当前位置: 仪器信息网 > 行业主题 > >

翠雀花定

仪器信息网翠雀花定专题为您提供2024年最新翠雀花定价格报价、厂家品牌的相关信息, 包括翠雀花定参数、型号等,不管是国产,还是进口品牌的翠雀花定您都可以在这里找到。 除此之外,仪器信息网还免费为您整合翠雀花定相关的耗材配件、试剂标物,还有翠雀花定相关的最新资讯、资料,以及翠雀花定相关的解决方案。

翠雀花定相关的论坛

  • 如何配制催化剂使用液

    我的化学需氧量测定仪说明书上说:自随机附带专用催化剂中准确移取25ml置于250ml容量瓶中,用浓硫酸定容至标线,摇匀备用。如果按照说明书这样说,250ml的催化剂使用液,其中有225ml是浓硫酸,我这样理解对吗?

  • 【原创】催化合成丁二酸二丁酯

    催化合成丁二酸二丁酯第一章 绪论1.1 概要羧酸酯是一类重要的化工原料,低级的酯一般都是水果香味,可作香料(如醋酸异戊酯有香蕉味,戊酸乙酯有苹果香味等)。液态的酯能溶解很多有机物,故常用作溶剂。有些酯还可用作塑料、橡胶的增塑剂。丁二酸二丁酯是一种新型塑料工业的增塑剂,该增塑剂为无色透明液体,常用作有机合成中间体、食物添加剂、气象色谱固定液,是一种昆虫驱避剂,用于驱除蟑螂、蚂蚁等害虫,它的合成与其它酯类化合物一样,由相应的酸和醇通过酯化反应而制得.以往的酯化反应多采用浓硫酸做催化剂,而浓硫酸有腐蚀性,使得酯化反应副反应多、后处理困难、产品色泽较差,同时,在后处理过程中还会产生大量的含硫废水污染环境.为解决浓硫酸作催化剂时的缺点,人们已研究了其它催化剂来代替浓硫酸,但对于丁二酸二丁酯的合成研究的较少,虽有人将TiO2/S042- 固体超强酸用于催化合成丁二酸二丁酯,但该催化剂的制备较为复杂,成本较高,不利于工业化生产.随着人们环保意识的增强,对于酯化反应的催化剂进行了广泛的研究,作者曾注意到结晶硫酸氢钠是一种常见的结晶无机盐,保管、运输、使用均很方便,又能克服无机酸的强腐蚀性,因此作者将研究把硫酸氢钠直接用于催化合成丁二酸二丁酯,主要研究该物质的增塑剂性能和合成该物质所使用的催化剂。

  • 高顺式聚丁二烯橡胶催化体系的分析研究

    [align=center][b][/b][/align][align=center][b]高顺式聚丁二烯橡胶催化体系的分析研究[/b][/align]2012年11月1日欧盟轮胎标签法规—EC1222/2009实施,要求出口欧盟的轮胎必须标示出轮胎的燃油效率、滑动噪声和湿抓着力等级。高顺式顺丁橡胶是生产高性能绿色轮胎的重要原材料,常见用于子午线轮胎、斜交轮胎胎侧和胎面配方中。不同催化体系的顺丁橡胶应用性能差异较大,尤其是稀土顺丁橡胶。橡胶行业对不同催化体系的高顺式顺丁橡胶的应用非常关注。主要基于以下诉求:1、轮胎厂急欲了解品牌轮胎中不同催化体系高顺式顺丁橡胶的应用方向,以便采购生胶原材料,提高自我品牌轮胎性能。2、合成橡胶生产厂急欲知道不同催化体系高顺式顺丁橡胶在轮胎中的应用现状与前景。3、合成橡胶应用技术研究人员急欲掌握不同催化体系高顺式顺丁橡胶的应用性能。采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url](FAAS、GAAS)可以对高顺式聚丁二烯橡胶生胶及硫化胶催化体系进行定性、定量分析。1、采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]对高顺式顺丁胶(单用和并用)进行定性。2、进行样品处理,样品处理有三种方法:A、干法灰化,B、湿法消解,C、半降解。3、采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]测试样品中的钕、镍、钴、铝。优化测试条件,消除存在干扰。检测限能达到ppb级。4、根据检测结果,总结国内外轮胎用高顺式顺丁橡胶催化体系的不同及应用方向。

  • 【金秋计划】高纯度气体与流量控制在催化实验中的作用

    催化实验是化学、材料科学和工业生产中至关重要的一环,其目的是评估催化剂在不同反应条件下的性能和选择性。为了获得准确和可靠的实验结果,使用高纯度的反应气体和精密的流量控制系统是不可或缺的。这不仅可以确保实验条件的一致性,还能够精确地表征催化剂的活性和稳定性,从而为催化剂的设计和优化提供重要数据支持。 [b]1. [b]催化实验中的反应气体使用[/b][/b] 在催化实验中,反应气体作为催化反应的原料或反应环境,直接影响催化剂的表现。常见的反应气体包括氢气、氧气、氮气、甲烷、二氧化碳等,这些气体通过催化剂表面发生反应,生成目标产物。为了准确评估催化剂的性能,实验中必须严格控制反应气体的纯度和流量。 [b]2. [b]高纯度反应气体的重要性[/b][/b] 使用高纯度的反应气体在催化实验中具有多方面的重要意义: [list][*][b]避免副反应的干扰[/b]:反应气体中的杂质可能引发副反应,从而影响催化剂的实际性能表现。例如,在氢化反应中,氧气或水蒸气的杂质可能导致催化剂表面氧化,降低其活性或改变选择性。因此,使用高纯度气体能够减少这些不必要的副反应,确保实验结果的准确性。 [*][b]保证催化剂的选择性[/b]:催化剂的选择性是指其促进特定产物生成的能力。气体杂质可能与催化剂表面发生竞争性吸附或反应,导致产物分布的改变。因此,高纯度的反应气体有助于精确评估催化剂对目标反应的选择性,避免由于杂质引起的误差。 [*][b]提高实验的可重复性[/b]:使用高纯度气体可以减少批次之间的差异性,使得实验条件更加可控,从而提高实验的可重复性。对于工业应用或催化剂的规模化生产,这种一致性尤为重要。 [/list] [b]3. [b]精密流量控制系统的作用[/b][/b] 除了气体纯度,精密的流量控制系统也是催化实验中不可或缺的部分。流量控制的准确性直接影响反应物的供给速率和反应条件的稳定性,从而对催化反应的结果产生重要影响。 [list][*][b]精确调节反应条件[/b]:通过精密流量控制系统,可以精确调节反应气体的流速,确保每次实验在相同的气体供给条件下进行。这对于评估催化剂的活性和选择性至关重要,因为催化反应的速率和产物分布往往依赖于反应物的供给速度。 [*][b]动态实验条件控制[/b]:在某些催化实验中,研究者可能需要在实验过程中动态调节反应气体的流量,以模拟实际工业过程中的工况变化。精密流量控制系统可以实现这种实时调整,帮助研究者更全面地评估催化剂的性能。 [*][b]提高实验安全性[/b]:许多反应气体(如氢气、氧气、甲烷等)具有易燃易爆性或毒性。精密流量控制系统能够确保气体供给的安全性,避免由于气体流量过大或波动导致的安全事故。 [/list][b]4. [b]选择合适的高纯度气体与流量控制系统[/b][/b] 在实际的催化实验中,选择合适的高纯度气体和流量控制系统至关重要。以下是一些关键考虑因素: [list][*][b]气体纯度要求[/b]:根据催化反应的敏感程度,选择适合的气体纯度。通常情况下,气体纯度应在99.999%(5N)或更高,以最大限度减少杂质的影响。 [*][b]气体供应商的选择[/b]:选择信誉良好的气体供应商,以确保气体的纯度和稳定性,同时要求供应商提供详细的气体成分分析报告。 [*][b]流量控制设备的精度[/b]:流量控制系统应具备高精度和高稳定性,确保在不同实验条件下的准确调节。选择时应考虑流量计的量程、响应速度以及与实验系统的兼容性。 [*][b]系统校准与维护[/b]:定期校准和维护流量控制系统,确保其长期稳定运行。同时,气体输送系统的密封性和防泄漏设计也是保障实验安全的重要方面。 [*]在催化实验中,使用高纯度的反应气体和精密的流量控制系统是确保实验结果准确性和可靠性的关键。高纯度气体能够避免副反应和杂质干扰,从而准确评估催化剂的性能和选择性。精密流量控制系统则保证了实验条件的可控性和安全性,使研究者能够深入探索催化剂的行为特性。这两者的结合不仅有助于获得高质量的实验数据,还为催化剂的设计和工业应用提供了坚实的基础。[/list]

  • 【讨论】国内外光催化反应器的发展情况

    【讨论】国内外光催化反应器的发展情况

    随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg

  • 【原创大赛】固相微萃取-气质联用法分析新疆和田玫瑰花的挥发性成分(新拓固相微萃取头)

    固相微萃取-气质联用法分析新疆和田玫瑰花的挥发性成分摘 要:利用顶空固相微萃取技术(HS-SPME)吸附新疆和田玫瑰花中的挥发性成分,色谱-质谱联用技术(GC-MS)分析鉴定其化学成分,建立玫瑰花挥发性成分的分析方法。并用峰面积进行归一化定量。试验从玫瑰花中共分离出18个峰,鉴定出其中的16种化学成分,占总峰面积的95.88%。本次试验得出的主要挥发性成分为等。该方法分离度好,准确、可靠,为新疆和田玫瑰花挥发性成分的研究提供了分析方法。总结:采用上海新拓分析仪器科技有限公司自主研发材质的固相微萃取头可很好的萃取吸附植物中有机挥发性成分。

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • 【分享】一种以铁为主的新制药催化剂问世

    加拿大一研究小组找到了一种以铁为基础原料制造催化剂的新方法。这种新型催化剂与目前通常使用的铂等金属催化剂相比,毒性小且成本低,有望作为制药和芳香剂生产工艺中的催化剂。   药物合成中通常都需要催化剂,这对药物成本的影响很大。而且,如使用毒性大的钌、铑、钯等铂系金属作为催化剂,最后的合成产品就需要先经过昂贵的净化技术来消除毒素。   多伦多大学化学系罗伯特-莫里斯教授相信,使用他们研制的新型催化剂,不仅价廉而且毒性低,可以免除铂系金属催化剂带来的上述两种缺陷。   莫里斯教授在新一期《化学》杂志上发表论文说,铁一般被认为是催化活性很低的“贱金属”,使其能够成功用于替换通常使用的铂系金属作为催化剂,秘诀在于将铁的结构通过一定的手段转换成与铂系金属相似的结构。他们所研制的催化剂是一种包含碳、氢、磷及氮的有机分子,科学家们将各原子排列成一种独特的右旋结构,依附于铁上,使其处于一种亚铁状态。   化学催化剂的作用是加快化学反应过程,但同时,它们也会对反应过程中的化学物结构产生影响。用于药物合成过程中的催化剂,其最有价值之处在于它们可以将药物化学品的产品限定在一种特定的结构形式,而不会使其产生另一种镜像结构形式。   目前,多伦多大学研究人员已通过使用少量的这种催化剂,并运用对称转移氢化法工艺,成功将价廉的酮转化成了结构为左旋形式的酒精。

  • 【资料】光催化转化氮氧化物的研究进展

    光催化转化氮氧化物的研究进展 马睿 谭欣 赵林 ( 天津大学环境学院, 天津 300072) 摘要:对光催化转化氮氧化物的研究进展进行了综述。首先介绍了氮氧化物的危害及传统处理方法的缺点以及光催化反应的机理 随后着重介绍了以 TiO2 为催化剂对 NOx 去除的研究进展, 并对其他用于分解氮氧化物新型光催化进行了介绍 最后对应用前景作出 展望。光催化转化氮氧化物的研究分为光催化氧化和光催化还原 2 种, 反应器则主要为固定床反应器和流化床反应器。N 原子的搀 杂、氧空穴的产生以及表面负载 Pt 均能有效地利用可见光, 炭( AC) 、沸石、氧化钙、ZrO2、高岭土等载体也可明显地提高光催化转化 氮氧化物的效率。此外, 植入过渡金属离子沸石, 也可有效地转化氮氧化物。 关键词 TiO2 氮氧化物 光催化 脱除 载体 可见光 进展 中图分类号 O43 文献标识码 A 文章编号 0517- 6611( 2007) 08- 02215- 03目前, 脱除 NOx 的技术措施主要有非催化法和催化还 原法两类[1]。非催化法主要包括湿式吸收法、固体吸附法、电 子束照射法等, 这些方法往往需要复杂的设备、较高的成 本, 且存在二次污染问题。选择性催化还原法是目前主流发 展方向, 但也存在二次污染及要求较高的反应温度等问题。 例如, 在 Ag/Al2O3 催化剂上选择性还原 NO 的最佳操作温 度是 500 ℃[2], 在 Ba/MgO 催化剂上选择性还原 NO 的最佳操 作温度是 700 ℃[3]等。光催化技术是近几年发展起来的一项 空气净化技术, 具有反应条件温和、能耗低、二次污染少等 优点[4], 笔者对光催化分解氮氧化物的研究进展进行了综述。1 光催化反应机理半导体材料存在能级分布, 当用能量大于半导体禁带 宽度的光照射半导体时, 光激发电子跃迁到导带, 形成导带 电子( e-) , 同时在价带留下空穴( h+) 。由于半导体能带的不 连续性, 电子和空穴的寿命较长, 它们能够在半导体本体和 表面运动, 与吸附在半导体催化剂粒子表面上的物质发生 氧化还原反应, 而将污染物分解掉。以 TiO2 为例, 它的禁带 宽度为 3.2 eV, 在波长小于 380 nm 光照下, TiO2 的价带电 子被激发到导带上, 产生高活性的电子- 空穴对。图 1 绘出 了受光源照射时半导体内载流子的变化。电子和空穴被光 激发后, 经历多个变化途径, 主要存在俘获和复合两个相互 竞争的过程。光致空穴具有很强的氧化性, 可夺取半导体颗 粒表面吸附的有机物或溶剂中的电子, 使原本不吸收光而 无法被光子直接氧化的物质, 通过光催化剂被活化氧化。光 致电子具有很强的还原性, 能使半导体表面的电子受体被 还原, 这两个过程均为光激活过程。同时迁移到体内和表面 的光致电子和空穴又存在复合的可能, 此为去激活过程, 对 光催化反应无效。空穴能够同吸附在催化剂粒子表面的OH-或 H2O 发生作用生成 HO?。HO?是一种活性很高的粒 子, 通常被认为是光催化反应体系中主要的氧化剂。光生电 子能够与 O2 发生作用生成 HO2?和 O2?-等活性氧类, 这些活 性氧自由基也能参与氧化还原反应。目前对 NOx 的光催化 反应的研究分为光催化氧化和催化分解 2 种。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903201415_139711_1614854_3.gif[/img]

  • 【原创大赛】高顺式聚丁二烯橡胶催化体系的分析研究

    2012年11月1日欧盟轮胎标签法规—EC1222/2009实施,要求出口欧盟的轮胎必须标示出轮胎的燃油效率、滑动噪声和湿抓着力等级。高顺式顺丁橡胶是生产高性能绿色轮胎的重要原材料,常见用于子午线轮胎、斜交轮胎胎侧和胎面配方中。不同催化体系的顺丁橡胶应用性能差异较大,尤其是稀土顺丁橡胶。橡胶行业对不同催化体系的高顺式顺丁橡胶的应用非常关注。主要基于以下诉求:1、轮胎厂急欲了解品牌轮胎中不同催化体系高顺式顺丁橡胶的应用方向,以便采购生胶原材料,提高自我品牌轮胎性能。2、合成橡胶生产厂急欲知道不同催化体系高顺式顺丁橡胶在轮胎中的应用现状与前景。3、合成橡胶应用技术研究人员急欲掌握不同催化体系高顺式顺丁橡胶的应用性能。采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url](FAAS、GAAS)可以对高顺式聚丁二烯橡胶生胶及硫化胶催化体系进行定性、定量分析。1、采用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]对高顺式顺丁胶(单用和并用)进行定性。2、进行样品处理,样品处理有三种方法:A、干法灰化,B、湿法消解,C、半降解。3、采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]测试样品中的钕、镍、钴、铝。优化测试条件,消除存在干扰。检测限能达到ppb级。4、根据检测结果,总结国内外轮胎用高顺式顺丁橡胶催化体系的不同及应用方向。

  • 三元催化剂的制备和原料选择

    [align=center][b]三元催化剂的制备和原料选择[/b][/align]稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的, 目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NOx 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。 Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵金属来担当催化剂的活性组分,催化还原Co、HC和No。2提高催化剂的抗中毒能力机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。 稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。 研究表明Ce02对尾气中S02组分有一定的储硫作用。汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。 3提高催化剂的热稳定和机械强度 通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。 加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60 m2g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。 4. 自动调节空气燃料比(储氧能力提高催化剂的活性) (围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。) 许多研究发现,氧化铈等稀土氧化物具有储放氧能力。Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。 Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。 (当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。 其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.) 5.助催剂的作用 汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。CO+H2O- -CO2+H2 为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。 6.提高活性涂层的催化活性 加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化格点减少, 使活性受损。在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]eO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。CeO2 的分散阈值即为它的最佳添加用量。Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3形成固溶体而失去活化作用。CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh的活化作用。La2O3也能防止Pt 超微细粒长大。将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。 CeO2 还是一种有效的烃类氧化催化剂。在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。CeO2 在氢作用下易产生低价铈和氧空位。Pt/ CeO2 可吸收[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]氢并再释放出来。在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧 。另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用。催化剂的制备工艺非常复杂,从配方的粉体原材料选择:催化剂粉体主要的材料是三氧化二铝、铝胶、稀土材料(氧化镧、氧化铈、氧化锆等)进行工艺混合,再由不同比例的贵金属活性组分添加,通过800度的高温制备而成。整个制备的工艺是一个科技含量非常高和严谨的流程。三元催化转化器的结构三元催化转化器主要由外壳、隔热保护罩、中间段、入口和出口锥段、弹性夹紧材料、防直通密封催化剂等几部份组成, 其中催化剂作为三元催化转化器的技术核心包括载体、涂层两部分。2.1 载体 基本材料为陶瓷(MgO2, Al2O3,SiO2)。目的是提供承载催化剂涂层的惰性物理结构。为了在较小的体积内有较大的催化表面,载体表面制成为蜂窝状。2.2 涂层在载体表面涂敷有一层极松散的活性层,它以金属氧化物γ-AL2O3 为主。由于表面十分粗糙,这使壁面的实际面积增大了约7000 倍,大大的增加了三元催化转化器的活性表面和储存氧的能力。在活性层外部涂敷有含锆Zr 和铈Ce 等元素的助催剂,含有铑Rh、钯Pd、铂Pt 等贵金属的主催化剂。市场现状(2)— 国内催化剂生产量估算[table][tr][td][b]厂 家[/b][/td][td][b]年产量(万升)[/b][/td][/tr][tr][td]昆明贵研催化剂有限责任公司[/td][td]300[/td][/tr][tr][td]无锡威孚力达[/td][td]60(剂)+20(封装)[/td][/tr][tr][td]天津化工研究设计院[/td][td]50[/td][/tr][tr][td]天津卡达克[/td][td]50(封装)[/td][/tr][tr][td]其他[/td][td]30[/td][/tr][tr][td]合计:[/td][td]500[/td][/tr][/table][img=,499,267]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD7D.tmp.jpg[/img][img=,480,361]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD8E.tmp.jpg[/img]三元催化剂的制备过程,提高催化效率,关键在于选用合适的催化剂。催化剂要求粒径小,大比表面积,同时要求高分散性,要求分散吸附性能强。市场上主流的效果最好的纳米氧化铈生产厂家有:杭州九朋新材料有限责任公司,其生产的纳米氧化铈比表高达200-300平,且分散性好,价格合理,同时还生产纳米氧化铝,纳米氧化铝溶胶,铂铑钯催化剂。另一家是山东加华,外资企业,主要生产氧化铈,出口为主,价格较高。要更换新的三元催化如何选择呢? 1、原厂件:4s如果你依然信任他,而且你也能够承担高出好几倍的价格,那么可以选择,关键是三元催化原厂件厂家一般都没有质保,原因很简单,因为新车的时候都很难质保。 2、品牌件:这个选择的难度就比较大了,因为今天中国的三元催化市场太吓人,从100元的三元催化到1万元的都有,一家三口人都可以在家里生产三元催化,这个市场是乱的把外星人都吓跑了,这么一个高科技含量的配件今天在中国变成家庭作坊都可以生产,这也难怪为什么主机厂基本在中国放弃了在用车市场,因为实在无法竞争。那我们消费者选择起来可就更难了,外行根本看不懂啊。其实方法还是有的。再乱的市场也有正规做事情的企业。

  • 固相萃取 - 反相高效液相色谱法检测水产品中孔雀石绿和结晶紫及其代谢物

    孔雀石绿(MG)和结晶紫(CV)具有高毒素、高残留和致癌、致畸、致突变等特点,当其进入生物体内,就会产生具有更强危害的隐性孔雀石绿(LMG)和隐性结晶紫(LCV)。鉴于孔雀石绿和结晶紫的危害性,包括我国在内的许多国家都将它们列为水产养殖中的禁用药物。是进出口水产品必检项目之一。 《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定》和《SN/T 1479-2004 进出口水产品中孔雀石绿残留量检验方法》中均采用有机溶剂提取后经固相萃取柱净化,然后采用高效液相色谱法或液相色谱-串联质谱法测定。 迪马科技在参考上述两个标准的基础上开发出中性氧化铝和阳离子交换固相萃取柱串联净化后,反相高效液相色谱柱检测。该方法准确可靠,重复性好,回收率高,可作为水产品中孔雀石绿和结晶紫及代谢物的检测方法。水产品中孔雀石绿和结晶紫及其代谢物的检测 (参考《SN/T 1479-2004进出口水产品中孔雀石绿残留量检验方法》和 《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定》)1 适用范围 本方法适用于水产品中孔雀石绿和结晶紫及其代谢物的检测。2 样品准备 / 提取 1、称取已粉碎(已均质)的样品1 g于15 mL离心管中,加入1 mL 0.05 mol/L苯磺酸溶液、1 mL0.25 g/mL盐酸羟铵溶液、0.4 mL0.1 mol/L乙酸铵溶液(pH4.5)和8 mL乙腈,涡旋混合2 min,4000 rpm离心1 min;2、将上清液转移至50 mL离心管中,残渣按照步骤1重复提取一次;3、合并两次提取液,并加入6 mL三氯甲烷和7 mL水,涡旋混合1 min,4000 rpm离心1 min;4、取下层清液于旋蒸瓶中,向上层清液加入6 mL三氯甲烷,重复提取一次;5、合并两次下层三氯甲烷溶液,40℃减压蒸至近干,加入5 mL乙腈待净化。3 SPE 柱净化—— ProElut Al-N ( 1 g /6 mL )( Cat.# : 65306 )上层ProElut SCX ( 500 mg/3 mL )( Cat.# : 63604 )下层(1)活 化:加入10 mL乙腈,流出液弃去;(2)上 样:将待净化液加入小柱,流出液弃去;(3)淋 洗:加入5 mL乙腈淋洗小柱,流出液弃去,并去掉上层Al-N小柱;(4)洗 脱:加入5 mL5%氨水乙腈,收集洗脱液;(5)重新溶解:将洗脱液在40 ℃下减压蒸干,1 mL定容液*溶解残渣,过微孔滤膜供HPLC分析。*定容液:乙酸铵缓冲液:盐酸羟铵溶液=2:1乙酸铵缓冲液:乙腈:0.05 mol/L乙酸铵溶液(pH4.5)=75:25;盐酸羟铵溶液:取1 mL0.25 g/mL盐酸羟铵溶液用水定容至100mL。4 分析条件 色谱柱:Platisil ODS , 250 x 4.6 mm , 5 μm ( Cat.# 99503 ) 流 速:1.0 mL/min 检测器:UV 591 nm和UV 266 nm柱 温:30 ℃进样量:20 μL 流动相:A:乙腈 B:0.05 mol/L乙酸铵溶液(pH4.5)梯度:时间/ min05.511.011.0120B%28882828

  • 【分享】水产品中的孔雀石绿固相萃取净化方法

    美国瓦里安公司1. 鲜活水产品1.1 样品前处理称取5.00g已捣碎样品于50mL离心管中,加入200μL混合内标标准溶液(氘代孔雀石绿和氘代隐色孔雀石绿各100ng/mL),加入11mL乙腈,超声波振荡提取2min,8000r/min 匀浆提取30s,4000 r/min离心5min,上清液转移至25mL比色管中;另取一50 mL离心管加入11mL乙腈,洗涤匀浆刀头10s,洗涤液移入前一离心管中,用玻棒捣碎离心管中的沉淀,漩涡混匀器上振荡30s,超声波振荡5min,4 000r/min离心5min,上清液合并至25mL比色管中,用乙腈定容至25.0mL,摇匀备用。1.2 SPE净化移取5.00mL样品溶液加至已活化的中性氧化铝柱(Bond Elut AL-N, 1g/6mL,PN.12256086)上,用KD浓缩瓶接收流出液,4mL乙腈洗涤中性氧化铝柱,收集全部流出液,45℃旋转蒸发至约1mL,残液用乙腈定容至1.00mL,超声振荡5min, 加入1.0mL 5mmol/L 乙酸铵,超声振荡1min,样液经0.2μm滤膜过滤后供液相色谱-串联质谱测定。

  • 孔雀绿分光光度法测锑萃取失败

    用孔雀绿分光光度法测锑,萃取后萃取液乙酸异戊酯没有萃取到锑和孔雀绿生成的络合物,配了6个点的标准曲线,明显锑浓度高的溶液,水相中孔雀绿的颜色浅,应该是已经反应了,可是为什么反应后的物质没有被萃取?按照标准GB/T5009.101一步步做的,是不是有什么要特别注意的地方被我忽略了?有没有做过的大神支支招!

  • 快速、简单、低廉、有效、稳定、安全的预处理方法(QuEChERS)

    快速、简单、低廉、有效、稳定、安全的预处理方法(QuEChERS)

    快速、简单、低廉、有效、稳定、安全的预处理方法(QuEChERS)[color=#0573af]1. 定义和原理: [color=#333333]QuEChERS方法是美国农业部Anastassiades M等人于2003年开发的一种基于固相萃取和基质固相分散技术的预处理方法。该方法号称具有[/color][color=#3daad6][b]快速(Quick)、简单(Easy)、低廉(Cheap)、有效(Effective)、稳定(Rugged)和安全(Safe)[/b][/color][color=#333333]的特点,于是以这几个特点英文字母的简写组合来命名。其基本操作步骤如下:[/color][/color][color=#0573af][color=#333333]1: 取样:称取10g匀质后的样品;2: 提取:加入10mL乙腈浸提,加入1gNaCl和4g无水MgSO4,振摇混匀后,盐析离心分层;3: 净化:取分层后的上清液1mL至填有150mg无水硫酸镁和25mgPSA(乙二胺-N-丙基硅烷吸附剂)的小型离心管中,进行分散固相萃取净化;4: 检测:净化后的上清液直接进行仪器分析。[/color][/color][color=#333333][color=#0573af][color=#333333]其中,乙腈浸提出目标化合物,NaCl和无水MgSO4使水相和有机相盐析分层,无水MgSO4除水的同时可产热使萃取温度适宜,PSA(乙二胺-N-丙基硅烷吸附剂)利于除去提取液中的脂肪酸、糖类和某些极性亲脂性色素等。[/color][/color][/color][color=#0573af][color=#333333][color=#0573af]2. 方法的优缺点[/color][/color][/color][color=#0573af][/color]相对于其他常用的前处理技术(比如SPE、GPC等),其[color=#3daad6][b]优势[/b][/color]在于:[color=#000000]1)能同时检测200多种化合物,且回收率较好,在80%以上;[/color][color=#000000]2)采用内标法进行校正,有较高的精密度和准确度;[/color][color=#000000]3)操作简单,检测周期短,1h可处理30-40个预先称重的样品;[/color][color=#000000]4)溶剂使用量少,价格低,只使用乙腈,对环境污染小,对实验人员风险也小;[/color][color=#000000]5)使用仪器设备简单,主要用离心机和离心试管。[/color]其主要[color=#3daad6][b]缺点[/b][/color]为:对含水量低或者脂肪含量高的样品,净化效果不理想,提取效率低、净化过程损失大。[color=#0573af]3. 发展历程[/color][color=#0573af][color=#333333]在QuEChERS被开发出来至今,共经历过几次大的优化改动:[/color][/color][color=#0573af][color=#333333][/color][/color][color=#000000]第一次改良是[b]提取过程中使用缓冲液[/b]。有些化合物的回收率易受到pH的影响,使用缓冲液能够有效解决;[/color][color=#000000]第二次改良体现在[/color][b]净化效果[/b][color=#000000]上。C[/color][sub]18[/sub][color=#000000]填料和PSA的一起使用可以改善样品的净化效果,特别是对于富含油脂的样品;[/color][color=#000000][img=,491,240]https://ng1.17img.cn/bbsfiles/images/2019/06/201906091747361474_7810_2166779_3.png!w491x240.jpg[/img][/color][color=#000000]第三次也是[b]针对不同样品基质,选择合适的吸附剂,提高净化效果[/b]。例如加入少量石墨化碳黑可吸附叶绿素、类胡萝卜素等杂质。[/color][color=#000000][color=#0573af]4. 应用现状[/color][/color][color=#000000][color=#0573af][color=#333333]最初,QuEChERS是被用作蔬菜或水果中的多种农残的检测。发展至今,其应用范围已不再局限于此。[/color][/color][/color][img=,642,296]https://ng1.17img.cn/bbsfiles/images/2019/06/201906091749058614_8978_2166779_3.png!w642x296.jpg[/img][color=#0573af][/color]目前QuEChERS在农产品和食品中的农兽药残留、血液中的毒物、食品中的真菌毒素等多个领域均有广泛的应用。5. 发展前景QuEChERS方法是一种发展迅速的前处理技术,其已在农产品和食品中多个领域中应用。之后,研究QuEChERS在其他新的领域中的应用是该方法的发展方向,而如何去除不同样品中的基质干扰可能是QuEChERS方法改良优化的研究重点。 参考文献:[color=#ffffff]考文献[/color] 杨洋,田黎.QuEChERS法在果蔬食品农残检测中的优化改进研究. 商丘师范学院学报,2015(03):66-69 刘胜男,卫星,巩卫东.QuEChERS方法在检测分析中的应用研究进展. 食品研究与开发,2013(10):133-136 刘满满,康澍,姚成.QuEChERS方法在农药多残留检测中的应用研究进展. 农药学学报,2013(01):8-22

  • 甲烷化催化剂的样品前处理!(急)

    请教各位:甲烷化催化剂化学成分分析(HG2511-2005),步骤为:甲烷化催化剂0.5g,加10ml(1+1)硫酸,2ml盐酸羟胺,加热至样品完全溶解,问题:(1)怎么样为完全溶解啊?而且,溶样的程度直接影响了后面化学成分的结果,比如,镍的含量测定就相差比较大,当样品溶解至冒白烟和冒大量白烟,这俩种情况结果就相差比较大,请问,怎样才算是溶解完全啊?(2)此标准中氧化镁的测定一种方法是用原子吸收分光光度法,方法是用氯化锶掩蔽铝,在标准溶液中加入氯化锶,硫酸溶液,实际上的现象是形成了沉淀(估计是硫酸锶),请问,这种催化剂中氧化镁的测定还有其他的比较好的方法吗?(3)此标准中稀土氧化物的测定,在测定时,终点颜色变化是由暗绿色变成紫红色,实际操作中,颜色就是紫色,根本不是暗绿色,颜色突变非常不明显,无法准确判断终点!希望有分析过此类催化剂的同行们介绍点经验!

  • 催化氧化法测非甲烷总烃

    市场上现在有好多在线或便携类催化氧化+FID测非甲烷总烃的设备,这类设备准确度能持续保证吗?技术路线怎么实现的呢?

  • 液液萃取过程中乳化现象的防止措施

    提取是一个复杂的过程,是被测组分、样品基质和提取溶剂(或固体吸附剂)三者之间的相互作用与达到平衡的过程。常用的有液液萃取、固液萃取、柱色谱萃取等。 液液萃取分为分次萃取和连续萃取。它的有点是技术经典、设备器材简单、操作容易;缺点是易乳化、回收率不稳定、选择性差、人为因素影响大、有机溶剂用量大。 在液液萃取过程中,最常见的问题是比较容易出现乳化现象,很多小伙伴儿都遇到了这种困扰:1、对于含蛋白、脂肪、胶状物质的样品液液萃取提取里面的风味物质,怎样来避免或减少乳化或胶体的形成?http://bbs.instrument.com.cn/shtml/20121031/4332800/ 发帖人:symmacros2、硝基呋喃代谢物前处理过中的乳化问题求讨论http://bbs.instrument.com.cn/shtml/20120705/4127676/ 发帖人:zysygkr3、如何利用液液萃取除去油溶性物质中的脂肪酸?http://bbs.instrument.com.cn/shtml/20101230/3051515/ 发帖人:lovetulip 所以,在这里跟大家分享一下液液萃取过程中乳化现象的防止措施:(1)在水相或者乳化液中加入氯化钠或硫酸钠,利用盐析作用加大两相间的密度差异;(2)于3500r/min离心后放置;(3)用玻璃棒机械搅拌,破坏乳化层。 另外,也有热心版友针对防止乳化现象分享了自己的方法,大家可以参考:1、固体支持的液液萃取http://bbs.instrument.com.cn/shtml/20100901/2755288/ 发帖人:xiaoyu8302222、SLE(固载液液萃取)大讨论!http://bbs.instrument.com.cn/shtml/20121102/4338260/ 发帖人:maggiesea 小伙伴儿们,如果你有关于防止乳化现象的发生或者是破坏乳化的经历和方法,欢迎来讨论分享啊!讨论有积分哟!

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 【转帖】相转移催化剂效率大小规律

    相转移催化剂效率大小规律1 较大的季铵离子比较小的季铵离子有效。2 催化剂的效率随季铵离子中最长链的长度增加而增强。3 比较对称的离子比只含一个长链的离子有效。要使催化剂溶于有机介质中并发挥作用,对季铵离子烃基的碳原子数有一个最低要求。较好的催化剂应具备最基本的亲脂性,而且在代正电的季杂原子周围具有较大的基团。四丁基铵的催化作用比十六烷基三甲铵强得多,虽然后者的碳原子总数比前者多三个。当季原子所受的位阻比其电荷所遭的掩盖少时,相关联的阴离子或许与季阳离子形成比较紧密的离子对。4 季膦离子比相应的季铵离子催化剂更有效,热力学上也更稳定。5 较有效的催化剂是被烷基取代而不是被芳基取代的季离子。

  • 请问催化去除甲烷的催化剂或催化炉的成分和原理是什么?

    首先说明:这里讨论的是催化方法[b] 除掉样气中的甲烷[/b],催化生成H2O和CO2。 而不是加氢催化无机碳生成CH4市场上有测量非甲烷总烃的FID设备,原理是使用催化炉除掉样气中的CH4,至于其他如乙烷、乙烯、甲醇等其他 有机成分都保留,送到FID测量,得到非甲烷总烃。请问这种催化剂的原理和成分是什么?

  • [资料] 离子选择电极法测定催化剂中氟

    离子选择电极法测定催化剂中氟[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21541]离子选择电极法测定催化剂中氟[/url]  在催化剂的研制过程中,氟元素的加入可以增强载体或催化剂的表面酸性,防止Ni2Al 、Al2W、Al2Mo 等尖晶石的形成,延长催化剂的使用寿命[1 ] 。研究表明[2 ] ,载氟量对催化剂晶体结构、活性、选择性都有很大的影响。对于催化剂中氟含量测定,光度法[3 ]需要用浓高氯酸蒸馏以绘制标准曲线 间接络合滴定法[4 ] 对酸度、共存元素要求严格,且操作繁琐。离子选择电极法具有测量准确、重复性好、分析速度快、操作简便等优点,是分析催化剂中氟含量的极为有效的手段。[em17]

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 【原创大赛】水产品中MCX孔雀石绿残留检测的固相萃取方法

    【原创大赛】水产品中MCX孔雀石绿残留检测的固相萃取方法

    水产品中MCX孔雀石绿残留检测的固相萃取方法一、实验目的本研究利用固相萃取法作为水产品中孔雀石绿检测的前处理方法,LC-MS/MS作为检测手段。该方法可简化样品的前处理过程,节省有机溶剂的使用,操作简便。二、实验目标物孔雀石绿标准品:孔雀石绿(CAS: 569-64-2)。三、应用范围本方法适用于鲜活水产品及其制品中孔雀石绿LC-MS/MS检测及确证。四、参考标准推荐性国家标准《GB/T 19857-2005水产品中孔雀石绿和结晶紫残留量的测定》。五、实验材料Biocomma Polybase MCX 固相萃取柱 3mL/60mg。六、实验方法1、样品提取称取均质试样5.0g试样(精确至0.01g)于50mL离心管中,加10mL乙腈,10000r/min匀浆提取30s,加入5g酸性氧化铝,振荡2min,4000r/min离心10min,上清液转移至125mL分液漏斗中,在分液漏斗中加入2mL二甘醇,3mL硼氢化钾溶液,振摇2min。另取50mL离心管加入10mL乙腈,洗涤匀浆机刀头10s,洗涤液移入前一离心管中,加入3mL硼氢化钾溶液,用玻璃捣散离心管中的沉淀并搅匀,涡旋混匀器上振荡1min,静置20min,4000r/min离心10min,上清液并入125mL分液漏斗中。在离心管中继续加入1.5mL盐酸羟胺溶液,2.5mL对甲苯磺酸溶液,5.0mL乙酸铵缓冲溶液,振荡2min,再加入10mL乙腈,继续振荡2min,4000r/min离心10min,上清液并入125mL分液漏斗中,重复上述操作一次。在分液漏斗中加入20mL二氯甲烷,具塞,剧烈振摇2min,静置分层,将下层溶液转移至250mL鸡心瓶中,继续在分液漏斗中加入5mL乙腈,10mL二氯甲烷,振摇2min,把全溶液转移至50mL离心管中,4000r/min离心10min,下层溶液合并至250mL鸡心瓶中,45℃蒸发至近干,用2.5mL乙腈溶解残渣。2、SPE柱净化(1)活化:向MCX复合柱小柱中加入5mL乙腈.(2)上样和洗脱:将上述备用液过柱,加入3mL乙腈-乙酸铵(体积比1:1)洗脱。(3)浓缩定容:收集洗脱液,乙腈定容至3mL,过0.45um滤膜,供液相色谱-质谱分析。3、LC-MS/MS条件色谱柱:Venusil ASB C18(2.1×150mm,5μm,100Å);质谱仪:API 4000流动相:A: 0.05mM乙酸铵溶液(0.05%甲酸) B:乙腈溶液;(25:75, 体积比)流速:0.3mL/min柱温:35℃进样体积:2ul离子源:电喷雾(ESI),正离子模式检测方式:多反应监测(MRM)http://ng1.17img.cn/bbsfiles/images/2015/07/201507160949_555774_3310_3.jpg七、实验结果1、武昌鱼基质10μg/L孔雀石绿加标回收结果:三个平行测试样的平均回收率均大于80%,平行样间相对标准偏差均小于5%,符合标准要求。(见表3)http://ng1.17img.cn/bbsfiles/images/2015/07/201507160953_555776_3310_3.jpg2、空白样品中添加孔雀石绿及其代谢物色谱图http://ng1.17img.cn/bbsfiles/images/2015/07/201507160954_555777_3310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507160954_555778_3310_3.jpg本研究是逗点生物利用固相萃取法作为水产品中孔雀石绿检测的前处理方法,以推荐性国家标准《GB/T 19857-2005水产品中孔雀石绿和结晶紫残留量的测定》为标准制定,适用于鲜活水产品及其制品中孔雀石绿LC-MS/MS检测及确证。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制