复合增长率为21.15%;毛利分别约为新加坡元0.64亿元、0.92亿元、0.97亿元、0.46亿元及0.46亿元,年复合增长率为22.72%;净利润分别约为新加坡元0.16亿元、0.23亿元、0.42亿元、0.06亿元及0.22亿元,年复合增长率为61.49%;毛利率分别约为54.85%、59.46%、56.28%、55.34%及53.19%;净利率分别约为13.70%、15.06%、24.34%、7.46%及25.63%。来源:活报告行业前景按销售收益计量,全球生命科学、制药及生物加工工具市场规模由2016年的1,000亿美元增加至2021年的1,626亿美元,复合年增长率为10.2%,预计将进一步增加至2026年的2,388亿美元及2030年的3,214亿美元,相应期间的复合年增长率分别为8.0%及7.7%。尤其是,以销售收益计,中国生命科学、制药及生物加工工具市场的规模由2016年的145亿美元增长至2021年的312亿美元,复合年增长率为16.6%,预计将进一步增长至2026年的556亿美元及2030年的796亿美元,复合年增长率分别为12.2%及9.4%。来源:招股书行业地位下表载列在全球生物安全柜市场的竞争格局:来源:招股书下表载列在中国生物安全柜市场的竞争格局:来源:招股书同行业公司IPO对比本次对比的同行业公司为安捷伦科技 (A.US)和海尔生物 (688139.SH)。安捷伦科技 (A.US)是生命科学、诊断学和应用化学市场的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球100多个国家和地区的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。海尔生物 (688139.SH)以创用户最佳体验为目标,主要业务涵盖生命科学和医疗创新两大领域,面向医院、医药生物 企业、高校科研机构、疾控、血站等广泛的用户群体,提供以智慧实验室、数字医院、智慧公共卫生、智慧用血场景为主的涵盖多类产品和服务的数字场景综合解决方案。主要股东林向前先生、及其父母林太太、林先生分别拥有40%、38%、22%权益的EscoCom,持有公司69.88%的股份;EscoCom,通过受限制股份单位计划ELGI持股1.43%;公司通过受限制股份单位计划ELGII持股5%;上述股东为公司的控股股东。来源:招股书管理层情况林向前先生,38岁,林先生及林太太之子及林向亮先生的胞兄,于1997年1月1日加入公司。林向前先生分别自2021年3月1日、2021年2月25日及2021年3月1日起担任公司的董事会总裁、董事兼首席执行官。林向前先生于2022年10月25日调任为公司执行董事。彼主要负责公司的整体执行及业务方向以及整体管理。林丽佑先生,71岁,林太太的配偶及林向前先生与林向亮先生的父亲,为公司业务的共同创办人,并于2021年2月25日获委任为公司董事。林先生于2022年10月25日调任为公司执行董事。彼于1978年6月首次创办公司的全资附属公司ETA,目前担任董事一职。彼主要负责监督公司的企业社会责任、人力资源、法律、秘书及知识产权。罗于红女士(「林太太」),69岁,林先生的配偶及林向前先生与林向亮先生的母亲,为公司业务的共同创办人,并于2021年2月1日获委任为公司董事。林太太自1982年8月起亦一直担任公司首席营运官。林太太于2022年10月25日调任为公司执行董事。彼自2021年2月1日起一直担任公司的首席营运官。彼主要负责公司的整体营运及管理。上市前融资
  • GEODERMA丨肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 今天与大家分享的是肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展,在该项研究中,研究团队利用PRI-8800对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,为研究结果提供了有力的数据支撑。 来自植物根际和凋落物层淋溶的易分解外源碳(LOC)输入土壤是生态系统常见的自然现象,其在微生物介导的土壤碳循环中发挥着关键作用,尤其是在植物根系密集的草原生态系统。然而,外源碳的输入并不总是意味着土壤碳的净增加,因其能为异养微生物群落提供可用的碳和能量,进一步对土壤有机质的分解产生影响,即激发效应(Priming Effect,PE)。长期以来,尽管许多研究已经探讨了由外源碳添加诱导的激发效应,但很少有研究关注其短期效应。其次,输入土壤的外源碳是高度动态变化的,会迅速融入微生物、土壤有机质,或分解为CO2,但由于土壤微生物对外源碳输入的反应很快,来自外源碳的呼吸作用对微生物呼吸作用的相对贡献及其影响因素仍不确定。此外,围栏禁牧被认为是实现草地生态系统自我恢复的重要途径,其对土壤碳氮特性具有重要的积极影响,而围栏禁牧所导致的土壤碳氮特征变化可能进一步影响微生物对外源碳和土壤有机质的分解,但目前仍然缺乏对此的全面了解。 针对以上科学问题,肖春旺教授团队在中科院内蒙古草原生态站开展了相关研究,研究人员采集了3个不同围封禁牧时间(42年、22年和0年[自由放牧])和4个不同土层深度(0–10、10–30、30–50、50–100 cm)的土壤。通过向土壤中添加δ13C标记的葡萄糖以模拟自然界的碳输入,并使用北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,在105-h内实现了分钟尺度上对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,主要探究了土壤碳氮特征变化对土壤微生物响应外源碳输入的短期过程以及对外源碳和土壤有机质分解的影响及机制。 研究结果发现,土壤微生物对外源碳的输入反应迅速,由土壤有机碳和碳氮比控制的微生物生物量是直接影响微生物对外源碳输入反应强度的最重要因素。放牧和较深的土壤层减少了来自外源碳的呼吸作用及其对总呼吸作用的相对贡献(图1),主要归因于土壤碳氮比和真菌/细菌的变化。此外,外源碳添加促进了所有土壤中有机质的分解,使土壤有机质的呼吸作用增加了11.3–92.4 mg C g-1 SOC,相当于18.7–266.1%的激发效应。放牧和土壤深度增加导致了更大的激发效应和土壤碳损失,其中土壤碳氮比和有机碳含量是最重要的调节因素。图1 不同土壤中来自外源碳和土壤有机质的累积碳矿化量及其比值注:GE42(10)、GE22(10)和GE0(10)分别代表围栏禁牧42年、22年和0年样点的0–10 cm土壤;GE42(10)、GE42(30)、GE42(50)和GE42(50)分别代表围栏42年样点的0–10、10–30、30–50、50–100 cm的土壤。 禁牧被认为是实现草原生态系统自我恢复的重要途径,了解放牧对外源碳输入下草原碳循环的影响可能有助于提高我们对未来草原土壤碳动态的预测。因此,结合本研究结果,研究人员建立了一个概念框架,阐明了禁牧年限和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态的影响(图2)。禁牧对植被的积极影响进一步提升了土壤有机质的质和量,进而通过影响微生物特性导致更多的外源碳被微生物呼吸代谢,并增大其对总微生物呼吸的贡献,但是却会减小其诱导的激发效应和土壤碳损失。然而,对于不同深度的土壤而言,增加土层深度会影响土壤有机质的质和量,导致来自外源碳的呼吸及其对总微生物呼吸的贡献均减小,但是却会减小其诱导的激发效应和土壤碳损失。目前在世界大部分地区,由于受到人类活动的影响,草原正面临着严重退化的困境,而禁牧可能是实现表层土壤碳固持的有效措施。图2 禁牧和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态影响的概念图 相关研究成果以“The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands”为题在线发表于国际土壤学领域主流期刊《Geoderma》(中科院一区Top,IF5 = 7.444)上。 生命与环境科学学院2019级博士研究生李超为本论文第一作者,肖春旺教授为本论文的通讯作者。中国科学院地理科学与资源研究所何念鹏研究员为本研究的重要合作作者,另外,中国科学院地理科学与资源研究所的徐丽副研究员和李明旭博士也参与了本研究。来源丨中央民族大学生命与环境科学学院官网相关论文信息:Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.原文链接:https://doi.org/10.1016/j.geoderma.2023.116385. 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
  • 新品发布丨珀金埃尔默EnVision®Nexus™多功能酶标仪上市
    美通社/--作为致力于创造更健康世界的全球领导者,珀金埃尔默公司(NYSE:PKI)于2月24日在美国推出EnVision Nexus&trade 系统。此系统是珀金埃尔默迄今为止速度最快、灵敏度最高的多功能酶标仪,专为要求苛刻的高通量筛选(HTS)应用而设计,可加速药物研发进程。EnVision Nexus&trade 配合珀金埃尔默药物研发试剂平台的微孔板和优化型试剂(包括专有的HTRF和AlphaLISA技术以及最新试剂盒),可帮助研究人员提高检测灵活性。EnVision Nexus&trade 系统配有高通量、超快速双检测器,可使研究人员轻松筛选数百万个样本,且速度更快、准确度和灵敏度更高。为实现无人值守,此系统可配备容量为20或50个孔板的叠板机;另可实现全自动、集成式、全天候工作流程。珀金埃尔默生命科学高级副总裁Alan Fletcher:我们正彻底改变药物研发,而这一切都始于实验室;研究人员可利用EnVision Nexus&trade 系统搭载的多功能酶标仪技术,在工作流程的各个阶段提高研发效率。借助精简型工作流程和优化的试剂技术,并在先进微孔板酶标仪中扩大检测功能,我们的团队已打造出着眼现在、放眼未来的全方位高性能系统。此解决方案的设计借鉴了珀金埃尔默先进EnVision系统(过去20多年中已广泛应用于世界各地的实验室)的经验和成功。新型EnVision Nexus&trade 平台易于设置、使用便捷、维护简单,适用于各种主要检测技术,包括荧光强度、荧光偏振、吸光度、发光和时间分辨荧光(TRF)。这意味着仅用一台仪器即可针对不同应用进行各种检测。另有新品亮相SLAS珀金埃尔默首次推出ZephyrG3 NGS iQ&trade 工作站,这是一种紧凑的、完全集成的台式系统,可自动构建多达96个NGS文库。该工作站集成了高性能液体处理器、集成式热循环器、机械臂和所有台面配件与外围设备,使实验室能够通过自动化即便是最复杂的NGS方法,来提高通量并减少错误,达到更高的可重复性。ZephyrG3 NGS iQ&trade 工作站可选配基于云的软件,通过利用"单一玻璃面板界面"和基于"科学认知"而不是"底层代码"的开发方法,进一步简化了NGS文库制备方案的创建和编辑。在刚刚结束的圣地亚哥SLAS 2023国际会议暨展览会上,珀金埃尔默展示了Zephyr工作站和EnVision Nexus&trade 酶标仪的一流的科学组合,及其新颖的工作流程解决方案。这些解决方案涵盖基础研究、生物制品、细胞和基因研究,包括自动化、成像、基因调控、碱基编辑工具、工程细胞系、细胞计数、检测和试剂。
  • 上市仪器公司员工薪酬榜:研发与销售,孰高?孰低?
    薪酬,无疑是“打工人”最为关心的话题之一,它不仅直接关系到大家的切身利益,其起伏变化也可直观反映出行业的冷暖。随着上市仪器公司2023年报陆续披露,各种统计数据浮出水面。基于此,本文以国内51家上市仪器公司为研究对象,领域涉及光学仪器、分析仪器、生命科学仪器、环境监测仪器、物性测试仪器等,计算出了研发和销售人员的平均薪酬,并分别制出排行榜单,与君共享。 2023年度国内上市仪器公司研发人员平均薪酬:22.69万元/年 根据研发费用明细中的职工薪酬和研发人员数量得出,国内上市仪器公司研发人员2023年度的平均薪酬约为22.69万元/年,同比2022年度下降0.19%。2023年度,研发人均薪酬在20万元/年以上的有31家,约占总量的五分之三;30万元/年以上的有10家,约占总量的五分之一。其中,迈瑞医疗、华大智造、联影医疗、普源精电、理邦仪器的研发人均薪酬位居前五,分别为56.47万元/年、45.59万元/年、39.47万元/年、37.79万元/年、35.01万元/年。注1:研发人均薪酬=研发费用明细中的职工薪酬/[(研发人员期初人数+期末人数)/2],各公司职工薪酬核算标准有所不同,上表计算结果可能与实际有所偏差。注2:各公司研发人员数量核算标准不同,如有的直接将技术人员等同于研发人员,有的将技术人员中分离出技术服务人员后的人数归为研发人员数量,这也会导致上表计算结果可能与实际有偏差。注3:有些公司在年报中单独披露了2023年度研发人员的平均薪酬,但为了统一计算维度,本榜单并未采用该数据。注4:51家国内上市仪器公司分别为 迈瑞医疗、联影医疗、川仪股份、安图生物、华大基因、聚光科技、华大智造、泰坦科技、科华生物、美亚光电、高德红外、汉威科技、海尔生物、苏试试验、理邦仪器、凤凰光学、雪迪龙、麦克奥迪、理工能科、博晖创新、天瑞仪器、先河环保、钢研纳克、华盛昌、必创科技、永新光学、皖仪科技、正业科技、力合科技、普源精电、蓝盾光电、日联科技、纳微科技、中机试验、康斯特、三德科技、远方信息、莱伯泰科、东华测试、禾信仪器、海能技术、泰林生物、易瑞生物、阿为特、多浦乐、新芝生物、三英精密、阿泰可、博迅生物、南华仪器、福光股份。 2023年度国内上市仪器公司销售人员平均薪酬:32.22万元/年 根据销售费用明细中的职工薪酬、销售人员数量得出,国内上市仪器公司销售人员2023年度的平均薪酬约为32.22万元/年,同比2022年度下降4.98%。2023年度,销售人均薪酬在20万元/年以上的有40家,占总量的五分之四;30万元/年以上的有24家,约占总量的五分之二。其中,迈瑞医疗、美亚光电、康斯特、必创科技、纳微科技的销售人均薪酬位居前五,分别为82.55万元/年、59.36万元/年、55.66万元/年、52.10万元/年、49.77万元/年。注1:销售人均薪酬=销售费用明细中的职工薪酬/[(销售人员期初人数+期末人数)/2],各公司职工薪酬核算标准有所不同,上表计算结果可能与实际有偏差。注2:51家国内上市仪器公司分别为 迈瑞医疗、联影医疗、川仪股份、安图生物、华大基因、聚光科技、华大智造、泰坦科技、科华生物、美亚光电、高德红外、汉威科技、海尔生物、苏试试验、理邦仪器、凤凰光学、雪迪龙、麦克奥迪、理工能科、博晖创新、天瑞仪器、先河环保、钢研纳克、华盛昌、必创科技、永新光学、皖仪科技、正业科技、力合科技、普源精电、蓝盾光电、日联科技、纳微科技、中机试验、康斯特、三德科技、远方信息、莱伯泰科、东华测试、禾信仪器、海能技术、泰林生物、易瑞生物、阿为特、多浦乐、新芝生物、三英精密、阿泰可、博迅生物、南华仪器、福光股份。 仪器“打工人”平均薪酬:销售 > 研发 员工薪酬与企业营收之间通常存在着密切的关系。当企业营收下降时,员工或将面临薪酬减少、福利缩减、以及裁员等风险。2023年度,国际环境变乱交织,国内多重不利因素叠加,我国仪器行业面临需求低迷、成本上升、内卷严重、进口产品本土化等挑战。根据仪器信息网此前统计的国内上市仪器公司营收数据,其中约40%实现双位数增长,也有近40%出现下滑态势。基于此,2023年度国内上市仪器公司研发和销售人员的平均薪酬同比上年度均有下降。其中,研发人员的平均薪酬同比下降0.19%,销售人员的平均薪酬同比下降4.98%。另外,对比两大榜单可以看到,无论是平均薪酬(研发22.69万元/年,销售32.22万元/年),还是人均最高薪酬(研发56.47万元/年,销售82.55万元/年),国内上市仪器公司研发人员的薪酬水平都不及销售。科学仪器是一个技术密集型行业,研发创新是企业发展的核心动力,而良好的薪酬福利可以充分调动和激发研发人员的积极性和创造性。如何完善企业薪酬福利制度,留住需要的人才,实现共同发展,仍是当前国内仪器公司管理者值得思考的问题之一。
  • 环保部发布环境空气臭氧标准传递作业指导书
    p  由于缺少钢瓶标准气体,臭氧监测只能通过臭氧发生器发生的臭氧,进行逐级的量值传递/溯源,任何一级的量值传递工作出现问题,都将导致其下游的各台臭氧的传递标准、臭氧分析仪量值出现偏差。/pp  为贯彻落实《“十三五”环境监测质量管理工作方案》(环办监测〔2016〕104号)和《环境空气自动监测标准传递管理规定(试行)》(环办监测函〔2017〕242号)有关要求,规范环境空气臭氧标准传递,保证监测数据的溯源性和可比性,环保部组织编制了《环境空气臭氧一级校准作业指导书(试行)》《环境空气臭氧标准参考光度计间接比对作业指导书(试行)》《环境空气臭氧传递标准间逐级校准作业指导书(试行)》《环境空气臭氧自动监测现场比对核查作业指导书(试行)》等4项作业指导书。/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/dc4f8676-86b9-4e2f-b8ed-8702c8f9d15f.pdf"环境空气臭氧一级校准作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/772103d7-bc54-4e12-86e6-580d39983f0e.pdf"环境空气臭氧标准参考光度计间接比对作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/47dfc0c9-f05b-4c7c-a02d-c738282d5d02.pdf"环境空气臭氧传递标准间逐级校准作业指导书(试行).pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/39237838-6f55-47dc-953c-4233ea57d463.pdf"环境空气臭氧自动监测现场比对核查作业指导书(试行).pdf/a/ppbr//p
  • 新品发布|低本底多道γ能谱仪的技术原理和参数_霍尔德
    【低本底多道γ能谱仪←点击此处可直接转到产品界面,咨询更方便】低本底多道γ能谱仪原理:采用低本底铅室及低钾NaI(Tl)探头实现对待检测样品的放射性测量,基于高性能数字化能谱仪实现对NaI(Tl)探头的高精度伽马能谱测量,通过上位机能谱测量与分析软件实现对能谱的采集、存储、处理与解谱分析,最终实现对检测样品中放射性核素的识别与放射性比活度的测量。低本底多道γ能谱仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。低本底多道γ能谱仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz。低本底多道γ能谱仪技术参数:探测器:Φ50×50mmNaI(Tl)晶体;总道数:512、1024、2048、4096、8192、16384道任选,标准道数:2048道;能量分辨率:7.5%(137Cs);仪器本底:≤4.5cps(50kev~3Mev);微分非线性:0.05%;积分非线性:0.10%;稳定性:相对误差≤1.0%(24h);脉冲对分辨率:450ns;仪器检出限:226Ra:8.0Bg/kg;232Th:6.0Bg/kg;40K:20.0Bg/kg;最高数据通过率:≥500kcps(1us成形时间);测量不确定度(样品放射性活度37Bq/kg):10%;电源:220V(±10%)50Hz;温度范围:+5℃~+40℃;相对湿度:≤90%
  • 迪马科技钻石二代色谱柱上市发售
    钻石一代HPLC 色谱柱自1998 年问世以来,以其优良的性能和完善的服务深受业内用户的信赖,近十年来累计数万只的销量更是各界用户对钻石柱品质的肯定。但是我们始终没有停止新产品研发的脚步,经过多年的努力迪马又成功推出出第二代产品—Diamonsil C18 (2),并自豪的向业界宣称:迪马科技始终走在世界HPLC 色谱柱技术领域的前沿。  钻石二代特点  • 高柱效  • 宽pH 范围(1.5-9)  • 超长的使用寿命  • 优异的选择性  • 杰出的分离度  • 优异的批次重现性  十年磨一剑,Diamonsil II 色谱柱承载了迪马科技多年来积极创新、与时俱进的优秀品质,以及永不放弃、百折不回的的开拓精神。因此我们有足够的理由相信Diamonsil  C18 (2) 将会以它优异的性能震惊业界。     2008年10月
  • 卓尔不群,启迪未来-尔迪仪器年会圆满举行
    2022年1月6日,上海尔迪仪器科技有限公司圆满举行。会上邀请布鲁克、雅马拓、赛默飞的厂商参与,欢聚一堂,共同回顾2021,携手展望2022。激情澎湃的演讲以及振奋人心的成绩,让我们心潮澎湃,对今后的发展更加信心满满。中场穿插的游戏及抽奖活动更是引得现场高潮迭起。年会上,公司对大家在过去一年持续改善工作中的优异表现和突出业绩进行了表彰。颁发出优秀员工、优秀团队等奖项,也激励其他员工再接再厉创作佳绩。 卓尔不群,启迪未来,2022年让全体员工一起谱写崭新的华丽篇章,用更加卓越的成绩来证明自己。
  • Discovery Studio 2017 R2 新版本发布会
    作为全球最大的科学计算软件提供商BIOVIA公司在生命科学领域的核心产品,Discovery Studio是一款应用于生命科学预测领域的综合性分子模拟软件,集成了目前分子模拟领域的各种经典、先进算法,通过用户体验友好的操作界面以及高质量的图形显示,在计算生物学和药物设计领域都有着广泛的应用。Discovery Studio构建于BIOVIA Pipeline Pilot之上,为研究队伍的合作与信息共享提供了优秀的平台。 Discovery Studio 2017 R2是Discovery Studio软件的最新版本,由BIOVIA公司向全球正式发布。新版本的Discovery Studio在性能和效率上都得到了加强,并加入新方法,使其功能更加完善。新特性简介:■ 与最新发布的BIOVIA Pipeline Pilot 2017 R2相兼容;■ 小分子设计: 新!新增Generate Analog Conformations模块,在给定以蛋白结合口袋为参照系具有明确3D几何构象的先导化合物时,可获得其同系化合物的3D几何构象,且可采用in-situ MM-GBSA对配体结合进行打分排序; 新!新增Set Up Relative FEP Calculation、Free Energy Perturpation (NAMD)、Analyze FEP Results模块,可基于自由能微扰(FEP)精确预测配体相对结合自由能; ■ 抗体理性设计 Model Full Length Antibody模块支持双特异性抗体全长结构的模建; Model Full Length Antibody模块支持将抗体Fab区结构移植到抗体全长模板结构中以获得更合适的起始结构进行抗体建模; Antibody Modeling Cascade模块现支持将抗体Fab区模型嫁接到全长抗体结构模板中以获得更准确的抗体全长结构模型; Loop Refinement模块改进了looper算法,提高了loop区从头预测的准确性;■ 力场 完全支持CHARMM力场的补丁机制; charmm36力场的更新;■ 客户端 支持将分子以COLLAborative Design Activity (DAE)文件格式保存输出;■ 第三方程序的更新 CHARMm 40b1 MODELER 9v17 DMol3 2017 R2 NAMD 2.10 支持CCDC GOLD 5.5■ 数据库的更新 Anitibody数据库 BLAST数据库 若您想对以上新功能做进一步了解和获取更多Discovery Studio 2017 R2新功能信息, 详情了解:请关注创腾科技官网
  • 发改委确定第二批共29个低碳试点省区城市 青岛入围
    国家发改委已于11月26日悄然下发《国家发展改革委关于开展第二批低碳省区和低碳城市试点工作的通知》(发改气候【2012年】3760号文件)(以下简称《通知》),确立了包括北京、上海、海南和石家庄等29个城市和省区成为我国第二批低碳试点。 目前,《通知》尚未在国家发改委的网站上公开。本报记者获悉,第二批试点地区需在12月底之前向国家发改委提交修订后的低碳试点实施方案报批。这意味着,第二批低碳试点地区的低碳建设开始进入倒计时。 &ldquo 党的十八大报告提出要建设美国中国,我认为,第二批试点是国家发改委落实建设美丽中国的重要举措之一,体现了国家在应对气候变化方面的意志和决心。&rdquo 气候组织大中国区总裁吴昌华对本报记者分析。 第一批试点启动已有一年半,因此吴昌华建议,国家有关部门应尽快对第一批低碳试点的经验和教训进行总结和定期评估,这样可以让第二批试点做得更好。 第二批试点29城市和省区 &ldquo 在第二批试点申报的过程中,各地都比较积极,全国一共有40多个城市进行了申报。&rdquo 此前,国家发改委气候司的一位官员对本报记者解释。 根据《通知》,第二批国家低碳省区和低碳城市试点范围为:北京市、上海市、海南省和石家庄市、秦皇岛市、晋城市、呼伦贝尔市、吉林市、大兴安岭地区、苏州市、淮安市、镇江市、宁波市、温州市、池州市、南平市、景德镇市、赣州市、青岛市、济源市、武汉市、广州市、桂林市、广元市、遵义市、昆明市、延安市、金昌市、乌鲁木齐市。 &ldquo 上述试点当中除海南为省区之外,其余28个均为城市。&rdquo 一位入选第二批试点的地方发改委官员对本报记者分析,这种设计安排主要是考虑到省区面积过大,不便进行试点,所以试点主要以城市为单位。 记者发现,在26个城市中,延安市、武汉市、广州市、昆明市所在的省还是第一批国家低碳试点省,其中广州市和昆明市还为所在省的省内低碳试点城市。 此前,国家发改委曾于2010年7月19日发布《关于开展低碳省区和低碳城市试点工作的通知》,确定广东、辽宁、湖北、陕西、云南五省和天津、重庆、深圳、厦门、杭州、南昌、贵阳、保定八市为我国第一批国家低碳试点。 对比不难发现,第二批试点规模明显大于第一批试点。&ldquo 《通知》指出,我国幅员辽阔,东中西部地区发展阶段都不一样,而各个试点地区的资源禀赋、试点目标、工作重点和实现路径都不一样。&rdquo 前述地方发改委官员对本报记者分析,进一步扩大试点,是为了更加有效地探索不同地区之间有效控制温室气体的路径。 至此,我国已确定了6个省区低碳试点,36个低碳试点城市,至今大陆31个省市自治区当中除湖南、宁夏、西藏和青海以外,每个地区至少有一个低碳试点城市。换句话说,低碳试点已经基本在全国全面铺开。 12月31日之前上报修订后方案 &ldquo 与第一批试点相比,第二批试点具有两个特点。&rdquo 一位接近国家发改委的专家对本报记者透露,第一,第二批试点的组织申报工作更为公开,要求更为明确 第二,发改委要求试点要试出地方特色来。 在第一批试点发布之后,一位南方城市的发改委副主任曾对本报记者抱怨,&ldquo 我们根本不知道发改委在组织低碳试点的申报,发改委也没有发出申报通知,所以我们也没有收到省发改委转发的国家发改委的申报通知,如果知道的话,我们一定会进行申报。事实上,我们的意愿很强,早在2009年就启动了低碳发展规划的编制。&rdquo 来源: 南海网 崂应官网: www.hbyq.netPM2.5采样,烟尘采样,烟气分析,大气采样,粉尘采样,紫外烟气分析,二恶英采样,油气回收检测,烟尘测试仪、真空箱采样、酸尘降采样、24小时恒温气体采样
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism & hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制