当前位置: 仪器信息网 > 行业主题 > >

二羟丙基

仪器信息网二羟丙基专题为您提供2024年最新二羟丙基价格报价、厂家品牌的相关信息, 包括二羟丙基参数、型号等,不管是国产,还是进口品牌的二羟丙基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二羟丙基相关的耗材配件、试剂标物,还有二羟丙基相关的最新资讯、资料,以及二羟丙基相关的解决方案。

二羟丙基相关的资讯

  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p   近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。 /p p   在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。 /p p   上述研究工作得到国家自然科学基金委的资助。 /p p style=" text-align: center " img style=" width: 500px height: 216px " title=" W020160419304595129181.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width=" 500" height=" 216" / /p p style=" text-align: center "    span style=" font-size: 14px " 大连化物所铜催化不对称炔丙基转化研究取得新进展 /span /p p style=" text-align: center " & nbsp /p
  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。 铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。 这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 成果:可拉伸离子二极管
    p   随着对软性和柔性器件需求的稳步增长,凝胶材料演示的离子应用受到了人们的关注。本文介绍了由聚电解质水凝胶制成的可拉伸可穿戴式离子二极管(SIDs)。采用甲基丙烯酸酯化多糖对聚电解质水凝胶进行了机械改性,同时保留了聚(磺丙基丙烯酸酯)钾盐(PSPA)和聚([丙烯酰胺丙基]氯化三甲铵(PDMAPAA‐Q)的离子选择性,形成了离子共聚物。然后将聚电解质共聚物水凝胶组成的小岛屿发展中国家在VHB基板上制作成可拉伸的透明绝缘层,用激光刻蚀而成。sid在水凝胶与弹性体基体之间的良好粘附作用下,在拉伸超过3倍的范围内表现出整流行为,并在数百个周期内保持整流状态。可穿戴式离子电路在手指运动过程中对离子电流进行整流,并在正向偏压下点亮LED灯,从而实现SID的操作可视化。 /p p 原文链接: /p p a href=" https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201806909" target=" _blank" A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides /a /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 10.1002@adfm.201806909.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201812/attachment/bbee6195-d2c0-439f-81d4-023f7d38927d.pdf" 10.1002@adfm.201806909.pdf /a /p p /p
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover® 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover® 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover® 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover® 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 通过微波增强的多肽固相合成自动合成首尾相连的环肽
    摘要使用 Liberty Blue&trade 和 Liberty PRIME&trade 多肽合成仪可以快速、高纯度进行头尾环化肽的全自动合成。微波增强的多肽固相合成(SPPS)不仅有利于线性组装,而且有利于随后的环化步骤,在各种困难的生物学重要肽上实现了极高的纯度合成。Liberty PRIME 上使用的一锅法 Fmoc SPPS 循环进一步改善合成时间、减少浪费。表1 :全自动合成首尾相连的环化肽表2:Liberty Blue 和 Liberty PRIME 合成 Cyclorasin A1引言环肽能够桥接小分子和抗体之间的化学空间间隙,允许设计具有高结合亲和力、显着选择性、低毒性和进入细胞内靶点的能力的分子2。因此,大环肽作为靶向传统上无法成药的生物靶点的治疗剂具有相当大的前景3。截至 2017 年,超过 40 种环肽用于临床4。环肽作为候选药物开发的这一令人鼓舞的趋势,为发展更稳健的制备方法提供了动力。SPPS 可以通过使用 Fmoc-Glu-ODmab 作为 C 端氨基酸 (图 1) 制备首尾相连环化肽。在合成线性肽骨架后,可以使用稀肼溶液选择性地去保护 Dmab 基团。之后,可以使用微波增强偶联实现首尾环化。将微波能量应用于首尾环化肽的合成可以实现更有效的偶联,从而加快合成时间和提高纯度 (CarboMAX&trade )5。 图 1:Fmoc-Glu-ODmab ( 左 ) Fmoc-Glu(Wang resin LL)- ODmab (右)材料与方法试剂以下含有指定的侧链保护基团 Fmoc 氨基酸购自 CEM Corporation (Matthews, NC) 并:Ala、Arg (Pbf)、Gly、His (Boc)、Ile、Leu、Lys (Boc)、Thr (tBu) )、Trp (Boc)、Tyr (tBu) 和 Val。Rink Amide ProTideTM LL 树脂也购自 CEM Corporation。Fmoc-Glu-ODmab、Fmoc-Glu(Wang)-ODmab LL 树脂、FmocD-Ala- OH 和 Fmoc-4-氟-L-苯丙氨酸购自 EMD Millipore (Burlington, MA)。Fmoc-D-2-Nal-OH、FmocD-Nle-OH 和 Fmoc-N-甲基-L-苯丙 氨酸购自 Bachem (T orrance, CA)。Fmoc-N-甲基-异亮氨酸-OH 购自 Advanced ChemTech (Louisville, KY)。FmocN-甲基-亮氨酸-OH 购自 Alfa Aesar (Haverhill, MA)。水合肼、N,N-二异丙基乙胺(DIEA)、Fmoc-N-甲基-甘氨酸-OH、N,N' -二异丙基碳二亚胺 (DIC)、哌啶、吡咯烷、三氟乙酸 (TFA)、3,6-dioxa-1、 8 辛二硫醇(DODT) 和三异丙基硅烷 (TIS) 购自 Sigma-Aldrich (St. Louis, MO)。N,N-二甲基甲酰胺 (DMF)、无水乙醚 (Et2O) 和乙酸购自 VWR (Radnor, PA)。LC-MS 级水 (H2O) 和 LC-MS 级乙腈 (MeCN) 购自 Fisher Scientific (Hampton, NH) 。多肽合成:CEM 7-mer, cyclo-[GVYLHIE] 使用 CEM Liberty Blue 自动微波多肽合成仪,在 Fmoc- Glu(Wang)- ODmab 树脂(离子交换容量:0.025 meq/g)上,以 0.10 mmol 的规模合成(Dmab 脱保护以0.05 mmol 规模进行,首尾环化以 0.025 mmol的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍量的Fmoc氨基酸,DIC和Oxyma Pure(CarboMAX)5 中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后无水乙醚沉淀肽并过夜冻干。图2:CEM 7-mer多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q] (Liberty Blue)使 用 CEM Liberty Blue 自 动 微 波 多 肽 合 成 仪 , 在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g )上,以 0.05 mmol 的规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍Fmoc氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并过夜冻干。多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q](Liberty PRIME)使用 CEM Liberty PRIME 自动微波多肽合成仪,在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g)上,以 0.05 mmol 规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/ DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图3:Cyclorasin A多肽合成:N-MethylCyclorasinAnalog, cyclo-[WTaR-NMeGly- NMePhe-nal-NMeGly-Fpa-nle-E]使用 CEM Liberty PRIME 自动微波肽合成仪在 Fmoc-Glu (Wang ) -ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.05 mmol 的 规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在CEM RazorTM高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽 并冻干过夜。图4:N-Methyl Cyclorain Analog多肽合成:Poly N-Methyl Peptide, cyclo-[KA-NMeIle-NMeGly-NMeLeu-A-NMeGly-NMeGly-E]使 用 CEM Liberty PRIME 自 动 微 波 肽 合 成 仪 在 Fmoc-Glu (Wang )-ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.1 mmol 的规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护 。偶 联 反 应 在 5 倍 Fmoc 氨 基 酸 、 DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图5: Poly N-Methyl Peptide多肽分析在配备有 PDA 检测器的 Waters Acquity UPLC 系统上分析肽, 该 检 测 器 配 备 Acquity UPLC BEH C8 柱 (1.7 mm 和 2.1 x 100 mm)。UPLC 系统连接到 Waters 3100 Single Quad MS 用于结构测定。在 Waters MassLynx 软件上进行峰分析。使用 (i) H2O 和 (ii) MeCN 中的 0.05% TFA 梯度洗脱进行分离。 结果在 Liberty Blue 自动微波肽合成仪上 CEM 7-mer 的微波增强固相合成产生了纯度为 78% 的目标肽(图 6)。图6:CEM 7-mer 的UPLC色谱图在 LibertyBlue 自动微波肽合成仪上的 Cyclorasin A的微波增强。图7:Cyclorasin A (Liberty Blue)的UPLC的色谱图Liberty PRIME 自动微波肽合成仪上的 Cyclorasin A 微波增强。图8:Cyclorasin A (Liberty PRIME)的UPLC色谱图Liberty PRIME 自动微波肽合成仪上的 Poly N-Methyl Peptide。图9:多聚N-甲基Peptide 的UPLC色谱图Liberty PRIME 自 动 微 波 肽 合 成 仪 上 的 N-Methyl Cyclorasin Analog 的微波增强固相合成产生了纯度为 66% 的目标肽(图10)。图10:N-甲基 CyclorasinAnalog的UPLC色谱图 结论使用自动微波增 SPPS 可以快速有效地合成首尾环肽。此外,易于使用的 Liberty Blue 和 Liberty PRIME 软件允许对肽序列进行快速直接的编程。使用 Liberty Blue 肽合成仪在 2 小时 13 分钟内合成了纯度为 78% 的 7 聚体环肽。在 Liberty Blue 上在 3 小时 1 分钟内以高纯度 (75%) 合成了 Cyclorasin A 环肽。在 Liberty PRIME 上仅用了 2 小时就合成了相同的肽,纯度很高 (75%),浪费大约 100 mL。在 Liberty PRIME 上,微波增强的 SPPS 可在 2 小时 5 分钟内以 66% 的纯度合成了具有综合挑战性的 N-methyl cyclorasin analog 环肽。最后,在 Liberty PRIME 上以 73% 的纯度在 2 小时 12 分钟内制备出多聚 N-甲 基化 11 聚体肽。 参考文献[1] Upadhyaya, P. Qian, Z. Selner, N. G. Clippinger, S. R. Wu, Z. Briesewitz, R. Pei, D. Angew. Chem. Int. Ed. Engl. 2015, 54 (26), 7602&ndash 7606. [2] White, A. M. Craik, D. J. Expert Opin. Drug Discov. 2016, 11 (12), 1151&ndash 1163.[3] Hurtley, S. M. Science. 2018, 361 (6407), 1084.4-1085. (4) Zorzi, A. Deyle, K. Heinis, C. Curr. Opin. Chem. Biol. 2017, 38, 24&ndash 29. (5) CEM Application Note (AP0124) - &ldquo CarboMAX - Enhanced Peptide Coupling at Elevated Temperature.&rdquo
  • 2011年度食品安全国家标准项目计划(第二批)征求意见
    卫生部办公厅关于公开征求《2011年度食品安全国家标准项目计划(第二批)(征求意见稿)》意见的函 卫办监督函〔2011〕911号   各有关单位:   根据《食品安全法》和《食品安全国家标准管理办法》有关规定,为完善我国食品安全国家标准,做好食品安全国家标准项目管理工作,我部收集整理了近期接到的食品安全国家标准项目建议。根据食品安全国家标准审评委员会(以下简称审评委员会)确定的2011年度食品安全国家标准立项优先原则,审评委员会秘书处对各方提出的立项建议进行了整理和筛查,拟定了《2011年度食品安全国家标准项目计划(第二批)(征求意见稿)》。现公开征求意见,请于2011年10月14日前按以下方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。   二○一一年九月三十日 2011年度食品安全国家标准项目计划(第二批)(征求意见稿) 序号 项目名称 制/修订 建议承担单位 1 辅食营养补充品通用标准 修订 中国疾控中心营养与食品安全所 2 食品添加剂使用标准 修订 中国疾控中心营养与食品安全所 3 食品用香料通则 制定 中国香料香精化妆品工业协会 4 干海参 修订 中国水产科学研究院黄海水产研究所 5 食品添加剂 天门冬氨酸钙 制定 哈尔滨医科大学公共卫生学院 6 食品添加剂 姜黄 制定 中国食品添加剂和配料协会 7 食品添加剂 丁苯橡胶 制定 江苏省卫生监督所 8 食品添加剂 离子交换树脂 制定 江苏省卫生监督所 9 食品添加剂 凹凸棒粘土 制定 国土资源部南京矿产资源监督检测中心 10 食品添加剂 1,3-二油酸2-棕榈酸甘油三酯 制定 中国石油北京化工研究院 11 食品添加剂 DL-苹果酸钠 制定 中国石油北京化工研究院 12 食品添加剂 聚氧乙烯聚氧丙烯季戊四醇醚 制定 中国石油北京化工研究院 13 食品添加剂 酶解大豆磷脂 制定 中国石油北京化工研究院 14 食品添加剂 单辛酸甘油酯 制定 中国石油北京化工研究院 15 食品添加剂 决明胶 制定 中国食品发酵工业研究院 16 食品添加剂 焦糖色(苛性硫酸盐法) 制定 中国食品发酵工业研究院 17 食品添加剂 溶菌酶 制定 中国食品发酵工业研究院 18 食品添加剂 棉子糖 制定 中国食品发酵工业研究院 19 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜) 制定 中国食品发酵工业研究院 20 食品添加剂 硬脂酸钾 制定 中国食品发酵工业研究院 21 食品添加剂 β-阿朴-8’-胡萝卜素醛 制定 中国食品发酵工业研究院 22 食品添加剂 红曲黄色素 制定 中国食品发酵工业研究院 23 食品添加剂 天然胡萝卜素 制定 中国食品发酵工业研究院 24 食品添加剂 槐豆胶 制定 中国食品发酵工业研究院 25 食品添加剂 桂醛 制定 中国食品发酵工业研究院 26 食品添加剂 纤维素 制定 中国食品发酵工业研究院 27 食品添加剂 萜烯树脂 制定 中国食品发酵工业研究院 28 食品添加剂 聚丙烯酸钠 制定 中国食品发酵工业研究院 29 食品添加剂 阿拉伯胶 制定 中国食品发酵工业研究院 30 食品添加剂 杨梅红 制定 中国食品发酵工业研究院 31 食品添加剂 甘油 制定 中国食品发酵工业研究院 32 食品添加剂 柠檬酸脂肪酸甘油酯 制定 中国食品发酵工业研究院 33 食品添加剂 异丙醇 制定 中国石油北京化工研究院 34 食品添加剂 乙醇 制定 中国石油北京化工研究院 35 食品添加剂 甘氨酸钙 制定 中国石油北京化工研究院 36 食品添加剂 甘氨酸锌 制定 中国石油北京化工研究院 37 食品添加剂 甘氨酸亚铁 制定 中国石油北京化工研究院 38 食品添加剂 磷酸酯双淀粉 制定 中国淀粉工业协会 39 食品添加剂 醋酸酯淀粉 制定 中国淀粉工业协会 40 食品添加剂 辛烯基琥珀酸铝淀粉 制定 中国淀粉工业协会 41 食品添加剂 乙酰化二淀粉磷酸酯 制定 中国淀粉工业协会 42 食品添加剂 氧化羟丙基淀粉 制定 中国淀粉工业协会 43 食品添加剂 氧化淀粉 制定 中国淀粉工业协会 44 食品添加剂 酸处理淀粉 制定 中国淀粉工业协会 45 食品添加剂 乙酰化双淀粉己二酸酯 制定 中国淀粉工业协会 46 食品添加剂 磷酸化二淀粉磷酸酯 制定 中国淀粉工业协会 47 食品添加剂 羟丙基淀粉 制定 中国淀粉工业协会 48 食品添加剂 羟丙基二淀粉磷酸酯 制定 中国淀粉工业协会 49 食品添加剂 羧甲基淀粉钠 制定 中国淀粉工业协会 50 食品添加剂 淀粉磷酸酯钠 制定 中国淀粉工业协会 51 食品添加剂 γ-辛内酯(丙位辛内酯) 制定 上海香料研究所 52 食品添加剂 δ-己内酯(丁位己内酯) 制定 上海香料研究所 53 食品添加剂 δ-壬内酯(丁位壬内酯) 制定 上海香料研究所 54 食品添加剂 δ-十四内酯(丁位十四内酯) 制定 上海香料研究所 55 食品添加剂 δ-十一内酯(丁位十一内酯) 制定 上海香料研究所 56 食品添加剂 δ-辛内酯(丁位辛内酯) 制定上海香料研究所 57 食品添加剂 二氢茉莉酮酸甲酯 制定 上海香料研究所 58 食品添加剂 四氢芳樟醇 制定 上海香料研究所 59 食品添加剂 叶醇(顺式-3-己烯-1-醇) 制定 上海香料研究所 60 食品添加剂 6-甲基-5-庚烯-2酮 制定 上海香料研究所
  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 送别!中国工程院院士池志强逝世,享年95岁
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 我国著名神经药理学家、中国共产党党员、中国工程院院士、中国科学院上海药物研究所研究员、离休干部池志强先生,因病医治无效,于2020年1月7日1时43分在上海华东医院逝世,享年95岁。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 367px " src=" https://img1.17img.cn/17img/images/202001/uepic/ac30cb76-b27a-4dd1-ac79-4dc0b4372f51.jpg" title=" 574e9258d109b3deefd6174ba57f6887810a4cea.jpeg" alt=" 574e9258d109b3deefd6174ba57f6887810a4cea.jpeg" width=" 550" height=" 367" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 池志强先生是我国神经药理学学科的开拓者之一,在抗放射损伤药物、神经系统药物研究方面取得了突出成就。1950年代,他的副博士论文证明,由中国科学家研发的二巯基丁二酸钠较前苏联科学家研发的二巯基丙基磺酸钠对血吸虫病治疗锑剂吐酒石的治疗指数高一倍,让导师刮目相看。1960年代,他主要从事防治电离辐射损伤的药物研究,是防护辐射损伤特种药物研究和6003国防科研大协作组的首席科学家。1970年代起,他注重军民结合,开创了强效镇痛剂和神经受体研究新方向,是国内最早开展阿片受体及其亚型高选择性配体研究并取得突出成就的科学家。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 池志强先生一生奋战在科研一线,取得了丰硕的科研成果,先后获得国家自然科学二等奖、全国科学大会奖、国防科工委重大成果二等奖、献身国防科技事业荣誉证书、何梁何利基金科学与技术进步奖、中国科学院科技进步二等奖、中科院自然科学奖三等奖、上海市重大科技成果奖、上海市自然科学奖二等奖等。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 池志强先生长期担任上海药物所第五研究室主任,并先后兼任所科研处处长、副所长、中科院上海分院副院长、《生命科学》主编等职务,为我国国防科研和药学事业的振兴、发展做出重大贡献。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 池志强先生一生热爱党,热爱祖国,热爱科学事业。他政治信念坚定,治学风范严谨,人生态度豁达,生活作风朴实。池志强先生的一生是为科学事业不懈奋斗的一生。他的逝世,是我国科技界的重大损失!我们沉痛悼念并深切缅怀池志强先生! /p
  • 岛津推出Nexera UC在线SFE-SFC-MS系统用色谱柱
    岛津一直在努力开发新的消耗品以满足用户的应用需求。即日起,推出Nexera UC在线SFE-SFC-MS 系统配套使用的Shim-pack UCX系列SFC色谱柱。该系列色谱柱包括8个产品线,分别是UCX-RP,UCX-GIS,UCX-Diol,UCX-Diol,UCX-Amide,UCX-NH2,UCX-Phenyl和UCX-CN。在销售Nexera UC仪器时,Shim-pack UCX 系列色谱柱将作为专属色谱柱推荐。 产品特点 Shim-pack UCX 系列1) Shim-pack UCX-RP 系列Shim-pack UCX-RP系列是在硅胶表面和C18基团之间嵌入极性基团的极性C18柱。嵌入的极性基团可以使C18色谱柱与水的兼容性更高,可以避免使用纯水流动相造成固定相疏水塌陷的问题。该色谱柱固定相经过独特的“碱去活”技术使得色谱柱的惰性极高,因此即使在SFE-SFC-MS系统常用酸性流动相条件下,分析酸性或者碱性化合物也能得到尖锐的峰型。 独特选择性Shim-pack UCX-RP 系列由于嵌入极性基团而具有氢键作用力,因此能够提供独特的选择性,在单独依靠疏水性作用力或者π-π电子作用力无法达到分离要求的情况下可以选择该系列。 分析酸性或者碱性化合物都能得到尖锐的峰型市场上多数极性嵌入式色谱柱,由于极性基团中含N碱基,在使用酸性流动相条件下分析酸性化合物时,往往会因为酸性吸附而导致峰劣化。而Shim-pack UCX-RP色谱柱由于导入的是去活基团,因此无论是酸性还是碱性化合物分析都能够得到优异的对称的峰型。 高比例水相条件下保留稳定由于嵌入极性基团,有效避免了疏水性固定相易疏水塌陷的问题,能够实现稳定的保留,因此Shim-pack UCX-RP系列和水相的兼容性更高,可以耐受100%纯水相。2) Shim-pack UCX-GIS II 系列Shim-pack UCX-GIS II采用超高惰性基质填料,无论是针对酸性,碱性或者金属配位性化合物都能够得到理想的峰型,此款色谱柱含碳量低,可以耐受100%纯水相,并且能够提供和其他ODS色谱柱不同的选择性。 高惰性Shim-pack UCX-GIS II系列ODS色谱柱填料采用更先进的端基封尾技术,而且彻底清除了硅胶表面残留的金属杂质,因此酸性或者碱性以及金属配位性化合物的吸附都降到了最低限度。 可耐受100%纯水相Shim-pack UCX-GIS II 系列载碳量相对较低,填料表面极性相对较大,与水的兼容性更好,有效避免输水塌陷问题,在高比例水相条件下依然能够实现稳定的保留和优异的重现性。3) Shim-pack UCX-Phenyl 系列Shim-pack UCX-Phenyl 系列是在硅胶表面直接键合苯基的色谱柱,通常在药物分析中应对一些极性稍大的酸性或者碱性样品的分析。 填料表面被苯基完美的覆盖,在分析极性样品时即使只是用简单的乙腈水或者甲醇水流动相也可以得到对称的峰型。 对含有芳香环物质具有独特的选择性在分析芳香性物质时,在苯基和分析物之间π-π电子作用力是最重要的作用力,在疏水性作用力不能满足分离需求的条件下,Shim-pack UCX-Phenyl 系列色谱柱是非常理想的选择。4) Shim-pack UCX-CN 系列Shim-pack UCX-CN 系列是在硅胶表面键合氰丙基的色谱柱,由于含有C≡N,能够提供π-π电子作用力,因此在某些直链烷烃色谱柱无法满足分离条件的情况下,可以采用氰基柱尝试分离。Shim-pack UCX-CN 既可以用于正相分离,也可以用于反相分离,该系列色谱柱保存溶液为正己烷/乙醇的混合溶液,所以如果采用反相分析条件之前,请采用过渡溶剂,例如异丙醇充分过渡色谱柱。 反相条件下与ODS色谱柱有不同的选择性 在反相条件下,Shim-pack UCX-CN由于含有C≡N,能够提供π-π电子作用力和氢键作用力,而与直链烷烃例如ODS柱有不同的选择性,某些情况下可以用用于分离一些结构类似的化合物。 正相条件下高选择性和长寿命与市场上其他品牌氰基柱相比,Shim-pack UCX-CN键合相密度更高,所以即使无端基封尾,此系列色谱柱色谱柱也有着较长的寿命,由于清除了填料表面水相的活性吸附位点,所以这款色谱柱可以采用100%水相洗脱液洗脱。5) Shim-pack UCX-Diol 系列Shim-pack UCX-Diol 键合相为二羟丙基,在正相条件下可以提供独特的选择性。二羟丙基的分离机理为二醇基团和极性化合物的氢键作用力。 正相模式条件下和硅胶柱的选择性相同Shim-pack UCX-Diol 的分离机理以二醇基团和极性化合物的氢键作用力为显著特征,正相模式分离下可以提供与硅胶柱相似的选择性,但是保留会更强。6) Shim-pack UCX-Sil 系列Shim-pack UCX-Sil 系列是单纯的硅胶色谱柱,在正相条件下分离,因为采用高纯硅胶,因此UCX-Sil 能够实现尖锐的峰型和高重现性。 高纯硅胶拥有高度光滑而且坚固的表面 对碱性化合物保留能力强硅胶表面的硅醇基和碱性化合物的作用力非常强,Shim-pack UCX-Sil 色谱柱对碱性化合物的保留能力强,而对酸性化合物的保留能力弱。7) Shim-pack UCX-Amide系列Shim-pack UCX-Amide 系列键合相为烷基酰胺基,为亲水性作用模式(HILIC模式)色谱柱,对极性化合物的保留能力强,适用于ODS色谱柱难以保留的极性化合物的分析。 对极性化合物保留能力强相比一般的HILIC模式色谱柱,Shim-pack UCX-Amide 系列对极性化合物的保留能力更强一些,而且对酸性,碱性或者中性的化合物的保留能力很强。 与高比例有机溶剂兼容亲水性作用模式条件下,流动相条件为高比例有机溶剂,MS作为检测器时,脱溶剂更容易,离子化的效率更高,因此Shim-pack UCX-Amide 系列非常适用于LC/MS/MS。8) Shim-pack UCX-NH2 系列Shim-pack UCX-NH2 系列为硅胶键合氨丙基色谱柱,硅胶的比表面积非常高,因此该系列色谱柱也有着非常高的保留。 可以在反相条件下分离糖类市场上有些厂家为提高氨基柱的寿命而键合仲胺和叔胺,但是这样可能会造成还原糖的吸附或者糖的差向异构体分离,Shim-pack UCX-NH2键合相为单纯的伯胺,因此不会有还原糖吸附或者差向异构体分离的问题。 正相条件下独特的选择性Shim-pack UCX-NH2 由于键合相为伯胺,因此能够提供其他厂家色谱柱不同的选择性。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 美调查:50%以上受检婴儿床垫含TRIS阻燃剂
    原标题:美国调查发现半数以上受检婴儿床垫含TRIS阻燃剂   美国知名媒体《芝加哥论坛报》于日前发布一份针对婴儿床垫产品中磷酸三脂(TRIS)阻燃剂含量情况调查报告。来自民间调查的这批受检产品来自于Angeles,Babies R Us以及Foundations三家企业于2011年和2012年在售的27款婴儿床软垫,对当中的磷酸三(1,3-二氯丙基)酯(TDCPP,CAS:78-43-3)和磷酸三(β-氯乙基)酯(TCEP,CAS:115-96-8)以及磷酸三(2-氯丙基)酯(TCPP,cas号13674-84-5)含量进行统计分析。经检测,几乎在半数以上受检产品中发现上述阻燃剂的情况。   TDCPP、TCEP、TCPP三种物质因其对健康具威胁性,在婴儿床垫中的使用受限。TDCPP被世界卫生组织(W.H.O.)以及消费者安全协会(CPSC)鉴定为潜在致癌物质。美国国家毒理计划、欧盟委员会以及其他相关组织也认定TCEP具有潜在致癌性。对于TCPP的相关研究则较少,但因其结构与TCEP和TDCPP类似,也被怀疑具有相似的致癌特性。在产品适用过程和适用该产品的区域周围的空气粉尘皆可产生有毒化学品暴露。   20世界70年代的美国,TDCPP仅被用于儿童睡衣,目前该物质位列加州65致癌物清单以及华盛顿州儿童产品需高度关注物质(CHCC)清单之列 TCEP也在加州65致癌物清单中,同样也被华盛顿州和纽约州限制适用。加拿大已经禁止TCEP用于供三岁以下儿童适用的产品中。   仅仅在刚过去的2012年,美国民间和政府对化学阻燃剂的相关活动就不少:   2012年3月,美国最大儿童汽车座椅Britax向密歇根州儿童环境健康和生态中心承诺将逐步淘汰儿童产品中的溴化阻燃剂、氯化阻燃剂使用   2012年5月,美国参议院致信环境保护署(EPA)要求EPA全面调查阻燃剂安全性,限制有毒化学阻燃剂使用   2012年7月,美国儿童产品行业巨头Graco children's products Inc. 宣布在所有的产品系列中禁用有毒化学阻燃剂   2012年10月,美国华盛顿州引入《无毒儿童法案》(Toxic Free Kids Act),对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:TDCPP和TCEP颁布禁令。该法案预计于2014年7月1日生效。   化学阻燃剂的安全问题更多的为各界所关注,对环保阻燃剂和物理阻燃方式的呼声越来越热烈。这样的形势下,对企业的产品生产就提出了更多的要求,相关企业应重点关注法规变化,调整产品生产环节,保证产品顺利行销。
  • 毛发中毒品检测“手把手”第二弹——了解样品预处理流程
    司法部:《毛发中Δ9 -四氢大麻酚、大麻二酚、大麻酚的液相色谱-串联质谱检验方法》SF/Z JD0107022-2018为例:目标物:Δ9 -四氢大麻酚、大麻二酚、大麻酚内标:甲氧那明/或近似物操作流程:司法部:毛发中二甲基色胺等16种色胺类新精神活性物质及其代谢物的液相色谱-串联质谱检验方法 SF/T 0065-2020 内标1mg/mL赛洛西宾D4/赛洛新D10/或近似物 目标物:色胺类:5-甲氧-N,N-二异丙基色胺(5-Me0-DiPT)5-甲氧基-N-甲基-N-异丙基色胺(5-Me0-MiPT)5-甲氧-N,N-二烯丙基色胺(5-Me0-DALT)5-甲氧基-N,N-二甲基色胺(5-Me0-DMT)5-羟基-N,N-二异丙基色胺(5-0H-DiPT)4-羟基-N,N-二异丙基色胺(4-0H-DiPT)N,N-二甲基色胺(DMT)N,N-二丙基色胺(DPT)5-甲氧基-N-异丙基色胺(5-Me0-NiPT)4-羟基-N-甲基-N-乙基色胺(4-0H-MET)赛洛新(Psilocin)赛洛西宾(Psilocybin)4-羟基-N-甲基-N-异丙基色胺(4-0H-MiPT)4-乙酰氧基-N,N-二异丙基色胺(4-Acetoxy-DiPT)5-甲氧基-2-甲基色胺(5-Me0-AMT)N-异丙基色胺(NiPT)规范SF/Z JD0107022-2018中建议采用先研磨后称量的方案取样,而SF/T 0065-2020中采用准确称量后研磨的方案,哪种更适用? 2个方案均可! 1. 规范中采用毛发清洗,晾干,剪碎,研磨后称取的方案优势:1mm毛发小段容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,所以先采用干式冷冻研磨后再称取相对容易操作。劣势:干式冷冻研磨后样品中容易混入研磨球中的碎屑造成重量不准,检测结果的浓度偏低。为避免该现象发生需要选用金属研磨球,但造价较贵一次性使用会增加成本。 2. 标准中采用毛发清洗,晾干,剪碎,称取,加内标溶液后研磨的方案优势:研磨后毛发的精准重量不会变化,数据结论更为精准。劣势:毛发容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,要解决该问题的出现需要精准记录1mm毛发小段称取的质量信息用于计算,并采用精度更好的天平称量。此外针对样品预处理除毛发清洗、研磨需要手工操作外,全流程可以采用ATLAS-LEXT 系列产品自动化样品预处理:相对于手工样品分析,自动化方案更加简便快捷。 操作流程:ATLAS-LEXTATLAS-LEXT NHD 产品特点: 1.Compact Design 集成化设计体积小巧可以在通风橱内存放及使用. ((W) 600 mm×(D)585 mm×(H) 592 mm) 2.Ensure Safety 保障操作者安全防污染设计,防止生物样品疾病、病毒污染操作者,减少手工操作误差。 3.Extraction System 自动化萃取流程配备离心机 (maximum 2000×g) 可用于蛋白质去除等处理流程,更快速的离心机设置可有效实现样品基质的有效去除。 4.Evaporation Device 自带样品浓缩单元可选GHD (顶吹氮气加热浓缩系统)或VHD(减压加热浓缩系统)可供选择。 5.Simple Operation 样品操作样品制备流程程序化,样品制备方案多样化,可实现差异化批处理流程的编辑模式。 本文内容非商业广告,仅供专业人士参考。
  • 探索分析新境界 — 珀金埃尔默GC气相色谱柱系列
    在化学分析的广阔天地中,珀金埃尔默携其卓越的GC气相色谱柱系列,为您的实验探索之旅添上精准与效率的双翼! 一 Clarus® 590/690 GC 二 Clarus® SQ 8 GC/MS 三 TurboMatrix热脱附仪 四 TurboMatrix™顶空和顶空捕集阱顶空进样器和带捕集阱顶空进样器 1 通用型GC色谱柱:一柱在手,分析无忧 Elite-1:烃类化合物的分析专家 Elite-1 100%二甲基聚硅氧烷色谱柱是一种高度通用的非极性、交联通用相,其坚固耐用,使用寿命长,流失率低,最高工作温度高。 Elite-5:捕捉挥发性与半挥发性化合物的能手 Elite-5是5%二苯基/95%二甲基聚硅氧烷固定相。它被视为一种通用型低极性相,是最普遍的GC固定相,用于各种各样的应用中。 Elite-17 & Elite-35:极性化合物的分离艺术大师Elite-17是通用型色谱柱,中等极性,(50%-苯基)-甲基聚硅氧烷固定相,采用交联技术,具有柱流失非常低,寿命较长的特点。 Elite-624:多化合物分析的全能选手 Elite-624色谱柱是一种经过特殊设计的,低至中等极性(6%-氰丙基苯基)-二甲基聚硅氧烷相。该相的独特极性使其成为分析挥发性有机污染物的理想选择,美国EPA方法中推荐使用。 Elite-WAX:高沸点与强极性化合物的专属解析者 Elite-WAX为极性聚乙二醇(PEG)固定相色谱柱,是一种通用型极性PEG相,通常用于分析极性化合物,如烯醇、乙二醇和醛类工作温度范围高达250℃,有利于分析挥发性范围广泛的化合物。2 GC/MS专用色谱柱:质谱检测的黄金搭档 Elite-1ms:低流失,质谱分析的精准之选 Elite-1ms相为非极性相(交联二甲基聚硅氧烷),设计用于稳定的质谱应用。热稳定性改善以及超低流失,提高了灵敏度。 Elite-5ms:环境污染物追踪的隐形猎手 Elite-5ms相(1.4-二(二甲基硅氧基)亚苯基二甲基聚硅氧烷)聚合物主链中加入了一个苯基,提高热稳定性,减少流失,使相不易氧化。 Elite-17ms:复杂样品中的极性化合物分析专家 Elite-17ms为通用型色谱柱,中等极性,具有交联(50%-二苯基)-二甲基聚硅氧烷涂层,设计为极低流失,以满足灵敏的MS检测器要求。 Elite-35ms:高温下的稳定质谱分析伙伴 Elite-35ms为通用型、中等极性色谱柱,在较高温度下的流失极低。 Elite-624ms:高分辨率质谱分析的明星柱 Elite-624ms采用独有的氰丙基和甲基硅氧烷专有混合物,使该柱具有超高惰性、极低柱流失,和高度热稳定性。 感谢您关注珀金埃尔默气相色谱柱系列。我们期待与您携手,共创精准分析的未来。若您对产品有更多疑问或需求,欢迎随时联系我们。 扫码左侧二维码 开启您的高效分析之旅 关注我们
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函   卫办监督函〔2012〕441号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com   二○一二年五月十六日 食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1 食品添加剂 醋酸酯淀粉 2 食品添加剂 磷酸酯双淀粉 3 食品添加剂 氧化淀粉 4 食品添加剂 酸处理淀粉 5 食品添加剂 乙酰化二淀粉磷酸酯 6 食品添加剂 羟丙基淀粉 7 食品添加剂 羟丙基二淀粉磷酸酯 8 食品添加剂 乙酰化双淀粉己二酸酯 9 食品添加剂 氧化羟丙基淀粉 10 食品添加剂 辛烯基琥珀酸铝淀粉 11 食品添加剂 磷酸化二淀粉磷酸酯 12 食品添加剂 淀粉磷酸酯钠 13 食品添加剂 羧甲基淀粉钠 14 食品添加剂 松香甘油酯和氢化松香甘油酯 15 食品添加剂 天门冬氨酸钙 16 食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺(一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。(二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。(三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。二、1,8-二-4-甲苯氨基-9,10-蒽二酮(一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。(二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。(三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。三、甲醛和2-甲酚的聚合物(一)背景资料。甲醛和2-甲酚的聚合物常温下为液态,沸点118℃,不溶于水,可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。四、甲醛和苯酚,对叔丁基苯酚的聚合物(一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态,沸点118℃,不溶于水,易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。来源:仪器信息网
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺   (一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。   (二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。   (三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。   二、1,8-二-4-甲苯氨基-9,10-蒽二酮   (一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。   (二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。   (三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。   三、甲醛和2-甲酚的聚合物   (一)背景资料。甲醛和2-甲酚的聚合物常温下为液态, 沸点118℃,不溶于水, 可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。   四、甲醛和苯酚,对叔丁基苯酚的聚合物   (一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态, 沸点118℃,不溶于水, 易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。   本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。   本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。   第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。 关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:   GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)   GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)   GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)   GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)   GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)   GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)   GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)   GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)   GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)   GB 29924-2013 食品添加剂标识通则   GB 29925-2013 食品添加剂 醋酸酯淀粉   GB 29926-2013 食品添加剂 磷酸酯双淀粉   GB 29927-2013 食品添加剂 氧化淀粉   GB 29928-2013 食品添加剂 酸处理淀粉   GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯   GB 29930-2013 食品添加剂 羟丙基淀粉   GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯   GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯   GB 29933-2013 食品添加剂 氧化羟丙基淀粉   GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉   GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯   GB29936-2013 食品添加剂 淀粉磷酸酯钠   GB 29937-2013 食品添加剂 羧甲基淀粉钠   GB 29938-2013 食品用香料通则   GB 29939-2013 食品添加剂 琥珀酸二钠   GB 29940-2013 食品添加剂 柠檬酸亚锡二钠   GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)   GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)   GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)   GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)   GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)   GB 29946-2013 食品添加剂 纤维素   GB 29947-2013 食品添加剂 萜烯树脂   GB 29948-2013 食品添加剂 聚丙烯酸钠   GB 29949-2013 食品添加剂 阿拉伯胶   GB 29950-2013 食品添加剂 甘油   GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯   GB 29952-2013 食品添加剂 &gamma -辛内酯   GB 29953-2013 食品添加剂 &delta -辛内酯   GB 29954-2013 食品添加剂 &delta -壬内酯   GB 29955-2013 食品添加剂 &delta -十一内酯   GB 29956-2013 食品添加剂 &delta -突厥酮   GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮   GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯   GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮   GB 29960-2013 食品添加剂 二烯丙基硫醚   GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)   GB 29962-2013 食品添加剂 2-巯基-3-丁醇   GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)   GB 29964-2013 食品添加剂 二甲基二硫醚   GB 29965-2013 食品添加剂 二丙基二硫醚   GB 29966-2013 食品添加剂 烯丙基二硫醚   GB 29967-2013 食品添加剂 柠檬酸三乙酯   GB 29968-2013 食品添加剂 肉桂酸苄酯   GB 29969-2013 食品添加剂 肉桂酸肉桂酯   GB 29970-2013 食品添加剂 2,5-二甲基吡嗪   GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛   GB 29972-2013 食品添加剂 乙醛二乙缩醛   GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑   GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)   GB 29975-2013 食品添加剂 二糠基二硫醚   GB 29976-2013 食品添加剂 1-辛烯-3-醇   GB 29977-2013 食品添加剂 2-乙酰基吡咯   GB 29978-2013 食品添加剂 2-己烯醛(叶醛)   GB 29979-2013 食品添加剂 氧化芳樟醇   GB 29980-2013 食品添加剂 异硫氰酸烯丙酯   GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺   GB 29982-2013 食品添加剂 &delta -己内酯   GB 29983-2013 食品添加剂 &delta -十四内酯   GB 29984-2013 食品添加剂 四氢芳樟醇   GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)   GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮   GB 29987-2013 食品添加剂 丁苯橡胶   GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)   GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定   GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单   特此公告。   附件:75项食品安全国家标准及BHT第1号修改单.zip   国家卫生计生委   2013年11月29日
  • 岛津全新质谱平台GCMS-QP2050亮点(二)——GC升级GCMS
    文末岛津本部Webinar注册,邀请您探讨《环境挥发性&半挥发性有机物GCMS全流程方案》,期待您的参与。在上一期的GCMS-QP2050介绍里面,展示了其优异的性能,本期我们将介绍其在配置升级方面的特点。岛津Nexis GC-2030旗舰级气相色谱仪,以其优异的分析性能、智能化的操作、简便的维护,赢得了广大客户的喜爱。丰富的检测器配置也使得Nexis GC-2030应用于各个领域的实验室。气相色谱仪的优势在于定量分析,如果想要实现未知组分的定性,离不开质谱技术。对于用户来说原先需要购买完整GCMS,而现在可以实现在原有Nexis GC-2030上加装GCMS-QP2050质谱部分,提升实验室能力。划重点1. 补充短板,完善定性定量分析能力。2. 降低成本,有限的预算无限的可能。3. 节省空间,优化资源。例如对于医药实验室GC-2030+HS-20 NX在做药物溶剂残留分析时发现样品谱图在异丙基苯出峰位置有峰a,但从生产流程评估不应该有异丙基苯残留,那样品是否真的含有异丙基苯呢?通过GCMS谱库检索对比质谱图发现,异丙基苯位置的a峰并非异丙基苯,而是а-蒎烯。质谱优异的定性能力体现出优势。在实际检测中GC升级到GCMS的需求还有非常多,比如在新标准GB/T 42430-2023 《血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验》中新增了GCMS的配置方法。对于原有Nexis GC-2030的实验室通过增加质谱部分的配置,就可实现GCMS分析方案。直播预告Redefine Volatile and Semivolatile Organic Compounds Analysis by GC-MS, from Start to Finish.《环境挥发性&半挥发性有机物GCMS全流程方案》时间:2024年9月19日 23:00主持人:Carrie Haslam 凯莉海斯蓝 SelectScience副主编报告人1:Yoshiro Hiramatsu GCMS Product Liaison, Shimadzu Scientific Instruments报告人2:Dr. Ruth Marfil-Vega Senior Market Manager , Shimadzu Scientific Instruments注册链接:Redefine Volatile and Semivolatile Organic Compounds Analysis by GC-MS, from Start to Finish. (selectscience.net)本文内容非商业广告,仅供专业人士参考。
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 16项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com 二○一二年五月十六日 《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1. 食品添加剂 醋酸酯淀粉 2. 食品添加剂 磷酸酯双淀粉 3. 食品添加剂 氧化淀粉 4. 食品添加剂 酸处理淀粉 5. 食品添加剂 乙酰化二淀粉磷酸酯 6. 食品添加剂 羟丙基淀粉 7. 食品添加剂 羟丙基二淀粉磷酸酯 8. 食品添加剂 乙酰化双淀粉己二酸酯 9. 食品添加剂 氧化羟丙基淀粉 10. 食品添加剂 辛烯基琥珀酸铝淀粉 11. 食品添加剂 磷酸化二淀粉磷酸酯 12. 食品添加剂 淀粉磷酸酯钠 13. 食品添加剂 羧甲基淀粉钠 14. 食品添加剂 松香甘油酯和氢化松香甘油酯 15. 食品添加剂 天门冬氨酸钙 16. 食品添加剂 凹凸棒粘土   附件:16项食品安全国家标准(征求意见稿).rar
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告   2011年 第8号   根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。   特此公告。   附件:1.D-甘露糖醇等58个食品添加剂产品标准目录   2.D-甘露糖醇等58个食品添加剂产品标准.rar   二○一一年三月十八日   附件1   D-甘露糖醇等58个食品添加剂产品标准目录 编号 标准名称 1. D-甘露糖醇 2. 羟丙基甲基纤维素(HPMC) 3. 氢化松香甘油酯 4. 乳酸脂肪酸甘油酯 5. 松香季戊四醇酯 6. 乙二胺四乙酸二钠 7. 乙酰化单、双甘油脂肪酸酯 8. 乙氧基喹 9. 硬脂酸钙 10. 硬脂酸镁 11. 硬脂酰乳酸钙 12. 硬脂酰乳酸钠 13. 月桂酸 14. 羟基硬脂精(氧化硬脂精) 15. 偶氮甲酰胺 16. 抗坏血酸棕榈酸酯 17. 硫代二丙酸二月桂酯 18. 微晶纤维素 19. 丙二醇脂肪酸酯 20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯) 21. 刺云实胶 22. 柠檬酸一钠 23. 巴西棕榈蜡 24. 蜂蜡 25. 乳糖醇 26. 5'胞苷酸二钠 27. d-核糖 28. 3-环己基丙酸烯丙酯 29. 辛酸乙酯 30. 棕榈酸乙酯 31. 甲酸香茅酯 32. 甲酸香叶酯 33. 乙酸香叶酯 34. 乙酸橙花酯 35. 己醛 36. 正癸醛(癸醛) 37. 乙酸丙酯 38. 乙酸2-甲基丁酯 39. 异丁酸乙酯 40. 异戊酸3-己烯酯 41. 2-甲基丁酸3-己烯酯 42. 2-甲基丁酸2-甲基丁酯 43. γ-己内酯 44. γ-庚内酯 45. γ-癸内酯 46. δ-癸内酯 47. γ-十二内酯 48. δ-十二内酯 49. 2,6-二甲基-5-庚烯醛 50. 2-甲基-4-戊烯酸(又名浆果酸) 51. 芳樟醇 52. 乙酸松油酯 53. 二氢香芹醇 54. d-香芹酮 55. l-香芹酮 56. α-紫罗兰酮 57. 罗望子多糖胶 58. 左旋肉碱
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制