当前位置: 仪器信息网 > 行业主题 > >

氟奋乃静

仪器信息网氟奋乃静专题为您提供2024年最新氟奋乃静价格报价、厂家品牌的相关信息, 包括氟奋乃静参数、型号等,不管是国产,还是进口品牌的氟奋乃静您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟奋乃静相关的耗材配件、试剂标物,还有氟奋乃静相关的最新资讯、资料,以及氟奋乃静相关的解决方案。

氟奋乃静相关的方案

  • 天津兰力科:改性纳米SiC粉体强化奥氏体不锈钢力学性能和耐腐蚀性能的研究
    本文在生产条件下采用冲入法制备改性纳米SiC粉体强化奥氏体不锈钢材料,研究了纳米SiC粉体对不锈钢的组织、力学性能和耐腐蚀性能的影响及其作用机理。试验用的纳米SiC粉体预先经过表面改性处理,粒径为20-80nm。在细化晶粒方面,其作用机理与孕育剂相类似,但与常规孕育剂不同的是,该纳米SiC粉体与飞速发展的纳米技术相结合,相同质量的改性纳米SiC粉体,能够提供更多的结晶核心,从而以微量的纳米SiC粉体便能明显地细化铸造不锈钢的组织,提高其性能。对自然冷却后得到的不同纳米SiC粉体含量的不锈钢试样进行固溶处理。采用金相检验、布氏硬度检测、拉伸试验、冲击试验、化学浸泡试验、电化学分析等方法检测了不锈钢的晶粒组织、力学性能和耐腐蚀性能,并进一步讨论了不同纳米SiC粉体加入量对不锈钢的组织、力学性能和耐腐蚀性能的影响。研究结果表明:经改性纳米SiC粉体强化处理后的不锈钢组织明显细化,力学性能、耐点蚀性能和耐晶间腐蚀性能均得到有效提高,当纳米SiC粉体加入量为0.1%时,不锈钢的延伸率和断面收缩率分别提高了10.69%和12.30%,硬度、抗拉强度和冲击韧性分别提高了6.33%、4.70%和19.97%,点蚀速率和晶间腐蚀速率分别降低了16.05%和42.39%;断口分析结果表明:经强韧化处理后,不锈钢的断裂方式为典型的韧性断裂;极化曲线表明:当纳米SiC粉体含量为0.1%时,不锈钢的电极电位提高了3倍;能谱分析结果表明,经强化处理后,不锈钢的铬成分偏析减轻,有效改善了晶界等易发生点蚀和晶间腐蚀部位的贫铬现象。该纳米粉体强韧化技术水平先进,设备工艺简单,操作方便,附加值高,能有效提高不锈钢的综合性能,降低能源消耗,可在铸件的生产中广泛应用,并能实现绿色生产和可持续发展。
  • 奶和奶粉中磺胺类药物的测定
    迪马科技开发的奶和奶粉中磺胺类药物的测定解决方案,使用有机溶剂提取奶粉中磺胺类药物,采用ProElut PXC进行样品净化,成功去除奶和奶粉中蛋白质干扰,净化效果优异,重现性结果良好。
  • 微波消解奶豆腐
    奶豆腐,是蒙古族牧民家中常见的奶食品。用牛奶、羊奶、马奶等经凝固、发酵而成的食物,形状类似普通豆腐,但不是豆腐,因像豆腐而得名。味道有的微酸,有的微甜,乳香浓郁,牧民很爱吃,常泡在奶茶中食用,或出远门当干粮,既解渴又充饥。还可以做成拔丝奶豆腐,其软韧牵丝为断,是宴席上的一道风味名菜。我们选择一种奶豆腐样品,采用微波消解来对其进行前处理,该方法消解效果好、空白低、有利于后续检测设备对多种金属元素的快速检测。
  • 微波消解奶豆腐
    奶豆腐,是蒙古族牧民家中常见的奶食品。用牛奶、羊奶、马奶等经凝固、发酵而成的食物,形状类似普通豆腐,但不是豆腐,因像豆腐而得名。味道有的微酸,有的微甜,乳香浓郁,牧民很爱吃,常泡在奶茶中食用,或出远门当干粮,既解渴又充饥。还可以做成拔丝奶豆腐,其软韧牵丝为断,是宴席上的一道风味名菜。我们选择一种奶豆腐样品,采用微波消解来对其进行前处理,该方法消解效果好、空白低、有利于后续检测设备对多种金属元素的快速检测。
  • 圆晶湿法刻蚀清洗工艺中采用耐腐蚀电动针阀的流量控制解决方案
    化学药液流量的精密控制是半导体湿法清洗工艺中的一项关键技术,流量控制要求所用调节针阀一是开度电动可调、二是具有不同的口径型号、三是高的响应速度,四是具有很好的耐腐蚀性,这些都是目前提升半导体清洗设备性能需要解决的问题。为此,本文提出了相应的解决方案,解决方案的核心是采用具有系列口径的高速和耐腐蚀的电动针阀。
  • 牛奶和奶粉中地塞米松的检测
    本方法参考《GB/T 22978-2008牛奶和奶粉中地塞米松残留量的测定 液相色谱-串联质谱法》采用睿科MPE-16真空平行浓缩仪对提取液进行浓缩,Fotector Plus全自动固相萃取仪净化,EVA 80对洗脱液进行浓缩,高效液相色谱-串联质谱仪测定,外标法定量。在3个不同添加浓度下,加标回收率为70%~90%之间,相对标准偏差小于10%,准确度和精密度均符合残留分析要求,可以满足牛奶和奶粉中地塞米松残留量的检测需要。
  • 化妆品中4种萘二酚的测定
    本文建立了 化妆品中 4种萘二酚 的 HPLC测定方法。 参照国标 GB/T35829-2018中色谱条件, 采用色谱柱ShimNex CS C18分析 4种萘二酚 ,结果显示 ,4个 化合物色谱峰 峰形对称, 分离度良好 ,此方法可为 化妆品中 4种萘二酚 分析 提供参考 。
  • 普析:牛奶中锌的测定-富锌牛奶的开发
    牛奶是一种全价食品,对人的生长发育和健康有着及其重要的作用;其营养价值在一定程度上取决于其内的矿物质含量高低。锌是人和动物机体必需的一种微量营养素,其营养学作用近年来已成为研究热点;中国营养协会1996年抽样调查结果显示,我国80%的儿童不同程度缺锌。牛奶中的锌吸收率高、安全、无毒副作用,是幼儿喜爱的理想保健食品;而富锌牛奶的开发一直未得到重视。通过在奶牛饲料中添加一定量的锌制剂,成本小、可直接生产出富锌牛奶;随着近年来原子吸收光谱技术的推广使用,为我们提供了一个简便、快速、灵敏度高的分析技术。本文利用原子吸收分光光度计测定了常乳和富锌乳中的锌含量,操作简便、分析结果可靠,可以为牛奶的增锌研究方法提供一定的实验依据。
  • 牛奶中锌的测定-富锌牛奶的开发
    牛奶是一种全价食品,对人的生长发育和健康有着及其重要的作用;其营养价值在一定程度上取决于其内的矿物质含量高低。锌是人和动物机体必需的一种微量营养素,其营养学作用近年来已成为研究热点;中国营养协会1996年抽样调查结果显示,我国80%的儿童不同程度缺锌。牛奶中的锌吸收率高、安全、无毒副作用,是幼儿喜爱的理想保健食品;而富锌牛奶的开发一直未得到重视。通过在奶牛饲料中添加一定量的锌制剂,成本小、可直接生产出富锌牛奶;随着近年来原子吸收光谱技术的推广使用,为我们提供了一个简便、快速、灵敏度高的分析技术。本文利用原子吸收分光光度计测定了常乳和富锌乳中的锌含量,操作简便、分析结果可靠,可以为牛奶的增锌研究方法提供一定的实验依据。
  • 天津兰力科:铁素体不锈钢晶粒细化及耐腐蚀性研究
    本文介绍了在工业纯铁和0Cr17铁素体不锈钢中加入不同含量的强碳氮化合物形成元素钛,并加入适量的硅、锰、铝,利用钛与C、N原子的强烈亲和作用,来固定C、N等间隙原子,生产含钛铁素体不锈钢。包括试验钢的化学成分设计,冶炼、锻造及普通的轧制工艺设计。采用了金相显微镜、透射电子显微镜等显微分析手段和力学性能、电化学试验等试验方法,观察和分析了试验钢的组织、晶界、析出物的特点,考察了钛对试验钢的强韧性的影响,研究了试验钢的耐腐蚀性能,并对不锈钢的微合金化问题进行了较为全面的探讨。通过对试验钢的力学性能和显微分析后可以认为,当材料在低于奥氏体再结晶温度而高于Ar3相变温度时变形,能够促使相变在较高的温度下发生,并且能得到较小半径的临界核胚。要想得到超细晶铁素体组织,必须对钢铁材料进行较大程度的变形。强碳氮化合物形成元素钛可以通过其碳氮化合物在均热时阻止奥氏体晶粒的长大,热轧过程中阻止奥氏体再结晶及钢中存在的细小未溶的钛的碳氮化合物促进γ→α转变这几个方面来细化铁素体晶粒。试验结果表明,钛可以细化0Cr13铁素体不锈钢晶粒,提高其强度,改善其韧性,使之具有较好的加工性能。钛的添加量有一最佳范围,过多过少都不能获得理想的强化效果,当钛的含量为碳含量的6~9倍时具有较好的效果。分析计算表明,第二相析出粒子Ti(C,N)粒子对铁素体晶界的拖曳力主要取决于其大小及所占体积分数。Ti(C,N)粒子越小,所占体积分数越大,越能有效地细化铁素体晶粒,从而提高钢铁材料的综合性能。通过对沉淀析出第二相粒子的热力学与动力学分析可知,Ti(C,N)析出粒子越细小,越容易粗化,因而要得到极细的第二相析出粒子比较困难。通过实验室的电化学试验结果分析,表明:普通的0Cr13型铁素体不锈钢耐晶间腐蚀的能力较差。引入钛之后,钢中的碳与强碳氮化合物形成元素钛可以生成很稳定的钛碳化物,(Fe,Cr)7C3在晶界上的析出受到抑制。钛元素的引入,消除了钢中的C、N间隙原子,抑制了珠光体组织的生成,净化了铁素体晶界,提高了铁素体组织的均匀性,使其耐腐蚀性能显著提高。
  • 盐酸特比萘芬有关物质分析
    本实验尝试使用资生堂C18色谱柱CAPCELL PAK MGII S5 3.0mm i.d.×150mm,按照BP方法盐酸特比萘芬有关物质项下方法对客户提供的盐酸特比萘芬样品及系统适用性对照品进行分析。
  • 钛基体预敷硅粉电弧熔覆层高温氧化行为电镜分析
    利用预敷硅粉电弧熔覆方法,在纯钛基体上制备出含有Ti5Si3相的表面层,在温度为800℃和900℃条件下对基体和表面层试样进行循环氧化试验。结果表明,不同组织表面层的高温抗氧化性能均比纯钛基体有明显提高。氧化试验温度低于Ti的固态相变点时,表面层抗氧化性能按照亚共晶→共晶→过共晶的组织组成顺序提高。氧化试验温度为900℃时,三种组织组成的表面层的抗氧化性能与800℃时顺序相反。电镜分析表明,多次加热冷却导致相变应力积累,Ti固溶体与Ti5Si3相的线膨胀系数不同引起热应力,表面层出现内部裂纹导致明显的氧化增重现象。
  • 岛津:LCMS-8045测定牛奶中己烯雌酚含量
    牛奶样品以乙腈沉淀蛋白,并超声萃取后,不需要经过衍生,直接进样分析,测定牛奶中雌酮、17β -雌二醇、雌三醇3种天然雌激素和己雌酚、己烯雌酚2种合成雌激素含量,方法简单、灵敏度高、重复性好。
  • 岛津:LCMS-8045测定牛奶中己雌酚含量
    牛奶样品以乙腈沉淀蛋白,并超声萃取后,不需要经过衍生,直接进样分析,测定牛奶中雌酮、17β -雌二醇、雌三醇3种天然雌激素和己雌酚、己烯雌酚2种合成雌激素含量,方法简单、灵敏度高、重复性好。
  • 木贼中山奈酚含量的测定 高效液相色谱法
    本文使用悟空K2025高效液相色谱仪测定木贼中山奈酚的含量。色谱条件:C18色谱柱(4.6×250mm,5μm),流速为1.0mL/min,柱温为30℃,进样量为10μL,检测波长为365nm。实验结果:山奈酚峰的理论塔板数为16783,拖尾因子为1.13;在连续进样7针的重复性测试中,山奈酚保留时间的RSD为0.210%,峰面积的RSD为0.237%;山奈酚的仪器检出限为0.013μg/mL,仪器定量限为0.042μg/mL;对木贼样品进行测定,木贼中山奈酚的含量为0.10%,加标回收率为100.5%。因此,Wooking K2025高效液相色谱仪可以满足《中国药典(2020年版)》一部中木贼中山奈酚含量测定的需求。
  • 液相色谱法测定盐酸特比萘芬乳膏含量
    按日本药典规定的液相色谱条件,用YMC-Pack ODS-A色谱柱(规格:5um,125*4.0mm,30nm,货号:AA30S05-R504WT)测定盐酸特比萘芬溶液、喷雾剂、乳膏剂中盐酸特比萘芬的含量,分离度等完全符合药典要求,测定结果令人满意。
  • UPLC MS/MS 测定牛奶中氧氟沙星残留量
    本文建立了牛奶中抗生素多残留的LC/MS/MS测定方法。抗生素种类包括环丙沙星、环丙沙星、氧氟沙星、青霉素G、氯唑西林、替米考星、泰乐菌素、红霉素、磺胺二甲嘧啶、磺胺甲恶唑、磺胺二甲氧嘧啶、四环素和金霉素。以及两种同位素内标为环丙沙星-d8 和氟尼辛-d3。采用改良的QuEChERS 方法对牛奶中抗生素进行提取。本方法具有良好的线性,高灵敏度、回收率稳定、重现性高和特异性强的特点,满足世界各国监管机构规定的牛奶中抗生素类残留限量的要求。本文采用改良型QuEChERS 样品前处理方法建立了牛奶中抗生素类多残留分析方法,该方法具有快速、稳定、可靠,高灵敏度和选择性等特点。经简单的样品前处理,大部分抗生素化合物获得了良好的回收率。本方法满足牛奶中痕量的抗生素残留进行定性定量分析要求,具有良好的精密度和稳定的保留时间。长期稳定性测试结果表明:该LC/MS/MS 系统适用于长期复杂基质的样品分析,也无需停机维护保养。
  • 直接快速检测牛奶, 奶粉,婴儿配方奶粉&相关奶制品中的汞
    无需前处理步骤-原子吸收法直接检测牛奶, 奶粉,婴儿配方奶粉&相关奶制品.牛奶, 奶粉,婴儿配方奶粉&相关奶制品含有有机基质,成分较复杂,大多数原子吸收方法检测食品中的汞都需经过酸消解制备. 而制备过程加长了分析时间,提高了检测限,同时很容易造成检测误差.应用塞曼效应RA-915M汞分析仪和PYRO-915热解附件可省去样本制备过程, 直接达到ppb级别分析检测食品中的汞含量.
  • 使用高效液相色谱法测定牛奶中氟甲喹
    喹诺酮类药物 (4-Quinolones),又称吡酮酸类或吡啶酮酸类,这类药物抗菌谱广、抗菌力强,主要作用于动物敏感菌所致的呼吸道、消化道和尿道感染,同时可促进动物日增重和提高饲料转化率。本方法参照食品安全国家标准 GB 29692-2013,建立了牛奶中喹诺酮类药物多残留量检测的制样和高效液相色谱测定方法。该方法适用于牛奶中恩诺沙星、环丙沙星、达氟沙星、沙拉沙星、二氟沙星、诺氟沙星、氧氟沙星、培氟沙星、洛美沙星、氟甲喹和噁喹酸单个或多个药物残留的检测。
  • Mg-Mn-Ce 镁合金表面超疏水复合膜层的制备及耐腐蚀性能
    采用微弧氧化技术和有机镀膜技术相结合的复合处理方法实现Mg-Mn-Ce 镁合金表面改性,获得超疏水复合膜层,研究微弧氧化膜的表面特征、有机镀膜电化学反应过程、复合膜层的润湿特性和耐腐蚀性能。结果表明:镁合金经微弧氧化处理后由于微弧氧化膜表面呈微纳多孔结构,表现为超亲水特性,其蒸馏水的静态接触角接近0°;在微弧氧化膜上经有机镀膜后,其形成的有机薄膜的静态接触角高达173.3°,表现出优良的超疏水特性。镁合金经微弧氧化处理后具有良好的耐腐蚀性能,经有机镀膜超疏水复合处理后,耐腐蚀性能得到进一步提高。复合膜层在3.5% NaCl 溶液中,与基体相比动电位极化腐蚀电流密度减小了3 个数量级、而电化学阻抗提高了3个数量级,耐腐蚀性能明显改善。微弧氧化与有机镀膜相结合的复合处理使镁合金表面在实现超亲水− 超疏水功能转换的同时显著提高镁合金的耐腐蚀性能。
  • UV-1100分光光度法测定牛奶罗红霉素的含量
    UV-1100分光光度法测定牛奶罗红霉素的含量UV-1100分光光度法测定牛奶罗红霉素的含量UV-1100分光光度法测定牛奶罗红霉素的含量
  • 鲜奶、奶粉中邻苯二甲酸酯类增塑剂的GCMS检测方案
    鲜奶与奶粉中的增塑剂,主要源于挤奶器、存放容器、传输管路、包装材料的释放。本方案参考标准《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》,将鲜奶、奶粉经过溶剂萃取,提取上清液,使用安益谱7600气相色谱质谱联用仪检测邻苯二甲酸酯DBP、DEHP、DINP的含量。根据保留时间、特征离子定性,外标法定量。本方法适用于鲜奶、奶粉及奶粉生产过程中软连接和奶粉内衬袋等中邻苯二甲酸酯检测。
  • 索氏提取仪测定鸡肉精粉中的脂肪含量
    鸡肉精粉是以上等新鲜鸡肉、肉骨抽出物及酵母抽提物等为主要原料经美拉德反应、微胶囊包埋、喷雾干燥等技术精制而成天然调味料。鸡肉精粉具浓厚的鸡肉风味和香味,鸡肉味丰满,渗透力强,耐高温,加工性能优良。本实验参照《GB 5009.6食品安全国家标准 食品中粗脂肪的测定》中的第一法对鸡肉精粉中的脂肪含量进行测定。
  • 测定牛奶中壬基酚含量的前处理解决方案
    壬基酚和双酚A不仅存在于奶粉、奶制品的食品包装材料中,在环境中的稳定极强,属于持久性的环境污染物,一旦暴露在环境土壤,环境水源中,就能从食物链进入到奶牛体内,直接影响奶源。
  • 椰奶饮料的稳定特性分析评估
    椰奶是一种水包油天然乳液,是将成熟椰子胚乳经破碎、挤压、提取等加工而成的椰子加工产品。椰奶主要由椰子蛋白(球蛋白和白蛋白)和磷脂组成。椰奶富含蛋白质、维生素、糖、氨基酸化合物、矿物质等。椰子奶含有35.2%的脂肪和3.8%的蛋白质。椰奶以其独特的风味和丰富的营养价值,已成为一种重要的食品乳液和加工配料。然而,天然椰奶和大多数乳液一样不稳定,呈现分层现象。在储存过程中,由于其脂肪含量高,天然椰奶经常表现出上脂肪层、蛋白质絮凝、沉淀等现象。为了改善产品稳定,尝试将不同直链淀粉含量的玉米淀粉与各种添加剂一起以相同浓度添加到椰奶中。考察了椰奶乳液的稳定性和流变性能。该分析方法同时也适用于测定其他食品乳液(例如:酱汁、调味品和饮料)的稳定特性。
  • 金属材料耐腐蚀性能测试方法盐雾试验箱
    盐雾试验箱是检测仪器,针对各种材质之表面经涂料、电镀、处理、防锈油等防腐蚀处理后,测试其制品之耐蚀性。符合CNS、ASTM、JIS、ISO等相关标准。
  • HPMS-TQ-牛奶和奶粉中7种喹诺酮类化合物残留量的测定
    本文采用 HPMS-TQ 仪器,根据《GB/T 22985-2008 牛奶和奶粉中恩诺沙星、达氟沙星、环丙沙星、沙拉沙星、奥比沙星、二氟沙星和麻保沙星残留量的测定 液相色谱 - 串联质谱法》,以牛奶为基质,建立了完整的测定 7 种喹诺酮类化合物的应用方案。该方法具有灵敏度满足要求,结果准确,重复性好等特点。
  • 耐氢氟酸ICP-OES 高性能进样系统如何选?读这一篇就够了!
    ICP的进样系统(SIS)会影响到ICP包括检测限、精度、RSD以及成本的多个性能参数。考虑到分析的样品类型,ICP的性能通常可以通过选择合适的炬管、雾化器和雾室来提高。对于含有微量氢氟酸(HF)的样品,选择玻璃或石英样进样系统明显是不合适的。在这篇文章中,我们介绍了来自GE公司的耐氢氟酸高性能样品导入系统(HP-SIS)的优越性能,并在Thermo Fisher Scientific PRO Duo ICP-OES上与其标配的耐氢氟酸SIS的性能做了比较。
  • 发挥创造力 —— 用扫描电镜软件统计粉体包覆率
    在粉体工业领域中,粉体表面的包覆改性工艺是提升产品使用性能的重要方法,对于粉体 改性来说,包覆率是关键的参数。
  • 天津兰力科:贮氢合金V3 TiNi0. 56Al x 耐碱液腐蚀性能研究
    钒基固溶体贮氢合金V3 TiNi0. 56 由于其可逆吸放氢量大,作为镍氢电池负极材料有很大的应用前景。但合金的耐碱液腐蚀性能差,导致合金循环寿命短达不到应用要求。主要研究了合金元素Al 对钒基固溶体贮氢合金耐碱液腐蚀的影响。测试V3 TiNi0. 56Al x 合金电极的腐蚀电位、均匀腐蚀全浸试验过程中的质量损失率和组织变化,发现:V3 TiNi0. 56Al x 合金中Al 含量增加,腐蚀电位正移,腐蚀质量损失率减小,晶界的网状结构消失速度变慢,耐碱液腐蚀性能提高。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制