当前位置: 仪器信息网 > 行业主题 > >

铁屎米酮

仪器信息网铁屎米酮专题为您提供2024年最新铁屎米酮价格报价、厂家品牌的相关信息, 包括铁屎米酮参数、型号等,不管是国产,还是进口品牌的铁屎米酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铁屎米酮相关的耗材配件、试剂标物,还有铁屎米酮相关的最新资讯、资料,以及铁屎米酮相关的解决方案。

铁屎米酮相关的资讯

  • 欧波同钢铁行业应用解决方案走进建龙集团
    2019年3月28日, 欧波同(中国)有限公司应建龙集团检化验技术委员会的邀请,参加建龙检化验技术委员会季度会议,并进行了为期一天的技术讲解与培训。欧波同副总经理张国滨先生和特聘专家宁玫老师应邀出席会议,与建龙集团检化验技术委员会的工程师们共同探讨失效分析技术在钢铁行业的应用发展。图1:培训会议现场欧波同与建龙集团拥有长期的合作关系,多年来为建龙集团及各地分公司提供了多个行业应用解决方案,欧波同的光镜、电镜等显微分析设备,全自动钢中夹杂物分析系统,为建龙集团的工程师们提供了很大的帮助,辅助集团的研发及检测工作快速发展,在提升钢铁质量、产品品质等方面起到了非常重要的作用。降本增效是企业发展的命脉,炼钢和轧钢已经得到大幅提升,原料的控制已经得到企业的重视,本次交流会欧波同重点推出了用于进厂矿石(粉)监督的手持式光谱仪、指导烧结和球团工艺的自动矿物分析系统(Auto-OIA system ),这将大大提升高炉的利用系数,为保证良好的炉况发挥着重要的作用。图2:欧波同(中国)有限公司副总经理张国滨先生介绍钢铁行业解决方案图3:欧波同特聘专家宁玫老师进行钢铁行业失效分析技术报告欧波同技术培训会议,是根据客户需求、行业特点而展开的定制服务,也是欧波同售后服务升级的既定实施方案。2019年,我们将针对具有代表性的行业、用户密集的区域,定期展开用户技术培训,为客户提供更加高效、完善的技术服务。图4:部分参会人员合影留念关于欧波同欧波同(中国)有限公司(OPTON),是一家具有外资背景的多元化的科技集团公司,是全球实验室解决方案服务商!欧波同成立于2003年(总部位于香港),旗下拥有国际贸易、行业解决方案研发、第三方技术服务、融资租赁等业务板块。公司经过十多年的卓越发展已经与德国蔡司(ZEISS)公司、美国Gatan公司、英国Bright公司等多家国际顶尖品牌建立战略合作伙伴关系。
  • 大连化物所揭示单原子铁位点和铈-氧空位在CO还原NO反应中的协同作用
    近日,大连化物所节能与环境研究部能源环境工程研究中心(DNL0901)王树东研究员、王胜研究员、宗绪鹏助理研究员等在NO、CO协同催化净化研究中取得新进展。研究团队通过常规共沉淀法,构建了具有铁单原子和铈-氧空位的铁-铈-铝混合氧化物催化剂用于CO选择性还原NO反应,并揭示了铁单原子位点与铈-氧空位的协同机制。NO、CO是两种典型的大气污染物,普遍存在于燃煤烟气和移动源尾气中。多污染物协同催化控制技术的开发是实现大气污染物高效净化的关键,对于提升环境质量、保护人民身体健康具有重要意义。研究团队长期致力于大气污染物催化净化技术的应用基础研究、过程开发及系统集成,开发的单一污染物(VOCs、NOx等)催化净化技术已实现了大规模工业化应用。本工作中,研究团队基于NO、CO净化过程相近的温度区间、相似的氧化还原反应机理,进行CO选择性还原NO催化反应过程研究,揭示出催化剂中高价态铁单原子是反应的活性位点,而非铁氧化物位点。该铁单原子位点具有优异的CO选择性还原NO活性、N2选择性和稳定性,主要原因在于催化剂表面丰富的铈-氧空位与单原子铁位点的协同作用,强化了反应物NO分子和关键中间产物N2O的吸附,从而促进了催化剂表面吸附的N2O的继续还原生成N2。此外,该催化剂还表现出高的耐水(7% H2O)、耐硫(20pmm SO2),低浓度氧气(0.7% O2)耐受能力。相关成果以“Synergy of Single-Atom Fe1 and Ce-Ov Sites on Mesoporous CeO2-Al2O3 for Efficient Selective Catalytic Reduction of NO with CO”为题,于近日发表在ACS Catalysis上。该工作的第一作者是大连化物所DNL0901组博士后百玉婷。上述工作得到了国家重点研发计划、国家自然科学基金等项目的资助。
  • 科学家研制纳米“铁磁纸” 可制造微型机器人
    [导读]目前,美国科学家成功研制出一种叫做“铁磁纸”的纳米等级材料,它是用纳米等级铁磁微粒灌注在普通纸张上,这种材料可用于制造微型机器人、研究人体细胞的微型镊子等。腾讯科技讯(编译/悠悠)据美国科学日报报道,日前,美国普渡大学的研究人员成功研制一种磁性“铁磁纸”,它可用于制造手术仪器中的低成本“微型发动机”,研究细胞的微型镊子,微型机器人以及小型扬声器等。美国科学家成功研制出一种叫做“铁磁纸”的纳米等级材料  这种特殊材料是采用矿物油和氧化铁“磁纳米微粒”浸透在普通纸张或者报纸上形成的,然后这种带有纳米微粒的纸张可在磁场中应用。电子计算机工程兼生物医学工程师教授芭芭克-齐伊(Babak Ziaie)说:“纸张是一种多孔基体,因此我们可以在纸张上承载一些特殊的物质,使其具备独特的功能。”  该新材料以低成本方式制造小型立体扬声器,微型机器人或者具有多种用途的发动机,其中包括控制细胞的镊子和最低程度侵入手术的柔韧性机械手指。齐伊说:“由于铁磁纸非常柔软,并不会对人体细胞或者组织构成损害,而且制造起来非常便宜。你可以剪裁一小块,用于制造微型发动机。”  一旦普通纸张上浸入“铁磁流体”混合物,纸张就覆盖着一层生物塑料薄膜,它具有一定程度的抗水性,避免液体蒸发,并能显著提高强度、硬度和弹性等机械性能。这项新材料的详细资料将于1月24日至28日在香港召开的第23届微电子机械系统IEEE国际会议上公布。  由于这项技术成本并不昂贵,不需要特殊的实验室制造,它可普遍地应用于大学和高校制造微型机器人和其他工程科学器件。这种纳米等级磁性微粒可从商业途径获得,磁性微粒的直径仅有10纳米,相当于人体头发的万分之一。铁磁纳米微粒中含有铁原子。  齐伊说:“或许你未曾使用过纳粒微粒,但是它们要比其他较大的微粒更容易使用,而且价格更便宜,纳米微粒的价格也非常低廉。”  研究人员使用一种叫做磁场排放扫描电子显微仪研究纳米微粒如何灌注在某些纸张中,齐伊说:“所有类型的纸张都可以使用,但是新闻报纸和柔软的纸张特别适合,这是由于它们具有很好的多孔性。”  研究人员现使用该材料制造小型悬臂致动器,这种结构非常类似于潜水艇,可在磁场中通过震动实现移动。齐伊说:“悬臂致动器非常普通,它们通常是由硅材料制成,而硅材料价格较高,要求在特殊的清洁室内制造完成。因此使用价格低廉的‘铁磁纸’是非常好的选择,它要比当前使用的硅材料价格便宜100倍。”  目前,研究人员还将铁磁纸制造成折纸,从而研究更为复杂的设计。
  • 沙钢研究院院长,著名的钢铁专家Toshihiki Emi教授访谈
    笔者按:位于江苏省张家港市的沙钢堪称中国最大的民营钢铁企业,其产量和规模已经和宝钢,首钢等知名大钢业一样位于中国钢铁企业的前列。 英斯特朗公司目前已经为沙钢的理化中心和研究院提供了超过20台包括电子万能,液压万能,落锤冲击,硬度计等全系列的材料试验设备。 2009年在中国钢铁行业和广大企业面临内忧外患之际, 以沙钢为代表的民营钢铁企业所体现的以质量为核心,以长远发展为思路的经营态度和全球测试领头雁美国英斯特朗公司的所倡导的&ldquo 通过提供高品质的产品、专业的技术支持和世界水平的服务从而使得我们的用户获得拥有产品的最佳体验&rdquo 的使命不谋而合。英斯特朗产品所体现的综合优势已经得到了沙钢人的高度认可,我们也相信会有越来越多的钢铁企业会真正体会到优秀的材料检测设备所带来的价值! 以下是沙钢研究院院长,著名的钢铁专家Toshihiki Emi教授访谈。 人物背景:Toshihiki Emi教授,曾担任日本JFE钢铁公司董事和日本东北大学教授,在国际钢铁相关领域内,一位声名显赫的人物,多次获得ISIJ,AIST(前ISS-AIME)和瑞典皇家工学院颁发的奖项。 笔者:您能简单介绍一下沙钢钢铁研究院吗? Emi教授:在中国,绝大多数钢铁企业构建有钢铁研究院,但是这是中国第一次由一家民营钢铁企业开发建立研究院。沙钢钢铁研究院的研发项目主要以服务沙钢集团为主,同时服务其它钢铁企业,包括江苏省境内的民营钢企和国有钢企。 笔者:截至目前,您取得了哪些成功? Emi教授:研究院还处在成长阶段。我们在三年前开始组建,并且只花了2年时间用于土建、设备配备和人员招聘。所以我们只运营了一年,主要进行了员工培训。然而,我们已经开发了相当多的新材料。 沙钢钢铁研究院已经安装了大量的材料力学性能测试的设备;静态和动态测试机架,硬度计,冲击试验机和测试附件。此视频片段演示了他们材料试验机的大量性能。 笔者:您们已经安装了英斯特朗、Statec, Wilson和Dynatup测试设备作为您们的材料测试设备吗?您们为何作出此选择? Emi教授:英斯特朗提供的测试设备是非常的集成和易于使用。而且我们特别欣赏他们的售后服务支持。 笔者:您的研究结果是否有一些与最新的测试流程开发有关呢? Emi教授:我肯定您一定赞同我们研发很多是保密的。但是我可以说一些研发项目是需要有创新应用的测试方法和程序。例如,我们正在研究一种新技术,对现有面积进行力学性能测试,例如裂纹扩展位移测试。 沙钢钢铁研究院有两个既定目标;为沙钢及江苏省钢铁企业研发高级钢材及其冶炼方法;降低污染物排放量和焦炭和铁的消耗量。 笔者:中央政府已经要求钢铁企业降低全国钢铁产量和淘汰旧设备。您对此倡议有何想法? Emi教授:这是一个非常积极的改变方向。这将帮助我们降低全球变暖趋势和原材料的浪费状况。这是一个正确的行动指南。 笔者:沙钢研究院的一个既定目标是降低能量消耗和二氧化碳排放。您准备为实现这个目标做些什么? Emi教授:大部分的能量消耗和废气排放都在钢铁工业的上游-烧结。我们降低煤炭的消耗量以减少废气的排放是非常重要的。我们已经在此范围内开展工作。 笔者:中国生产的产品和材料,质量标准和国家标准有差别。目前此状况在钢铁行业被克服了吗?沙钢钢铁研究院在减少能耗和污染物排放方面会起到什么作用? Emi教授:总的来说,对大多数钢铁企业来说,产品之间的差别仍然比别的工业发达国家来得大。标准化的努力仍在继续-先进的生产和测试设备,改善了的日常维护,提高了的自动控制,和提高了的运营。流程控制和自动化管理是研究院的重要工作,来提高生产车间的标准化水平。 笔者:Emi博士,非常感谢您。
  • 欧波同夹杂物分析系统助力吉林建龙钢铁产品结构升级
    吉林建龙钢铁有限责任公司成立于2001年,是全国知名民企建龙重工集团的下属子公司。经历了十几年的快速发展,现已成为集烧结、炼铁、炼钢、轧材于一体的综合型钢铁加工企业。目前正在按照建龙集团的战略发展规划,拟投资87亿元人民币推进装备大型化改造项目建设,进行产品结构升级。2018年7月,吉林建龙钢铁与欧波同(中国)有限公司达成合作,向欧波同采购了全自动钢中非金属夹杂物分析系统和金相显微镜Axio Observer3。欧波同全自动非金属夹杂物分析系统由蔡司钨灯丝扫描电子显微镜EVO18、快速分析型能谱和自动化智能夹杂物分析评价软件组成,能够对钢铁样品中的非金属夹杂物颗粒进行全自动分析,并对分析数据进行统计和处理。该系统非常精准地解决了建龙钢铁所面临的技术难题,全面消除了增添冷轧设备的阻碍,在装备改造、产品升级过程中将起到关键性的作用。欧波同专业的技术支持与完善的售后服务得到了吉林建龙钢铁的充分肯定与认可,双方的进一步深度合作尤可期待。可以说,欧波同全自动非金属夹杂物分析系统是欧波同技术研发团队取得的全新突破,让电镜在钢铁行业中的应用更加广泛。欧波同全自动非金属夹杂物分析系统优势: 1.扫描电镜:检测面积大于80×100mm;检测夹杂物的最小直径需小于0.5微米;检测速度不低于每小时1000个颗粒; 2.自动调整样品高度Z,实现自动对焦;可同时分析不同高度的样品,可分析倾斜的样品。 3.采集完图像后,根据灰度识别感兴趣颗粒,通过能谱对感兴趣的颗粒分析,并对分析数据进行统计和处理。 4.对复合夹杂物分析更精确。
  • 自动分析系统在钢铁行业中的应用实例分享——欧波同超级品牌日圆满结束
    p style="text-indent: 2em "2020年8月18日,主题为“创新让实验更简单”的(线上)论坛暨欧波同超级品牌日在仪器信息网成功举办。/pp style="text-indent: 2em "为拉近与用户距离,加深用户对欧波同品牌的认知、认可,欧波同(中国)有限公司联合仪器信息网举办了本次“欧波同超级品牌日”活动。论坛围绕用户需求,结合仪器厂商的品牌理念、价值及核心竞争力,策划了一系列“品牌&用户”活动。本次欧波同超级品牌日得到了相关行业工作者的广泛关注。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/6cd442d7-46e6-4378-a5d0-b015f6e9d83e.jpg" title="致辞.png" alt="致辞.png"//pp style="text-align: center "strong欧波同总经理皮晓宇致辞/strong/pp style="text-indent: 2em "近年来,随着工业“智能制造2025”和国家相关政策的出台,钢铁行业重新获得了稳定的发展机会。随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。/pp style="text-align: left text-indent: 2em "在此背景下,欧波同(中国)有限公司联合仪器信息网举办了本次“创新让实验更简单”(线上)论坛,在我国钢铁行业检测发展的历史性机遇下,邀请了欧波同高层及特邀专家嘉宾,分享欧波同自动分析系统在钢铁行业中的应用实例,就钢铁钢业全系统解决方案提出欧波同的独特见解。同时,欧波同两款软件新品也在会上推出。/pp style="text-align: center "strong报告专家及报告题目一览/strong/ptable style="border-collapse:collapse "tbodytr class="firstRow"td style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(191, 191, 191) " width="244" valign="middle" align="center"报告题目br//tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(191, 191, 191) " width="379" valign="middle" align="center"报告嘉宾br//td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"欧波同集团介绍/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"pbr//pp韩鹏/p北京欧波同光学技术有限公司市场 总监/td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"OTS夹杂物自动分析系统在冶金中的应用/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"p李阳/p东北大学冶金学院 副教授\中国金属学会特殊钢分会结构钢学术委员会委员/td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"OIA光学显微镜全自动矿物分析系统在钢铁行业的应用/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"p杨士杰/p北京欧波同光学技术有限公司 扫描电镜应用工程师/td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"扫描电镜应用平台之前沿表征技术/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"p管玉鑫/p北京欧波同光学技术有限公司 产品经理/td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"钢铁钢业全系统解决方案/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"p张国滨/p欧波同(中国)有限公司 副总经理/td/trtrtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="244" valign="middle" align="center"显微分析新技术在汽车行业的应用进展/tdtd style="border: 1px solid rgb(0, 0, 0) word-break: break-all background-color: rgb(216, 216, 216) " width="379" valign="middle" align="center"p许骏蒙/p欧波同(中国)有限公司 产品应用总监/td/tr/tbody/tablep dir="ltr" style="text-align: center "br//ptable style="border-collapse:collapse " width="648"tbodytr class="firstRow"td style="border: 1px solid rgb(255, 255, 255) word-break: break-all " valign="top" width="647"pimg style="" src="https://img1.17img.cn/17img/images/202008/uepic/73fe594c-be9c-4c72-b3f9-1901ab65818f.jpg" title="微信图片_20200820174435.jpg"/ img src="https://img1.17img.cn/17img/images/202008/uepic/17ec0424-8209-4f93-8a0a-faa46c3fb919.jpg" title="微信图片_20200820174443.jpg"//p/td/tr/tbody/tablep style="text-align: center "strong会议现场:(左)韩鹏(右)杨士杰/strong/pp style="text-indent: 2em "在本次超级品牌日活动中,为感谢用户多年的支持, 欧波同还策划了一系列的感恩活动,包括直播现场派送红包&抽取礼品,测试服务免费拍样,欧波同实验室开放日和免费申请新品软件试用活动。/pp style="text-indent: 2em "活动的报告视频将在5个工作日内在仪器信息网网络讲堂栏目中展示,敬请期待!/p
  • 卫生部拟废止食品中锌铜铁限量卫生标准
    根据《食品安全法》和国务院办公厅《食品安全整顿工作方案》要求,卫生部组织开展了食品中污染物安全标准修订工作。经研究并参考国际食品法典标准,拟不再将锌、铜、铁作为污染物指标,拟废止《食品中锌限量卫生标准》(GB13106-91)、《食品中铜限量卫生标准》(GB15199-94)、《食品中铁限量卫生标准》(GB15200-94)三项标准。现公开征求意见,请于2010年7月4日前按以下方式反馈意见:传真010-67711813或电子信箱food204@163.com。
  • 西安交大《自然通讯》:百纳米级金刚石颗粒自驱动进入钢铁晶体
    近日,西安交通大学材料学院单智伟教授团队与材料创新设计中心团队合作,研究发现数十、甚至百纳米级别的金刚石颗粒可以在远低于钢铁熔点的温度下,以颗粒而非单个原子的形式,自驱动地进入钢铁晶体内部并且持续向内“行走”,最大行程可达数毫米且主体部分始终保持金刚石晶体结构。关于这一发现及其背后的物理机制的文章,以《纳米金刚石颗粒在铁晶体内部中的运动》(“Inward motion of diamond nanoparticles inside an iron crystal”)为题发表在《自然通讯》杂志上。西安交通大学为该工作的第一作者单位和唯一通讯单位,西安交通大学王悦存副教授、王旭东博士、丁俊教授为共同第一作者;西安交通大学单智伟教授和马恩教授为本文通讯作者;为该研究作出重要贡献的还有美国麻省理工学院李巨教授、西安交通大学张伟教授、沈阳理工大学段占强教授、贾春德教授和西安交通大学的梁倍铭硕士、黄龙超博士,范传伟工程师及博士研究生徐伟、刘章、郑芮,硕士研究生左玲玲等。该研究得到了国家自然科学基金委、西安交大青年拔尖人才计划、西安交通大学王宽诚青年学者等项目的支持。钢铁渗碳的历史可以追溯到两千年多年前,其主要过程是:外界碳源(固/液/气)在高温下分解为活性碳原子并逐渐渗入进钢铁,从而使低碳钢工件拥有高碳表面,再经淬火、回火处理,获得高硬度、高耐磨的表面。传统认知中,渗碳所用的碳源必须要先分解成活性碳原子,然后才能在浓度梯度驱动下,以单个原子的形式扩散进入铁晶格并间隙固溶其中,过饱和后以碳化物或石墨的形式析出。然而,进入的碳无法以最理想的强化相——金刚石出现。由此引发了一个科学上的创新思考:金刚石小颗粒有没有可能整体进入钢铁晶体中,并且保留金刚石结构。为验证这一大胆设想,研究团队以金刚石纳米颗粒和高纯铁及低碳钢为对象(图1a, b),利用原位透射电子显微镜对加热过程中金刚石纳米颗粒的运动过程进行实时观察:当表面附着有金刚石颗粒的钢铁被加热到一定温度后,其表面氧化膜首先发生分解,暴露出新鲜的铁原子。然后这些铁原子迅速向上扩散覆盖金刚石颗粒的表面,金刚石颗粒在毛细应力驱动下被快速“吞没”进钢铁基底中。冷却至室温后观察发现:金刚石颗粒不仅能够大量进入到钢铁内部(图1c),并且沉入深度可达到纳米金刚石颗粒自身尺寸的数千倍以上(毫米级)。图1d示意了整个进入过程。结合第一性原理计算、蒙特卡洛模拟及多维度表征,进一步揭示了纳米金刚石颗粒在钢铁晶体内部运动的微观机制:在铁的催化作用下,金刚石颗粒表面发生石墨化并部分溶解,在钢铁基底中及纳米金刚石颗粒周围分别形成长程和局部的碳浓度暨化学势梯度。在与此伴生的铁化学势梯度驱动下,金刚石周围的铁沿着金刚石和铁基底的界面不断上涌并形成一个向下局部应力,“推动”着金刚石向下前进。铁原子在金刚石颗粒表面的石墨层内的界面扩散,恰好为其远程迁移提供了快速通道(铁原子沿此通道向上迁移的速率得以高于铁晶格中碳原子向下运动的速率)。图1 (a)研究中所用的纳米金刚石粉的透射电镜表征;(b)纳米金刚石颗粒进入纯铁基底中的原位扫描观察;(c)纳米金刚石颗粒在铁内部的透射表征;(d)纳米金刚石自驱动进入钢铁基底的全过程及原理示意。由于纳米金刚石具有超高强度、热导率、化学稳定性与低热膨胀系数、低摩擦系数、超高等特点,是一种理想的金属强化粒子。基于上述发现,将纳米金刚石渗入进钢铁材料中,形成钢铁和金刚石的梯度复合材料,有可能大幅改善钢铁的表面性能,如硬度、导热性和耐磨性等。中国是最大的人造金刚石制造国,生产了世界上90%以上的人造金刚石,其中作为副产品的纳米金刚石粉的价格仅为~2000元/公斤。初步估算显示1公斤纳米金刚石粉能处理10吨的钢材(形成mm级的硬化层)。中国的钢铁年产量超过10亿吨,占世界总产量的一半以上,同时,中国也是钢铁的最大使用国,应用需求非常旺盛。该研究为钢铁材料的表面强化提供了新的思路和方法。文章链接:https://www.nature.com/articles/s41467-024-48692-5#citeas
  • 自动化时代 | 钢铁行业“智能实验室”的奥秘
    随着大工业时代的来临,无人值守工厂/黑灯工厂越来越多的走上前台。智能实验室的特点如下:生产现场无人化或少人化,节约人力成本;生产数据可视化,扩大数据利用范围;生产设备网络化,实现物联;分析过程无人为干预,减少差错率和人为失误;无纸化作业符合低碳减排。这一系列特点和优势使得自动化分析的需求越来越迫切。 岛津公司紧追时代潮流,推出了三大自动化系列产品:自动化荧光SAM-2400、自动化直读SAP-8000、自动化EDX等分析系统,可以满足钢铁、有色、水泥、电子电器、第三方检测等行业的智能实验室对自动化分析设备的需求。 # 奥秘是什么?钢铁XRF自动分析系统由:风动送样系统 + 机械手传动辅助系统 + 自动样品制备系统(包括块状/粉末/玻璃熔片等多种)+ 自动分析系统组成。图一 整体自动化分析系统(俯视图) 自动取样样品经过风动系统到达分析现场,由机械手1抓取后送入自动制样设备(如:磨样机或铣样机、熔样机)进行加工制备。 加工制备好的试样进行外观检查,确认后由机械手2送到样品等待位(见图一)。 自动分析SAM-2400自动化系统在原MXF-2400仪器具有上照式高功率X射线管、高灵敏度及独有的超轻元素的分光晶体、非常稳定非常可靠的检测器等优势基础上追加了自动化系统,实现了从自动进样到自动分析的智能化。 高 效SAM-2400自动化系统操作界面清晰简洁、易操作且人性化,对操作人员的经验依赖度低,对人员的专业要求少。系统设置了多个等待位,提前接收后续待测样品;系统还有多样品同时处理设定,可以有效缩短多个样品的分析时间,大大提升分析效率。 稳 定SAM-2400自动化系统独特的上照式高功率X射线管及岛津专用样品盒,以降低粉末样品对真空室污染;控样校正、标准化校正定期自动进行,以确认仪器的分析状态是否处于良好状态,能更好的保障分析结果准确性。 安 全SAM-2400自动化系统设置多级权限,各级管理权限可以事先设定;急停按钮、安全门及安全传感器、指示灯、蜂鸣器设置到位;人机交互防护系统的建立;尤其系统中实行安全优先机制更是把安全提到了首位。 灵 活SAM-2400自动化系统设置考虑到系统的灵活性,紧急样品的人工介入功能、分析停止后的恢复运行、定期维护提示等,可以保障系统运行的流畅和安全,让系统更灵活易用。尤其手动进样位的设置,在碰到紧急样品时只要申请手动介入,系统允许后可放置手动插入紧急样品,进行优先分析。 图二:SAM-2400系统 # 奥秘在哪里?下面我们以钢铁厂生铁自动化分析为例,了解下SAM-2400的应用。查看视频请点击:https://mp.weixin.qq.com/s/WoH6Edu0J7UswsSiW8Fr4A 智能校正样品分析前,可以使用上位机控制进行漂移校正和控样分析,平台在上位机指挥下,自动选取放置在标样控样放置区的标样或控样,按照仪器设定的条件进行分析和管理,在保证质控正常情况下进行后续分析。 在实例中,使用了1#/2#作为漂移校正样、ZK-1作为质控样。 漂移校正样:选择工作曲线中各元素含量合适的漂移校正样(表一),在制作工作曲线时采集初始的元素强度,作为初始强度。分析时再次采集各元素分析强度,计算出漂移校正系数,用于计算校正后的强度。 质控样:在系统中输入质控样的标的含量。做质控分析时,根据分析结果判定仪器要不要修正,并将合适的修正值带入计算,以获得正确的分析结果。 表一 标准化样的大致含量(%)表二 控样的含量和范围(%) 漂移和质控分析完成后,由仪器主机分析平台上的1#手和2#手配合将放置在等待位上的样品放入样品盒中,由上位机控制进行样品分析。分析完成后直接显示分析结果,同时传送终端机汇总保存。 上位数据收集汇总 分析完成的样品经过自动激光标示系统进行打号标注,送入样品分类保存盒保存。 样品自动激光标识 智能监控自动分析系统在每个设备的动作点、关键位、温度、联机脱机、质量控制范围都设置音频或电铃报警,一旦任何部位异常都会触发报警,提醒仪器设备的维护者到位进行故障的检查和排除,充分保证仪器设备、分析数据的正常。 # 结语岛津SAM-2400自动化系统高效、稳定、安全、灵活,数据稳定精准,操作简捷高效,设备安全可靠,自动化智能化程度高,是钢铁行业自动化智能化的不二之选。 岛津公司专门设置了自动化演示实验室,可以现场考察,让您充分感受自动化智能设备的优越性。心动不如行动,岛津热烈欢迎您的到来! 撰稿人:胡晓春 本文内容非商业广告,仅供专业人士参考。
  • 水质检测实验室仪器---铜含量分析仪 ,铁含量分析仪相关研究
    在水质分析仪器高端化发展的趋势下,赛莱默一直挖掘不断衍生的新客户需求,积极提升设备的智慧化水平,更好地为客户解决水问题。今年的上海环博会上,赛莱默为大家带来了全新的解决方案。从金属含量来讲下铜含量分析仪 ,铁含量分析仪。铜是人体健康不可缺少的微量营养素,对于血液、中枢神经和免疫系统,头发、皮肤和骨骼组织以及大脑和肝、心脏等内脏的发育和功能有重要影响。一般来讲,饮用水中铜含量非常低,小于0.01毫克/升。现代科学研究证明饮用水中微量的铜对人体是有益的,可补充人类食物中铜的不足,同时,铜能起到杀灭自来水中某些细菌的作用。因此存在超标隐患。可溶性铜盐都有毒,主要因为铜离子能使蛋白质变性,失去生理活性。过多的铜进入体内可出现恶心、呕吐、上腹疼痛、急性溶血和肾小管变形等中毒现象。曾经在新闻报道中有小区因为饮用水中铜超标而造成集体腹泻。铜超标虽然不会诱发人体严重疾病,但是如果长期大量食用铜超标的水,可能会造成肾小管变形等中毒现象,引发急性铜中毒,对身体内的脏器造成负担影响胎儿发育。水中铜含量可以通过铜含量分析仪进行检测。B1070铜含量分析仪是一款智能型仪器,该仪器采用人性化设计,图形菜单,操作直观易懂,具有中英文可选,光源采用单色冷光源,测量准确可靠,可用于电厂、化工、冶金、环保、制药、生化、食品和自来水等溶液在实验室的测量与存储。仪器特点1、5.0寸彩色触摸屏,显示美观,控制简单2、图形化菜单简单易懂3、中英文语言可选,适应不同用户4、仪器可带自检功能,方便检测故障5、仪器有打印功能,可实时打印数据或打印存储数据6、仪器具备通讯功能,可将数据上传7、温度偏差提示功能,方便用户及时校准技术参数显 示: 480X272 彩色触摸屏;测量范围:0—200 ug/L 示值误差: ±2%F.S;分 辨 率: 0. 1 ug/L;重 复 性: ≤1%;水样温度:(5~60)℃;环境温度:(5~45)℃; 供电电源: AC220V 50Hz;功 率: <15W;外型尺寸:420×390mm×230mm;(主机)重 量:5kg;铁是人体必需的微量元素,本身也不具备毒性。但是当铁摄入量超标的时候,仍然会引起铁中毒。一旦铁中毒表现为恶心、呕吐、嗜睡、昏迷、发热等症状,如不及时治疗,可能会引发严重贫血、肝肾衰竭的病症,甚至会休克死亡。水中铁含量可以通过铁含量分析仪进行检测。B1080铁含量分析仪是一款智能型仪器,该仪器采用人性化设计,图形菜单,操作直观易懂,具有中英文可选,光源采用单色冷光源,测量准确可靠,可用于电厂、化工、冶金、环保、制药、生化、食品和自来水等溶液在实验室的测量与存储。仪器特点1、5.0寸彩色触摸屏,显示美观,控制简单2、图形化菜单简单易懂3、中英文语言可选,适应不同用户4、仪器可带自检功能,方便检测故障5、仪器有打印功能,可实时打印数据或打印存6、仪器具备通讯功能,可将数据上传7、温度偏差提示功能,方便用户及时校准技术参数显 示: 480X272 彩色触摸屏;测量范围:0—200 ug/L 示值误差: ±2%F.S;分 辨 率: 0. 1 ug/L;重 复 性: ≤1%;水样温度:(5~60)℃;环境温度:(5~45)℃; 供电电源: AC220V 50Hz;功 率: <15W;外型尺寸:420×390mm×230mm;(主机)重 量:5kg;
  • 大咖齐聚|“钢铁侠们”的饕餮盛宴—欧波同钢铁产品质量控制及实验室建设高峰论坛圆满闭幕
    2019年11月1日,欧波同钢铁产品质量控制及实验室建设高峰论坛在山东济南索菲特银座大饭店隆重召开,来自全国钢铁行业的100多位材料分析工作者参加了此次盛会。会议现场 会议首先由欧波同(中国)有限公司创始人兼董事长皮晓宇先生致辞,并对欧波同(中国)有限公司进行了简要介绍。皮总表示:作为德国蔡司在中国区的重要合作伙伴,欧波同历经十几年的高速发展,逐步完善了以蔡司光学显微镜、电子显微镜为核心的显微分析手段,并借助蔡司的产品优势,不断拓展行业应用解决方案的开发。欧波同始终关注钢铁行业的发展,钢铁行业在欧波同的业务板块中占有举足轻重的地位,同时也是欧波同业务发展最强有力的后盾。本着“深耕行业,服务客户”的宗旨,欧波同不断推进钢铁行业产品结构升级,目前可以为钢铁用户提供从原料、烧结(球团)、炼铁、炼钢、连铸、轧钢到最终成品的全场景检测解决方案。我国钢铁行业还面临着诸多问题和挑战,希望能够通过本次高峰论坛的交流,促进各位钢铁业界同仁对行业技术创新发展进行深入的思考。欧波同(中国)有限公司创始人兼董事长皮晓宇先生致辞 接下来由卡尔蔡司(上海)管理有限公司显微镜部工业销售总监王斌先生致辞。王斌先生肯定了欧波同在钢铁行业中取得的成绩并对未来继续与欧波同加深在钢铁行业方面的合作寄予了厚望。卡尔蔡司(上海)管理有限公司显微镜部工业销售总监王斌先生致辞 在技术报告环节,应用专家们围绕钢铁材料发展、实验室管理提升、钢铁产品质量提升解决方案、钢铁材料缺陷与失效分析、高品质钢中夹杂物控制与检测、分析测试仪器的应用与创新、最新标准解读等几个方面进行了分享和交流,对钢铁行业工作者的科研、检测、管理等工作起到了非常切合实际的指导作用。国家973项目首席科学家、上海大学材料科学与工程学院董瀚院长作技术报告《不断发展的钢铁材料》湖北省冶金材料分析测试中心有限公司技术总监、教授级高工陈士华先生作技术报告《检测技术创新与实验室管理提升》宝钢股份中央研究院武汉分院检测所首席师、教授级高工王志奋先生作技术报告《钢铁材料缺陷与失效分析》东北大学特殊钢冶金研究所副所长李阳先生作技术报告《高品质特殊钢中夹杂物的控制与检测》欧波同(中国)有限公司副总经理兼钢铁行业战略拓展总监张国滨先生作技术报告《欧波同钢铁行业应用解决方案》东北特钢集团抚顺特殊钢股份有限公司高级技术专家、全国钢标委金相检验方法分技术委员会委员程丽杰女士作技术报告《金相主要试验方法标准解析及应用问题释疑》欧波同(中国)有限公司营销总监程锦秋女士作《蔡司最新显微技术-智能显微镜》的相关介绍蔡司高级双束应用工程师沙学超先生作技术报告《蔡司显微镜在钢铁领域应用》欧品检测技术(山东)有限公司董事/总经理谭林清女士作技术报告《标准样品在质量控制中的应用》中国机械工程学会失效分析分会失效分析专家、教授级高工、欧波同特聘应用专家宁玫女士作技术报告《电镜和光镜在钢铁材料分析研究中的应用及案例》现场参会代表用户参观欧波同蔡司设备展示区近年来,随着工业“智能制造2025”和国家相关政策的出台,钢铁行业重新获得了稳定的发展机会。为了顺应钢铁行业技术发展的趋势,欧波同将继续深入与国际化公司的合作,着眼客户的根本需求,不断完善钢铁行业智能分析测试解决方案并积累相关实践经验,以此帮助广大的钢铁用户加快产品升级和技术革新。
  • 桐力TOCA三代开始,全贴合显示技术的普及时代来了
    全贴合技术作为显示行业的一个关键技术不仅让用户有极致的光学体验,还能够优化整机结构实现轻薄和制造后段的极简工艺,是显示行业未来一个主力技术赛道。近年车载显示技术开始推广分体显示模组,各大车厂纷纷开始推出全贴合用车载显示器件,但始终因为两个难题导致在显示应用普及全贴合技术的过程进展缓慢:难题一,车载盖板表面3A(AG\AR\AF)技术的普及让传统贴合OCR水胶或OCA片材胶无法得到充足的UV固化能量,市场需要一款非UV固化的热固性OCA片材粘接材料。难题二,车载显示屏产品造型的多样化,制造工艺的复杂性以及成本偏高都对传统的贴合材料和工艺提出了更高的要求。基于以上原因,桐力在发挥TOCA一代(100%有机硅)、二代(丙烯酸链有机硅)优势的基础上,根据全贴合应用领域的发展和需求,对公司研发技术成果进行了系统性的整合,顺势推出了这款革命性的全贴合材料——TOCA三代。TOCA——Tolyy Optically Clear Adhesive,是桐力光电基于特有的纳米研发技术开发的一系列光学胶膜(oca)的统称。具有光学效果优质、耐候性能突出、贴合方式灵活、性价比高等优势。如果说TOCA一代解决了传统有机硅胶水施胶工艺复杂的问题,TOCA二代解决了大尺寸全贴合问题,那么TOCA三代就是在以上产品优势整合基础上的升华。TOCA三代在性能上具有粘接强度高、非UV固化、针入度和厚度可调等优势,能够基于Oled、α-si、Lpts、IPS推出不同的产品,并通过工艺和设备帮助贴合企业解决曲面、长条、拼接等不同类型的工艺难题。桐力TOCA三代从单体材料生产、聚合反应、涂布生产均在自有工厂进行,通过与模切工厂及代理伙伴的合作将交付周期压缩到十个工作日内。TOCA三代搭配桐力自主研发设计的核心贴合设备,在一次良率、用工投入、工艺上均实现了质的飞越。据统计,搭配TOCA三代和桐力设备的产线可实现一次良率98%及以上,节约40%以上的人力,且工艺极简,换线灵活,经济效益巨大。目前桐力TOCA对外销售多采取in-house商业模式,即桐力输出核心设备和技术,帮助客户灵活搭建产线,结合TOCA产品的使用,为客户高效搭建生产条件,减少客户初期投入和产线调整的成本控制。目前TOCA三代产品已广泛应用于众多旗舰车型,TOCA系列胶膜目前已形成超30万㎡/月稳定出货。OCA过去由于价格、工艺等原因,一般仅用于消费类产品,车载等其他领域应用较少,TOCA系列推出后,搭配贴合设备以及核心工艺,桐力真正意义上把光学胶膜(OCA)的贴合成本降到了可以普及的阶段。发布会最后,桐力光电董事长石东表示,随着桐力TOCA三代产品的推出,桐力将基于材料、工艺、设备整合从车载显示向全贴合产品的其他领域延伸,桐力广招代理和模切伙伴,希望与大家一起打造国产材料的民族品牌,让应用创新不受材料约束,让创新材料赋能中国智造。苏州桐力光电股份有限公司成立于2012年,主营光学胶粘剂和光学粘接片材胶,基于自有知识产权的材料、工艺和设备方案,为显示行业输出全贴合完整方案。企业愿景:成为全球工业领域顶尖的光学粘接方案领导者企业使命:基于高效率和年轻化,搭建工业胶粘剂高水平研发平台,用创新材料造福人类企业核心价值观:客户第一、价值创造、学习成长
  • 与「欧波同」同行,见证钢铁行业显微分析技术和装备智能化共同进步
    近年来,随着科技的不断进步,电镜作为探索微观世界的“窗口”,早已应用于各行各业。基于此,欧波同携手仪器信息网推出“解码微观世界”系列活动,通过丰富的镜头记录下欧波同的蜕变之路以及电镜产业的突破与变革。本期视频,将带领大家走进显微特征自动分析系统联合实验室,通过与首钢京唐公司质检监督部部长张召恩、首钢集团有限公司技术研究院科学家鞠新华、欧波同副总经理张国滨等多位嘉宾对话的形式,深入了解欧波同在钢铁材料微观智能化表征方面的探索和实践。众所周知,智能制造是全球制造业发展的一个总趋势。钢铁行业,作为我国传统制造业的重要组成部分,也进入了智能化转型的关键时期。据张召恩部长介绍,当前首钢在智能制造方面已经具备了一定的经验,如智能物流、智能生产、智能分析,但是在微观检测领域,还处于刚刚起步的阶段。鞠新华老师也提到,目前钢铁检测行业在成分和性能分析方面实现了从取样、制样到检测的智能化,而微观组织分析的智能化还没有实现。欧波同旗下汇鸿科技,聚焦智能分析系统自主研发,通过行业领先的计算机视觉和图像识别技术,实现了AI技术和工业分析技术的跨界融合,已成功将AI智能金相分析系统、钢铁夹杂物分析系统等产品推向市场。基于此,首钢与欧波同携手共建了显微特征自动分析系统研发联合实验室,以推动钢铁行业显微分析技术和装备智能化共同进步。张召恩部长讲到,欧波同提供的设备能够很好地满足钢铁行业要求,同时,欧波同的技术服务和反应时效也能很好地满足客户需求,这是首钢选择与欧波同合作的一个重要原因。张国滨副总表示,与首钢共建联合实验室,是欧波同由仪器代理商转化为技术服务商的一个成功案例;欧波同在发展历程中,汇聚了一大批行业专家和用户,再加上独特的软件研发技术,结合行业痛点,欧波同将持续为钢铁行业赋能。延伸阅读:欧波同品牌故事:二十年历程,不断蜕变
  • 中国计量测试学会发布《铜(铁)分析仪校准方法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由河北中测计量检测有限公司等单位牵头起草的《铜(铁)分析仪校准方法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年4月26日前将《征求意见反馈表》反馈至以下联系方式。联系人:周建林 电 话:13630813838地 址:石家庄市红旗大街 333 号河北工院大学科技园邮编:050051 电子邮箱:9570407@qq.c om附件3 征求意见反馈表.doc附件2 《铜(铁)分析仪校准方法》编制说明.pdf附件1 《铜(铁)分析仪校准方法》征求意见稿.pdf
  • 标准应对:GB/T39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》
    国家标准GB/T 39994-2021 《聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定》于2021年4月30日公开发布,2021年11月01日正式实施。 聚烯烃一般是作为耐腐蚀的比较轻的这种材料来进行应用的。聚烯烃管道材料主要有聚乙烯(PE)、聚丙烯(PP)、聚丁烯(PB)等,广泛应用于各行各业。 有关调研显示,2015年聚乙烯管道消费量达到550万吨,占聚烯烃管道产量的一半以上,但实际上市场对聚乙烯管道的原料消费量约330万吨,这意味着部分管道有可能使用非新生管道原料进行生产。而使用过的管材回收料和未使用过的管材专用料的物理性能存在巨大差异,使用这些原料制成管材在实际应用中会成为巨大的安全隐患,也将给整个塑料管道行业造成极其恶劣的社会影响,同时也给合规原材料生产商造成了无法估量的社会评价下降和经济损失。 该标准规定了聚烯烃管道及原料中铁、钙、镁、锌、钛、铜六种金属含量的测定方法,适用于各种聚烯烃管材、管件、阀门中六种金属含量的测定,也适用于混配料、回用料和回收料(再生料)中六种金属含量的测定。研究表明在聚烯烃管道原料或制品中添加回收料(再生料)会导致其铁、钙、镁、锌、钛、铜元素的含量发生明显变化,其中铁和钙元素的变化尤其明显。因此,对聚烯烃管道产品金属元素含量,尤其是铁和钙元素的含量进行测定,是甄别聚烯烃管道原料或制品中是否含有回收料(再生料)的一种有效途径。 标准中对于六种金属含量测定的方法有原子吸收法(AAS法)、电感耦合等离子体光谱法(ICP-OES法)、电感耦合等离子体质谱法(ICP-MS法),三种方法各有特点,客户可以根据样品量等情况进行选择。 岛津推荐仪器 ///特点:-高灵敏度、多元素同时检测-自动方法开发,自动智能结果判断-低运行成本消耗-操作简便,维护简单 岛津ICPMS-2030系列 典型应用实例 ICP-MS测定Ca、Fe等元素的时候,由于同质异位素、多原子离子等的干扰,岛津ICPMS-2030系列通过选择合适的质量数及碰撞气进行高效干扰消除。 岛津可以提供标准规定的三种测量方法所对应需要使用的仪器,其中ICPM-2030系列在应对大量样品、多元素同时分析及元素含量高、低均有的复杂样品方面具有其特有优势,非常适合于聚烯烃管道中六种金属元素的高效、高灵敏的常规分析。 本文内容非商业广告,仅供专业人士参考。
  • 单颗粒ICP-MS应用 | 通用池技术消除铁纳米颗粒质谱干扰
    随着纳米颗粒在工业上的广泛应用,采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米颗粒成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。除了金和银纳米颗粒以外,零价铁纳米颗粒具有独特的化学特性和相对大的比表面积,更广泛应用于环境修复项目中,用于取出有机溶剂中氯、转化废料中有害化合物、降解杀虫剂和固定金属等。但不同于金和银纳米颗粒未受到基体干扰或常规质谱干扰问题,等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本文将证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。实验所有分析采用NexION 350D型 ICP-MS (珀金埃尔默公司,谢尔顿,CT),操作条件见表1。用去离子水稀释金和铁纳米颗粒标准,分别在质量数197和56处测定。实验结果实验首先在标准模式下运行。接下来,为评价加入反应气对SP-ICP-MS分析的影响,相同溶液在反应模式下运行。图1显示了标准和反应模式SP-ICP-MS测定100nm金颗粒谱图。两个图相似结果表明,反应模式并未改善纳米颗粒测定能力,因为金可能与氨气不发生反应。图1.反应(a)和碰撞(b)模式下SP-ICP-MS测定100nm金粒子两种模式下实际金颗粒检测数量比较列于表2。该数据表明,两种模式下颗粒具有同样数量,表明使用反应模式对测量颗粒并不偏差。存在的高背景掩盖了铁纳米颗粒中56Fe+,标准模式下铁测量不能完成。反应模式下测定60nm氧化铁纳米颗粒溶液,结果列于图2。与图1a中反应模式下金谱图相比,二者相似。尽管碰撞模式同样具有去除干扰能力,但在不严重损失仪器灵敏度前提下,不能完全消除ArO+对56Fe+干扰,意味着纳米颗粒检测限将大大降低。碰撞模式下使用其它低丰度铁同位素是有可能的,但低丰度意味着纳米颗粒将不能被检测到。因此,高信噪比的氨气反应模式测定m/z56是铁纳米颗粒最佳选择。图2.SP-ICP-MS反应模式下测定60nm的铁氧化物颗粒谱图结论本工作证实了珀金埃尔默NexION系列ICP-MS反应模式具有测定铁纳米颗粒能力。因为,铁受到来源于等离子体的干扰,必须采用反应模式测定铁纳米颗粒,具有远超碰撞模式的优势。该工作可以扩展为其它受干扰的金属纳米颗粒,如钛、铬、锌或硅。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 文献解读丨基于铁基催化剂的CO₂高效转化制备烯烃:Na,Mn催化助剂协同作用探究
    本文由北京大学分析测试中心电子能谱实验室所作,第一作者为徐尧老师,文章发表于Angewandte Chemie International Edition(Angew. Chem. Int. Ed. 2020, 59, 21736–21744)。 多相催化剂活性和选择性的优化常需借助多种组分(或助剂)来实现,充分理解这些不同组分(或助剂)在催化反应中所起到的作用机制,特别是各组分(或助剂)之间的相互影响及协同效应,对于理性设计多相催化剂具有重要的指导意义。CO2的有效转化是实现当下碳中和目标下的主要途径,Na和Mn常被用作助剂添加到铁基催化剂中以改善CO2加氢转化制备烯烃过程的活性和选择性。此前的研究通常将Na、Mn助剂作为独立的变量来考察,而对两者共存时Na、Mn助剂之间的相互作用及其对催化性能的影响尚缺乏系统性认识。 由于催化反应往往在催化剂的表面发生,XPS表征技术的发展为我们研究助剂对催化剂表面结构的影响提供了有利的检测手段。利用岛津X射线光电子能谱仪(XPS),通过设计准原位XPS实验,对不同助剂影响下铁基催化剂表面的元素组成和化学态变化进行了深入研究,明确了助剂在实现CO2高效转化过程中的关键作用,为设计合成高效CO2转化到烯烃催化剂提供了重要依据。 Axis Supra文献解析图一. Na、Mn助剂促进铁基催化剂上CO2高效转化制备烯烃示意图 表一. 不同铁基催化剂催化CO2加氢性能的比较aaReaction conditions: 100 mg catalyst, 340˚C, 2.0 MPa, CO2/H2/Ar = 24/72/4, 20 mL min-1. bThe carbon ratio of olefin to paraffin. cThe approach to equilibrium factor for the RWGS step (Eq. 1). dThe net rate of the RWGS step (i.e. the net CO2 conversion rate Eq. S1 of SI). eThe forward rate of the RWGS step (Eq. 2). fThe rate of the FTS step (Eq. S2 of SI). gCannot be calculated accurately due to the established equilibrium of the RWGS step. 通过动力学分析分别获得RWGS和FTS的本征速率,发现Mn的加入会同时抑制两步反应的活性,而Na则是调控烃类产物分布的关键因素。当两种助剂同时加入时,Na的介入使Fe和Mn的相互作用减弱,使更多的活性位得以暴露,在两种助剂的协同作用下催化剂表现出最高的反应活性和烯烃选择性。 对催化剂的准原位XAFS和XPS表征表明,Mn可以促进Fe5C2相的形成和稳定,而Na的加入减弱了Fe和Mn之间的相互作用,一定程度上抑制了部分Fe5C2相的生成。该影响使得FeMnNa催化剂中Fe5C2活性相的比例相比于FeMn催化剂明显减少,而体系中Fe3O4相的含量则相对增加。正是两种助剂的协同作用使催化剂中Fe5C2和Fe3O4相的比例达到了最优状态,从而使得该催化剂在获得高CO2加氢活性的同时也表现出最优的烯烃选择性。 图二. 反应3 h后催化剂的a)Fe k-边XANES谱图和b)Fe k-边 EXAFS 谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 图三. 反应3 h后催化剂的a)Fe 2p XPS谱图和b)C 1s XPS谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 通过上述实验,可发现对于使用共沉淀方法制备的铁基催化剂,Mn的添加可以有效地促进Fe的分散,但Fe和Mn之间的强相互作用在CO2加氢转化过程中却表现出了负面效应。这种负面效应包括对RWGS反应活性的抑制和烯烃产物生成速率的降低。造成前者的原因是Mn的加入促进了RWGS的活性相Fe3O4向FTS反应活性相Fe5C2的转变,而造成后者的原因则与Mn增加了Fe5C2活性相上FTS反应的空间位阻有关。而第三组分Na的加入不仅提高了CO2的加氢活性和烯烃的选择性,还减弱了Fe与Mn之间的强相互作用,使Mn转变成为对CO2加氢转化有利的助剂。 以上结果表明,对于类似的复杂多相催化体系,在设计催化剂时,关注多种助剂之间的相互作用(而非孤立地关注各助剂对于催化活性位的影响)或许能够为构筑高性能催化剂提供一种更为有效的策略。而应用具备特殊样品杆和配气装置的Axis Supra X射线光电子能谱仪,为以上实验的表征提供有效助力。 文献题目《Highly Selective Olefin Production from CO2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives》 使用仪器Axis Supra X射线光电子能谱仪 作者Yao Xua, Peng Zhaia, Yuchen Denga, Jinglin Xiea, Xi Liuc, Shuai Wang*,b and Ding Ma*,a a. Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University. Beijing 100871 (P. R. China) b. State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 36100 (P. R. China) c. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences P.O. Box 165, Taiyuan, Shanxi 030001 (P. R. China), and Synfuels China. Beijing 100195 (P. R. China)
  • 宝钢制订钢铁表面纳米尺度薄膜国家标准
    日前,由宝钢股份研究院负责起草的国家标准《辉光放电光谱法定量分析钢铁表面纳米尺度薄膜》,通过了全国微束分析标准化技术委员会的评审。评审专家还建议,鉴于该标准在国际上亦属首次提出,可在适当时候转化为国际标准。   对钢铁表面进行涂镀处理,是目前提高钢铁产品抗腐蚀性能的主要途径,如镀锌、彩涂产品等。随着涂镀工艺的发展,真空镀膜、闪镀等新的表面处理技术可以使薄膜厚度减薄至几百个到几个纳米,不仅降低了生产成本,而且减少了环境污染。但是,如何准确控制和分析纳米尺度薄膜的厚度及成分,国际上一直没有统一标准。  宝钢从2003年开始对纳米尺度薄膜的表征技术展开深入研究,并在国内冶金行业率先应用辉光放电光谱法,积累了丰富的经验。2007年,国家标准委下达了制订《辉光放电光谱法分析钢铁表面纳米尺度薄膜》国家标准的计划。宝钢因在这一领域起步较早,并已具备较强研发实力,理所当然地承担起了该标准的起草工作。  为做好标准的起草工作,宝钢研究院进行了大量的准确度和精密度试验,并与近20家高等院校、科研院所和钢铁同行开展了技术交流,最终完成了标准起草工作,并顺利通过国家评审。
  • 【新品上线】得利特新推出分析式铁谱仪
    新品推荐——分析式铁谱仪01产品介绍产品名称:分析式铁谱仪型号:A1503适应标准:ASTM D7690 、ASTM 7684、 SH/T 0573分析式铁谱仪可以对机械设备运行中的磨损状态进行诊断、监测,从而提高系统的可靠性和安全性。我公司生产的分析式鉄谱仪创立了设备诊断的标准,与SHT0573在用润滑油磨损颗粒试验法(分析式铁谱法)标准试验方法一致,广泛地应用于世界范围的油液分析实验室中。02仪器特点1检测方法和精度满足ASTM D7690 、ASTM 7684和 SH/T 0573检测标准;2油中水份对谱片制作几乎没有影响;3一旦油样准备好并插入,仪器可自动进行,操作人员可做其他工作;4方便的按键操作;5可调整控制样本流速,保证一致的谱片沉积和重复性;6在小于20分钟的时间内同时制作2个谱片;7谱片是透明的,允许区分金属、有机物和非金属颗粒,更容易诊断;8颗粒按其磁化系数和大小进行排列,便于对颗粒进行迅速分析;9极少发生颗粒堆积,便于观察;03技术参数&bull 显示屏 :配备10.1寸LCD液晶触控屏&bull 电源供电:AC220V,50Hz&bull 磨粒测量范围:0um~800μm&bull 进样方式: 微量泵气压式,自动进样&bull 清洗方式: 自动清洗和手动清洗两种方式&bull 磁场:最大磁通密度1.8T(±0.1T)最大磁场梯度0.5T/mm&bull 制谱通道: 双通道同步制谱&bull 谱片倾角:1°~5°&bull 油样输送速度:流量范围10~30ml/h可调&bull 清洗剂流速:清洗剂流量可调,最大流量100ml/h&bull 测量分辨率:lum&bull 单次分析样品量:1m&bull 输油导管尺寸:外径2.6毫米,内径1.8毫米&bull 铁谱基片尺寸:60mm×24mm×0.17mm&bull 尺 寸: 395mm×355mm×335mm&bull 重 量: 约14kg
  • 中美物理学家首次揭示铁基超导三维超导特性
    英国《自然》杂志发表中美物理学家联合研究的最新成果:在具有二维层状晶体结构的铁基超导体中发现超导态的“各向同性”。这是首次在二维层状的超导材料中报道三维的超导特性。该工作由浙江大学物理系长江特聘教授袁辉球利用美国洛斯阿拉莫斯国家实验室强磁场设备完成实验,铁基超导材料样品由中科院物理所王楠林小组提供,浙江大学物理系为论文第一作者单位。  高温超导形成机理是国际公认的一大挑战,科学家寄希望于寻找铜氧化合物超导材料以外的新型高温超导材料,进一步探索其形成机理。袁辉球在铁基超导材料发现后不久就开始关注这类新型超导材料的奇特物性。他通过采用脉冲强磁场等极端实验条件,极大地延伸了铁基超导材料的温度—磁场相图的研究范围,并发现了令人惊异的现象:铁基超导材料(Ba,K)Fe2As2在低温的上临界磁场几乎与外加磁场的方向无关,具有“各向同性”的特征。这是首次在二维层状的超导体中发现了超导态的各向同性,为揭示铁基超导材料的形成机理提供了重要的物理信息。铁基超导材料的这种奇特的超导特性是由其独特的电子结构所决定的。  袁辉球认为,这类铁基超导材料虽具有二维层状的晶体结构,但其电子结构可能更接近于三维,因此,维度的降低并不一定是形成高温超导的必备条件。此外,铁基超导材料也表现出许多与重费米子材料相类似的性质,特别是在磁与超导的相互作用方面,他还推测,铁基超导材料可能是连接低温的重费米子超导与高温铜氧化合物超导的一个重要桥梁。  《自然》杂志评审专家认为,这是超导研究领域一项非常独特而重要的发现,将对研究铁基高温超导形成机理具有重要意义。
  • 赫施曼助力铌铁中钛含量的测定
    铌铁是冶金行业冶炼钢的重要原材料,铌作为合金元素加入钢中能显著改善钢的焊接性能。铌与钛,钒、锆等元素相似,能对钢的性能产生良好的影响。钛作为铌铁中有益元素,准确测定其含量对炼钢质量具有重要意义。根据GB/T 3654.8-2023,铌铁中钛含量的测定方法是:变色酸光度法和二安替比林甲烷光度法。其中变色酸光度法原理为:试料用氢氟酸和硝酸分解,冒硫酸烟,在草酸溶液中,变色酸与钛形成红色络合物,于波长475nm处测量其吸光度。方法如下: 1.将试料(见表1)置于100mL聚四氟乙烯烧杯或100mL铂皿中,用赫施曼HF型瓶口分配器加入5mL氢氟酸(ρ=1.15g/mL),滴加5mL硝酸(ρ=1.42g/mL),低温加热至试料完全溶解,用瓶口分配器加入15mL硫酸溶液(1+1),继续加热至冒硫酸烟并保持约4min。2.取下稍冷,将试液移入预先盛有50mL草酸溶液(50g/L)的250mL烧杯中,再以100mL草酸溶液(50g/L)分次洗涤聚四氟乙烯烧杯或铂皿,洗液合并于烧杯中,溶液加热保持不沸至澄清。3.取下稍冷,用Miragen电动移液器加入2mL过氧化氢(30%),加热微沸30s取下,冷却至室温。将试液全部移入200mL容量瓶中,以40mL草酸溶液(50g/L)分次洗涤烧杯,洗液合并于容量瓶中,用水稀释至刻度,混匀。4.按表1移取试液和随同试料空白各两份,分别置于50mL容量瓶中,以下分别按5和6进行。5.显色溶液:用瓶口分液器向一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器加lmL亚硫酸钠溶液(200g/L)混匀,放置2min,加入6mL变色酸溶液(50g/L),用水稀释至刻度,混匀。6.参比溶液:向另一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器1mL亚硫酸钠溶液(200g/L),以水稀释至刻度,混匀。7.将部分显色溶液移入适当的比色皿中,以各自的参比溶液为参比,于分光光度计波长475nm处测量其吸光度。用显色溶液的吸光度减去随同试料空白试验的吸光度后,从校准曲线上查出相应的钛量。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸、硫酸和王水等强腐蚀性或挥发性的特殊试剂。赫施曼还有氢氟酸专用瓶口,用于氢氟酸的便捷分液。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。
  • 世界粮食日,关注粮食安全丨玉米、大米、小麦和玉米油中的玉米赤霉烯酮的测定
    介绍01为加快粮食产业经济发展,推进粮食产业供给和结构性质改革,国家粮食局推出“优质粮食工程”,并开展“中国好粮食”行动。睿科集团积极响应政策的同时,凭借丰富的实验室经验,针对相关政策标准制定了系列解决方案,并将各种自动化设备应用于前处理过程,尽可能地帮助实验员提高工作效率,保证粮油产品检测的准确性。值此世界粮食日(2021年10月16日)来临之际,我们分享用Fotector Plus高通量全自动固相萃取仪分析粮油中玉米赤霉烯酮的解决方案。试样经过90%乙腈水溶液提取,提取液经离心、稀释后用含有玉米赤霉烯酮特异抗体的免疫亲和柱自动净化。用5 mL水淋洗柱子将免疫亲和柱上的杂质除去,以甲醇洗脱免疫亲和柱。将洗脱液在55°C条件下氮吹干,用1 mL初始流动相定容,经高效液相色谱仪上机分析。图-1玉米赤霉烯酮结构式本应用文章参考GB5009.209-2016《食品中玉米赤霉烯酮的测定》第一法,采用免疫亲和柱净化,高效液相色谱检测,建立了复杂粮油样品基质中玉米赤霉烯酮高灵敏度的前处理和分析方法,得到四种常见粮油基质中玉米赤霉烯酮的加标回收率在88.0%-112.0%之间,RSD值小于5%。仪器与耗材02Auto Prep 200全自动液体样品处理工作站;Fotector Plus高通量全自动固相萃取仪 ;Auto EVA 80 全自动平行浓缩仪;玉米赤霉烯酮免疫亲和柱 (Romer,1500ng/3mL);高效液相色谱: Waters ACQUITY UPLC I-Class配备大体积流通池;甲醇(Merck,色谱纯);乙腈(Merck,色谱纯);吐温-20(Sigma,试剂纯);超纯水(Waston);PBS盐包配标净化浓缩标准曲线配制03使用Auto Prep 200全自动液体样品处理工作站可实现标准品的全自动化配制,将单标母液(1000 mg/L)通过工作站的直接稀释模式,配制成浓度为10 mg/L的工作中间液,紧接着可通过程序设置,吸取该工作液,配制一条浓度分别为0.01 mg/L,0.02 mg/L,0.1 mg/L,0.2 mg/L和0.5 mg/L的标准工作曲线。图-2. Auto Prep 200 液体工作站配标程序样品提取与前处理04大米、玉米、小麦样品准确称取5 g粉碎过的样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以7000 r/min的转速离心5 min;取5 mL上清液于试管中,加入20 mL 0.1%吐温-20的PBS缓冲液混匀,以7000 r/min的转速离心5 min,取10 mL上清液于80 mL上样管中,待用。玉米油样品准确称取5 g样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以5000 r/min的转速离心5 min;余下步骤同上。固相萃取净化条件全自动固相萃取仪Fotector Plus高通量全自动固相萃取仪固相萃取柱玉米赤霉烯酮免疫亲柱 (1500ng/3mL)淋洗超纯水洗脱甲醇表-1 固相萃取净化条件以2 mL/min的速度精确上样10 mL待测液,5 mL水清洗样品瓶,5 mL水淋洗免疫亲和柱,气推30 mL吹干免疫亲和柱,推速为80 mL/min。最后用2 mL甲醇以0.5mL/min的速度洗脱样品,收集洗脱液用Auto EVA 80 全自动平行浓缩仪于55°C、1 L/min条件下吹干,用初始流动相定容至1 mL,过滤膜上机分析。详细步骤见图-3。图-3. Fotector Plus 玉米赤霉烯酮免疫亲和柱净化方法检测条件05色谱柱Waters BEH-C18(2.1×100 mm,1.7 um)流速0.200 mL/min流动相水:甲醇:乙腈=46:8:46柱温35°C进样体积10 μL梯度洗脱等度洗脱荧光检测器激发波长303nm,发射波长440nm表-2 玉米赤霉烯酮液相色谱检测条件样品测试06分别取大米、玉米、小麦样品各5g,添加20 ug/kg的玉米赤霉烯酮标准品,进行上述步骤的前处理净化。取空白玉米油样品5 g,添加20 ug/kg的玉米赤霉烯酮标准品,进行上述步骤的前处理净化。样品回收率如下表-3所示:表-3添加水平为20 ug/kg样品回收率结果结果与讨论071.样品提取液pH对回收率的影响只用纯水稀释样品提取液进行上述净化步骤,样品中的加标回收率只有71-78%;若采用0.1%吐温-20的PBS缓冲液进行样品提取液稀释,样品回收率为88-112%。2.洗脱速度的影响采用1 mL/min的洗脱速度,洗脱效果不佳,回收率在72%-81%;降低洗脱速度至0.5 mL/min,洗脱效果有明显提升,回收率在88-112%。因此洗脱速度不宜设置得过快。3.乙腈提取液用PBS缓冲液稀释后容易变浑浊,用滤纸过滤混合液效果不佳,因此建议采用高速离心的方式使混合液变澄清以利于后续的过柱。4.谷物中离心完成后,不可放置过长时间,否则谷物容易重新吸水,可能导致提取液的浓度过高,使样品的回收率偏高,影响测试结果。5.固相萃取进行提取液净化前,特别对于偏酸或偏碱性样品,应用PBS缓冲溶液(pH=7.4)进行稀释后上机,否则可能会导致回收率偏低。总结1. 采用高通量全自动固相萃取仪法,准确性、重复性、再现性均满足符合GB 5009.209-2016 要求。2. 采用Fotector Plus高通量全自动固相萃取仪对样品进行检测能同步进行6个样品净化,连续自动处理60个样品,做样通量高;同时可无人值守,提高了工作效率。此外还可避免工作人员因操作失误导致的检测偏差。3. 睿科 Auto Prep 200全自动液体工作站可实现混标、标准曲线的自动配制,全程无需人为值守,让实验人员远离有毒有害的化学物质。4. 睿科Auto EVA 80 全自动平行浓缩仪处理通量高,80个样品可同时进行氮吹,实验平行性好;采用氮吹针自动追随液面的设计,无需手动调节氮吹针且耗气量小,省时省力。
  • 小材料,大能量:最新Science探秘弛豫铁电的未来!
    【科学背景】弛豫铁电材料(RFE)是一类重要的介电材料,由于其高能量密度和优异的功率密度,广泛应用于能量存储和高功率电子系统中,因而成为研究热点。然而,现有RFE的能量密度普遍低于200 J/cm³ ,这限制了其在下一代能量存储设备中的应用潜力。当前,提升能量存储密度的主要挑战在于极化能力不足和击穿电场较低,导致其在实际应用中的可靠性受到影响。为了解决这一问题,7月11日,清华大学李敬锋教授,北京理工大学黄厚兵研究员和澳大利亚卧龙岗大学张树君教授合作在“Science”期刊上发表了题为“Partitioning polar-slush strategy in relaxors leads to large energy-storage capability”的最新文章。他们提出了通过化学异质性引入短程有序的极性纳米区域(PNRs)来增强RFE的性能。这一策略使得材料内部形成了极性簇,从而显著提升了可逆极化和击穿强度,进而实现了更高的能量存储能力。例如,Bi(Mg,Ti)O3-SrTiO3薄膜在这种设计理念的指导下,其能量密度达到了110 J/cm³ ,效率提升至80%。通过进一步优化PNRs的结构和分布,研究者们期望能够突破现有材料的性能瓶颈,推动RFE在能量存储领域的应用。【科学亮点】(1)实验首次实现了在弛豫铁电材料中应用分区极性泥状策略,成功得到具有独立极性簇的高性能Bi(Mg0.5Ti0.5)O3-SrTiO3薄膜。这一创新设计显著提高了材料的能量存储密度和效率。(2)实验通过相场模拟指导,抑制非极性立方基质并引入高绝缘网络,从而形成了动态的泥状极性簇。这一过程显著增强了可逆极化和击穿强度,使得材料的能量存储密度(Ue)达到202 J/cm³ ,效率高达约79%。(3)研究还表明,形成短程有序的极性纳米区域(PNRs)有效降低了极化切换障碍,进而减少了剩余极化(Pr),实现了更高的可恢复极化(ΔP)。(4)尽管已有研究在PNR结构上取得进展,但通过缩小PNRs以形成极性簇的方式仍面临挑战。该方法虽然能降低Pr,却可能削弱局部极化,影响最大极化(Pm)和ΔP。【科学图文】图1:采用隔离极性IPS策略设计具有增强储能性能的RFEs。图2:研究了三种基于BMT-ST的RFE薄膜的极化、电气和储能性能。图3:三种基于BMT-ST的RFE薄膜的结构表征。图4:储能性能的可靠性、稳定性和可扩展性测量。【科学启迪】本文的研究为弛豫铁电材料的发展提供了重要价值,尤其是在能量存储领域。首先,通过引入分区极性泥状策略,成功实现了极性簇的独立化,这不仅提高了材料的能量存储密度,也展示了在设计新型介电材料时灵活性的重要性。这种创新的设计理念强调了化学异质性对材料性能的关键作用,为进一步探索极性纳米区域(PNRs)提供了新的思路。其次,实验中所采用的相场模拟方法,不仅为材料设计提供了科学依据,也展示了计算与实验相结合的重要性。这种方法论的应用为未来新材料的快速开发奠定了基础,尤其是在解决材料内部结构和性能关系时,能够提供深刻的洞见。此外,研究还指出了在提升材料性能时需解决的技术挑战,如极化开关障碍和绝缘性能的权衡。这一发现提醒我们,在追求高性能的同时,必须综合考虑材料的多种物理特性,以实现最佳的应用效果。最后,本文的成果不仅推动了高能量密度电容器的技术进步,也为未来在电力电子、智能电网及电动汽车等领域的应用开辟了新的可能性。这种跨学科的研究模式和思路,将进一步促进材料科学与工程技术的融合,为新一代能量存储系统的发展奠定坚实基础。文献信息:Liang Shu&dagger , Xiaoming Shi, Xin Zhang, Ziqi Yang, Wei Li, Yunpeng Ma, Yi-Xuan Liu, Lisha Liu, Yue-Yu-Shan Cheng, Liyu Wei, Qian Li, Houbing Huang, Shujun Zhang, Jing-Feng Li,&thinsp Partitioning polar-slush strategy in relaxors leads to large energy-storage capability, Science, https://www.science.org/doi/10.1126/science.adn8721
  • Nature Communications:AFM-IR研究铁电纳米晶极化所罗门环结构
    所罗门环是数学扭结理论中的一个重要拓扑结构,它由两个分量和四个交叉点组成。最近人们发现,这种拓扑结构可以通过化学和生物分子的自组织形成。本研究中来自北京理工大学和清华大学的学者首次在BiFeO3铁电纳米晶体中观察到了极化所罗门环,并且极化所罗门环和中心型四瓣畴之间的拓扑相变可以通过电场可逆调控。AFM-IR测量结果显示两种拓扑极性结构具有不同的太赫兹红外吸收行为,这一特征可以用于设计具有纳米级分辨率的红外显示器。相关成果以Polar Solomon rings in ferroelectric nanocrystals为题,发表在Nature Communications上。在本项研究中,作者采用了几种先进的理论和实验方法,包括压电力显微镜,相场模拟分析和纳米红外技术来验证BiFeO3纳米晶的拓扑结构,电场可逆调控和红外吸收特性。图1所示,采用压电力显微镜,作者在自组装BiFeO3纳米晶中观察到极化所罗门拓扑畴结构,该结构由两个三维涡旋环组成:R+ 4 ,R-3 ,R+ 2 ,R-1(蓝色环)和R- 4 ,R+ 3 ,R- 2,R+ 1(红色环);两个涡旋相互扭抱,在三维空间共有四个交点。通过相场模拟分析(图2),作者表征了极化所罗门环的拓扑特性。通过计算纳米岛各层中畴结构的三维极化分布,验证了纳米岛极化所罗门环的存在,并通过计算极化缠绕数验证其拓扑特性。进一步的测试表明,通过施加外部电场,BiFeO3铁电纳米晶体的畴可以在极化所罗门环和中心型四瓣畴之间可逆地转变(图3)。未施加偏压下,纳米晶的极化畴呈所罗门环结构;-4V偏压下,环形结构消失,出现中心型四瓣畴结构;施加2V翻转偏压后,中心型筹结构又转变为所罗门环结构;增加偏压至3V,所罗门环结构转变为中心收敛的筹结构;继续施加翻转偏压-2V后,又变回所罗门环结构。通过AFM-IR探索了极化所罗门环结构与中心型四瓣畴结构不同的太赫兹红外光吸收性能(图4)。AFM-IR光谱显示两种筹结构在1100cm-1处存在出宽的吸收带,对应O-Fe-O键的倍频信号。向上和向下的四元域对该波段吸收更强,所罗门环吸收较弱。1100cm-1处的AFM-IR成像也证实了具有不同拓扑结构的BiFeO3纳米晶体的相对吸收强度的差异。铁电纳米晶筹结构对红外光的吸收取决于极化方向与红外光偏振方向的相对角度,以及畴壁的体积分数。所罗门环和中心型筹结构与红外光平行或反平行,吸收都较强。但所罗门环的畴壁的体积分数更大,畴壁对红外波段不活跃,因此,在所罗门环中观察到的光吸收最弱。在进一步的实验中(图5),选择具有极化所罗门环的大面积BiFeO3纳米晶体阵列作为弱的红外光吸收基体,向纳米晶体交替施加电压以产生交替的中心型畴和所罗门环。高分辨率红外图像清楚的显示出交替的强吸收和弱吸收。证实了所罗门环和中心型畴之间的可逆相变。通过外加电场调控BiFeO3纳米晶阵列畴结构类型,在纳米红外吸收图像中显示出”BIT”字样。本研究在实验和计算上证实了极化所罗门环的存在和电学调控,AFM-IR验证了两种筹结构不同的光吸收响应,这种具有不同光吸收特性的新型可控拓扑极化结构,可能为红外显示器的设计铺平道路。
  • 小学生作客珀金埃尔默“影响力日”,与科学家一同揭秘 “食事求是 ”
    9月12日,致力于为创建更健康的世界而持续创新的技术型企业珀金埃尔默在上海举办了其一年一度的影响力日活动。来自闵行区农民工子弟学校民办马桥小学的30名学生来到珀金埃尔默位于张江的中国区总部,与科研人员一同开展了一场主题为 “食事求是”的食品安全探究活动。在食品安全知识小课堂中,珀金埃尔默的科研人员通过趣味小故事帮助孩子们了解日常生活中可能存在的食品安全和质量问题,在轻松愉快的互动中,为孩子们讲解“病从口入”的安全小常识。在趣味实验环节,“海底火山”、变色的碘液和酸碱度测试小实验,让孩子们看到了氧化还原反应下奇妙的色彩变化,见识了化学的神奇。珀金埃尔默中国区销售与服务副总裁兼总经理朱兵博士为孩子们介绍科学小知识 认真做实验的孩子们在实验室参观环节,同学们接触到了来自珀金埃尔默的最前沿科学仪器,这些利器可以快速地鉴别物质中的微量元素。在珀金埃尔默科研人员的帮助下,孩子们看到了他们从家中带来的自来水、净化水和矿泉水样中,钾、钠、钙、镁、铜、铁、锰、锌等元素的含量变化。最吸引人的当属小龙虾的检测。大家都爱吃的小龙虾到底有没有重金属超标?珀金埃尔默的工作人员特地从市场随机购买了一批小龙虾,经过消解、检测,实验结果表明所购批次的小龙虾铅、镉等重金属含量并未超标,但科研人员也提醒小朋友们,和虾肉比起来,虾头里所含的有害元素含量相对较高,为了减少重金属摄入风险,可尽量减少虾头及虾黄的食用。 在珀金埃尔默位于江苏太仓的研发及生产基地,来自当地农民工子弟学校太仓新华小学的数十名学生走进了实验室,和科研工作者一同揭秘生活中经常食用的配料和水中的微量元素成分。趣味小实验让孩子们了解了大米中的微量元素;自来水、矿泉水、爽肤水的酸碱度各有怎样的不同。新华小学的孩子们来到珀金埃尔默太仓基地“我们很高兴孩子们在珀金埃尔默度过了一个愉快的下午。作为一家领先的科技型企业,我们很乐意通过科学知识的普及,提高孩子们对化学和生物的兴趣,帮助他们增长见识,开拓视野。”珀金埃尔默中国区销售与服务副总裁兼总经理朱兵博士表示。总部位于美国的珀金埃尔默是全球领先的诊断及探索与分析解决方案提供商。自2015年起,公司在全球推出“影响力日”活动,旨在通过一系列企业社会责任活动回馈生活和工作的社区。
  • “河北省钢铁实验室”获批在唐山筹建
    日前,河北省科技厅印发《关于组织做好河北省钢铁实验室筹建工作的通知》,同意在唐山市筹建河北省第一家省实验室——河北省钢铁实验室,并纳入省级科技研发平台管理序列。 据介绍,省实验室是河北省围绕重点产业发展需求,推进重塑实验室体系,构建新发展格局,布局建设的省级重大科技创新平台。河北省是“第一钢铁大省”,唐山是“第一钢铁大市”,组建河北省钢铁实验室对于突破钢铁产业的痛点难点问题,加快推动全省钢铁行业转型升级具有重大战略意义。2022年,唐山市科技局、华北理工大学在深入调研钢铁企业发展面临的困难和迫切需求基础上,编制了《河北省钢铁实验室建设方案》(以下简称《方案》),将围绕河北省支柱产业钢铁产业高质量发展需求,整合省内外高水平科技、人才、产业资源,着力创建具备国际一流水准的科技创新高地。根据《方案》,河北省钢铁实验室采用“1+N+N”战略布局,由唐山市主导建设,牵头单位为华北理工大学。依托华北理工大学建设河北省钢铁实验室“1”个总部,实施关键共性、前沿引领、现代工程和颠覆性技术创新研究;依托钢铁研究总院、北京科技大学、燕山大学、河北科技大学、河北工业大学等加盟高校和科研院所建立“N”个实验室分中心,协同实验室总部开展相关科研任务;依托河钢唐钢、首钢京唐、河钢宣钢、津西钢铁等单位建立“N”个成果转化基地,打造创新样板工厂,加速实验室科技成果转化。从研究方向来看,河北省钢铁实验室设计十分明晰。该实验室聘任中国工程院院士、钢铁领域著名专家毛新平担任实验室主任,并围绕实验室8个主要研究方向,分别设立省外、省内双首席科学家(省外院士+省内权威专家),搭建了钢铁领域一流的高水平科研团队。相关研究方向密切聚焦钢铁冶金与材料领域具有战略性、前瞻性、基础性的关键科学问题,以及制约产业发展的关键共性技术和工程示范难题,主要包括钢铁制造流程运行优化与智能化、难选铁矿及冶金资源综合利用、近零碳排放电炉流程技术、近终型制造技术、先进钢铁材料冶炼及加工技术、特种钢铁材料制备技术、钢铁企业系统能效提升与用能结构优化、钢铁数字化设计与数字化制造等关键核心技术和重大工程技术。接下来,唐山市科技局将同有关单位共同努力,将河北省钢铁实验室打造成为具有国内外影响力的高能级科技创新平台、绿色低碳关键共性技术研发平台、现代工程技术成果转化平台、高端和创新人才培养平台以及钢铁产业高质量发展战略研究智库,为我国钢铁产业创新发展作出更大贡献。
  • 全自动乌氏粘度计在聚醚酮酮材料中的应用
    聚醚酮酮(PEKK)是一种是在主链结构中含有两个酮键和一个醚键的重复单元所构成的高聚物,是聚芳醚酮家族中除聚醚醚酮以外的另一重要成员。聚醚酮酮材料拥有出色的机械强度和耐热性,是航空航天工程中重要的材料之一。聚醚酮酮材料作为一种高新的结构性热塑性塑料,其优异的性能使得它被应用于高精尖的领域之中,也对聚醚酮酮材料品质的稳定性提出了更高的要求。在聚醚酮酮(PEKK)材料的实际生产中,通常会采用乌氏粘度法来作为产品质量控制的重要保证之一,乌氏粘度法测得的黏度不仅反应了产品性能的优劣,同时也是工艺参数调整时参照的一项重要指标。目前使用高精密全自动乌氏粘度仪以及相关辅助设备进行黏度测试在聚醚酮酮(PEKK)材料领域已经成为一种趋势。黏度测试环节更高效便捷,为研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。 ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥,告别了粘度管是耗材的时代。
  • 乌氏粘度法在聚醚醚酮(PEEK)材料中的应用
    聚醚醚酮(PEEK)是指在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。可用作耐高温结构材料和电绝缘材料,也可与玻璃纤维或碳纤维复合制备增强材料,被广泛用于航空航天、医疗器械和工业等领域。 在PEEK材料的实际生产中,通常会采用乌氏粘度法来作为产品质量控制的重要保证之一,乌氏粘度法测得的黏度不仅反应了产品性能的优劣,同时也是工艺参数调整时参照的一项重要指标。伴随着行业领域对于PEEK材料性能的高水准、高要求,目前使用高精密全自动乌氏粘度仪以及相关辅助设备进行黏度测试已经成为一种趋势。黏度测试环节更高效便捷,为研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 欧盟对EDTA铁钠作为食品中铁强化剂的科学意见
    EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。  应欧盟委员会的要求,食品添加剂及营养强化剂科学委员会公布EDTA(乙二胺四乙酸)作为普通食品(包括食品补充剂)以及特殊营养用途食品的铁强化剂的科学意见。所公布的科学意见涉及EDTA铁钠作为铁强化剂的安全性以及来自EDTA铁钠的铁的生物利用率。至于铁本身的安全性--可能的铁摄入量--并不在这个科学委员会的评估范围之内。  有关EDTA铁钠的铁生物利用率的信息立基于人体铁强化研究。科学委员会根据这些研究得出结论,来自于EDTA铁钠的铁具有生物可利用性。研究进一步发现,EDTA铁钠中的铁的生物利用率是硫酸亚铁的二至三倍,同时可以有效与血红蛋白的结合。  科学委员会指出,EDTA铁钠中的铁的吸收会依照人体的铁量进行调整,方式与其他铁化合物类似,通过在食品中添加EDTA铁钠进行铁强化并不会导致人体铁过载。这些研究同样对动物(老鼠)和人体(铁强化研究)内EDTA铁钠对食品中其他营养物质(例如锌、铜、钙、锰以及镁)的吸收和代谢产生的影响进行了分析,结果并未发现影响吸收和代谢现象。  科学委员会称,两项为期90天针对老鼠体内EDTA铁钠的研究为他们提供了数据。根据这些数据,委员会得出的无可见不良作用剂量水平为每天每公斤体重250毫克EDTA铁钠。根据一项为期61天的老鼠摄入EDTA铁钠研究,委员会得出的无可见不良作用剂量水平为每天每公斤体重84.3毫克(提供每天每公斤体重11.2毫克铁)。基于这项研究得出的发现,联合食品添加剂专家委员会(JECFA)2000年得出结论,在饮食中填入EDTA铁钠在满足铁营养需求的同时并不会导致铁的过量摄入。  委员会指出,针对鼠伤寒沙门氏菌(7株)和大肠杆菌(2株)的试管内诱变性试验结果显示为阴性,但试管内老鼠淋巴瘤试验结果显示为微弱阳性,观察到中度细胞毒性。在此次试管内老鼠淋巴瘤试验中,还观察到与其他铁化合物有关的类似结果,EDTA钠铁(III)产生的影响可能与铁有关,而不是EDTA.此外,试管内老鼠微核试验结果显示为阴性。  欧盟一份EDTA风险评估报告指出,EDTA及其钠盐在极高摄入剂量情况下可产生较低的致突变性。根据多项结果为阴性的研究以及一项非整倍体诱发剂作用机制阀值的假设,EDTA及其钠盐对人体并不具有致突变性。科学委员会认为,根据所获得的信息,EDTA铁钠作为铁强化剂不会产生基因毒性方面的安全隐患。  虽然并未对EDTA铁钠进行化学毒性和致癌性研究,但对于包括EDTA 三钠、EDTA二钠钙和EDTA磷酸氢二钠在内的其他EDTA盐还是进行了一些研究。与其他EDTA金属一样,EDTA铁钠在内脏内分裂为一种具有生物可利用性的铁和一种EDTA盐,在评估EDTA铁钠的安全性时,其他EDTA盐的毒理学研究具有可参考性。根据这些研究,EDTA盐并不具有致癌性。  根据老鼠食用EDTA磷酸氢二钠、EDTA三钠、EDTA四纳、EDTA二钠钙等类似EDTA盐的发育研究获取的数据,死亡率、生育能力或者致畸作用均与这些化合物无关。根据老鼠EDTA铁钠的一项发育毒性研究,科学委员会得出的无可见不良作用剂量水平为每天每公斤体重200毫克。  发展中国家对将EDTA铁钠作为食品的一种铁强化剂进行了大量现场测试。根据这些测试,EDTA铁钠并未对参与长期EDTA铁钠强化测试的人产生副作用。委员会指出,EDTA的光降解能够促进甲醛的形成。欧洲食品安全局的食品添加剂、调味料、加工辅料和原料专家组(AFC)对甲醛在食品添加剂生产和制备过程充当防腐剂进行了分析,结果并未发现口服摄入的甲醛具有致癌性的任何证据。AFC专家组认为,在遵照相关部门建议的量摄入EDTA铁钠情况下,EDTA的降解产物甲醛并不对人体造成安全隐患。  食品添加剂及营养强化剂科学委员会请求将EDTA铁钠作为一种铁强化剂,建议应该在特殊营养用途食品中添加EDTA铁钠,每天为体重60公斤的成年人提供22.3毫克铁,为体重30公斤的儿童提供11.1毫克铁。为了达到这一铁摄入量,成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。  对于食品补充剂,委员会并没有建议具体的摄入量,但指出应该与当前被批准用于食品补充剂的其他铁类似。以EDTA铁钠形式摄入的铁量,体重60公斤的成年人每天不应超过22.3毫克,体重30公斤的儿童每天不应超过11.1毫克。为达到同样的摄入量,食品补充剂中添加的EDTA铁钠应与特殊营养用途食品相同,即成年人和儿童每天分别需要摄入大约168毫克和84毫克EDTA铁钠。  委员会指出,维生素与矿物质专家组(EVM)建议的摄入量只供参考,补充摄入量大约为每天17毫克铁,(相当于体重60公斤的成年人每天每公斤体重摄入0.28毫克)。对于绝大多数人来说,这一摄入量不会产生副作用。每天17毫克铁可由128.3毫克EDTA铁钠提供,EDTA为89毫克,相当于成年人每天每公斤体重摄入大约1.5毫克EDTA,体重15公斤的儿童每天每公斤体重摄入5.9毫克EDTA.  基于这些摄入量,委员会计算出所有铁以EDTA铁钠形式摄入情况下的EDTA摄入量。对于特殊营养用途食品,成年人每天摄入的EDTA大约在116毫克左右,儿童为每天58毫克左右。对于食品补充剂,成年人每天摄入的EDTA大约在116毫克左右,儿童为大约在58毫克左右。这两种情况下的EDTA摄入量为,成年人每天每公斤体重1.9毫克左右,体重15公斤的儿童为每天每公斤体重3.9毫克左右。  对于强化食品,假设EDTA铁钠摄入量按照委员会的建议,体重15公斤的儿童每天摄入的EDTA平均在11.3毫克,成年男性为24.6毫克,第95百分位的儿童为24.6毫克,成年人为58.5毫克。若以单位体重表示则分别为每天每公斤体重0.8毫克和0.4毫克,第95百分位情况下分别为每天每公斤体重1.7毫克和1.0毫克。  委员会指出,虽然EDTA的每日允许摄入量还没有确定,但联合食品添加剂专家委员会已制定了EDTA二钠钙的每日允许摄入量标准,为每天每公斤体重2.5毫克,摄入的EDTA为每天每公斤体重1.9毫克。EDTA二钠钙为欧洲唯一获得批准的EDTA衍生物。  如果将EDTA铁钙作为一种铁强化剂,添加进所有3种来源--特殊营养用途食品、强化食品和食品补充剂,儿童平均每天摄入的EDTA为每天每公斤体重8.6毫克,成年人平均每天摄入的EDTA为每天每公斤体重4.2毫克 第95百分位的儿童为每天每公斤体重9.5毫克,成年人为每天每公斤体重4.8毫克。这超过了为EDTA二钠钙制定的EDTA每日允许摄入量标准,也就是每天每公斤体重1.9毫克。委员会无法评估个体摄入所有3种添加EDTA铁钠的产品的可能性,但这种可能性并不高。  如果以EDTA铁钠形式每天摄入22.3毫克铁(相当于摄入165毫克EDTA铁钠),每天将额外摄入9毫克纳。通常情况下,欧洲人每天摄入的纳平均在4500至1.1万毫克之间,即使食用所有3种添加EDTA铁钠的产品,额外摄入的纳量也不足为虑。  委员会认为,来自EDTA铁钠的铁具有生物可利用性,如果每天摄入的EDTA不超过每天每公斤体重1.9毫克,将EDTA铁钠作为普通食品的一种铁强化剂不会造成安全隐患。如果按照建议的量,将EDTA铁钠作为公众强化食品的一种铁强化剂,同样不会造成安全隐患。委员会指出,如果将EDTA铁钠用于特殊营养用途食品或者童提供11.1毫克铁,EDTA的成年人摄入量将为每天每公斤体重1.9毫克,儿童为3.9毫克。
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。  以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。  这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。  物理学中的璀璨明珠,未来应用的希望之星  超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。  在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。  也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。  这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。  中国成果震动学术界  物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。  是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。  为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。  2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。  高温超导的研究基地  物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。  中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。  铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。  机遇和有准备的头脑  铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。  物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。  基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!  突破极限,勇攀新高  由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。  为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。  中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。  物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。  截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献  在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。  当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。  丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。  任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。  王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。  就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。  民生超导,强国超导  百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。  习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制