当前位置: 仪器信息网 > 行业主题 > >

氟雷拉纳

仪器信息网氟雷拉纳专题为您提供2024年最新氟雷拉纳价格报价、厂家品牌的相关信息, 包括氟雷拉纳参数、型号等,不管是国产,还是进口品牌的氟雷拉纳您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟雷拉纳相关的耗材配件、试剂标物,还有氟雷拉纳相关的最新资讯、资料,以及氟雷拉纳相关的解决方案。

氟雷拉纳相关的资讯

  • CHINA LAB,雷磁如约而至
    广州国际分析测试及实验室设备展览会暨技术研讨会(CHINA LAB 2018),3月28日在花城广州保利世贸博览馆隆重召开。CHINA LAB历经三十多年发展,已经成为国内颇具知名度和影响力的实验室范畴展会。本届展会以实验室仪器设备、试剂以及消耗品为核心,涉及实验室规划、设计、建造、运营、软件、管理、投资等内容,吸引逾千人次观众参观,上海仪电科仪作为国内科学仪器的领头企业之一,已连续多年参加CHINA LAB。雷磁作为上海仪电科仪的重要成员之一,不断技术创新,引领行业发展,以“品种多、款式新、质量好、价格优”在业界受到一致好评。本次在展会中雷磁再一次展出了众多新品,如L系列电化学分析仪系列,由于其独特的模块化设计和大尺寸操作界面,受到众多行业的新老客户青睐。除此之外,ZDJ-5B自动滴定仪系列、数字滴定器、浊度计系列、便携式水质分析仪系列、电化学传感系列等也同样受到热烈关注,参观客户纷纷惊叹于雷磁丰富的产品线和强大的研发能力。展会现场,咨询和商洽的老客户络绎不绝,交流行业的发展及客户的需求等问题,对雷磁近些年的发展均给予了充分的肯定。同时亦有很多新客户表达了希望合作和购买的意向,展台几度热闹非凡。
  • 雷尼绍拉曼培训之旅——西安站
    雷尼绍作为世界领先的工程科技公司之一始终秉持质量和性能原则,我们不断开发和提供处于创新前沿的各种拉曼仪器和技术。雷尼绍作为拉曼光谱领域公认的领导者,生产各种拉曼光谱仪,包括显微拉曼光谱仪、台式拉曼分析仪和联用系统:inVia™ 系列显微共焦拉曼光谱仪、RA802药物分析仪、RA816生物分析仪、Virsa™ 拉曼分析仪、远程/在线拉曼光纤探头、Raman-AFM联用系统接口、Raman-SEM联用系统 — 结构与化学分析仪(SCA)、拉曼光谱仪用激光器、先进冷却式CCD探测器等。雷尼绍凭借优越的产品性能及完善的售后服务,其光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于材料科学、生命科学、药物制剂、地质科学与宝石学、刑侦科学、艺术品与文物鉴定、半导体材料、纳米材料等各类科研及检测领域。inVia™ Qontor激光显微拉曼光谱仪是雷尼绍公司生产的分析仪器,由研究级光学显微镜和高性能拉曼光谱仪组成的,具有高性能、多功能和灵活性高的特点,能够帮助研究人员解决极具挑战性的分析难题。本产品具备双重功能 — 它可以对种类繁多、各种各样的物质进行高精度、分立单点的分析,也可以提供包含丰富信息的化学结构图像。此次雷尼绍在西安交通大学分析测试中心进行的拉曼光谱仪培训强化了雷尼绍拉曼光谱仪资深用户的操作及技术人员的操作技能,使拉曼光谱仪在用户现有工作中最大化的发挥其功能,以及拉曼光谱仪日常维护及软件应用。更有经验丰富的雷尼绍光谱产品部应用经理王志芳博士及其团队亲自培训,干货满满,使每位参训人员满载而归,不虚此行,使拉曼光谱色散出最绚烂的光彩。
  • 雷尼绍拉曼培训上海站火热进行中
    雷尼绍作为世界领先的工程科技公司之一始终秉持质量和性能原则,我们不断开发和提供处于创新前沿的各种拉曼仪器和技术。雷尼绍作为拉曼光谱领域公认的领导者,生产各种拉曼光谱仪,包括显微拉曼光谱仪、台式拉曼分析仪和联用系统:inVia™ 系列显微共焦拉曼光谱仪、RA802药物分析仪、RA816生物分析仪、Virsa™ 拉曼分析仪、远程/在线拉曼光纤探头、Raman-AFM联用系统接口、Raman-SEM联用系统 — 结构与化学分析仪(SCA)、拉曼光谱仪用激光器、先进冷却式CCD探测器等。雷尼绍凭借优越的产品性能及完善的售后服务,其光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于材料科学、生命科学、药物制剂、地质科学与宝石学、刑侦科学、艺术品与文物鉴定、半导体材料、纳米材料等各类科研及检测领域。inVia激光显微拉曼光谱仪是雷尼绍公司生产的分析仪器,由研究级光学显微镜和高性能拉曼光谱仪组成的,具有高性能、多功能和灵活性高的特点,能够帮助研究人员解决极具挑战性的分析难题。本产品具备双重功能 — 它可以对种类繁多、各种各样的物质进行高精度、分立单点的分析,也可以提供包含丰富信息的化学结构图像。此次上海站培训强化了雷尼绍拉曼光谱仪资深用户的操作及技术人员的操作技能,使拉曼光谱仪在用户现有工作中最大化的发挥其功能,以及拉曼光谱仪日常维护及软件应用。更有雷尼绍光谱产品部应用经理王志芳博士亲自培训,满满干货,使每位参训人员满载而归,不虚此行,使拉曼光谱色散出最绚烂的光彩。
  • 雷尼绍激光拉曼光谱应用技术研讨会
    2012年11月26日至11月30日,雷尼绍(上海)有限公司与中山大学测试中心合作在广州中山大学南校区成功举行了雷尼绍激光拉曼光谱应用技术研讨会。会议旨在为广大专家学者提供拉曼光谱领域相互交流学习的平台,共同探讨激光拉曼光谱技术在科学研究领域的最新进展及成果,促进我国拉曼光谱分析事业的进一步发展。来自国内外的60多位拉曼专家学者参加了会议。 会议由测试中心技术总监陈建研究员主持,中山大学设备与实验管理处陈敬德副处长、测试中心主任栾天罡教授、雷尼绍公共有限公司光谱部门全球销售经理Ken Williams博士、雷尼绍(香港)有限公司远东区技术总监杨延勇博士、雷尼绍(上海)贸易有限公司拉曼总经理王峥先生出席开幕式并讲话。陈敬德副处长指出:&ldquo 我相信本次由雷尼绍与我校测试中心合作举办的研讨会,将对华南地区高校拉曼光谱研究具有深远的指导意义,也为推进我国激光拉曼光谱应用技术的研究和发展起到积极作用。&rdquo 会议期间,来自国内外的专家们就激光拉曼光谱的应用与前沿研究热点进行了热烈地讨论与交流,主要内容涵盖了其在各领域的学术研究、应用技术发展现状等。雷尼绍新型的inVia系列拉曼光谱仪,以其高灵敏度、高分辨率、高重复性、高自动化程度等卓越的功能特点,成为大家关注的焦点。Ken Williams博士给用户讲述了雷尼绍自1992年推出与英国利兹大学联合研制成功的新型激光共焦显微拉曼光谱和光谱成像仪,在过去的20年如何不断创新开发新技术,引领拉曼光谱行业不断前行。国立台湾大学冯哲川教授与与会者分享了其20年来使用雷尼绍显微拉曼光谱-光致发光联用系统在先进半导体材料及纳米/量子结构方面研究取得的成果。 秦始皇帝陵博物院文物保护修复部副主任,陶质彩绘文物保护国家文物局重点科研基地(秦陵博物院)副主任夏寅向大家介绍了拉曼光谱在颜料分析研究中的应用,并对偏光显微法和拉曼光谱分析的结合进行了探讨,对该方法在文物研究中的地位给予了较高的评价。杨延勇博士介绍了各种拉曼成像技术以及雷尼绍独有的&ldquo Global Imaging&rdquo 以及最新的 &ldquo StreamLineHR&trade 快速大面积扫描成像技术&rdquo ,并详细说明了它们在各个领域的应用。中科院广州地球化学研究所陈鸣研究员在会上做了题为《我国岫岩陨石撞击坑的证实》的报告。 此外,拉曼光谱技术在稀土行业、法医学、生物医学等热门领域的应用也引起了与会者浓厚的兴趣。会议最后一天,雷尼绍(上海)贸易有限公司拉曼部门技术经理杨军涛针对拉曼光谱仪的使用及维护技巧等报告引起了热烈讨论。关于雷尼绍雷尼绍是一家跨国公司,总部位于英国。主要提供测量、运动控制、光谱仪和精密加工等核心技术,并拥有最完备的光谱产品系列: 显微拉曼光谱仪、过程监控小型拉曼光谱仪、供扫描电子显微镜使用的拉曼分析仪、光谱仪用激光器、先进的冷却式CCD探测器。产品凭借其优越的性能、模块化的设计及完善的售后服务团队,极大地提高了客户的研发能力和科研水平,被广泛应用于各类科研及应用领域,例如地质科学与宝石学、材料科学、刑侦科学、艺术品与文物鉴定、生物医药、半导体材料、生命科学等。 雷尼绍于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国拥有近百名员工,共设三个分公司和八个办事处。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3100人。
  • 毕克气体邀您共赴广州China-Lab 2017
    新的一年,毕克气体也蓄势待发,为大家带来更多惊喜。2017年2月21日至2月23日,毕克气体将应邀参加在广州保利世贸博览馆举行的China-Lab 2017(广州国际分析测试及实验室设备展览会暨技术研讨会),我们的展位号为1B39。本次毕克气体将携我们的明星产品来到China-Lab,无论您想了解的是用于LC-MS的氮气发生器,还是用于GC的氮气、氢气、零级空气发生器,又或是适配ELSD、TOC的氮气发生器,甚至连实验室集中供气方案,毕克都能一一满足您!专为GC配备的Precision系列氮气、氢气、零级空气发生器专为ELSD配备的Solaris氮气发生器Solaris氮气发生器是毕克气体2016年推出的最新产品,采用先进的膜分离技术,专为实验室的HPLC-ELSD或小型质谱仪研发设计。Solaris的流速可达10L/min,纯度可达99.5%,出口压力可根据实际应用调节,最高可达100psi。外观方面,Solaris继续延用紧凑、节省空间的设计,可直接置于实验台面。运作时,Solaris可采用毕克模块化的空压机直接供气,无需外部空气供给,也可直接接到实验室的压缩空气源。i-Flow Lab采用成熟的变压吸附技术来生产氮气,可满足客户不同的流速和纯度要求,单台制氮机可提供的氮气流速40L/min-3402L/min不等,最高纯度为99.999%,可满足实验室集中供气需求。而模块化、可扩展的设计,则使气体需求量增加时,只需增加CMS模块就可提高气体产量。新的一年,期待与您在广州相见~若想了解更多,也可以关注我们的官方微信“毕克气体”,留言告诉我们是通过那种渠道了解到我们的便有精美小礼品等你哦~
  • 中国钢研党委常委、副总经理艾磊赴纳克微束开展主题教育专题调研
    在深入开展学习贯彻习近平新时代中国特色社会主义思想主题教育之际,2023年5月29日,中国钢研科技集团有限公司党委常委、副总经理艾磊赴纳克微束开展主题教育专题调研。会议由钢研纳克党委书记、董事长、总经理杨植岗主持。 艾磊副总经理首先参观了纳克微束生产车间,详细了解了当前的研发生产进度、技术指标、服务能力。在随后的座谈交流中,向集团领导详细介绍了纳克微束目前生产经营状况,以及在产品设计理念、关键环节、核心技术等方面的规划,并向集团领导介绍了纳克微束在近期成功交付多台设备的项目成果。艾磊副总经理充分肯定了纳克微束在研发方面的创新意识,以及在成立短短一年的时间内所做出的多方面努力。艾磊副总经理指出,纳克微束要充分围绕科技创新,提升央企产业链控制能力,要以强烈的意愿,强有力的举措,狠抓科技创新,强化创新导向。优化方法和路径,深化改革,坚定不移的做大,更要意志坚定的做强、做优,把工作重心聚焦到提高核心竞争力和核心功能上,聚焦到更好的发挥科技创新、产业控制、和安全支撑上来。希望纳克微束充分发挥自主创新优势,以及央企技术策源地优势,持续积极响应习近平总书记号召,为打赢科学仪器国产化攻坚战贡献力量。中国钢研战略发展部副主任胡德刚、蔡味东,钢研纳克党委工作部主任于武刚,副总经理连志强等参加此次调研。
  • 雷尼绍Raman-SEM联用系统带你探测纳米世界
    众所周知,纳米/亚微米量级的样品在显微镜下很难观察到,这给拉曼光谱的测试带来了不小的挑战。 雷尼绍化学与结构分析仪(SCA)将扫描电镜与拉曼光谱仪两大分析系统连接在一起,无需移动样品,就能原位获得样品相同测试点的电子图像(SEM)、元素组成(EDS)、化学结构(Raman)、电子结构(CL和PL)等多种信息。同时, SEM和inVia都可以作为独立系统运行,并保持各自的性能。 跟随法国地质学家使用雷尼绍的Raman-SEM联用系统来探测纳米世界。BRGM(奥尔良的法国地质勘探局,法国)是一个公共机构,为政府部门、法国及全球的工业和学术研究提供和传播地质信息。BRGM的研究人员主要研究矿物的物理、化学和结构性质。 BRGM配备有SEM-Raman联用仪器,通过雷尼绍的结构和化学分析仪(SCA)接口将雷尼绍inVia共聚焦拉曼光谱仪与TESCAN Mira3扫描电子显微镜耦合在一起。Guillaume Wille博士在矿物理化学和纹理表征部门工作。 Wille博士说:很多情况下,使用经典的光学耦合模式,光学对比度和分辨率是不够的。借助这种创新的设备,我们根据SEM很多模式的成像,结合拉曼光谱仪获得了纳米/微米尺度的样品结构。换句话说,拉曼光谱法利用SEM的纳米分辨率,在表征纳米结构材料中具有强大的优势。Guillaume Wille博士正在使用雷尼绍Raman-SEM联用系统进行样品分析 Wille博士还提道:“使用联用系统的工作主要包括:探测亚微米相(固体包裹体)和基体内的颗粒;对只能通过SEM的对比度或成像模式区分的复杂颗粒进行拉曼分析;空气中的颗粒鉴别(SE、BSE、CL);粉末表征,SCA接口可以原位分析微米尺寸的颗粒。” BRGM开展的工作涵盖了广泛的应用,最近的案例包括环境石棉检测(天然纳米纤维)、土壤污染物和气溶胶颗粒的识别、以及通过拉曼光谱和阴极射线发光研究锡石(氧化锡)。抛光的锡矿薄片上的锡石颗粒 Wille博士及其同事的有关这方面的论文已报道出版。文章“Coupled SEM-microRaman system: A powerfultool to characterize a micrometric aluminum-phosphate-sulfate”阐述了如何使用SEM-SCA分析复杂地质系统(例如,火星样本)中的微尺度磷酸铝-硫酸盐(APS)。采用SEM(BSE成像)、EDS和Raman-in-SEM光谱同时分析具有复杂组成的微晶粒。 “Raman-in-SEM, a multimodal and multiscaleanalytical tool: Performance for materials and expertise”详细介绍了在拉曼光谱使用中计量学方面的研究以及多模分析的使用,耦合成像, EDS、EBSD以及拉曼的微量分析。感兴趣的朋友,想了解更多信息的话,可搜索下以上两篇文章。
  • HORIBA发布多模式拉曼显微镜新品LabRAM Soleil™
    p  日前,HORIBA Scientific在Pittcon 2020上宣布推出LabRAM Soleil™ ,这是一款多模式拉曼显微镜新品,用于UV-VIS-NIR成像。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202003/uepic/b2f1b47d-7afe-4faf-826e-af12053dc137.jpg" title="pittcon-2020-first-multimodal-raman-microscope-for-uv-vis-nir-imaging-331598.webp.jpg" alt="pittcon-2020-first-multimodal-raman-microscope-for-uv-vis-nir-imaging-331598.webp.jpg" width="450" height="253" border="0" vspace="0"//pp  据悉,LabRAM Soleil™ 共焦拉曼成像显微镜是HORIBA LabRAM系列产品的一部分,具有超快成像、先进的自动化功能、直观的软件和强大可靠的设计等特点。/pp  得益于创新的SmartSampling™ 技术,该产品成像的速度比传统的拉曼光谱仪快100倍 专利QScan™ 技术实现了lightsheet共焦成像。/pp  先进的自动化特点节省了大量的时间,极大地改善了用户体验。LabRAM Soleil™ 具有真正的自操作、远程维护和即时目标识别等优点。用户可以使用全自动的、功能丰富的仪器来加速分析,最多6个机动激光器(4个内置,2个外接),多达6种光谱模式。此外,LabRAM Soleil™ 还随附了最新的内置LabSpec™ 6光谱套件,可以支持更快的数据采集和分析。/pp  据悉,LabRAM Soleil™ Raman显微镜可以与HORIBA的原子力显微镜(AFM)系统OmegaScope™ 耦合,可用于不同的受控环境,并获得纳米级的光谱测量。/p
  • 雷尼绍拉曼与您相约第十一届光谱网络会议
    7月19日 周二 14:30~15:00 李兆芬老师将在仪器信息网_第十一届光谱网络会议进行精彩的报告。Webinar在线直播!不可错过 等你加入!报告人简介李兆芬光谱产品部应用工程师 2007年毕业于东华大学,并获得硕士学位。现任雷尼绍光谱产品部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用,拥有多年的拉曼光谱分析测试经验,具有丰富的理论知识及测试技巧,致力于拉曼光谱在各个领域应用解决方案开发和推广。多次协助老师在Nature,Advanced material,等期刊发表论文。点击链接🔗在线报名,加入我们吧😊https://m.instrument.com.cn/webinar/bigmeet3?mid=23320
  • 流式"玩家"赛雷纳获千万级融资,进军数字PCR领域正当时
    近日,以生育健康、精准医疗和体外诊断医疗器械为主要产品方向的赛雷纳(中国)医疗科技有限公司宣布完成数千万元B+轮融资,由沛坤基金领投、厦门硅谷火炬基金跟投,本轮连同2020年8月B轮融资累计获得融资额近亿元。自2013年在中国成立以来,赛雷纳(中国)医疗科技有限公司屡获境内外资本的大力支持,在前期美国研发技术的基础上,持续技术创新,成功研发了更符合中国市场需求的医疗产品及诊断技术。目前在中国已累计募集资金数亿元人民币。本轮融资所募集资金将主要用于流式细胞仪及新一代无创产前检测试剂的注册申报和市场推广工作。赛雷纳(中国)医疗科技有限公司已建立了完整的体外诊断设备、生育健康诊断试剂等多个产品线。1.体外诊断医疗器械产品线1.1 小型流式细胞仪(已上市)赛雷纳(中国)利用多年细胞分离技术的丰富经验和工程技术的独创优势,成功研发出适合中国基层医疗机构的小型化、便携式流式细胞仪。该设备操作简单、性能卓越,相比同等性能的进口品牌,成本大幅度降低,常用于生殖、免疫、血液、肿瘤、感染等疾病检测。赛雷纳(中国)依托在生殖领域的独特优势,配套试剂优先推出多项适用于生殖中心不孕不育检测试剂盒和满足基层医院广泛需求的免疫系统功能检测产品。Celula流式细胞仪(点击进入流式细胞仪专场查看更多品牌)我国育龄人群中的不孕不育发生率已上升至10%~15%,男性不育占其中的30%~40%。常规精液分析结果仅揭示精子数量、活动率、形态等理化参数,临床亟需对精子功能进行完整评价。赛雷纳(中国)拥有小型化流式细胞仪设备及试剂自主研发能力,是国内首家能够提供完整精子功能检测设备及试剂产品整体解决方案的高新技术企业。赛雷纳流式细胞仪已于2019年初获得NMPA批准上市,随后全自动样本处理仪、自动上样仪等多种配套设备也逐期进入市场。目前,主要客户覆盖三甲医院、生殖中心、疾控中心、临床第三方实验室等,产品获得一致好评。赛雷纳小型化流式细胞仪及全自动样本处理仪将会继续提升技术性能,普及更多医疗机构,努力获得用户的广泛认可。1.2 数字PCR(研发中)利用公司高通量单细胞和DNA分析技术,研发小型化高性能数字PCR,以取代国外品牌垄断,为临床提供更精密和更低成本的检测方法,在肿瘤诊断、临床研究等应用中有重大市场价值。2.生育健康产品线2.1 新一代无创产前技术中国每年超过1000万新生儿,基于孕妇外周血中胎儿游离DNA分析的无创产前检测(NIPT),可以有效提示胎儿患唐氏综合征等染色体遗传疾病的风险,是一种“近似于诊断水平”、“目标疾病指向精确”的产前筛查新技术,已超过一千万中国孕妇受益于此类技术的帮助。然而,目前市场NIPT产品终端价格过高,国家医保尚未覆盖,严重影响了这项检测的普及。同时,现有的游离DNA分析技术可检测的疾病种类有限,无法充分满足对产前单基因遗传病检测的实际需求,在技术上也面临新的挑战。针对以上市场痛点,赛雷纳(中国)利用自身完整的技术能力,开发出新一代NIPT产品: Ø AssuriT 母体外周血游离DNA检测利用基于multiplex-PCR的专利靶向建库方法,结合自研血液稳定剂和DNA提取试剂,AssuriT的问世将大幅降低NIPT成本,同时该产品还具有高于同类产品的准确度,这使得中国全民普及孕妇NIPT检查成为可能。目前,该产品已通过 ISO13485:2016和ISO9001:2015认证,NMPA注册即将完成,预计于2021年底上市。未来,该产品还将拓展无创单基因病等检测内容。Ø AssureDx 母体外周血游离胎儿细胞检测AssureDx通过对孕妇血液中母体细胞的有效去除,获取含有完整基因组DNA的胎儿细胞,可以实现对胎儿染色体非整倍体、微缺失/微重复和单基因疾病的准确无创分析,其技术在肿瘤液体活检,癌症早筛等领域也有重大的潜在应用价值。赛雷纳(中国)正在和多家国内外临床机构合作,计划在2021年完成技术优化,并开始提供检测服务。2.2新生儿高发单基因遗传病检测赛雷纳(中国)运用公司在新一代无创产前产品研发中积累的独特技术能力,开发出基于高通量测序法的多种高发遗传病携带者筛查产品,可全面、准确、低成本地筛查中国人群临床高发单基因遗传病携带者状态,为生育健康的下一代提供有效指导。该产品可与赛雷纳无创产前检测技术相结合,进一步丰富遗传缺陷检测手段,极大降低患儿出生率。关于赛雷纳(中国)赛雷纳(中国)医疗科技有限公司是一家拥有先进诊断技术的高新科技企业,于2013年在成都设立总部,并分别在上海、珠海横琴、北京和美国加利福尼亚州圣迭戈市设立分公司和办公室。企业拥有5000余平米完整的研发、产品转化、生产和服务基地,近百人的多学科技术和营销团队。通过多年在美国和中国的技术研发,已成功推出适合中国各级医疗机构的小型化Sparrow流式细胞仪,配套生殖,免疫等多项重大疾病的检测试剂盒。赛雷纳还拥有新一代靶向无创产前基因检测(NIPT)技术,产品拥有检测更准确,更多检测内容和更低成本的明显优势,可在更早的孕周和更广的人群普及。赛雷纳(中国)将持续进行技术创新,提供最完整、最惠普的诊断产品。更多信息,请浏览www.celula-china.com关于沛坤基金沛坤基金是一家领先的国际化创业投资机构,专注于硬科技投资。主要出资人包括国家发改委、财政部、国家投资开发集团、成都产业投资集团、成都市科技局、成都市新经济委、成都市成华区政府的出资代表。基金管理团队由人社部“创业导师”、前上市美国公司总裁、前高盛执行董事等组成,成员主导了十余个明星项目(如海上鲜、大众点评、上海电气、中芯国际、Hynix等)超过96亿美元的海内外资本运作业务。沛坤基金专注精品创投,全心全意为高层次人才服务,通过集中、连续投资,帮助优秀创业公司高速成长,实践“科技创投助力人类进步”的企业使命。关于厦门硅谷火炬基金厦门硅谷火炬创投基金是厦门市产业引导基金子基金,国际化专业创投机构。专注于生物医药、光伏新能源、新一代信息技术等硬科技战略性新兴产业投资。出资人包括金圆集团、海发集团、上市公司董事长等民营出资人。基金由专业投资团队管理,并按照国际创投行业规则运作,专注做精品创投,全心全意为高层次人才服务,通过集中投资、连续投资,让优秀企业高速成长,实践“科技创投助力人类进步”的公司使命。
  • 【赛纳斯】2022年国产拉曼检测仪器再踏征程
    2018年3月22日至今,中美贸易战已延续4年多,以美国为首的美西方有关国家对我国高科技技术、产业围堵、封杀,意图让中国只能沦为它们廉价低端产品的生产基地,只能重复陷入高消耗资源,破坏环境的低端产业,低利润值的黄昏行业。检测仪器作为发现数据的眼睛,执行操作的手脚,在工业控制领域在生活当中其重要性不言而喻,为突破封锁,国家层面两大顶层纲领性文件接踵而来!双重利好政策助力国产仪器仪表发展,国产仪器仪表将迎来发展的“春天"!——《中华人民共和国科学技术进步法》与《“十四五"智能制造发展规划》。为打破这一现状,突破检测仪器被进口垄断的局面,国产检测仪器在面对挑战情况下,将加大检测仪器的研发投入,追求技术创新,突破技术壁垒,掌握核心技术,打造出稳定可靠的检测仪器,减少对进口产品的依赖、降低进口技术掣肘。勇踏潮头搏风浪厦门赛纳斯科技有限公司作为一家集研发、生产、销售、服务为一体的科技型企业,坚持自主研发和产业深耕,基于壳层隔绝纳米粒子增强拉曼光谱技术为核心,为政府和行业客户不断提供创新应用开发及解决方案。为公安系统、海事系统、应急系统、海关稽查系统、卫生系统、渔业系统、食药系统、农业系统等提供高科技的现场快速检测执法设备及监管平台、检测服务等整体解决方案。尽管面对着来自进口品牌巨大压力,面对同行竞争的挑战。厦门赛纳斯对标国际领先,秉持“质量就是核心,创新就是灵魂”的理念,在质量和创新的道路上从未停止前进。坚持自主创新研发、独立知识产权赛纳斯科技与嘉庚创新实验室开展产学研合作,成立嘉庚创新实验室公共安全联合研究中心,并与国家毒 品实验室、福建省公安厅等部门建立联合实验室,通过便携式光谱仪和拉曼增强芯片的研发,将其应用在毒 品现场检测。截至到目前为止申请国际PCT发明专利、国家发明专利和实用新型专利达10余项,并承接多项国家重点研发计划。国产拉曼检测仪新征程赛纳斯科技2013年作为产业化单位,切入拉曼检测仪行业,依托核心自主技术,逐渐开创便携检测、在线检测、移动检测、实验室自动化等项目,对标国际巨头助力国产化。目前针对传统毒 品、新精活类物质、麻醉类药品、精神类药品、危化品、爆炸物等检测,公司形成一系列快速检测产品。手持式痕量毒 品拉曼光谱仪SHINS-P700T手持式拉曼光谱仪SHINS-P1000手持式拉曼检测仪SHINS-785-Pro 科研型电化学拉曼光谱仪系统EC-Raman科技自立自强是国家发展的战略支撑,国产仪器肩负着高端科学仪器国产化,推动科技进步的重任。赛纳斯科技作为一家植根于厦门的高科技企业,以国家战略需求为己任,重视履行社会责任,立足厦门大学深厚文化底蕴,继承中华民族优良文化传统,吸收借鉴先进企业优秀文化理念,将持续加大研发技术投入,保持创新动力,抓质量促生产,不断拓展创新应用与解决方案,用卓越的技术和严格的标准为行业、社会、国家创造价值,共同鉴证拉曼检测仪器国产化的新时代这一伟大进程。
  • 雷尼绍发布拉曼新品 助力临床研究
    p  2019年3月,雷尼绍发布一款拉曼光谱新品——RA816生物分析仪,这是一款紧凑型的台式拉曼成像系统,主要用于生物和临床研究。该仪器易于使用,可以从一系列生物样本,包括组织和生物液体中快速收集详细信息。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/9ad0ad1b-347f-4bcb-8895-531765a253a8.jpg" title="RA816 Biological Analyser.jpg" alt="RA816 Biological Analyser.jpg" width="450" height="300" border="0" vspace="0" style="width: 450px height: 300px "//pp  RA816生物分析仪可以帮助生物学家和临床医生识别和评估不同阶段疾病的生化变化。他们不需要事先知道特定的分子靶标,不需要费时的标记或染色,就能获得完整的生化信息。易于使用的硬件和软件使其成为适用于临床研究环境的、性能非常高的拉曼光谱工具。/pp  RA816生物分析仪可以快速获取生物样品中生物化学物质的分布和数量方面的详细信息,包括组织活检、组织切片和生物液体。它将拉曼光谱的生化分析能力和先进的光学、光谱成像技术结合在一起,行成一个紧凑、简单易用、强大的系统。用户可以从生物样本中获取多方面的信息,从组织中外源和内源化合物的分布,到检测药物相互作用和组织损伤引起的蛋白二级结构变化。/pp  雷尼绍生命科学高级应用科学家Martin Isabelle说:“该生物分析仪是专门为生物和临床用户设计的,这款仪器可同时测定生物样品中的多种分子元素,节省了时间和金钱。高特异性有助于早期发病的疾病标志物的发现和验证,使拉曼成为临床研究的理想工具。”/pp  据悉,雷尼绍的RA816生物分析仪已经在多个地点进行了广泛的测试,包括英国牛津拉德克利夫医院(Oxford Radcliffe Hospital)的神经肿瘤科和位于意大利米兰的Humanitas医院(Humanitas Hospital),他们研究脑组织,对神经胶质瘤进行基因分类。/p
  • 普识纳米|通过拉曼光谱法实现金刚石微粉品级鉴定
    金刚石微粉是指粒度细于54微米的金刚石颗粒,有单晶金刚石微粉和多晶金刚石微粉。由于单晶金刚石微粉产量大,应用领域广,行业内一般将金刚石微粉专指单晶金刚石微粉,单晶金刚石微粉是由静压法人造金刚石单晶磨粒,经过粉碎、整形处理,采用超硬材料特殊的工艺方法生产。金刚石微粉硬度高、耐磨性好,可广泛用于切削、磨削、钻探、抛光等。是研磨抛光硬质合金、陶瓷、宝石、光学玻璃等高硬度材料的理想原料。随着科学技术的发展和进步,市场对金刚石微粉的需求量越来越大,对质量要求也越来越高。对于金刚石微粉来说,影响质量的因素有颗粒强度(品级)、粒度组成、颗粒形状、杂质含量等因素。对于微粉的粒度组成、颗粒形状、杂质含量等项目,均有比较成熟的检验方法,但对于微粉的颗粒强度(品级)没有方法对其进行检验。目前控制金刚石微粉品级的方法,只能是通过控制单晶金刚石原材料的品级,来控制微粉的品级。一旦单晶金刚石颗粒被做成微粉,就没有任何方法对其品级进行检验了。这给微粉的生产单位和使用单位的质量控制都带来非常大的麻烦和不确定性。金刚石微粉品质鉴定的难点使得交易不具备标准化。随着金刚石粉交易量逐年增长,品质鉴定需求正变得愈加迫切。拉曼光谱作为分子光谱技术,具有直接给出分子信息、谱图信息丰富、非接触无损检测、样品需求量少、灵敏度高等检测优势,厦门大学直属企业普识纳米,通过拉曼光谱法已经实现了金刚石粉品质鉴定的初步能力。近期我们对金刚石粉样品进行拉曼光谱分析,采用 532nm 波长的拉曼光谱仪检测 A-J 共计 10 个金刚石粉末样本,由下图可看出金刚石微粉拉曼图谱在1351cm-1附近、3130cm-1附近有两个明显的拉曼特征峰。利用与厦门大学共同开发的数学模型和计算方法进行计算,可鉴定出金刚石的品级。图 1 金刚石粉末样本拉曼谱图通过分析我们对10个样本进行归类,如下图,可将样品分为两类。其中编号1-10分别对应样本编号 A-J.图 2 主成分分析结果分类从图2 主成分分析结果我们可以看出,1-3-4-9归属一类,2-5-6-7-8-10归属一类。与单晶金刚石原材料的品级数据一致。普识纳米拉曼光谱检测方案是一种科学、有效、快速、无损的检测方法。该方案能够准确检测金刚石微粉的品级,实现了对金刚石微粉质量的控制;为金刚石微粉生产和应用企业的质量检验与控制提供了一种科学有效地检验方法。【相关产品】普识纳米PERS-RZ15系列科研型拉曼光谱仪(532nm)适用于对原材料的筛选、现场检测、石墨烯合成反应、生物医疗、体外诊断及物质分析鉴定等场景;对金刚石粉的检测结果客观准确,助力生产和应用企业对金刚石微粉的质量控制。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 雷尼绍拉曼带你“解读”文物未知奥秘
    文物是我们中华民族的重要象征,具有很高的历史和研究价值。流传至今的文物,尤为珍贵,因而文物的科学研究和保护工作也愈加重要战国嵌铜鸟兽纹壶图片来源:中国国家博物馆拉曼光谱与文博领域的工作息息相关,可分析鉴定的文物材质也包罗万象:包括颜料,锈蚀产物,陶瓷,纸张,玉石,玻璃等。为推进文物科学研究相关工作的开展,更多了解仪器的优化应用和发展趋势,雷尼绍为中国国家博物馆文保院提供了一场拉曼光谱仪技术培训交流会。 会上,雷尼绍拉曼销售经理于洋先生带领国博老师们一同走进雷尼绍的发展历史,并详尽地解读了拉曼,也邀请到了雷尼绍拉曼高级应用工程师王志芳博士进行拉曼优势解读、应用解析、案例揭秘、基础使用、数据处理。同时王志芳博士还将以上可分析的材料结合实际案例让在场用户在拉曼光谱仪上一睹为快。专家解读,难点逐一攻破王志芳博士与大家分享了拉曼光谱仪的工作原理、拉曼光谱仪的优势以及六大应用领域的现状、案例分析。拉曼光谱之所以在文博领域受到科研人员的广泛关注和认可,是因为拉曼光谱拥有的众多优势都满足于文博领域样本的特殊性。简单总结一下:在测试之前,无需对样品进行前处理,所以不存在因为前处理带来的污染,在测试时,是非接触式的,所以拉曼技术也是无损技术。大家使用的拉曼光谱仪大都是显微拉曼光谱仪,所以所需的样品量特别的少使用雷尼绍光纤探头分析检测文物这些优势都契合了文博样品珍贵、稀少的特性。测试过程中,对样品的形态,颜色等都没有任何的选择性,可直接测量。与此同时拉曼光谱仪可以做原位测试,在平台上耦合一些反应装置,例如变温/压力反应池,可以测到光谱随环境等的变化。拉曼光谱仪操作比较简单,几乎没有耗材,仪器维护成本比较低,种种优势也使得拉曼光谱仪在众多领域都有非常广泛的应用,涉及材料,药物,生物,考古,刑侦,地质等等。雷尼绍拉曼事业部高级应用工程师:王志芳博士进行拉曼上机操作演练雷尼绍拉曼事业部高级应用工程师王志芳博士进行拉曼上机操作培训 实操交流,夯实拉曼应用在面对面的上机实操环节,王博士对雷尼绍拉曼光谱仪的硬件和软件做了详尽的基础解读同时结合国博文保院的工作特性进行了实操演练。使用环节让每个拉曼优势不再停留于纸上谈兵,而是致力于让每位用户都得到娴熟的上机操作技能。现场用户踊跃提问,针对实际案例进行了深入探讨,对实际应用及操作都起到很好的指导作用,给日常分析检测提供了更多思路。雷尼绍拉曼光谱仪易掌握的操作以及众多的优势与文博领域的特殊性相得益彰,当仁不让的成为文博界科研人员的宠儿,也推进了文物科学研究相关工作的开展。
  • 【赛纳斯】警惕穿上马甲的合成大麻素类物质!
    大麻为什么那么“受欢迎”? 在大麻原植物中有一种叫做四氢大麻酚(THC)的物质能作用于人体,并让人产生欣快感和一定依赖性。四氢大麻酚是一种大麻素,而人体本身也可以分泌一种“花生四烯酸乙醇胺”的物质,同样可以作用于人体自身,产生和大麻类似的化学作用,该物质也被称作大麻素。人体中存在的“内源性大麻受体”参与了食欲、疼痛感受、情绪和学习记忆等生理过程,正常人体处于一种动态平衡模式。而一旦摄入外源性大麻素(譬如吸食大麻),这个动态平衡就被打破,还会让作用于对应的受体,让人产生欣快感。因此,一旦停止吸入大麻,体内将无法保持自身的一个平衡状态,伴随而来的将是各种各样的“戒断症状”。合成大麻素究竟是何方神圣? 为什么贩毒集团会盯着大麻?此前对精神药品的管制大多是按单一物质进行列管,所以贩毒集团仅需找到类似结构或相同药效的物质,只要该物质不在管制目录名单上,便可游离于管制之外,成为一种全新的“合法的毒 品”。合成大麻素就是贩毒集团为躲避公安机关缉毒部门的侦查、逃避刑事打击人工合成的,与四氢大麻酚等物质能产生类似效应的物质,这些物质同样可以作用于大麻受体,让人产生欣快感!合成大麻素类物质是九大类新精神活性物质中的一类,具有下列化学结构通式(如图1)。 图 1合成大麻类分子结构通式 该类人工合成的化学物质,成本低,易获取。同时能产生更为强烈的兴奋、致幻等效果,吸毒人员吸食后会出现头晕、呕吐、精神恍惚、致幻等反应,过量吸食会出现休克、窒息甚至猝死等情况。合成大麻素类毒 品多以香料、花瓣、烟草等形态出现,代表制品包括“小树枝” “香草烟” “香料” “香草烟”等。其中,毒 品K2和K3(也称“干花”),是毒贩把毒 品稀释后浸泡在花叶上,然后将其晒干,混进香烟内吸食的,具有极高的迷惑性。近两年电子烟的兴起,为合成大麻素类找到了新的“宿主”,不少人利用新行业的监管漏洞,在朋友圈公然贩卖“上头电子烟”,宣称可以让人合法上头、合法“飞行”。国家禁毒委员会宣布在2021年7月1日起,将合成大麻素类物质和氟胺酮等18类物质列入精麻药品目录管制,此次整类列管合成大麻素类新精神活性物质,将含有公告所列化学结构通式的物质列入管制。赛纳斯基于自有搭建物联网平台,运用大数据、物联网、云端管理、人工智能等技术手段,并结合自主研发拉曼光谱技术光谱快检装备,构建了合成大麻素物联网检测与防控系统,实现合成大麻素的可管可治、严防严控,有效抑制合成大麻素的蔓延。结合拉曼光谱技术完美覆盖合成大麻素检测每一种合成大麻素类化学物质都有其独有的光谱特征谱,它就像人的指纹一样具有唯 一性。常见的手持拉曼光谱仪的激发光源为785 nm激光,可以实现大部分毒 品标准品的鉴定。但是贩毒链中毒 品纯度较低,且含有的杂质容易带来荧光干扰,甚至有些毒 品本身的就具有较大的荧光基团。785 nm波长激发光下测试的拉曼特征谱峰往往会被被湮没在荧光信号当中,无法实现有效鉴定。而公共安全联合实验开发的SHINS 1064手持拉曼仪,配备1064 nm红外激光器,可以有效规避物质荧光干扰,如此实现合成大麻类毒 品的一网打尽。 赛纳斯SHINS-P1000手持式拉曼光谱仪有效降低荧光干扰,能够覆盖荧光强的实际样品检测;用于烟油中合成大麻素样品的隔包装定性识别检测;采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,赛纳斯SHINS-P1000手持式拉曼光谱仪可穿透透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采1064nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:合成大麻素,芬太尼、卡芬太尼及衍生物 新型精神药物 安非他命 可卡因 海洛因 管制前体。SHINS-P1000现场快检装备介绍(1)信息特异性强,可透过透明包装直接鉴定(2)GPS定位、身份证识别、拍照取证、智能辅助为执法工作减负(3)本土化数据库,基于中国毒情建立物联网系统检测流程:合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。直接进行拉曼信号采集容易有杂质干扰,此处采用简单的前处理方式(①),然后将处理后的样品直接滴于增强芯片表面(②)。再将芯片插于拉曼光谱仪的检测槽中(③),进行拉曼检测,直接输出结果,检测限低至ppm级别,检测时间数十秒即可。赛纳斯SHINS-P1000手持式拉曼光谱仪因其穿透包装无损检测样品的特性,非常适用于帮助执法人员及海关人员进行疑似样品筛查,获得准确的测试效果。综上所述,赛纳斯SHINS-P1000手持式拉曼光谱仪可为用户进行合成大麻素化合物的定性分析提供快速检测方案。
  • 获证!赛雷纳8项精子流式检测试剂均备案通过 针对男性不育问题
    赛雷纳针对男性不育病因的8项精子流式检测试剂均已获证,赛雷纳将在不孕不育领域持续提供最完整的流式解决方案。精子检测§ 全球约有15%的适龄生育夫妇受不孕不育的困扰。△中国育龄人群中不孕不育率已攀升到12.5%至15%—女方原因占50%,男方原因占30%,男女双方原因占10%—患者接受治疗的比例约为81%,接受二次以上治疗的约占71%,治疗失败的约占66%;98.9%治疗失败的患者没有进行全面、科学的检测,以致没能查清查准病因。§ 精液常规分析并不能全面评估男性生育力和精子质量,与实际生育力仅有70%的一致性。—临床上大约有三分之一男性不育患者的常规精液分析结果均正常和接近正常—除了无精子症或少、弱、畸形精子症外,精液常规分析并不能把有生育力和无生育力的病人完全区分开。§ 长期以来,临床对男性不育的诊断存在很大的困难—最主要的原因是常规精液分析只测定精子的数量、活动率及精子运动分级。这些指标只能反映最基本的精液质量,不能反映完整的精子功能。§ 流式细胞法术是目前最快、最精准、最可靠的精子功能检测方式—整个操作过程简单、快捷、稳定可靠—人员要求低—全过程自动化,无需人为干预—检测结果客观准确Celula流式细胞仪01精子DNA染色试剂盒产品名称:精子DNA染色试剂盒包装规格:50人份/盒,10人份/盒产品货号:FC0412AR备案编号:川蓉械备20190087预期用途:本试剂盒主要用于成年男性精子核染色检测。样本要求:新鲜精液标本或液氮冻存样本。02精子顶体反应染色试剂盒产品名称:精子顶体反应染色试剂盒包装规格:20人份/盒产品货号:FC1711AR备案编号:川蓉械备20200140预期用途:主要用于检测成年男性体外诱发的精子顶体反应状况。样本要求:新鲜精液标本液化后立即进行诱发精子顶体反应检测。03精子顶体染色试剂盒产品名称:精子顶体染色试剂盒包装规格:20人份/盒产品货号:FC0611AR备案编号:川蓉械备20200144预期用途:本试剂盒主要用于检测成年男性精子顶体染色,观察精子顶体的完整性。样本要求:新鲜精液标本液化后立即进行精子顶体完整性检测。04精子白细胞染色试剂盒产品名称:精子白细胞染色试剂盒包装规格:20人份/盒产品货号:FC1511AR备案编号:川蓉械备20200141预期用途:主要用于成年男性精液中精子白细胞的测定。样本要求:新鲜精液标本液化后立即进行精子白细胞检测。05精子质膜染色试剂盒产品名称:精子质膜染色试剂盒包装规格:20人份/盒产品货号:FC0811AR备案编号:川蓉械备20200146预期用途:本试剂盒通过检测精子质膜的完整性评价精子的存活率。样本要求:新鲜精液标本液化后立即进行精子质膜完整性检测。06精子线粒体膜染色试剂盒产品名称:精子线粒体膜染色试剂盒包装规格:20人份/盒产品货号:FC1711A备案编号:川蓉械备20200143预期用途:主要用于检测成年男性精子线粒体膜电位,评价精子活力。样本要求:新鲜精液标本液化后立即进行精子线粒体膜检测。07精子活性氧染色试剂盒产品名称:精子活性氧染色试剂盒包装规格:20人份/盒产品货号:FC1611AR备案编号:川蓉械备20200145预期用途:本试剂盒主要用于成年男性精子活性氧检测。样本要求:新鲜精液标本液化后立即进行精子活性氧检测。08凋亡精子染色试剂盒产品名称:凋亡精子染色试剂盒包装规格:20人份/盒产品货号:FC1711A备案编号:川蓉械备20200142预期用途:主要用于检测成年男性精子凋亡状况。样本要求:新鲜精液标本液化后立即进行凋亡精子检测。关于赛雷纳(中国)赛雷纳(中国)医疗科技有限公司是一家拥有先进基因检测技术的公司,公司技术总部位于美国加利福尼亚州的圣迭戈市。公司创始人,董事长/总经理张海川1997年获得清华大学精密仪器与机械专业的博士学位,在美国积累了十多年高新技术研发和企业管理经验,主导了无创产前和流式细胞仪等多项核心技术的建立,个人拥有50余项专利和20多篇文献。赛雷纳(中国)于2013年在成都设立总部,并分别在北京、上海设立分公司,在全国多个省份设立办事处,现已建立了5000余平米完整的科研、技术转化、生产和服务基地。目前拥有100余人研发管理团队,与国内外多家知名企业和知名专家建立了紧密合作。(文源:CELULA)
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA增强衬底可有效提高拉曼和红外光谱的检测灵敏度,要实现超高灵敏的SERS和SEIRA测量尚有一定难度。成功的研究报道往往集中于拉曼散射或红外吸收截面较大的少数分子体系,其增强衬底结构在实际应用中尚面临一些困难。特别是如何使应用面最广的SERS或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和nanoIR探针,也具备超高检测灵敏度,即使面对散射或吸收截面较小的分子仍可获得有效的检测信号。这一问题仍充满挑战。因此,进一步针对特定的微纳衬底而优化设计的宏观光学系统的研究成为迈上更高灵敏度这一新台阶的关键。2.2 基于维纳结构衬底的宏观光学设计SERS信号与多重因素有关,其强度具体可用下式表示:我们可以参考SERS的强度公式将SEIRA的强度表示如下:GSERS和GSEIRA分别表示衬底通过等离激元和避雷针效应造成的局域场增强。上述公式清楚表明,SERS和SEIRA的强度不仅与微纳衬底的增强因子有关,也与仪器的参数,如光耦合效率Ω、检测器效率Q、色散系统的通量Tm和光学系统的透过率T0直接相关。虽然在Raman和IR发展的历程中,针对光学系统的研究从未停止,但聚焦在光学系统和微纳衬底之间的耦合效率的研究还很少。耦合效率Ω可进一步展开为其中Ωe表示激发光的空间角集中程度、Sexci表示微纳衬底的定向激发性质、Me-e则表示激发光和衬底之间的匹配程度。Ωc表示收集系统的定向收集能力、Sscat表示微纳衬底的定向辐射属性、Mc-s则表示Ωc和Sscat之间的匹配程度。上述三个公式清晰地描述了宏观光学系统和微纳衬底之间匹配程度对获得超灵敏SERS和SEIRA光谱的重要意义。图7为SERS和SEIRA中传统的耦合光学设计,和考虑衬底与光学系统匹配后的耦合光学设计。与传统方式相比,后者可在微纳衬底表面激发出更强的热点,获得更灵敏的SERS和SEIRA检测效果。图7 SERS和SEIRA中的光学设计。a 传统的激发和收集光锥。b 抛物面反射式聚焦镜。c 折射式物镜。d 反射式物镜。e SERS和SEIRA中精细设计的激发和收集空心光锥。f 基于棱镜和波导结构的激发光学。g 基于棱镜的折射式空心光锥透镜。h 基于棱镜的反射式空心光锥物镜。角度激发。通过ATR棱镜定向激发SERS和SEIRA衬底获得更高检测灵敏度是最常见的设计宏观光学增强微纳光学衬底的例子。如图8中所示,在二氧化硅半球柱面镜上蒸镀一层Ag膜,扫描激发光角度,在很窄的角度范围内可观察到表面等离激元效应。在该角度下收集纳米粒子构成的SERS衬底的拉曼散射信号,其光谱增强性能与金属膜表面相比可提高2-3个数量级。而在SEIRA中, ZnSe半球柱面镜表面的金岛状膜衬底的SEIRA增强性能也强烈依赖激发光的入射角度。70°下激发获得的SEIRA强度比20°时高6倍。更多的基于波导结构激发SERS和SEIRA的研究也证明了将激发光能量集中在某一窄角度范围内,可进一步提高衬底的SERS和SEIRA性能。图8 基于ATR棱镜结构定向激发SERS和SEIRA。a-c 在SERS中通过半球柱面镜激发金属膜表面SPR,进而激发单粒子SERS。d-f 在SEIRA中通过半球柱面镜激发金岛膜SEIRA。定向辐射收集。定向辐射收集主要体现在SERS衬底表面。SERS衬底作为天线,它接收远场光并在近场区域产生电磁场“热点”,从而激发“热点”内的分子。分子辐射的拉曼信号再次激发SERS衬底并辐射至远场。研究表明远场辐射的SERS信号表现出强烈的定向辐射属性。如图9所示,二聚体和三聚体的SERS远场辐射信号集中在很窄的空间角度范围内,而该空间角度甚至超过了显微物镜的收集角度范围,导致大量信号无法被测量。该实验结果证明宏观光学系统设计在提高SERS信号收集效率方面是非常必要的。图9 二聚体和三聚体表面SERS信号的远场辐射特征兼顾角度激发和定向辐射收集的光学设计。角度激发可提高SERS与SEIRA的激发效率,定向辐射收集可提高SERS的收集效率。2017年报道的一种消色差的固体浸没透镜结构做到了两者兼顾。如图10所示,通过该物镜结构,激发光能量可集中在很窄的角度范围内,有效提高激发光与SPR效应之间的能量耦合效率,因此在SPR角度附近SERS信号才最强。同时该物镜的数值孔径高达1.65,可有效收集远场辐射的SERS信号。该物镜不仅支持Kretschmann结构,也支持Otto结构,数值分析结果表明在不同衬底材料表面散射的SERS信号均具有定向辐射特征,与一般的线性偏振相比,热点的局域场增强更高。图10 基于消色差固体浸没透镜光学设计兼顾角度激发和定向辐射。a-d KR-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。e-j Otto-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。光纤高效激发和收集耦合TERS。另一种兼顾激发和收集效率的设计是光纤耦合结构的TERS装置。在该装置结构中,银纳米线TERS探针组装在锥状光纤表面。线偏振激发光在光纤中传播的波导模式会在不同的空间位置与银纳米线探针的两个SPP模式TM0和HE1耦合。通过光纤角度和长度的优化设计,提高远场光与TM0模式的能量耦合效率,优化后的远、近场的耦合效率可达70%。考虑到TERS的两步耦合过程,总体的远、近场光耦合效率可达50%,即使在最简单的TERS装置上也可实现碳纳米管表面1 nm空间分辨率的化学光谱采集。图11 a 波导模式LP01和银纳米线探针的TM0和HE1模式之间的耦合示意图。b 通过TM0模式的近场和远场耦合。c TERS探针和光纤的SEM图。d 碳纳米管样品的形貌。e 沿着d中白色虚线的TERS强度分布。f d中虚线上A、B和C位置处的TERS光谱。光学设计拓展nanoIR和TERS的适用环境。近几年先后报道的液体环境纳米红外光谱技术均通过底部ATR光学结构激发实现。电化学TERS技术的一大难题是TERS的激发和收集光路路径上光传播介质发生了变化,造成常规TERS测量技术的不直接适用。如何在有限的空间内实现TERS光路与电化学池的有效光学耦合是一个关键的技术问题。如图12所示,在该设计中,电化学池被改造成由透明窗片、倾斜样品区以及电化学功能模块构成的结构。这一结构有效抑制了光路畸变对TERS测量的影响,由此成功获得了电化学反应前后的少量反应物和产物的TERS光谱。图12 电化学TERS技术。a 在电化学池中增加光学窗片,并减小与激发和收集物镜的距离实现的电化学TERS装置结构。b-c 溶液中TERS探针的局域电场分布。d 电化学反应过程中不同位置的TERS光谱。e 反应物和产物的空间分布。f 不同样品偏压下的产物。03总结与展望SERS和SEIRA分别显著提升了拉曼光谱和红外光谱的检测灵敏度,近二十年来,随着微纳光学技术的逐步发展,高性能的增强衬底不断问世。尽管目前对宏观光学系统与微纳衬底之间多尺度耦合效率的研究还较少,在可预见的将来,该问题终将被解决,这将使得应用面最广的球形纳米颗粒的光谱增强性能也有机会进一步实现数量级的提升。除了兼顾宏观和微纳光学的耦合设计,近年来基于原子尺度的避雷针效应与等离激元结合也实现了一系列的突破,如利用TERS技术实现了单分子、甚至单个化学键的成像。然而,可检测的分子体系仍限制于少量的分子种类。这就要求在提高宏观光学到微纳光学的耦合效率的同时,也要提高从微纳光学到原子尺度光学的能量耦合效率。这一问题的解决将不仅对TERS,对Nano IR的发展也不至关重要。在实际应用中,SERS和SEIRA的环境普适性也是一个重要的指标。特别是在TERS和NanoIR技术中,发展适配如能源化学中的多相界面体系或生命科学中的液相环境体系等具体应用场景的光学结构设计将具有重大应用意义。文章信息:该研究成果以"Advances of surface-enhanced Raman and IR spectroscopies: from nano/micro-structures to macro-optical design"为题在线发表在Light: Science & Applications。本文 第 一 作者为厦门大学的王海龙博士,共同通讯作者为田中群教授和王海龙博士。合作者包括尤恩铭博士、丁松园教授和印度SRM University- AP的Rajapandiyan Panneerselvam博士。
  • 原位拉曼研究揭示纳米材料界面新奥秘
    p  拉曼散射谱是一种具有高能量分辨率的指纹谱,特别是引入具有表面等离子体共振(SPR)特性的贵金属纳米结构形成表面增强拉曼散射(SERS)体系后,其灵敏度可提高到准单分子水平,在界面行为和过程研究方面大有可为。中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室刘景富研究组利用纳米银的SERS活性,原位研究了影响纳米材料界面效应和环境行为的若干关键过程,并取得新进展。/pp  研究组刘睿等利用SERS的高能量分辨率,结合X射线吸收谱,提出并实现了通过Ag单原子层精细调控壳层金属原子与基底金属间的结合强度,从而在单原子层尺度调控壳层原子构象的新思路。他们在超细Au纳米线表面可控地构筑了高分散Pd原子和Pd团簇,并借助拉曼探针分子2,6-二甲基苯异腈分子对结合金属原子的指认和定量统计能力,发展了原位定性表征和定量测定不同构象Pd原子的新方法。利用该方法,揭示了催化硝基酚反应活性与单分散Pd原子以及电催化氧化乙醇反应活性与团簇态Pd的直接关系,从实验上明确了这两类反应的活性中心。该研究不但提供了一类可用于探测特定催化反应活性中心的模型催化剂,更重要的是揭示了精细界面调控在催化剂设计中的重要地位,以及SERS在此类研究中的独特作用。该研究受到审稿人的高度评价,认为其解决了非常重要且技术上非常具有挑战性的难题,论文发表在材料科学期刊《先进材料》(Advanced Materials,DOI: 10.1002/adma.201604571)上。/pp  研究组也借助SERS指纹谱对反应过程中多中间体的同时识别能力,建立了利用SERS原位追踪SPR生成热电子归趋的新方法。利用该方法,研究了光照下Ag基共振催化剂生成的热电子的分配-归趋行为,发现Ag针孔是决定热电子是否能有效传递给活性中心(例如Pd原子)用于催化反应的关键。此项研究为共振催化剂的设计提供了新的视角,并对Ag-Ag基半导体共振光催化剂的稳定性给出了新的解释,同时对阐明纳米银的环境稳定性也具有一定的意义。相关论文发表在Small, 2016, 12, 6378–6387。Wiley旗下“Materials views中国”以《雁过留影——基于SERS原位监控催化反应的热电子归趋追踪方法》为题详细介绍了该工作。/pp  研究组还利用SERS技术,高灵敏、原位追踪了痕量纳米银在水?气界面的迁移过程,揭示了纳米材料的水界面微层富集现象,发现纳米银进入环境水体后迅速向水?气界面迁移,形成厚度数十微米、纳米银含量高于下层水体15-30倍的富纳米银表面微层。研究结果以封面文章发表于ACS旗下环境科学期刊《环境科学与技术快报》(Environmental Science & Technology Letters,2016, 3, 381–385)。/pp  研究得到国家重大研发计划、国家自然科学基金委和中科院先导专项的资助。/pp style="TEXT-ALIGN: center"img title="W020161213467523550467.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/8d370a3d-81f6-496c-8bbe-466d50151d3d.jpg"//pp style="TEXT-ALIGN: center"  SERS技术揭示了Ag单原子层对壳层金属与基底金属原子间界面作用的调控/ppbr//p
  • 雷尼绍(上海)贸易有限公司成立拉曼演示实验室
    近日,雷尼绍(上海)贸易有限公司在位于上海市闸北区市北高新技术服务业园区内、建筑面积超过3200平方米的雷尼绍总部新址内成立了拉曼演示实验室。新实验室办公环境整洁优雅,实验室内部为温度、湿度可控制的超净间,安放了一台自动化程度最高的科研级inVia Reflex显微拉曼光谱仪。这是继北京演示实验室后,中国地区成立的第二个拉曼演示实验室。 上海拉曼演示实验室 “雷尼绍拉曼光谱产品部门在过去的20多年里不断致力于新技术的开发与创新,引领拉曼光谱行业不断前行。雷尼绍产品被广泛应用于各类科研及应用领域,例如物理学和化学、地质科学与宝石学、材料科学、刑侦科学、艺术品与文物鉴定、生物医药、半导体材料、生命科学等。”雷尼绍(上海)贸易有限公司拉曼部门总经理王峥说,“目前,雷尼绍分别在北京和上海设有拉曼演示实验室,这意味着国内各地区用户将获得更周到便捷的服务及更优质的售后支持。我们将继续在拓展拉曼应用领域及提升服务质量上投入新的力量,以达到由本地工程师提供国际化水准服务的目标。” 雷尼绍将以此次上海演示实验室的成立为契机,秉承积极进取的精神,为中国拉曼光谱的科研和分析检测市场就近提供更大力度的支持和更高水平的服务。 inVia共焦显微拉曼光谱仪 雷尼绍inVia共焦显微拉曼光谱仪一经推出,便成为世界上最受欢迎的科研拉曼系统。inVia显微拉曼系统具有公认的高性能和极强的灵活性,在此基础上还提高了操作的简易性。 访问www.renishaw.com.cn中的“拉曼光谱”部分,了解inVia共焦显微拉曼光谱仪的性能、关键技术和应用等方面的详细信息。
  • HORIBA科学仪器事业部发布HORIBA LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪新品
    HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil™ 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan™ 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman™ (TERS)、纳米PL和阴极发光专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil™ 提供先进的自动化功能,结合EasyImage™ 易成像工作流技术,它大大减少了参数设置上花费的时间,并且极大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage™ :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID™ : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上专利保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling™ :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive™ :光栅快速驱动,快至400nm/s √ 4种SWIFT™ 功能 SWIFT™ :普通超快速成像 SWIFT™ XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT™ XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT™ :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus™ :轻松分析百万条光谱,即使是“困难”的样品,也能极大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder™ 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage™ 自动化的工作流程使得用户只需一键点击即可获得拉曼成像技术指标光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线创新点:LabRAM Soleil™ 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling™ 和QScan™ 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 HORIBA LabRAM Soleil™ 高分辨超灵敏智能拉曼成像仪
  • 3纳米空间分辨率!针尖增强拉曼光谱(TERS)再立“新功”
    为了更加合理地设计高性能的多相催化剂,科学家们不再满足于整体催化机理的研究,他们需要从原子、分子水平来了解单个活性位点的电子结构与催化性能之间的关系。近些年来,扫描探针显微镜与拉曼光谱联用的针尖增强拉曼光谱(Tip-Enhanced Raman Spectroscopy,TERS),可以同时提供表面形貌与拉曼光谱信息,并可达到亚纳米级的空间分辨率,这使得科学家们可以在纳米尺度甚至原子尺度来表征催化剂表面结构与性质之间的关系。TERS装置图及原理。图片来源:Nature Nanotech.  日前,厦门大学任斌教授(点击查看介绍)团队采用TERS技术成功地以3 nm的空间分辨率对Pd/Au(111)双金属催化剂表面进行成像,得到了该催化剂表面不同位点电子结构与催化活性之间的关系。相关成果已发表于Nature Nanotechnology杂志,共同第一作者是钟锦辉博士和金曦。(Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nature Nanotech., 2016, DOI:10.1038/NNANO.2016.241)。任斌教授。图片来源:厦门大学  在TERS中,由Au或Ag组成的尖端由扫描探针装置控制,以亚纳米的精度在样品表面进行扫描。当尖端金属被激光激发而产生局部表面等离子共振效应时,在探针与样品表面之间会产生强烈的电磁场,由此所得样品的拉曼信号会被大幅增强。本工作中,研究人员采用电化学欠电位沉积法在Au(111)单晶表面沉积单原子的Pd层,再以异腈苯(phenyl isocyanide,PIC)为拉曼探针分子(异腈苯被催化氧化成异氰酸苯酯),通过TERS技术获得不同位点处的电子性质与催化性质,从而来研究两者间的内在联系。  本研究TERS示意图。图片来源:Nature Nanotech.  研究人员通过控制Pd单层的覆盖量,可以使Au(111)表面进行完全单层覆盖(full monolayer coverage)与80%单层覆盖(0.8 monolayer coverage),分别标记为PdML/Au(111)和Pd0.8ML/Au(111),由扫描隧道显微镜(STM)图像可以看出,Pd0.8ML/Au(111)表面由连续性的Pd单层以及Au空穴组成。  Au(111)、PdML/Au(111)以及Pd0.8ML/Au(111)的STM图像。图片来源:Nature Nanotech.  接着,研究人员进一步对Pd0.8ML/Au(111)表面进行TERS表征,并惊喜地发现发现台阶边缘处(step edge)的TERS信号相比于平台处(terrace)更强,这可以通过台阶边缘处有效曲率半径减少引起的避雷针效应,以及电荷累积产生的等离子效应来解释。借助于台阶边缘处TERS信号的增强,空间分辨率能够提升到3 nm。在催化剂不同位点处的拉曼信号。图片来源:Nature Nanotech.  此外,研究人员还发现,与吸附在Pd平台处的异腈苯分子相比,吸附在Pd台阶边缘处的分子N≡ C键削弱,振动频率降低,更容易发生氧化。对此结果,研究人员采用理论计算进行了验证。计算结果表明,与平台处相比,台阶边缘处的金属与异腈苯分子之间有着更强的d-π *反馈作用,这极大削弱了N≡ C键,因而使得台阶边缘处的催化活性更高。  理论计算比较不同位点处的态密度(DOS)。图片来源:Nature Nanotech.  来自美国西北大学(Northwestern University)的Guillaume Goubert教授和Richard Van Duyne教授在同期Nature Nanotechnology 撰写了题为“Raman Spectroscopy: Tipping point”的评论,认为此项成果证明了“TERS可以在原子水平解析催化剂表面的结构与活性关系”,有望发展成为“多相催化的一种主要分析技术”。同时他们也提到了未来TERS发展所面临的挑战,“科学家还需要努力提高TERS对基底及吸附物的普适性,即不限于Au或Ag金属以及芳环大分子。”
  • 我国首台二氧化碳拉曼激光雷达系统研制成功
    新华网合肥12月23日消息 记者从中科院合肥物质研究院了解到,中科院安徽光学精密机械研究所承担的中科院重点装备“二氧化碳拉曼激光雷达”日前研制成功,并顺利通过了中科院相关专家组验收。  中科院合肥物质研究院研究员胡顺星介绍,“二氧化碳拉曼激光雷达系统”是我国第一台具有自主知识产权的全方位探测大气温室气体二氧化碳时空分布的激光雷达系统。该系统探测范围水平方向大于2km,垂直方向大于3km,探测精度1km范围内测量误差小于1%,3km范围内测量误差小于3%。这套系统在国际同类研究中处于领先水平。  验收专家组对激光雷达系统进行了现场测试,测试显示系统各项指标均符合或部分超过实施方案的设计指标。它的研制成功填补了我国大气二氧化碳空间分布探测技术的空白。二氧化碳拉曼激光雷达可以用于大气二氧化碳垂直分布的探测,大面积的近地面大气二氧化碳水平分布,用于二氧化碳排放源的监测等研究。目前,该二氧化碳拉曼激光雷达系统已经投入合肥地区大气二氧化碳垂直分布的常规测量。  近几十年来,人类活动导致大气中温室气体和污染气体的浓度急剧增加,对全球气候的改变产生重要影响。二氧化碳是气候变化预测中非常重要的大气温室气体,但人们对它的了解远远不够。目前国际上二氧化碳垂直分布探测的方法非常少,至今,我国还没有二氧化碳空间分布的数据。  专家介绍说,我国政府积极应对全球气候变化,加强工业二氧化碳减排的计划和工作,还把“监测气候变化的过程和要素”等气候变化监测预测预警作为应对气候变化专项行动的重点任务之一。政府部门计划在“十二五”期间开展有关碳收支和碳循环的研究,离不开对二氧化碳空间分布的精确探测。
  • 【赛纳斯】拉曼光谱技术穿透伪装识别合成大麻素等新精活物质
    毒 品从它诞生初始就披着美丽的外衣在诱惑民众,它不断变换形态、外貌引诱人们,从而扑倒在它的阴影下,迈入罪恶的深渊而无从挣扎。为警醒人们,我们好好剥开笼罩在它身上的外衣,让它真实面貌暴露在人们面前。“彩虹烟”的外观颜色酷炫,闻起来有香气,吸食有特殊烟雾,非常具有迷惑性。它是由小树枝、香料掺杂混合毒 品(系合成大麻素)制成,具有较强的兴奋、致幻效果,也会令吸食者出现头晕、恶心、气短、胸痛等症状。其危害丝毫不亚于海洛因、冰 毒等。“奶茶”是一种以小型冲泡饮品包装为伪装的新型毒 品的统称,这类毒 品的外形与真正的奶茶极度相似,却混合了冰 毒、氯胺酮、摇头丸等成分,服用后会产生中毒性精神障碍,情感变得脆弱不稳定,注意力无法集中,轻度意识模糊,产生日夜颠倒的幻觉,甚至陷入昏迷。“可乐”的主要成分是氯胺酮(K粉),外包装与普通可乐极为相似,吸食微量就会使人亢奋、出现幻觉,甚至会引起发狂。它与冰 毒相比危害更大,售价也高出10倍左右,吸食方法也不同。“跳跳糖”表面上看和普通的跳跳糖无异。普通的跳跳糖含二氧化碳,遇水时外边的糖分溶解,里边的二氧化碳冒出就产生“跳”的感觉 而毒 品“跳跳糖”主要含有摇头丸成分,遇水即溶、冲水即饮,服用后两到三天都会处于兴奋之中,会对人的大脑造成不可逆的损伤。“曲奇饼干”从外表看与饼干无异,打开包装袋有明显的异味,含有四氢大麻酚或合成大麻素类新精神活性物质成分。这种“大麻饼干”价格高昂。“迷幻蘑菇”是一种蘑菇外形的新型毒 品,涉毒圈内称之为“金老师”。吸食大麻的人也将“迷幻蘑菇”作为大麻的替代品。“迷幻蘑菇”中含有的成分为赛络新和赛洛西宾,致幻性强,短时间内能迅速作用于人的神经系统,使人对周围感知无限放大。这种伪装成“巧克力”的新型毒 品,是犯罪分子掺入了四氢大麻酚或合成大麻素类新精神活性物质制成的,其包装粗糙简陋,而且没有标明任何品牌。食用后会引起手脚颤抖、心跳加快、头脑昏沉、反应迟钝、短期失忆等不良反应。面对这种毒 品种类多样化,新型毒 品的伪装性及诱惑性极强,一线工作人员的危险性极大的情况下,赛纳斯基于自有搭建物联网平台,运用大数据、物联网、云端管理、人工智能等技术手段,并结合自主研发拉曼光谱技术光谱快检装备,构建了合成大麻素物联网检测与防控系统,实现合成大麻素的可管可治、严防严控,有效抑制合成大麻素的蔓延。结合拉曼光谱技术完美覆盖合成大麻素检测每一种合成大麻素类化学物质都有其独有的光谱特征谱,它就像人的指纹一样具有唯一性。常见的手持拉曼光谱仪的激发光源为785 nm激光,可以实现大部分毒 品标准品的鉴定。但是贩毒链中毒 品纯度较低,且含有的杂质容易带来荧光干扰,甚至有些毒 品本身的就具有较大的荧光基团。785 nm波长激发光下测试的拉曼特征谱峰往往会被被湮没在荧光信号当中,无法实现有效鉴定。而公共安全联合实验开发的SHINS 1064手持拉曼仪,配备1064 nm红外激光器,可以有效规避物质荧光干扰,如此实现合成大麻类毒 品的一网打尽。赛纳斯SHINS-P1000手持式拉曼光谱仪有效降低荧光干扰,能够覆盖荧光强的实际样品检测;用于烟油中合成大麻素样品的隔包装定性识别检测;采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,赛纳斯SHINS-P1000手持式拉曼光谱仪可穿透透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采1064nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:合成大麻素,芬太尼、卡芬太尼及衍生物 新型精神药物 安非他命 可卡因 海洛因 管制前体。SHINS-P1000现场快检装备介绍(1)信息特异性强,可透过透明包装直接鉴定(2)GPS定位、身份证识别、拍照取证、智能辅助为执法工作减负(3)本土化数据库,基于中国毒情建立物联网系统检测流程:合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。直接进行拉曼信号采集容易有杂质干扰,此处采用简单的前处理方式(①),然后将处理后的样品直接滴于增强芯片表面(②)。再将芯片插于拉曼光谱仪的检测槽中(③),进行拉曼检测,直接输出结果,检测限低至ppm级别,检测时间数十秒即可。
  • 采用ACQUITY UPLC H-CLASS系统对氯雷他定及其相关物质进行分析
    开发方法时采用ACQUITY UPLC H-CLASS系统方法相比目前的HPLC方法约快5倍,且可获得与之等同甚至更加优化的的数据结果。 这一系统为实验室进行USP法定HPLC方法提供了理想的解决方案, 为探索如何将现有方法转化成更经济有效的UPLC方法开辟了途径.目标 成功地将分析氯雷他定的HPLC测定方法转换至ACQUITY UPLC H-CLASS系统, 再转换成UPLC优化方法。背景 对药物和药品的检验,通常是检测杂质和相关物质及药品活性物质(API)含量,以确保药品的安全有效性。美国药典对这些物质法定的检测方法通常是采用长柱的HPLC,运行时间较长。针对氯雷他定和氯雷他定片(这是一种用于治疗过敏的抗组胺药物),对于相关物质(RS)的分析,USP方法采用4.6mmx15cmL7柱,以1.0mL/min流速等度洗脱,时间约为20min。氯雷他定相关物质分析的第二个方法(指定为检测2)通过一个不同的综合途径,采用4.6mmx25cm L1柱,以1.2 mL/min流速梯度洗脱,时间为50min,以便分离其中一种杂质。对一个实验室来说,分析时间的缩短都将显著降低实验室的分析成本。解决方案 USP提供的方法严格按照法规中的描述,用传统的HPLC系统(AllianceHPLC系统配置一个2998光敏二极管阵列检测器)。整个分析在ACQUITY UPLC H-CLASS系统上运行。比较这两种方法的结果(保留时间重现性,相关保留时间和杂质峰),证明了ACQUITY UPLC H-CLASS系统在执行这类检测方法方面, 较之传统HPLC的性能等同,甚至略胜一筹. 使用仪器自带的ACQUITY UPLC柱转换计算器可将HPLC方法无缝转换成UPLC方法。采用这种全新的计算方法,可分析整个样品集,其结果(保留时间重现性,相关保留时间和杂质峰)与HPLC结果相比较:可大幅降低运行时间,将等度洗脱的20min缩短至4min, 在ACQUITY H-CLASS系统上运行HPLC方法所得到的结果比传统HPLC系统(图1)上所得到的结果更优化。 图1.Alliance HPLC系统上运行HPLC分别与 ACQUITY UPLC H-CLASS系统上运行HPLC和运行UPLC 所得到的氯雷他定及其相关物质色谱图的比较小结 用于分析氯雷他定及其相关物质所使用的HPLC方法成功地在沃特世 ACQUITY UPLC H-CLASS系统上重现。该系统上得到的数据与Alliance HPLC系统相同,符合USP方法的要求。 借助于ACQUITY UPLC 柱转换计算器,检测方法可转换成ACQUITY UPLC H-CLASS系统上的UPLC方法。这种全新的UPLC方法比目前的HPLC方法快约5倍,获得同样的甚至更加优化的数据。更快捷地获得高质量的数据,增强实验室的生产力并降低单个样品的成本. 沃特世ACQUITY UPLC H-Class系统为实验室进行USP法定HPLC方法提供了理想的解决方案, 为探索如何将现有方法转化成更经济有效的UPLC方法的技术平台开辟了途径.
  • 雷尼绍发布雷尼绍Virsa拉曼分析仪新品
    光纤灵活性和研究级性能兼具使用灵活在实际工作中,有时候不允许或者不方便提取样品并运送到实验室。Virsa拉曼分析仪是原位样品分析的理想工具,无论是在车间现场进行质量控制还是对较大且不可移动的易碎样品进行现场分析。Virsa标配5米长的光纤(可选更长的光纤),具备超高的样品分析灵活性。数据可靠Virsa具有多个激发选项,可避免荧光。只需点击按钮即可切换波长,无需重新放置样品。Virsa拉曼分析仪可满足您对细节的要求。通过共焦拉曼采样进行快速、精确的显微分析,实现小于1 μm的拉曼空间分辨率。Virsa之下毫发毕现。功能强大Virsa拉曼分析仪支持多种探头,您可以自由选择最适合的检测工具:• 块状大样品分析探头 — 快速分析均匀的样品• 高空间分辨率探头 — 分析不均匀样品的精细结构• 可使用可选的摄像头轻松查找和聚焦所关注的区域• 多种精选的第三方探头,包括检测液体样品的浸没式探头、高压和/或温度探头等,使用灵活。详情请访问 www.renishaw.com.cn/virsa创新点:光纤灵活性和研究级性能兼具1.使用灵活在实际工作中,有时候不允许或者不方便提取样品并运送到实验室。Virsa拉曼分析仪是原位样品分析的理想工具,无论是在车间现场进行质量控制还是对较大且不可移动的易碎样品进行现场分析。Virsa标配5米长的光纤(可选更长的光纤),具备超高的样品分析灵活性。2.数据可靠Virsa具有多个激发选项,可避免荧光。只需点击按钮即可切换波长,无需重新放置样品。Virsa拉曼分析仪可满足您对细节的要求。通过共焦拉曼采样进行快速、精确的显微分析,实现小于1 μ m的拉曼空间分辨率。Virsa之下毫发毕现。3.功能强大Virsa拉曼分析仪支持多种探头,您可以自由选择最适合的检测工具:• 块状大样品分析探头 — 快速分析均匀的样品• 高空间分辨率探头 — 分析不均匀样品的精细结构• 可使用可选的摄像头轻松查找和聚焦所关注的区域• 多种精选的第三方探头,包括检测液体样品的浸没式探头、高压和/或温度探头等,使用灵活。雷尼绍Virsa拉曼分析仪
  • 突发!美议员敦促拜登政府调查并制裁所有中国激光雷达公司
    美国众议院中国共产党特别委员会的共和党人和民主党人敦促拜登政府官员调查所有中国的激光雷达(光探测和测距 ,简称LiDAR) 技术公司,以确定是否有理由将其列入三个制裁名单——国防部的中国军工企业名单、商务部实体清单以及财政部的非 SDN 中国军工复合企业名单(CMIC清单)。在当地时间11月28日致商务部长吉娜雷蒙多(Gina Raimondo)、财政部长珍妮特耶伦(Janet Yellen)和国防部长劳埃德奥斯汀(Lloyd Austin)的一封信中,该小组的20名议员警告称,激光雷达“目前不受美国出口管制或政府采购限制的约束”。激光雷达是一种遥感技术,使用脉冲激光来测量周围物体的距离、速度和高度。议员们写道,这是“用于自动驾驶系统和机器人的关键技术”,包括无人机和自动驾驶汽车。这封信由15名共和党人和5名民主党人签署,其中包括委员会主席迈克加拉格尔(Mike Gallagher)和高级成员拉贾克里希纳穆尔蒂(Raja Krishnamoorthi),D-Ill。议员们对美国的技术被用于对手的激光雷达系统,以及反过来说,这些外国支持的激光雷达系统被用于美国的关键应用表示担忧。信中写道:“鉴于激光雷达的重要性,确保外国激光雷达系统中使用的美国技术不会被我们的对手用来制造自主军用车辆和武器至关重要。”。“还需要采取紧急行动,阻止外国敌对国家的国家支持实体生产的激光雷达在美国市场扩散,或进入美国资本市场或美国关键基础设施系统。”随着美国和中国在科技领域的全球主导地位陷入激烈竞争,信中警告称,北京“认为激光雷达是一项战略技术,并呼吁将其开发用于国家安全和军事工业。”信中补充道:“直到2018年,全球激光雷达市场一直由美国公司主导,但由于中国产业政策的支持,包括关税和补贴,中国激光雷达公司正在迅速发展。”信中指出,一家中国公司——合赛科技“按销售收入计算,拥有47%的全球市场份额。”议员们呼吁商务部、财政部和国防部“调查中国的激光雷达行业,找出应列入各自机构清单的实体,以及美国的特定技术是否应受到对中国的出口管制”——特别是激光雷达技术中使用的底层芯片,这些芯片不受现有限制。拜登政府加大了阻止美国资本和高科技设备流向中国关联公司的力度,包括在10月宣布计划收紧此前实施的对中国出口先进半导体的限制。此前,乔拜登(Joe Biden)总统于8月发布了一项行政命令,限制美国在某些特定科技领域对中国的投资。然而,尽管做出了这些努力,议员和官员们仍然担心先进技术流向中国,以及北京方面规避已经实施的出口管制的能力。在本月早些时候发布的2023年年度报告中,美中经济与安全审查委员会(U.S.-China Economic and Security Review Commission)警告,由于“军民融合”,对中国的出口管制“现在面临重大执法障碍”。在周二的两党信函发表之前,包括加拉格尔和克里希纳莫西在内的另一组众议院议员于11月15日致信10家在美国进行自动驾驶汽车测试的中国公司,对他们收集的数据类型表示担忧。
  • 飞纳电镜助力郭春雷中美联合光子实验室
    中科院长春光机所于 2016 年成立郭春雷中美联合光子实验室,主要从事超快激光科学、激光与固态物质相互作用、材料科学、纳米光电子学等领域研究工作。材料表面的小型微纳结构对裸眼而言是不可见的,但它们却对材料的物理、化学和生物性质起到了重要的决定性作用。在过去几年里,来自罗彻斯特大学的郭春雷教授及其研究团队通过将激光脉冲照射至材料表面,发现了操纵微纳结构的方法。他们改变了这些材料,使之抗水、亲水、并且吸收大量的光——所有这些都不需要任何形式的镀膜。他们首创出一种技术,能够将材料表面的微纳结构形成的完整演变过程可视化。通过在材料表面创建微小结构,可以大幅改变材料性质之后,自然我们下一个步骤就是理解这些结构是怎样形成的。这一控制的实现将为多种技术提供提升渠道,包括抗腐蚀性建材、能量吸收器、燃料电池、空间望远镜、飞机融冰、医学仪器以及第三世界国家的卫生设备。而观察在材料表面创建的微小结构最方便的方式即通过扫描电镜,飞纳台式扫描电镜能谱一体机 phenom prox 现已成为郭春雷中美联合光子实验室一台可靠的表征分析仪器。用户使用飞纳台式扫描电镜能谱一体机 phenom prox中科院长春光机所郭春雷中美联合光子实验室用户观察激光使材料融化、到短暂表面波动、再到巩固从而导致永久性的微纳结构,飞纳电镜能谱一体机 phenom prox 杰出的背散射电子成像可可很准确的知道材料表面的成分衬度信息。飞纳电镜操作简易,非常适合课题组具有大批量测试的样品的客户。自动马达样品台配合光学导航,仅需 15s 的抽真空时间,可以方便快速地检测样品。必将使郭春雷中美联合光子实验室的科研效率得到大幅度提升。
  • 食品安全频暴雷!增强拉曼光谱技术全力推进食药环侦工作!
    随着国家食药环侦的工作推进,各地食品安全问题频频暴雷!只有严格的抽检及稽查力度,才能肃清食品安全的“行业潜规则”。“毒奶粉 ”、“地沟油”和“毒豇豆”等典型事件,敲响了食品安全的“警钟”。食品安全问题不仅关系到经济的发展,更关系到社会的稳定。同时当前食品安全检测技术与设备落后等问题,迫使相关监管部门亟需找到一种快速、灵敏和可靠的检测手段保障食品安全。目前检测方法主要有高效液相色谱法、气相色谱法、气相色谱-质谱联用仪等方法,这些检测法虽具灵敏度高、准确性好等特点,但耗时耗力、成本昂贵,对样品的净化要求苛刻,难以实现现场快速定性筛选。表面增强拉曼光谱(surface enhanced Raman spectroscopy, SERS)是一种新型化学分析和检测手段,快速检测的特点,迅速成为监管部门的稽查“利器”。ATR3000FD是奥谱天成基于拉曼SERS增强技术研发的便携式拉曼食品安全检测系统,更小的体积和更轻的重量,使得ATR3000FD的使用和携带非常方便。无论在实验室、快检室、检测车等多种场所,都能轻松高效完成检测任务,目前全国多地市场监督管理、食药环侦等部门均已配备奥谱天成ATR3000FD。拉曼光谱(Raman spectroscopy )是一种能够表征分子振动能级的光谱,具有极高的分子特异性,但其散射强度较弱,且易受到荧光干扰。SERS技术快速、灵敏、无损,具备分子指纹专一性和单分子灵敏性等特点,能在分子水平上提供物质结构的丰富信息,已逐渐成为化学、生物、环境、食品等领域一种强有力的检测手段。当目标分子被吸附到某些粗糙的金属表面上时,它们的拉曼散射强度会比常规拉曼增强104 ~1014倍。ATR3000FD操作简便,中文全自动识别软件,显示操作步骤及辅助视频,一键解锁,显示结果,数据上传,并配有拉曼谱图。基于强大的增强数据库及云计算处理技术,上机检测仅需数秒钟。应用实测演示测试仪器:ATR3000FD便携式食品安全检测仪测试对象:辣椒面、小米、鱼肉测试目的:不同样品是否含有非法添加或兽药残留(辣椒面中检测苏丹红一号、小米中检测碱性嫩黄、鱼肉中检测孔雀石绿)测试样品:测试方法流程及结果: 打开仪器的开关和平板开关,确保平板上的各连接线连接完好不松动,打开桌面上的食品检测软件如下图所示,可以选择云登录,未联网情况下可以选择离线登录,其中云登录的检测项目更多。登录后,检测方法选择拉曼,物质类别根据样品属类选择,包括兽药残留、农药残留、减肥类保健食品等多种,如下图所示。以检测辣椒粉为例,选择非食用化学物质类别,点击选择检测辣椒粉中的苏丹红一号项目,进入下图所示的检测界面,显示出基础信息和操作步骤,同时可以查看操作帮助和视频指导。待前处理完毕,将检测瓶放入检测池,点击云检测,几秒后出结果:检出或未检出,同时可以查看谱图、热敏打印等。小米和鱼肉的检测界面如下:检测后,通过U盘可以从历史记录中导出数据和PDF格式的检测报告,如下图。检测报告结论 通过ATR3000FD便携式拉曼食品安全检测仪对几种食品的检测,能够看出增强拉曼技术运用到食品检测有很大优势,经过谱图库的对比,可以快速鉴定食品有没有非法添加。 奥谱天成ATR3000FD便携式拉曼食品安全检测仪,已在全国各地的食药环侦行动中大展身手,相关案例可以咨询工作人员获取!奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 科技部“重大科学仪器专项计划”承担者;◆ 国家海洋局重大产业化专项项目承担者;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家高新技术企业;◆ 2021福建省科技小巨人。
  • 继芬太尼后,新精物(NPS)再添列管物质,普识纳米SERS增强手持拉曼实现ppm识别
    前言:公安部、国家卫生健康委员会和国家药品监督管理局联合发布《关于将合成大麻素类物质和氟胺酮等18种物质列入非药用类麻醉药品和精神药品管制品种增补目录的公告》,决定正式整类列管合成大麻素类新精神活性物质,并新增列管氟胺酮等18种新精神活性物质。公告自2021年7月1日施行。整类列管合成大麻素类物质是中国继芬太尼整类列管后再次整类列管一类新精神活性物质,中国成为全球首个整类列管大麻素的国家。  新精神活性物质(NPS),又称“策划药”或“实验室毒品”,是不法分子为逃避打击而对管制毒品进行化学结构修饰得到的毒品类似物,具有与管制毒品相似或更强的兴奋、致幻、麻醉等效果,已成为继传统毒品、合成毒品后全球流行的第三代毒品。由于新精神活性物质品种层出不穷,因此生物样品中新精神活性物质的分析面临很大挑战。其中大麻素类物质危害严重,在新疆等滥用严重地区,已引发毒驾、故意伤害等危害公共安全事件。  合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。吸毒人员吸食该类物质后,会出现头晕、呕吐、精神恍惚、致幻等反应,过量吸食会出现休克、窒息甚至猝死等情况,已引发数起毒驾、故意伤害等危害公共安全事件。该类物质既有国内非法制造,也有部分从国外走私而来。此外,本次新增列管的氟胺酮作为氯胺酮替代品在部分地区滥用问题突出。  普识纳米在拉曼光谱应用一直走在行业前列,新增列管氟胺酮等新精神物质能够实现ppm准确识别。  普识纳米HR650D手持式拉曼光谱仪采用激光拉曼光谱分析技术【获得公安部认证】,能对各种毒品、新精物(NPS)等物质进行快速检测和准确识别。仪器可在保证不损害被测样品完整性的情况下,检测液体和固体状态的样品,明确给出被测物质的具体名称、物质属性和谱图,并生成PDF报告,整个过程几秒内完成。相较于常规拉曼检测,普识纳米结合拉曼表面增强试剂或者芯片,可对痕量物质等进行快速检测(常规ppm,个别ppb级别 ),满足现场使用要求,仪器设计紧凑,结构简单,性价比高。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制