当前位置: 仪器信息网 > 行业主题 > >

丁氧羰基

仪器信息网丁氧羰基专题为您提供2024年最新丁氧羰基价格报价、厂家品牌的相关信息, 包括丁氧羰基参数、型号等,不管是国产,还是进口品牌的丁氧羰基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丁氧羰基相关的耗材配件、试剂标物,还有丁氧羰基相关的最新资讯、资料,以及丁氧羰基相关的解决方案。

丁氧羰基相关的资讯

  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 核磁技术揭示丝光沸石分子筛孔道酸性位催化二甲醚羰基化机制
    近日,中科院大连化物所催化基础国家重点实验室催化反应化学研究组(501组)展恩胜副研究员、申文杰研究员等与中科院精密测量科学与技术创新研究院徐君研究员、邓风研究员等合作,在丝光沸石(MOR)催化二甲醚羰基化反应的活性位点鉴别和调控方面取得新进展。  MOR是二甲醚羰基化反应的重要催化剂,其活性与8-MR孔道的总酸量相关。尽管理论计算表明,T3-O9是唯一活性位点,但实验上鉴别和定量描述不同T位点酸性特征和催化机制仍面临挑战。  本工作中,科研人员首先通过分步晶化法合成了片状结构MOR,该MOR表现出优异的催化活性,醋酸甲酯收率达到0.72gMAgcat.-1h-1(473K、2MPa)。随后,科研人员利用二维固体核磁技术和DFT计算确定了骨架铝原子在T1至T4分布,发现该片状结构丝光沸石8-MR孔道的铝原子富集在T3位,动力学研究发现该酸性位的反应速率高达7.2molMAmolT3-Al-1h-1(473K、1MPa)。随后,科研人员调变不同MOR样品的T1至T4位分布,发现位于8-MR窗口的T4酸性位也具有催化作用,但其活性只有T3位的1/4,从实验上证明T3位在催化二甲醚羰基化反应中的主导作用。该工作从原子尺度定量描述了丝光沸石分子筛8-MR孔道T位的催化反应化学,也深化了对沸石分子筛催化剂活性位结构的认知。  相关研究成果以“Experimental Identification of the Active Sites over a Plate-Like Mordenite for the Carbonylation of Dimethyl Ether”为题,于近日发表在Chem上。该工作的共同第一作者是中科院大连化物所501组博士研究生熊志平和中科院精密测量科学与技术创新研究院齐国栋副研究员。上述工作得到了国家自然科学基金等项目的支持。
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 质谱检测新策略助力深度解析阿尔兹海默症相关糖蛋白APP的糖基化
    阿尔兹海默症(Alzheimer’s diseases,AD)是最常见的一种神经退行性疾病,临床表现为渐进性记忆损伤,认知功能障碍,语言障碍等精神症状。我国现有1000多万AD患者,是世界上患者数量最多的国家。且随着人口老龄化,这个数字还在急剧增加,据预测到2050年中国AD患病人数将超过4000万,给我国社会经济以及患者家庭带来极大负担。阿尔兹海默症主要特点为病人脑组织中β淀粉样蛋白(Aβ)的异常产生和累积。Aβ形成的前体蛋白APP(amyloid protein precursor)是一种高度糖基化修饰的糖蛋白。蛋白质糖基化是一类重要的蛋白质翻译后修饰,参与蛋白稳定表达,蛋白加工剪切,细胞间的靶向识别及相互作用等生理过程。越来越多的研究表明糖基化对APP的加工及Aβ的产生具有关键的调控作用,精准判定APP糖基化修饰信息,对深入理解app蛋白在AD疾病发生中的作用和疾病早期诊断方法开发上具有重要意义。 近日,上海交通大学系统生物医学研究院张延课题组与严威课题组联合开发了一种基于质谱多碎裂方式组合靶向完整O-糖肽的质谱解析方法(Targeted MS combined Multi-fragment strategy,TMMF)。 该方法精准描绘出APP蛋白的O-糖基化修饰位点和糖链结构。为从蛋白质糖基化修饰水平理解app的分子功能与AD的发病机制,发现AD治疗靶点以及开发AD早期诊断策略提供了新的思路。该成果以“Comprehensive analysis of O-glycosylation of amyloid precursor protein (app) using targeted and multi-fragmentation MS strategy”为标题发表在国际著名生物化学与生物物理学期刊(BBA-General Subjects)上。(生物谷Bioon.com)
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 十年耕耘蛋白糖基化质谱分析技术——对话北京大学分析测试中心,质谱实验室高级工程师,周文
    蛋白质的糖基化修饰是一种重要的蛋白翻译后修饰。对于蛋白糖基化修饰的深入表征将有助于加深糖基化作用机制的理解,为相关疾病药物、疫苗的研发提供理论基础,然而糖基化修饰的类型和结构非常复杂,给分析检测带来了非常大的难度。过去10年间,北京大学分析测试中心高级工程师周文和多个课题组深入合作,致力于针对不同种类的糖基化发展相应的质谱分析检测新方法。北京大学分析测试中心高级工程师周文在过去的20年里,糖基化修饰领域在仪器方面有了很多进展,如从传统的碰撞解离到现在的电子转移解离(ETD)的碎裂方式,同时还可以将不同的碎裂方式进行组合。周文形容到,ETD就像闪电一样,它的碎裂过程非常的快,更便于我们进行糖基化的分析。周文表示,希望让更多人关注分析测试领域,也给分析测试人员更多的展示自己的舞台,相信将来一定会有更多的优秀人才加入到我们当中来!
  • 北京基因组所等揭示O-GlcNAc糖基化修饰维持基因组稳定性的分子机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   DNA总是受到内源或外源环境中多种损伤因子的攻击,例如DNA复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起DNA损伤的产生。如果不能够及时有效修复DNA损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控DNA损伤并及时修复,这一机制即为DNA损伤应答。 /p p   中国科学院北京基因组研究所郭彩霞研究组与中科院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成DNA聚合酶Polη第457位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成DNA聚合酶Polη被招募到复制叉处替换高保真性DNA复制酶,在相应的损伤DNA模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的DNA复制酶相比,Polη复制未损伤DNA模板的错误率显著升高(10 sup -2 /sup ~10 sup -3 /sup ),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于Polη在TLS完成后如何从复制叉解离尚不清楚。研究发现,干扰Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤DNA模板对侧整合核苷酸的能力,但显著削弱Polη与CRL4 sup CDT2 /sup E3泛素连接酶之间的相互作用,降低第462位赖氨酸的多泛素化修饰水平,进而抑制p97-UFD1-NPL4复合体所介导的Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA复制叉移动速率变缓等。该项研究工作揭示了Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及DNA复制过程中多种DNA聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。 /p p   该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从DNA损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。 /p p   研究工作以 em Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis /em 为题,在线发表在 em Nature Communications /em 上。研究工作获得了国家自然科学基金委、科技部等的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212545298381499.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/afc0a60a-899a-40ca-87bc-2c12afb7ef13.jpg" uploadpic=" W020171212545298381499.jpg" / /p p style=" text-align: center " O-GlcNAc糖基化修饰调控Polη与复制叉解离的分子机制示意图 /p
  • 国家同步辐射实验室在碳氢化合物低温氧化研究中取得突破性进展
    国家同步辐射实验室齐飞教授研究小组与法国Nancy大学Battin-Leclerc教授研究小组合作,将同步辐射真空紫外光电离质谱技术与射流搅拌反应器(Jet Stirred Reactor)结合,模拟发动机的点火过程,在丁烷低温氧化过程中探测到了多种过氧化物(烷基过氧化物和羰基过氧化物),如过氧化甲烷、过氧化乙烷、过氧化丁烷、C4羰基过氧化物等,首次在实验上验证了碳氢化合物低温氧化机理中广泛应用20余年的重要假定。该研究成果已于近期发表在国际著名期刊《德国应用化学》上(Angew. Chem. Int. Ed. 2010, 49, 3169-3172)。      汽车发动机与生活中随处可见的塑料和化纤制品之间似乎风马牛不相及,但它们却都与一种奇妙的化学现象──碳氢化合物的自燃(autoignition)密切相关。自燃是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧,是一种受低温氧化机理控制的过程。它是内燃机的主要点火方式之一,也是威胁石油化工中氧化过程安全的罪魁祸首。因此对碳氢化合物低温氧化机理的认识可以帮助我们扬长避短地利用自燃现象,对于内燃机设计和石油化工安全等实用领域意义重大。在低于自燃温度时,碳氢化合物低温氧化还会出现“冷火焰(cool flame)”(550 K左右出现的温度跳动,量级在数十K,伴随由甲醛发出的蓝光,形似火焰)和“负温度系数区”(650 K左右出现的反应活性随温度上升而下降的区域)等奇妙特性。射流搅拌反应器可以模拟自燃温度前后的工况,是研究碳氢化合物低温氧化的最佳实验平台之一。同步辐射真空紫外光电离质谱技术在射流搅拌反应器中的成功应用是揭示过氧化物存在及其浓度随温度变化趋势的关键,将从根本上推动碳氢化合物低温氧化机理的研究,揭开“星星之火,可以燎原”的秘密,为实用领域提供更加详细、精确的理论指导。   该工作得到国家杰出青年基金、中国科学院和科技部的支持。
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 武汉物数所一氧化碳转化反应机理的核磁共振研究获进展
    近日,中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室邓风研究组,在一氧化碳直接与苯烷基化生成甲苯的研究方面取得新进展,相关研究结果在《化学通讯》(Chemical Communications)上在线发表。   CO既是有毒有害气体,也是一种常见的C1化学资源,具有广泛的工业应用价值,其转化一直是多相催化中的热点问题。工业化上一般通过费托合成过程直接将CO和H2(合成气)转化为甲醇。烷基芳香烃类是一种非常重要的化学品,广泛应用于化工、农业、医药、香料等领域,它可通过甲醇等在酸性催化剂作用下烷基化芳香烃类来制备。如果能省去费托合成甲醇的这一间接高能耗过程,用CO与芳香烃类通过烷基化反应直接合成,将为CO的转化利用以及烷基芳香烃类的制备提供新的思路。   在该项工作中,徐君副研究员及王秀梅博士等通过调控锌元素改性ZSM-5沸石分子筛的氧化性及表面酸性,实现了CO与苯催化生成甲苯的反应。原位固体核磁共振研究发现,CO可以作为一种烷基化试剂与苯发生烷基化反应,反应过程中,CO通过甲氧基中间体提供了甲苯中甲基上的碳原子,苯提供了甲苯的苯环。以往的研究通常认为CO只能作为羰基化试剂在多种催化过程提供羰基基团,该工作报道的CO可作为烷基化试剂参与目标有机物制备的研究结果,丰富了CO作为C1原料的用途,也为高附加值化学品的合成提供新途径。   在前期工作中,该研究组利用原位核磁共振技术结合其他多种谱学技术,揭示了沸石分子筛催化剂上甲烷、一氧化碳活化与转化的反应机理(Angew. Chem. Int. Ed. 2012, 51, 3850 Chem. Sci. 2012, 3, 2932 J. Am. Chem. Soc. 2013, 135, 6762 J. Phys. Chem. C, 2013, 117, 4018)。   该工作得到了国家自然科学基金委、中国科学院以及武汉市晨光计划的支持。    Zn/H-ZSM-5上CO直接与苯烷基化生成甲苯反应历程图
  • 中药配方颗粒省级标准制定关注要点
    2月10日,国家药品监督管理局、国家中医药管理局等四部门联合发布《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),结束中药配方颗粒试点工作。《公告》的发布标志着中药配方颗粒的生产和监管进入新的阶段。  根据《公告》要求,符合条件的生产企业可报所在地省级药品监督管理部门备案后进行中药配方颗粒的生产。作为中药配方颗粒生产和质量监管的重要依据,中药配方颗粒质量标准成为备案资料中最关键的技术文件。《公告》要求,中药配方颗粒应执行国家标准,国家标准没有规定的,允许省级药品监督管理部门自行制定标准。目前国家药品监督管理局已经公示了160个品种的中药配方颗粒质量标准,即将转为中药配方颗粒国家标准,将为各生产企业配方颗粒的备案提供依据。但是160个品种之外的中药配方颗粒品种目前尚无国家标准,中药配方颗粒省级标准制定工作迫在眉睫。  《公告》要求中药配方颗粒省级标准的制定应严格按照《中药配方颗粒质量控制与标准制定技术要求》执行。中药配方颗粒省级标准制定应重点关注以下几点:  一是研究用样品的代表性。应在充分产地调研基础上收集含道地产地、主产地等不同产地的15批以上符合药品标准规定的同一基原药材样品,并依据药品标准或中药饮片炮制规范炮制成供研究用中药饮片样品。  二是标准汤剂研究的标准性。标准汤剂是衡量中药配方颗粒与中药饮片汤剂“一致性”的物质基准。标准汤剂的标准性涵盖了投料饮片(药材)的道地性、煎煮工艺的一致性、质量控制的严谨性。因此,标准汤剂的制备应参照《医疗机构中药煎药室管理规范》采用传统汤剂的获得模式。标准汤剂是中药饮片经水煎煮提取、过滤固液分离、低温浓缩、冷冻干燥制得。通过15批标准汤剂的出膏率、有效成份(或指标成份)含量及含量转移率、特征图谱等数据,分析得出标准汤剂的三个基本质量指标,为中药配方颗粒的工艺研究和质量标准制定提供依据。  三是工艺研究的合理性。中药配方颗粒制备工艺合理性的主要评价标准是上述标准汤剂的三个质量指标。因此,工艺研究中提取时间、提取次数、浓缩、干燥、制粒等工艺参数的确定均应以标准汤剂的质量指标为依据。处方量、制成总量及规格等也应与标准汤剂的质量指标相对应。中药材、中药饮片、标准汤剂、中间体、成品之间关键质量属性的量质传递应具有相关性。  四是质量标准研究的科学性、严谨性。中药配方颗粒质量标准的制定应针对中药配方颗粒的特点,由于中药饮片经水煎煮制成颗粒后已失去了中药饮片的鉴别特征,因此应采用特征图谱或指纹图谱等专属性、整体性控制方法进行鉴别;含量测定应选择水溶性有效成份或专属指标成份作为测定指标并根据标准汤剂的含量及含量转移率范围制定合理含量上下限度。此外,为有效控制中药配方颗粒的安全性,应参照中药材、中药饮片质量标准中规定的重金属、农药残留、真菌毒素限量制定相应的检查项目,对于中药材、中药饮片标准中未规定上述安全性检查项目的品种应进行相应考察,根据考察结果确定是否有必要进行控制。  五是质量标准复核的重要性。质量标准复核工作是考察标准重现性和可行性的重要环节,质量标准草案上升为正式标准之前均应进行质量标准复核,应组织省级药检部门或其他有资质的检验机构对制定的质量标准草案进行复核,以确保标准的可行性。  中药配方颗粒省级标准制定工作是一项关系中药配方颗粒行业健康发展的重要工作,期待各省能群策群力,充分发挥中药配方颗粒原试点企业的经验和科研院校的科研优势,尽快制定出能有效控制中药配方颗粒质量的省级标准。(作者:河北省药品医疗器械检验研究院 冯丽
  • 【阿拉丁】连接子 - 抗体与药物结合的关键因素
    连接子 - 抗体与药物结合的关键因素抗体-药物偶联物(Antibody-drug conjugate, ADC)结合了抗体的高特异性和小分子药物的强细胞毒性。这种组合结合了抗体的独特和非常敏感的目标能力,可以区分健康组织和癌组织。它还具有细胞毒性药物的细胞杀伤能力,可能最大限度地减少剂量限制性毒性,同时最大限度地提高所需的治疗效果。ADC的主要优点是可以在体循环中作为药物使用,最终在靶肿瘤细胞中释放游离药物。在这一过程中,连接子在释放有效药物靶向肿瘤细胞,决定ADC的药代动力学特性、治疗指标和选择性,甚至整体成功方面发挥着关键作用。目前使用的连接子可分为可切割连接子和不可切割连接子两大类,它们之间的区别在于它们在细胞内是否会被降解。一、用于连接的可切割连接ADC连接子的主要类别是可切割连接子。可切割连接子被设计为对细胞外和细胞内环境差异(pH、氧化还原电位等)表现出化学不稳定性,或者可以被特定的溶酶体酶切割。在大多数情况下,这种连接子被设计成在键断裂后释放有效载荷分子。这种无迹可循的药物释放机制使研究人员能够根据已知的游离有效载荷的药理学参数估计共轭有效载荷的细胞毒性。2.1 可切割接头的类型可裂解接头腙是一种酸不稳定基团,当ADC被转运到核内体(pH 5.0-6.0)和溶酶体(pH约4.8)时,它被用作可切割的连接子,通过水解释放游离药物。组织蛋白酶B响应连接子组织蛋白酶B是一种溶酶体蛋白酶,在多种癌细胞中过表达,参与人类许多致癌过程。组织蛋白酶B的底物范围相对较广,但它优先识别某些序列,如苯丙氨酸-赖氨酸(Phe-Lys)和缬氨酸-瓜氨酸(Val-Cit)。这种序列的c端切割肽键。Val-Cit和Val-Ala连接物偶联p -氨基苄氧羰基(Val-Cit- pabc和Val-Ala- pabc)是adc最成功的可切割连接物。PABC片段使自由有效载荷分子以无迹方式释放。双硫键连接子谷胱甘肽敏感连接子是另一种常见的裂解连接子,其策略依赖于细胞质中较高浓度的还原分子(如谷胱甘肽)(1-10 mmol/L)。二硫键嵌入在连接子中,在循环中抵抗还原性裂解。然而,内化后,大量细胞内谷胱甘肽减少二硫键,释放自由有效载荷分子。为了进一步提高循环中的稳定性,通常在二硫键旁边安装一个甲基。焦磷酸二酯连接子该阴离子连接子具有比传统连接子更高的水溶性和优良的循环稳定性。此外,在内化后,焦磷酸二酯通过内核体-溶酶体途径快速裂解,释放未修饰的有效载荷分子。图1. 可切割连接子。(Kyoji Tsuchikama & Zhiqiang An. 2018)二、不可切割的连接子不可切割连接子由稳定的键组成,抵抗蛋白质水解降解,确保比可切割连接子更高的稳定性。不可切割连接子依赖于细胞质和溶酶体蛋白酶对ADC抗体成分的完全降解,并最终释放与降解抗体衍生的氨基酸残基连接的有效载荷分子。与可切割连接子相比,不可切割连接子的最大优点是其等离子体稳定性增强,与可切割连接子相比,这可能提供更大的治疗窗口。此外,与可切割的偶联物相比,它有望降低脱靶毒性,因为不可切割的adc可以提供更大的稳定性和耐受性。图2. 不可切割的连接子。不可切割连接的化学稳定性可以承受蛋白质水解降解。单抗的细胞质/溶酶体降解可以释放与降解的单抗衍生氨基酸残基相连的有效载荷分子。(Kyoji Tsuchikama & Zhiqiang An. 2018)三、总结结论保证游离药物在肿瘤细胞内的特异性释放是选择Linker的最终目的。该连接子对ADC的稳定性、毒性、PK特性和药效学等具有重要意义。每个环节都有其优点和缺点。在选择连接子时,必须考虑许多因素,包括单克隆抗体和细胞毒性药物中的现有基团、反应性基团和衍生功能基团。最后,需要通过个案分析确定如何优化选择合适的连接物、靶点和毒性分子,平衡ADC药物的有效性和毒性。表1. 连接子类型及优缺点比较参考文献1. Kyoji Tsuchikama & Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell. 2018 9:33-46.2. Jun Lu. Feng Jiang. Aiping Lu. and Ge Zhang. Linkers Having a Crucial Role in Antibody–Drug Conjugates. Int J Mol Sci. 2016 Apr 17(4):561.3. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics. 2015 16(3):257-71.阿拉丁提供相关产品,详情请见阿拉丁官网:Linkers - A Crucial Factor in Antibody–Drug Conjugates (aladdin-e.com)
  • 第六届爱丁堡产品用户应用研讨会成功举办
    2018年11月9日至11月13日,天美(中国)科学仪器有限公司(以下简称“天美(中国)”)在有“九省通衢”之称的武汉成功举办了第六届爱丁堡稳态/瞬态光谱和最新技术及应用研讨会——暨爱丁堡仪器2018年中国区用户会。此次研讨会迎来了全国不同地区不同领域的一百多位专家学者,共计收录论文126篇,墙报26份。学术氛围浓厚热烈,盛况空前。  天美(中国)副总裁张海蓉女士、英国爱丁堡仪器公司全球首席执行官Dr. Roger Fenske 先生、英国爱丁堡仪器公司仪器研发主管Dr. Dirk Nather先生、天美(中国)光谱应用工程师张轩先生等高层领导及高级工程师均出席了本次用户研讨会。    本次会议由天美(中国)副总裁张海蓉女士主持并做开幕致辞,介绍了天美(中国)自1988年成立以来经筚路开山、夯基立柱、锐意拓疆、全球布局并于2013年收购英国爱丁堡仪器公司,到一个天美的统一理念,助力科学研究、服务产业创新、关爱人类健康、缔造美好生活。天美“智”造将继续砥砺前行。爱丁堡仪器公司首席执行官Dr. Roger Fenske同时也对爱丁堡仪器公司及其旗下产品进行介绍。 天美(中国)科学仪器有限公司副总裁 张海蓉女士  会议期间荣幸地邀请到全国各地使用爱丁堡仪器的学者和专家到场进行专题报告,武汉大学杨楚罗教授,华南理工大学苏仕健教授,常州大学吴大雨教授,上海大学张志军研究员,厦门大学王翔研究员,华中科技大学马颖教授,中科院海西院厦门稀土材料所/物构所马恩高级工程师,西北大学马佳妮副教授,中国科学技术大学张群教授,北京大学分析测试中心陈明星高级工程师,浙江大学秦海燕副教授及武汉大学李振教授12位学者专家均进行了精彩的报告。同时,爱丁堡仪器首席执行官Roger Fenske博士及仪器研发主管Dirk Nather博士,以及天美(中国)应用工程师张轩先生介绍了荧光技术的新近研究、热点应用、耦合高端附件的解决方案,全新产品的“预发布”以及测试技巧等。   爱丁堡仪器首席执行官Roger Fenske博士——稳态瞬态荧光相关领域热点应用、瞬态吸收光谱在各研究领域的最新应用、高端附件及耦合应用的介绍   英国爱丁堡仪器公司仪器研发主管Dirk Nather博士——荧光技术的新近研究的介绍及重磅新产品的内部“预发布” 武汉大学杨楚罗教授——高效热活化延迟荧光材料及器件 华南理工大学苏仕键教授——双构象荧光材料:刺激响应及高效率有机电致发光器件 常州大学吴大雨教授——智能响应型荧光金属配合物的合成、结构与应用 上海大学张志军研究员——掺Eu2+硝基硅酸盐的发光性质与其结构的关系研究 华中科技大学马颖教授——荧光上转换的应用 中科院海西院厦门稀土材料所/物构所马恩高级工程师——量子产率测试方法及应用 厦门大学王翔研究员——等离激元增强拉曼光谱的发展及其应用 西北大学马佳妮副教授——用时间分辨光度法研究蒽醌-2-甲基羰基笼型醇的光脱保护机理中国科学技术大学张群教授——超快光谱在凝聚相分子和微纳体系中的应用 北京大学陈明星高级工程师——公共测试平台上特殊附件的运行及应用浙江大学秦海燕副教授——胶体量子点的集合体与单粒子光谱性质的关联 武汉大学李振教授——荧光在光电功能材料研究中的应用 天美(中国)光谱产品工程师张轩先生——测试技巧及数据处理  会议过程中,各位学者专家积极提问讨论报告内容,交流仪器使用心得。茶歇期间,纷纷参观墙报展示。   会议上,天美(中国)还进行了与厦门大学成立奖学奖教金的签约仪式,表达了天美(中国)助力科学研究的意愿与决心。   本次用户会收集的论文共126篇,根据投稿文章的单篇影响因子,与爱丁堡仪器相关度以及文章篇数合计影响因子等因素,评选出卓越、杰出及优秀奖。此外,此次用户会全新开设了墙报成果展示活动,共收集墙报26份,并设置了墙报奖项以奖励参与评选的老师和感谢他们对爱丁堡仪器及天美(中国)的大力支持。天美(中国)将始终秉承助力科研,为用户提供优质服务的初衷。2018年爱丁堡用户会墙报及论文评选结果: 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 液态金属还原氧化石墨烯在生物传感中的应用
    Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing布鲁克纳米表面仪器部 李勇君 博士自室温和近室温液态金属(LMs)出现以来,此类材料因其软流体性质、高电子和热导率特性而受到研究者们越来越多的关注。其中,镓及其共晶合金因其低毒性和低蒸汽压等特性成为了LMs家族的典型代表之一,其可用于驱动表面化学反应,设计纳米结构等应用。到目前为止,众多研究者已经在 LMs 表面探索了多种反应,以生成基于层状材料和纳米粒子等不同涂层,但其表面在暴露于氧的情况下易形成天然氧化层而快速钝化,形成损害LMs导电性的绝缘表面,从而限制了在电化学和电子系统中的应用。因此,在LMs表面建立导电层,以实现高导电界面是对于需要电子、电荷转移这类应用的一种有前景和十分重要的策略。2021年11月,澳大利亚新南威尔士大学和中国香港大学的研究人员通过共晶镓(Ga)-铟(In)液态金属(EGaIn)与氧化石墨烯(GO)的界面相互作用成功实现了衬底上、单独GO的还原(rGO),合成了基于rGO与LM的核-壳复合材料(LM-rGO)。进一步,研究者通过布鲁克公司的原子力显微镜(AFM)、 峰值力扫描电化学显微镜(PF-SECM)、纳米红外光谱(nanoIR)、X射线能谱(EDS)等技术系统、详细地表征和讨论了LM对GO的还原能力,LM-rGO界面的相互作用,LM的界面传递,以及LM-rGO的电化学性能等,证实了LM−rGO是一种有效的功能材料和电极改性剂。最后,研究者基于LM-rGO开发出来的纸基电极实现了抗生物干扰的多巴胺选择性传感,展示了该低成本技术的商业应用前景。该项研究工作最终以“Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing”为题发表在2021年11月的《ACS NANO》杂志上。原文导读:研究背景:在过去十年中,自室温和近室温液态金属(LMs)出现以来,其在治疗学、微流体学、材料合成和催化等多个研究学科中得到了广泛的应用。作为LM家族的代表,镓及其共晶合金因其低毒性和低蒸汽压而倍受关注。具体而言,Ga基LMs的可调表面特性以及柔软、动态的界面使其成为合成多种材料的理想反应介质。基于Ga的LMs的另一个独特特性与Ga的不同氧化状态有关,这使得能够在电解或电流调节中调整氧化还原介导的合成路线。在界面上,LMs通常用于两种设想的合成路线:①作为柔软的超光滑模板,然后从表面剥离目标材料,②作为反应点和稳定载体,用于生成颗粒。将所有这些优点结合在一起,基于Ga的LMs可被视为有效的功能载体,为功能化合物的保留和生成提供了多功能界面。还原氧化石墨烯 (rGO) 是常用、流行的平面材料之一,其具有高导电性和跨平面的机械强度等特点。尽管研究者们已经提出了许多用于rGO 生产的方法,但开发一种高度可控的在室温下可行,并且对试剂的需求最少的还原方法仍然具有很大的前景。凭借其超反应性界面,可提供两种自由电子和离子,LMs 可能可以提供这样的反应介质,使 GO 薄膜和各种厚度的GO膜能够在室温下实现还原。一方面,LMs的动态可再生界面可用作重复使用的还原GO试剂,从而在无需任何外部输入(特别是施加电压)的情况下将成本和废物产生降至最低。 另一方面,LMs 的非极化表面可以轻松地从其表面捕获产生的 rGO,无需额外的化学步骤及可形成LM-rGO核-壳复合结构。在本研究中,研究者探索了共晶镓-铟 (EGaIn)和 GO 薄片之间的界面相互作用,考虑了不同的方法:包括利用 LMs 块体作为反应模板来还原GO 和利用LMs微颗粒作为的小型反应位点来合成复合材料。对于这两种情况,研究者都对 LMs表面的 rGO 进行了广泛的表征,以全面了解还原 rGO的特征和组成。 最后,研究者将合成的LM-rGO 微颗粒复合物用于标准电化学电池和电化学纸基分析装置 (ePAD) 中的传导表面改性修饰剂,用于在存在其他生物干扰的情况下对多巴胺 (DA) 进行选择性生物传感和检测。结果及讨论:为了研究LM对GO的界面影响,研究者考虑了不同的实验条件,包括使用LM块体作为软介质来还原不同厚度的GO膜、单独的膜,以及利用LM微液滴作为还原剂核心来生成LM-rGO核−壳复合结构。1. 衬底上GO膜的LM还原研究图1 a, 显示了衬底(Si/SiO2)上GO放入LM中还原的方法。通AFM表征还原前后的GO单层膜发现:LM处理后,单层膜膜厚从1.2 nm减小到了0.6 nm,膜厚的减小可归因于GO还原后变形的sp3碳结构和各种含氧官能团的去除。另外,通过对另外两个GO和rGO样品的AFM图像进行厚度统计分析,研究者进一步证实了暴露于LM后GO单层的厚度减少(图2,原文补充信息Figure S2)。在石墨结构的拉曼光谱中,D带(ID)和G带(IG)的强度之比被认为是石墨烯层内缺陷的指标,拉曼光谱显示LM还原前后的ID/IG从0.89变化到1.2,同时结合ID/IG拉曼成像(图1. d、e)可以进一步确认LM相对均匀地还原了GO单层。在这种方法中,LM大部分在设计的原电池中既是导体又是电解液。换句话说,导体本身可以提供一个充满离子和反应性金属位置的环境,而不是使用外部介质来移动负责电偶反应的电荷载体。LMs的柔软性还提供了液体块体和目标基板之间的有效界面接触,使所需的金属物种易于在表面上接触。图1. (a)基于衬底的GO的LM还原方法示意图 AFM图像:(b)暴露于LM前的GO样品和(c)LM反应后获得的rGO样品 (d)衬底上的GO和(e)浸入LM后获得rGO的拉曼光谱测量,D带和G带的表面拉曼成像及相应的ID/IG成像。图2. Si/SiO2衬底上不同样品的AFM成像和厚度分析:(a-b)LM还原前的GO样品和(c-d)LM还原后的rGO样品。2. 单独GO膜的LM还原研究为了进一步探索开发的基于LM的工艺能力,研究者探索了其独立薄膜GO的LM还原潜力。图3 a,显示了制备独立GO膜的LM还原方法。拉曼光谱证实了还原的有效性(图3c)。为了研究暴露于EGaIn前后表面官能团的分布,转移的厚rGO样品(~1.6 μm, 原文Figure S3-nanoIR表征的测量膜厚度)被进一步通过纳米红外光谱(nanoIR)进行了表征。如图3d所示,纳米红外成像是一种基于AFM的高空间分辨率化学成像和光谱研究技术,其中脉冲红外激光用于产生光热诱导共振和热膨胀。光吸收引起的膨胀激发了AFM悬臂梁的共振振荡,悬臂振荡的振幅正比于相应波长的红外光谱吸收。该技术被用于在高空间分辨率下评估GO和rGO样品中表面官能团的分布。从GO的纳米红外光谱(图3f)中可以看出,羰基峰1730 cm−1(C=O)具有很高的纳米红外振幅, 纳米红外成像也显示了GO表面上相对均匀的羰基分布。另外,GO样品的纳米红外光谱在1615 cm−1处也显示出明显的峰值,对应于GO中的C=C。同样,纳米红外光谱成像也显示了C=C分布的均匀性。GO和rGO之间的主要区别在于:rGO样品纳米红外光谱中羰基峰的消失(图3e),证实了厚GO样品的成功还原。纳米红外光谱中剩余的C=C振动(1593 cm−1),源自石墨烯环,在rGO纳米红外成像中也显示出高振幅和适当的分布(图2e)。最后,表征研究结果证实基于LM还原工艺也可以用于生成独立的rGO膜。图3.(a)单独GO的LM还原方法示意图 (b)单独GO膜的照片;(c)在暴露于LM之前和之后的GO薄膜拉曼光谱 (d)纳米红外光谱原理示意图 (e)浸入LM后获得rGO的纳米红外光谱、AFM表面形貌、偏转信号和C=C分布纳米红外成像 (f)浸入LM前GO的纳米红外光谱、AFM表面形貌、偏转信号和C=O、C=C分布纳米红外成像。3. LM-rGO复合材料的制备及表征为了探究GO还原过程的适用性,并在实际功能应用中了解LM微颗粒的还原能力,研究者进一步研究了在酸性GO悬浮液中通过超声波处理制备的LM-rGO复合材料。其合成过程的示意图如图4a所示。研究者通过透射电镜(TEM)证实并研究了LM-rGO核-壳结构,如图4b所示,球形LM颗粒被稳定的石墨片壳包裹,这表明粒子和LM颗粒表面的有效相互作用。另外,研究者也通过X射线能谱(EDS)完成了Ga, In,C,O元素的分析,EDS结果进一步证实了LM颗粒表面存在碳层和rGO片层的全覆盖。图4. (a) LM-rGO复合材料合成过程示意图 (b)LM-rGO核−壳结构的TEM图像 (c) SAED分析和HR-TEM图像 (d) LM-rGO不同放大倍数和角度下的SEM图 (e) LM-rGO表面的镓、铟、碳和氧元素的EDS成像。另外,为了收集更多关于合成复合材料元素组成的信息,研究者通过X射线光电子能谱(XPS)也对GO和LM-rGO复合材料进行了详细的研究。研究者也通过传统宏观傅里叶红外光谱(FT-IR)对LM-rGO表面官能团进行了研究,表明GO含氧官能团被广泛去除。4. LM-rGO复合材料的电化学行为由于LM-rGO复合材料具有高表面积、高活性界面和导电性等特点,可将合成的材料作为电活性改性修饰剂。因此,研究者在玻璃碳电极(GCE)和丝网印刷纸电极(PEs)上进行了大量的电化学性能评价,以探索LM基改性剂与纸张技术的相容性,以及开发低成本生物传感器的可能性。在这两种情况下,研究者采用电化学行为已知的亚铁氰化钾作氧化还原探针,并从电化学阻抗谱(EIS)响应、电活性表面积的变化等方面评估了改性剂对电化学性能的影响,并利用循环伏安法、微分脉冲伏安法、方波伏安法等多种电化学技术进行了表征。结果显示:LM-rGO改性修饰后的电极优于GCE和PE裸电极,证实了改性剂LM-rGO的优良电化学特性。另一方面,研究者也通过峰值力扫描电化学显微镜(PF-SECM)在纳米尺度对LM- rGO复合材料与电解溶液的界面电导率进行了评估,并研究了其表面的局部电化学活性。在PF-SECM方法中,利用AFM探针的纳米尖端和利用样品表面与针尖之间发生的可逆氧化还原反应,可以研究电荷转移的动力学。AFM探针纳米尖端可以实现表面高空间分辨率的电化学成像。PF-SECM操作示意图如图5a (原文Figure S9),PF-SECM工作在布鲁克专利的峰值力轻敲(PFT)模式下,该模式下纳米探针在一定振幅和频率下振荡,以收集样品的形貌和导电性等信息。PF-SECM模式使用“interleave mode”,在每个振荡实例中,探针被提升到样品上方250 nm的距离。当探针从样品表面提升时记录探针尖端电流,而该探针在样品表面一定距离的电流,可用来表征样品表面电化学活性。本研究中,六胺钌氧化还原反应被用于PF-SECM成像。图5b显示了LM-rGO复合材料的形貌。图5c显示了与样品表面接触时的针尖电流,该电流既反映了样品在电解溶液中的界面局部电导率,又反映了样品表面的电化学活性。纯电化学活性数据(图5d)为AFM探针从样品表面250 nm提升高度处的探针测量电流,这证实了电荷转移可能发生在整个表面。LM-rGO微颗粒边界具有较大电化学活性,并与附近颗粒的壳相互连接。边界处电流的轻微增加是由于这些边界代表样品中的低洼区域(如山谷形状),具有高有效表面积,可再生还原剂六胺钌。PF-SECM测量结果显示LM-rGO在纳米尺度具有良好的整体电化学活性,电流可达1.7 nA。图5. PF-SECM原理和LM-rGO粒子PF-SECM分析结果:(a)PF-SECM工作原理示意图(RE、CE和WE分别对应于参比电极、对电极和工作电极);(b) LM-rGO微粒的AFM图像;当针尖位于样品表面(c)(此处的电流代表界面电导率和电化学活性)和距离样品表面250 nm高度(d)(代表样品和电解质之间界面的电化学活性)时,针尖电流成像。5. 多巴胺的选择性传感在完成了前述的详细研究后,在抗坏血酸(AA)和尿酸(UA)存在的情况下,研究者采用了多巴胺(DA,重要的神经调节剂之一)进行了LM-rGO修饰电极用于DA检测的适用性和选择性评估。LM-rGO修饰,rGO修饰 (ErGO)和裸GCE电极的电化学EIS光谱被用来显示LM- rGO复合物中每个组件的作用。如图6a所示,ErGO显示表面DA反应的Rct值仍然较高(50.7Ω)。然而,在LM-rGO中, Rct值为20.3 Ω。这一观察结果证实了LM在系统电化学性能中的作用,与ErGO相比,LM产生的混合物对电荷转移的阻力更小。为了探索LM-rGO的作用,研究者将修饰剂、裸电极和修饰电极暴露于含有DA、AA和UA混合物的溶液中,然后记录了电化学信号(DPV和CV)。图6b、c、h显示了从裸电极, LM-rGO 修饰GCE和 PE的信号。结果可以看出:对于裸电极,DA、AA和UA的氧化还原峰显示出重叠和接近。然而,在修饰后,在不同的电位窗口中可观察到每种化合物相应的分离峰,因而证实在存在其他干扰化合物的情况下,直接测定DA成为可能。另外研究者也通过FT-IR测量了DA、AA和UA与LM-rGO的特定相互作用(图5f)。LM-rGO的FT-IR光谱显示,LM-rGO在低波数区(低于900 cm-1)尤其是在667 cm-1(代表Ga−OH基团) 表现出剧烈变化。LM-rGO表面的Ga−OH还原仅在存在AA中观察到,这为选择性峰移机制提供了证据。UA向高电位的选择性转移来源于LM-rGO表面剩余负电荷基团和带负电荷的UA分子之间的电荷排斥作用。因此,这种表面相互作用因为AA和UA的峰移,从而增强了DA的选择性。为了获得最大的传感响应,研究者对修饰材料的用量进行了优化。在最佳修饰膜厚度下,研究者获取了LM-rGO修饰GCE和PE的DA定量测定校准曲线。根据图6d,i中提供的结果,该传感器可定量测量100 nM至1500μM(GCE)和400 nM至750μM(PE)范围内的DA浓度水平,GCE和PE的灵敏度分别为30和100 nM。与GCE相比,尽管PE具有更高的电活性表面积,但观察到的动态范围更窄,灵敏度更低,这是由于PEs中已知的耗尽效应和有限的扩散。在不同浓度水平的DA和其他干扰化合物(包括AA、UA和葡萄糖(GLU),高浓度1.0 mM)共存的情况下,研究者也对界面选择性也进行了评估。图6e结果显示,DA的原始信号不会受到其他干扰物的影响,目标分析物DA的测量具有良好的选择性。最后,研究者在人血清样本中进一步研究了该传感器用于DA生物传感的适用性和选择性,结果证明:研究者设计的传感器在如此复杂的生物基质中的具有良好的准确度和精确度。图6.(a)裸GCE(i),LM-rGO修饰的GCE(ii)和ErGO修饰GCE(iii)的EIS光谱(DA用作电化学探针);LM-rGO对GCE表面进行修饰前后,含有AA、DA和UA的混合物的CV(b)和DPV(c)信号;(d) LM-rGO修饰GCE的校准曲线,DA浓度从0到1500μM不等;(e)LM-rGO修饰GCE上进行的DA选择性试验,AA和UA浓度为1 mM;(f)LM-rGO,LM-rGO暴露于AA、UA和DA的FT-IR光谱;(g)ePAD的结构图像和 LM-rGO修饰前后PE表面的显微图像;(h)LM−rGO进行表面修饰前后,含有DA、UA和AA混合物的DPV测量信号;(i)LM-rGO修饰PE的校准曲线,DA浓度从0到750μM不等;分别使用Ag/AgCl和碳准参比电极测量从GCE和PE获得的电化学信号。 研究结论:在本研究中,研究者探索了室温LMs和GO薄片之间的界面相互作用。证明了LM和GO之间存在很强的电偶相互作用,这可以用于生成rGO单层膜和rGO厚膜。研究者对所制备的rGO样品进行了AFM,nanoIR, EDS和PF-SECM等详细表征,实验结果确认通过LM能均匀有效地还原GO薄片。研究者所提出的基于LM的rGO生产方法,有望实现rGO独立膜和衬底支撑单层膜的简易合成。此外,这种界面作用也被用于合成LM-rGO核−壳复合结构。研究者对LM-rGO修饰电极进行的电化学表征显示在AA和UA存在下LM-rGO修饰电极对DA具有良好的选择性,可用于生物传感。总之,本研究显示了LMs对GO薄片室温的还原能力,以及展示了构建功能性应用的可能性。类似利用LMs的界面特性的工艺,可以在未来的研究和工业应用中具有大量潜在应用前景。Bruker公司的AFM,nanoIR,PF-SECM,EDS等纳米技术手段因其高空间分辨率的形貌,纳米光谱和化学成像,纳米电化学,纳米元素分析的能力,将为各类复合材料纳米结构的界面研究提供新的多样化表征手段和研究方法。原文链接:Mahroo Baharfar, Mohannad Mayyas, Mohammad Rahbar, Francois-Marie Allioux, Jianbo Tang, Yifang Wang, Zhenbang Cao, Franco Centurion, Rouhollah Jalili, Guozhen Liu, and Kourosh Kalantar-Zadeh,Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing,ACS Nano,(2021)15 (12), 19661-19671https://pubs.acs.org/doi/10.1021/acsnano.1c06973?ref=PDF
  • “无声无息”搞污染,臭氧超标已成世界性难题!
    与“老生常谈”的雾霾相比,有一种大气污染物要‘低调’得多,它悄悄地隐藏在万里晴空中,却成为近几年夏天众多城市的大气环境污染的元凶,它就是——臭氧。 臭氧是氧气的同素异形体。常温下,它是一种有特殊臭味的淡蓝色气体。在平流层,臭氧可起到保护人类与环境的重要作用,但若其在对流层浓度增加,则会对人体健康产生有害影响。 我们常说的臭氧污染,就是指对流层中出现的臭氧,大部分是人为污染物,属于二次污染物。在温度等条件适宜的情况下,空气中的NOx(主要包括NO、NO2等)和VOCs(包括烃类、卤代烃、芳香烃和多环芳香烃等)在紫外线的照射下经过一系列光化学反应形成刺激性强的淡蓝色或棕色烟雾,也即光化学烟雾,其主要成分就是臭氧,其中O3占90%以上。臭氧污染集中在每年的5月-9月的盛夏季节。天热以来,各地屡屡曝出臭氧污染警报̷̷》据新京报5月15日报道,生态环境部公布5月中下旬全国空气质量预报会商结果显示本月下旬京津翼中南部臭氧中度污染。》据扬子晚报报道,4月8日,南京最高气温达到约30℃,在阳光的照射下,臭氧污染抬头,出现了今年南京第一个臭氧污染天,空气质量达到轻度污染。 》据红星新闻报道,2019年4月以来,成都市气温偏高,目前已出现多个臭氧污染天,其中有一天为中度污染,较2018年提前了20天。》山西新闻网报道随着气温的不断升高,太原市臭氧污染的问题 凸显,为此,5月起至9月,太原市将开展臭氧污染防治攻坚行动,重点强化氮氧化物、挥发性有机物管控。臭氧污染治理已成世界性难题!随着城市化、工业化、机动化的高速发展及能源消费总量的持续升高,挥发性有机物和氮氧化物等臭氧前体物的排放量居高不下,臭氧污染问题逐年突出。根据相关研究表明,若不采取有效控制措施,预计2015—2050年间全球臭氧浓度将增加20%—25%,到2100年将增加40%—60%。而且近年来京津冀和长三角臭氧逐年上升,特别是2017年上升最为显著,臭氧是唯一逐年增长的大气污染物。臭氧污染的防治是世界性难题,欧美等发达国家至今也未实现臭氧污染的根治,我国大气污染源类种类繁多,臭氧污染成因更加复杂,防治难度更大!臭氧污染如何防治?臭氧主要是大气环境中各种污染源排放的氮氧化物(NOx)和挥发性有机物(VOCs)等前体物经过复杂的光化学反应生成的。氮氧化物基本是人为排放源,主要来自机动车尾气、化石燃料燃烧,工业生产过程也会产生氮氧化物。而挥发性有机物来源更广泛,有汽车喷涂、印刷厂油墨挥发、加油站油气挥发、化工厂炼油过程油气挥发等。 污染物在太阳光的作用下形成臭氧臭氧污染的防治必须依靠科学技术的支撑,科学施策,需要基于排放构成,进一步确定管控的重点行业,大力协同控制VOCs和NOx等前体物的排放。对此相关专家也给出了相应的建议:》中国工程院院士、环境监测领域专家——刘文清院士提出:“除了做好监测,臭氧防控的另一要点就是要把细颗粒和臭氧协同控制。”具体而言,不能光控制氮氧化物、二氧化硫,还要考虑挥发性有机物,都要一起防治。》中国工程院院士贺克斌认为我们需要在精准治污当中找准对象,讲到“挥发性有机物是种类繁多的聚合体,对它的细分非常重要。其中,芳香烃、烯烃、炔烃是对臭氧贡献较大的物种。” 因此各地区可通过有效监测手段区分不同来源的贡献比例,分析可能采取的治理措施,才能获得最大改善效益。冷杉作为环境监测行业的重点企业,面对臭氧监管的亟需之势,自主研发了冷杉4000厂界/厂区气态污染物在线监测系统,,旨在以超高的性价比与精准的监测帮助企业自检,为监管部门分析防控工作提供可靠、可控、可溯源的数据,尽最大力量协同控制臭氧污染。冷杉4000厂界/厂区气态污染物在线监测系统环境监测国际领先产品,精准监测臭氧污染物冷杉4000厂界/厂区气态污染物在线监测系统可在线监测总烃、甲烷、非甲烷总烃、苯系物、氯苯、乙醛、丙烯醛、甲醇、氯乙烯、丙烯腈羰基硫、甲硫醇、乙硫醇、甲硫醚、二甲二硫、二硫化碳等挥发性有机物(臭氧前提物);二氧化硫、一氧化碳、一氧化氮、二氧化氮臭氧、一氧化碳、二氧化碳、一氧化氮、二氧化氮、二氧化硫等氮氧化物及PM2.5、PM10、TSP等与臭氧相关颗粒物。该系统适用于环境空气、居民区、企业边界、职业环境、重点产业园区等场所的臭氧及VOCs等各种环境空气污染的在线自动监测,并可将监测结果自动上传至相关部门或输送至DCS,具有超高的系统稳定性和安全可靠性。》运行稳定,监测精准? 采样管线选用聚四氟乙烯、硼硅酸盐玻璃或耐腐蚀、惰性化材质,减少管路吸附造成的损失;? 全管路保温伴热,避免高沸点烃类物质冷凝“积油”及部件腐蚀。》无人值守,安全可靠? 具有自我保护功能,气源供应不足时,火焰熄灭,关闭氢气空气;? 自动恢复运行功能,开机、气源供应恢复或意外断电恢复后自动运行;? 具备自动校准功能,实现无人值守》标准化设计? 符合国家标准规范要求;? 结构设计合理,可实现连续自动监测。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 【新案例】利用康宁微反应器实现苄位连续纯氧氧化工艺研究
    研究简介科学期刊OPRD在2021年7月16日这一期(第7期,第25卷)刊登了来自大连理工大学的孟庆伟教授课题组利用康宁反应器进行苄基催化氧化的最新连续流工艺研究成果,并将其作为封面文章进行了特别报道。本文将详细介绍本研究成果。[1]苄基的直接氧化已广泛应用于药物和精细化学品的合成,很多市售药物分子结构中含有一个或多个被氧化的苄基位置(图1)。传统工艺上,苄基氧化反应需要引入金属催化剂,如 Co、Ru、Ni、Mn 和 Cu。难以避免的金属杂质残留限制了这些体系在药物中的应用。近几年研究者希望能够通过应用非金属催化剂实现苄基的氧化,分子氧被认为是一种理想的氧化剂。有研究者采用O2作为氧化剂建立了从苄基化合物中获得酮的绿色方法[2-7]。但反应时间长,从几十小时到几天不等,效率相对较低。微通道反应器持液量低、高效传热特性可以降低纯氧气与易燃溶剂相互作用时发生局部过热而失控的风险。特别是康宁微反应器独特的内部结构,允许反应物连续分散并充分混合,从而消除了气液反应中的传质限制。传质和温度会影响反应动力学,温度升高反应时间缩短。图2. 反应体系示意图孟教授课题组的苄基催化氧化连续流工艺,选用非金属催化,停留时间54s,获得了高达90.3%的收率,且催化剂和溶剂均可实现循环利用(分别获得了92.6%和94.5%的回收率),且该方法具有很好的底物普适性,为奥卡西平等药物的合成,提供了易于放大的工艺。 研究过程实验以1,2,3,4-四氢萘(1a)的氧化反应为模型反应。对苯基sp3 C - H键进行选择性氧化生成相应的酮类化合物。N-羟基邻苯二甲酰亚胺 (NHPI) 作为催化剂,亚硝酸叔丁酯 (TBN) 作为自由基引发剂。一、反应条件优化研究者选择O2作为氧化剂对溶剂、反应温度、停留时间和物料比等进行了优化实验。1、研究者对溶剂体系进行了考察(图3)通过实验得出最佳溶剂为MeCN和DMK的混合溶剂,该体系仅在54s内便获得最高的收率75.1%(条目7)。图3. 溶剂系统筛选2、接下来分别对反应温度、物料比和停留时间做了优化实验,实验结果见下图:图4. 在微通道反应器中进行的温度和物料比条件优化实验 底物1a的转化率与温度的升高呈正相关。然而在高温条件下,副产物2,3-二氢萘-1,4-二酮(3a)的产率增加。 最佳反应温度为100℃(2a收率80.4%;图4(1))。 TBN的数量和1a的转换之间存在近似线性关系见图4(2).选择最佳1.5摩尔当量的TBN来优化反应选择性。 如图4(3)NHPI增加到0.75摩尔当量后继续增加对反应产率基本没有影响,故选择0.75摩尔当量NHPI。 此外,在间歇反应中NHPI的用量减少到0.2个当量时,反应收率仍可达到75.3%。同时,NHPI几乎可以完全回收而不被消耗。这些结果证明NHPI在反应中起到了催化剂的作用。 最佳的液体−气体流速比为1:20(图4条目1−3)。当液体流速(Vl)为1.0ml/min,氧气流速(Vg)为20ml/min,停留时间54s时收率最高。二、放大实验研究者应用康宁高通量微通道G1反应器进行了放大实验研究。实验显示连续运行28小时,产物2a的总收率为79.5%(1H-NMR),1小时可生产0.87g(图5)。图5:规模化连续流动苄基羰基化三、底物扩展实验结果最后,在优化条件下进行了底物扩展研究实验(图6)。由不同苄基化合物制备相应的各种酮,均获得了较高的收率。 图6. 苄基sp3 C的快速氧化−氢键得到相应的酮基 关于反应机理及催化剂的讨论为了进一步了解可能的反应机理,研究者进行了一系列平行反应(图7)。图8. 反应机理反应条件筛选和提出的自由基反应机理均表明NHPI不会在反应中被消耗。研究者在实验后收集NHPI,来验证其是否可用于回收(图10)。经过4个循环后,收率仍高于78%。本实验证实了NHPI作为自由基转运剂的作用,并进一步表明该工艺具有规模化商业回收的潜力,可有效降低成本。结果讨论 该研究描述了在 MeCN 和 DMK 的混合溶剂中,通过NHPI 和 TBN 催化苄型 sp3 C-H 键的选择性氧化生成相应的酮。反应时间仅为54s,远低于间歇工艺。 作为催化剂的NHPI可以回收利用。多次循环的收率变化在1%以内。 NHPI的回收率也在90%以上。 作者对连续流工艺进行了放大研究,结果显现,在相同的工艺条件下,该工艺可实现安全连续化生产。 通过拓展实验,作者从苄基亚甲基中获得了一系列有价值的酮,收率为 41.2%~90.3%。 利用康宁微反应器进行快速的开发,不但可以对反应机理进行研究,也便于拓展底物,建立化合物库。 康宁反应器无缝放大的技术优势使该工艺具有很大的商业化潜力,特别是对于氧气氧化这一类在釜式工艺中存在较多困难的反应。Reference:[1] Lei Yun, Jingnan Zhao, Xiaofei Tang, Cunfei Ma, Zongyi Yu, and QingWei Meng*. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor Org. Process Res. Dev. 2021, 7, 1612–1618.[2] Dobras, G. Kasperczyk, K. Jurczyk, S. Orlinska, B. NHydroxyphthalimide Supported on Silica Coated with Ionic Liquids Containing CoCl2 (SCILLs) as New Catalytic System for SolventFree Ethylbenzene Oxidation. Catalysts 2020, 10, 252−264.[3] Mukherjee, M. Dey, A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C−H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Cent. Sci. 2019, 5,671−682.[4] Li, J. Bao, W. H. Tang, Z. C. Guo, B. D. Zhang, S. W. Liu, H. L. Huang, S. P. Zhang, Y. Rao, Y. J. Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chem. 2019, 21, 6073−6081.[5] Hwang, K. C. Sagadevan, A. Kundu, P. The sustainable room temperature conversion of p-xylene to terephthalic acid using ozone and UV irradiation. Green Chem. 2019, 21, 6082−6088.[6] Liu, K. J. Duan, Z. H. Zeng, X. L. Sun, M. Tang, Z. L. Jiang,S. Cao, Z. He, W. M. Clean Oxidation of (Hetero)benzylic Csp3−H Bonds with Molecular Oxygen. ACS Sustainable Chem. Eng. 2019, 7,10293−10298.[7] Li, S. L. Zhu, B. Lee, R. Qiao, B. K. Jiang, Z. Y. Visible lightinduced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(iii) complex catalyst. Org. Chem. Front. 2018, 5, 380−385.
  • 最新修订的硬质合金国家标准将于9月1日正式实施
    根据中华人民共和国国家标准批准发布2008年第5期公告,以下一批最新修订的硬质合金标准将于9月1日正式实施。 标准号      标准名称      被代替标准      批准日期      修订日期      实施日期         GB/T 4295-2008      碳化钨粉      GB/T 4295-1993      1984-03-28      2008-03-31      2008-09-01         GB/T 5124.1-2008      硬质合金化学分析方法 总碳量的测定 重量法      GB/T 5124.1-1985      1985-04-24      2008-03-31      2008-09-01         GB/T 5124.2-2008      硬质合金化学分析方法 不溶(游离)碳量的测定 重量法      GB/T 5124.2-1985      1985-04-24      2008-03-31      2008-09-01         GB/T 6150.1-2008      钨精矿化学分析方法 三氧化钨量的测定 钨酸铵灼烧重量法      GB/T 6150.1-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.10-2008      钨精矿化学分析方法 铅量的测定 火焰原子吸收光谱法      GB/T 6150.12-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.11-2008      钨精矿化学分析方法 锌量的测定 火焰原子吸收光谱法      GB/T 6150.13-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.14-2008      钨精矿化学分析方法 锰量的测定 硫酸亚铁铵容量法和火焰原子吸收光谱法      GB/T 6150.16-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.15-2008      钨精矿化学分析方法 铋量的测定 火焰原子吸收光谱法      GB/T 6150.17-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.4-2008      钨精矿化学分析方法 硫量的测定 高频红外吸收法      GB/T 6150.5-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.5-2008      钨精矿化学分析方法 钙量的测定 EDTA容量法和火焰原子吸收光谱法      GB/T 6150.6-1985,GB/T 6150.7-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 6150.6-2008      钨精矿化学分析方法 湿存水量的测定 重量法      GB/T 6150.8-1985      1985-06-21      2008-03-31      2008-09-01         GB/T 7160-2008      羰基镍粉      GB/T 7160-1987      1987-01-07      2008-03-31      2008-09-01         GB/T 13390-2008      金属粉末比表面积的测定 氮吸附法      GB/T 13390-1992      1992-02-19      2008-03-31      2008-09-01
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p   国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。 /p p    strong 果糖基转移酶(又名β—果糖基转移酶) /strong /p p   米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。 /p p   该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。 /p p    strong 单,双甘油脂肪酸酯 /strong /p p   单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。 /p p   该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。 /p p    strong dl—酒石酸 /strong /p p   dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。 /p p   该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。 /p p    strong 可溶性大豆多糖 /strong /p p   可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。 /p p   该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。 /p p    strong 亮蓝 /strong /p p   亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。 /p p    strong 磷酸 /strong /p p   磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。 /p p   该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。 /p p    strong 柠檬黄 /strong /p p   柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。 /p p    strong 乳酸链球菌素 /strong /p p   乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。 /p p   该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。 /p p style=" text-align: right "   日期:2018-03-19 /p
  • 空气监测: 臭氧前体物的野外全自动在线监测
    臭氧前体物的野外全自动在线监测 PerkinElmer 与美国国家环保局(US EPA)成功合作案例---无需液氮、无需人员照看、24小时连续监测、化合物测量范围更宽、更高灵敏度的全自动热脱附-气相色谱臭氧前体物(C2-C12 VOCs)分析解决方案 在美国,1970 年的清洁空气法赋予了环保署(EPA)保护空气清洁和保障公众健康的责任。1990年,在传统的六项环境空气监测指标基础上加入了挥发性有机物(VOCs)的监测。VOCs、羰基类化合物(carbonyls)以及氮氧化物(NOx)是地面臭氧生成的前体物,无论是在城市还是乡村地区,它们都以低至ppb 级别的浓度存在于环境空气中。在美国这些项目的测试是通过光化合物评估监测站(PAMS)来实施的。全球范围内也有一些其他类似机构进行这样的工作。例如,欧洲现在就在遵循联合国欧洲经济局有关控制VOCs 排放的协议。 在我国,即将发布的《环境空气质量标准》中将增设臭氧8小时平均浓度限值,并将该指标纳入空气质量的日常评价。作为臭氧前体物及大气的主要污染物之一---挥发性有机物(VOCs)无疑将在&ldquo 十二五&rdquo 期间倍加重视。2011年12月发布的《国家环境保护&ldquo 十二五&rdquo 规划》中已明确提出要求开展挥发性有机污染物等有毒废气监测,并将对 VOCs 相关重点行业如石化、有机化工、合成材料、化学原料药、塑料、设备涂装、电子元器件、电子电器产品、包装印刷等行业进行重点监管。 PerkinElmer 作为全球著名分析仪器供应商,从1955年率先推出全球第一套商用气相色谱仪以来,已屡创多项业内关键第一,如第一套全自动热脱附分析仪、第一套自动进样器、第一根毛细管色谱柱、第一套FID/NPD检测器、第一套GC/MS等。对于臭氧前体物分析,现可提供从样品前处理到分析结果的整体解决方案 方案特点 完全满足美国环保局(U.S.EPA)《臭氧前体物采样和分析技术支持文件》EPA/600-R-98/161 允许无人操作双柱同时分析 中心切割技术产生平行色谱图增大产出和色谱分离效果 1小时间隔采样 采样与色谱分析同时进行 系统自动校准 完整的数据处理 可选择热脱附系统、气相色谱和数据处理的远程软件控制 无需冷却剂操作 一家供应商提供全部分析方案包 配备中心切割设备及双FID检测器的 Clarus 气相色谱仪 和配备联机进样附件 TurboMatrix 热脱附仪 TotalChrom 和 Turbomatrix 远程控制软件 Swafer 中心切割设备 注:双柱分离5ppb 臭氧前体物(C2-C12 VOCs)标准物质典型色谱分析图 PerkinElmer 典型客户郊外臭氧前体物在线监测监测站照片 请点击查阅相关应用文章
  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style=" text-align: center text-indent: 0em max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " strong 图1 氧化石墨烯结构示意图(a)和HRTEM图(b) /strong /p p style=" text-align: justify text-indent: 2em " 由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 氧化石墨烯粒径调控技术 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下: /p p style=" text-align: justify text-indent: 2em " strong 1)氧化切割法 /strong /p p style=" text-align: justify text-indent: 2em " 在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。 /p p style=" text-align: justify text-indent: 2em " strong 2)离心筛选法 /strong /p p style=" text-align: justify text-indent: 2em " 离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。 /p p style=" text-align: justify text-indent: 2em " 在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。 /p p style=" text-align: justify text-indent: 2em " strong 3)超声细碎法 /strong /p p style=" text-align: justify text-indent: 2em " 采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。 /p p style=" text-align: justify text-indent: 2em " 在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。 /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 氧化石墨烯粒径测试方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下: /p p style=" text-align: justify text-indent: 2em " strong 1)扫描电子显微镜 (Scanning& nbsp Electron Microscopy, SEM)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图2 氧化石墨烯粒径SEM图 span style=" text-indent: 2em " & nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " strong 2)透射电子显微镜 (Transmission Electron Microscope, TEM) /strong /p p style=" text-align: justify text-indent: 2em " TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图3 氧化石墨烯粒径TEM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 3)原子力显微镜 (Atomic Force Microscope, AFM) /strong /p p style=" text-align: justify text-indent: 2em " AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图4 氧化石墨烯粒径AFM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 4)动态光散射 (Dynamic Light Scattering, DLS) /strong /p p style=" text-align: justify text-indent: 2em " 光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。 /p p style=" text-align: justify text-indent: 2em " strong 5)拉曼光谱法 (Raman)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " 拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图6 氧化石墨烯粒径Raman图 /strong /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 总结 /strong /span br/ /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " 参考文献: /p p style=" text-align: justify text-indent: 2em " [1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285. /p p style=" text-align: justify text-indent: 2em " [2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472. /p p style=" text-align: justify text-indent: 2em " [3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6. /p p style=" text-align: justify text-indent: 2em " [4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207. /p p style=" text-align: justify text-indent: 2em " [5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321. /p p style=" text-align: justify text-indent: 2em " [6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55. /p p style=" text-align: justify text-indent: 2em " [7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475. /p p style=" text-align: justify text-indent: 2em " [8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252. /p p style=" text-align: justify text-indent: 2em " [9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49. /p p style=" text-align: justify text-indent: 2em " [10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8. /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " 作者简介: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 150px height: 196px float: left " src=" https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width=" 150" height=" 196" border=" 0" vspace=" 0" / 胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 12月18日,胡学兵教授将亲临由仪器信息网组织的 strong span style=" text-indent: 2em color: rgb(0, 176, 240) " “ a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 第二届‘纳米表征与检测技术’公益网络研讨会 /span /a ” /span /strong ,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 免费报名地址: /span /strong /span a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" text-decoration: underline " strong span style=" text-indent: 2em " https://www.instrument.com.cn/webinar/meetings/nano2/ /span /strong strong span style=" text-indent: 2em " /span /strong /a /p p style=" text-align: center " span style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" img style=" max-width: 100% max-height: 100% width: 664px height: 246px " src=" https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" width=" 664" height=" 246" border=" 0" vspace=" 0" / /a /span /p
  • 复旦大学杨芃原团队等创建精准N糖蛋白质组学分析方法
    p   复旦大学化学系教授杨芃原团队、中科院计算技术研究所研究员贺思敏团队、国家蛋白质科学中心(上海)研究员黄超兰团队合作研究,创建了基于质谱的高通量糖基化肽段分析方法pGlyco2.0,为精准N糖蛋白质组学提供了新技术。今天,相关研究成果以《pGlyco2.0:基于综合质控和一步质谱法的精准N糖蛋白质组学糖肽分析方法》为题发表于《自然· 通讯》。 /p p   据悉,杨芃原、贺思敏和黄超兰为共同通讯作者。杨芃原为该文的Lead Contact。 /p p   糖基化是最复杂的蛋白后修饰之一。与其他蛋白后修饰相比,糖基化不但会产生宏观不均一性(每个蛋白上可能有多个后修饰位点),更会产生海量的微观不均一性(每个位点上可能有几十甚至上百种不同的后修饰基团)。此外,糖链本身的离子化效率很低。这些因素的结合使得糖基化分析的通量和质量远低于蛋白质组学的常规分析水平。 /p p   这项研究通过深入研究和测试质谱条件,开发基于阶梯能量的一步质谱采集法,提高了糖肽鉴定的通量和开发具有自主产权的pGlyco2.0糖肽检索引擎,从糖链、肽段、糖肽三个层面对糖肽数据库检索进行精确质控,从而大幅提升了N糖蛋白质组学分析的通量和质量。 /p p   同时,研究人员首次将重标元素应用于糖肽鉴定准确度分析,为该领域的质控分析提供了新的方法及标准。 /p p   专家表示,这项研究报道了目前最大的糖基化数据集:在1%的假阳性率下,在小鼠的五个脏器种鉴定到了超过一万条N糖肽。 /p p /p
  • 赫施曼助力电子烟中2,3-丁二酮的检测
    电子烟是一种模仿卷烟的电子产品,通过加热雾化产生具有特定气味的气溶胶。2,3-丁二酮因具有奶油香气常作为香精原料被添加在电子烟烟液中,经加热后吸入肺部可能沉积在肺气管中而导致阻塞,加重呼吸道炎症。根据GB 41700-2022,电子烟中释放物中羰基化合物2,3-丁二酮每口释放量不超过2.5微克。其检测方法为:高效液相色谱法。 1.试剂1.1 磷酸水溶液:量取60mL磷酸(质量分数不低于85%)于1L烧杯中,搅拌下缓慢加入440mL水,混合均匀。储存于试剂瓶中有效期为3个月。1.2 衍生化试剂:取1.00gDNPH-HCl(纯度不低于98%)于2L烧杯中,加入500mL乙腈(色谱纯)和40mL磷酸水溶液,溶解后加入500mL水,混合均匀。溶液转入棕色试剂瓶中避光储存,有效期为1周。1.3 2,3-丁二酮溶液:称取0.10g(精确至0.1mg)2,3-丁二酮(纯度不低于98%)于10mL棕色容量瓶中,用乙腈溶解,定容至刻度。-18℃避光储存,有效期为3个月。1.4 DNPH衍生化合物标准储备液:称取0.1mL2,3-丁二酮溶液于25mL棕色容量瓶中,加入20mL衍生化试剂,摇匀,室温反应20min。加入1mL吡啶(纯度不低于99%),用乙腈定容至刻度,-18℃避光储存,有效期为3个月。1.5 标准工作液:用乙腈将DNPH衍生化合物标准储备液逐级稀释,至少备制5个标准工作液,浓度范围宜为0.1-4μg/mL。在使用前配置。2.样品前处理2.1 电子烟烟液:称取0.50g(精确至0.1mg)样品于10mL棕色容量瓶中,加入5mL衍生化试剂,摇匀,室温反应20min。加入0.25mL吡啶,用乙腈定容至刻度,摇匀,用PTFE滤膜过滤于棕色色谱瓶中待测。2.2 固态雾化物:称取0.50g(精确至0.1mg)样品于15mL离心管中,加入10mL衍生化试剂,避光涡轮震荡反应20min。用PTFE滤膜过滤,移取5mL容量瓶于10mL棕色容量瓶中,加入0.25mL吡啶,用乙腈定容至刻度,用PTFE滤膜过滤于棕色色谱瓶中待测。3.绘制标准工作曲线设定高效液相色谱条件后测定标准工作溶液(1.5),以目标化合物峰面积和浓度建立标准工作曲线。每进行20次样品测定后加入一个中等浓度的标准工作溶液,如测定值与原值相差15%则重新绘制标准工作曲线。4.样品测定按照谱条件测定两个样品溶液,每个样品平行测定两次,并以两次测定结果的平均值为最终测定结果。以上实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 宁夏化学分析测试协会对《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年8月21日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 关于团标征求意见函 -7.22.pdf团标表格7-专家意见表.doc1-2VC.pdf2-2枸杞中生物碱 N-反式阿魏酸酪酰胺及 N-反式阿魏酰真蛸胺的含量测定 高效液相色谱法-标准草案修改.pdf3-2枸杞原浆中类胡萝卜素的测定-标准草案-20240722.pdf4-2枸杞中18种游离氨基酸和核苷的含量测定质量标准草案-0721.pdf5-2液态枸杞产品中枸杞多糖的测定 离子色谱法-团标-20240722.pdf6-2枸杞中3种酚酸和3种黄酮化合物的测定-高效液相色谱法-团标-zyn(1).pdf7-2化妆品中芦丁.pdf
  • 《中药配方颗粒质量控制与标准制定技术》促进配方颗粒标准科学规范
    2月10日,国家药监局、国家中医药局、国家卫生健康委、国家医保局等四部门共同发布了《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),以规范中药配方颗粒的生产,引导产业健康发展,更好地满足中医临床需求。这是促进中医药传承创新发展的重要举措,对提升人民群众对中药的获得感具有重要意义。  作为国家药典委评审专家,我一直关注中药配方颗粒产业发展,参与了中药配方颗粒国家标准的制定。中药配方颗粒国家标准制定过程充分吸纳了试点经验,充分借鉴了行业、企业的意见和建议。评审专家与企业面对面,在充分总结试点积累的科研和生产数据基础上,进行讨论、规范、提升,一方面真正发挥了企业的主体责任,另一方面也促进了企业对标准研究及理解水平的提高。  这次与《公告》同步发布的还有《中药配方颗粒质量控制与标准制定技术要求》(以下简称:《技术要求》)。《技术要求》是在总结前期标准制定经验的基础上起草的,从基本要求、原辅料、标准汤剂、生产工艺、标准制定、稳定性和标准复核等几个方面规范了标准研究制定的过程。归纳起来有三大特点。  一是考虑到中药配方颗粒经水煎煮失去饮片原形的特点,通过要求采用特征/指纹图谱分析技术,强化了在统一标准中对中药配方颗粒质量真伪优劣的专属性要求。这就要求企业要有配套的中药材种植基地,并且都要制定中药材、中药饮片的企业内控标准,从源头上确保投料中药材的质量可靠性。  二是通过制定标准汤剂的标准,架起中药配方颗粒与汤剂的桥梁,形成中药配方颗粒的物质基准,从而保证了中药配方颗粒临床使用的安全有效,而不是一味地追求某一化学标示物。这次在使用辅料最小化的原则下,规范和统一了生产过程的浸膏得率,进而统一了不同生产企业的制成总量及规格,为临床使用的量化配伍提供了方便。  三是《技术要求》覆盖原料药材、中药饮片、标准汤剂及制备过程、中药配方颗粒成品,体现中药全过程质量控制的特点及方向。尤其是重视了农药残留、重金属、真菌毒素等安全性方面的评价指标,既抓住了中药质量真伪鉴别和足量投料的关键点,亦体现了中药复杂体系质量控制的特点。(作者:国家中药制药工程技术研究中心 沈平孃
  • 蠕动泵在细胞灌流培养工艺中的应用!
    随着生物工程技术的不断发展,细胞培养技术在生物医药领域的应用日益广泛,细胞灌流培养作为一种先进的细胞培养技术,能够有效提高细胞培养的产量和质量。而蠕动泵则是灌流培养工艺中的关键设备之一,其在细胞灌流培养中的应用日益受到关注,本期文章将带大家简单了解蠕动泵在细胞灌流培养工艺中的应用。细胞培养工艺在生物工程领域,动物细胞培养已成为一项至关重要的技术。通过这种工艺,我们能够从细胞中提取并生产出各种生物制品,如疫苗、抗体、细胞因子等。细胞培养工艺因其可控性和高效率,成为了生物医药产业的关键环节,目前常用的哺乳动物细胞培养工艺有:批次培养、补料批次培养和灌流培养,其中灌流培养通过不断移出副产物,同时补充营养物质,因此可提供对细胞稳定且有利的生长环境。与批次培养和补料批次培养相比,灌流培养可以在高细胞密度环境下长时间维持稳定培养环境,同时降低产物在培养基里的停留时间,这有利于提高产品质量。 目前常用哺乳动物细胞培养工艺示意图(图片来源:中国生物工程学报,2020)基于哺乳动物细胞灌流培养技术在产物产量、质量及成本等方面表现出来的显著优势,越来越多获批上市的生物药物使用灌流培养工艺进行生产对灌流培养工艺的开发和优化进而成为当前哺乳动物细胞培养工艺研究的热点。 细胞培养工艺优势相比于为期14天的传统流家培养,反应器灌流培养除了pH、DO、温度、搅拌等控制模块外,还包 含了连续的培养基流入(media)模块、通过细胞截留设备 实现的细胞液收获模块(harvest),以及控制罐内恒定细胞密度的细胞液流出 (bleeding)模块 。灌流培养通过不断移出副产物,同时补充营养物质,因此可提供对细胞稳定且有利的生长环境。与批次培养和补料批次培养相比,灌流培养可以在高细胞密度环境下长时间维持稳定培养环境,同时降低产物 在培养基里的停留时间,这有利于提高产品质量。研究发现 ,灌流培养可实现培养基组 分中的动态变化对蛋白质糖基化的影响最小,这一研究结果表明灌流培养有利于提高产品质量。细胞灌流培养工艺分析灌流培养中通常采用的膜过滤是基于中空纤维膜的切向流过滤,这种过滤方式的循环料液不停地流过膜柱,液体形成的“冲刷作用”冲洗整个膜表面,降低了膜孔堵塞及膜污染的风险,实现了长时间稳定的膜过滤,满足了灌流工艺中细胞长时间稳定培养的需求。 中空纤维膜开放式的流道结构(图片来源:生物产业技术, 2009)目前,用于灌流培养的细胞截留系统主要有两种,切向流过滤TFF(Tangential Flow Filtration)和交替切向流过滤ATF(Alternating Tangential Flow),对于TFF,细胞液通过蠕动泵作用形成一个连续的环形流动方向,进入纤维膜后,废液会通过膜排出体系之外,细胞会随着环路重新回到培养体系之内。PreFluid蠕动泵在灌流培养中的应用PreFluid蠕动泵以其独特的工作原理和优越的性能,在中空纤维膜柱切向流过滤中展现出了明显的优势: ● 过滤纯化中精确性高:可以精确地控制样品流动的速度和量,从而保证过滤纯化的精确度;此外PreFluid蠕动泵还具有较高的可重复性,不受外界环境的影响,可以更好地保证过滤纯化工作。 ● 具备较高的灵活性和可调性:可以根据实际需求来调整泵头的挤压力度,从而实现不同样品的分离需求。而且,由于PreFluid蠕动泵的工作原理决定了其可以适应多种不同的流体,能够处理不同性质的样品。 ● 具有体积小、结构简单、操作方便的特点:工作人员能够轻松地进行过滤操作,并且不需要经过复杂的操作流程来实现。在细胞灌流培养工艺中,营养物质被不断泵入到生物反应器中,同时,细胞代谢的副产物通过外部截留装置被移除,保证细胞一直处于最佳的生长环境中,从而获得极高的细胞密度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制