当前位置: 仪器信息网 > 行业主题 > >

碘嘧啶

仪器信息网碘嘧啶专题为您提供2024年最新碘嘧啶价格报价、厂家品牌的相关信息, 包括碘嘧啶参数、型号等,不管是国产,还是进口品牌的碘嘧啶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘嘧啶相关的耗材配件、试剂标物,还有碘嘧啶相关的最新资讯、资料,以及碘嘧啶相关的解决方案。

碘嘧啶相关的资讯

  • 岛津水产品中三甲氧苄氨嘧啶残留的LCMSMS检测方案
    三甲氧苄氨嘧啶(TMP),是一种磺胺增效剂。常与多种抗生素合用,也可产生协同作用,增强疗效,可以成倍增加部分抗菌药的疗效。抗菌谱与磺胺药基本类似,但抗菌作用弱,且易产生耐药性。和磺胺类、四环素、青霉素、红霉素、庆大霉素、粘菌素等合用可以增强抗菌作用。 目前我国对磺胺类及其增效剂的使用有比较明确的规定。农业部NY 5034 - 2005中规定禽肉类产品中磺胺类总量不得超过100 &mu g/kg NY5070 - 2002 中规定磺胺类在水产品中总量不得超过100 &mu g/kg, 增效剂磺胺三甲氧苄氨嘧啶限量不得超过50 &mu g/kg 。日本肯定列表中将动物源性食品的最低限量定为20 &mu g/kg。《SN/T 2538-2010进出口动物源性食品中二甲氧苄氨嘧啶,三甲氧苄氨嘧啶和二甲氧甲基苄氨嘧啶残留量的检测方法液相色谱质谱/质谱法》规定,三甲氧苄氨嘧啶的检测低限为5.0 &mu g/kg。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定水产品中三甲氧苄氨嘧啶的方法,供检测人员参考。水产品经处理后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8040进行分析。三甲氧苄氨嘧啶在0.1-100 µ g/L浓度范围内线性良好,标准曲线的相关系数为0.9993;对1 µ g/L、5 µ g/L和10 µ g/L三甲氧苄氨嘧啶标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.31%和3.95%以下,系统精密度良好。 岛津三重四极杆质谱仪系列 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中的三甲氧苄氨嘧啶残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 特一药业:磺胺嘧啶片国内首家通过一致性评价
    近日,特一药业集团对外公告,抗菌药物磺胺嘧啶片获得国家药品监督管理局核准签发的《药品补充申请批准通知书》。药品通过仿制药质量和疗效一致性评价,为该品种药物首家过评的企业。该药品为白色或微黄色药片,主要成分为磺胺嘧啶,分子式为C10H10N4O2S。在乙醇或丙酮中微溶,在水中几乎不溶;在氢氧化钠试液或氨试液中易溶,在稀盐酸中溶解。属广谱抗菌药,但由于目前许多临床常见病原菌对该类药物耐药故仅用于敏感细菌及其他敏感病原微生物所致的感染。该药可以用于敏感细菌及其他敏感病原微生物引起的下列感染:1、敏感脑膜炎球菌所致的流行性脑脊髓膜炎的治疗和预防。2、与甲氧苄啶合用可治疗对其敏感的流感嗜血杆菌、肺炎链球菌和其他链球菌所致的中耳炎及皮肤软组织等感染。3、星形奴卡菌病。4、对氯喹耐药的恶性疟疾治疗的辅助用药。5、治疗由沙眼衣原体所致的宫颈炎和尿道炎的次选药物。6、治疗由沙眼衣原体所致的新生儿包涵体结膜炎的次选药物。
  • Nature子刊:何川团队开发超快速精准检测微量DNA与RNA中5-甲基胞嘧啶的新方法
    DNA中的5-甲基胞嘧啶(5mC)是生物学领域基本的表观遗传标记,对调节基因表达至关重要。5mC不仅是多个生物学领域的研究重点,而且在临床上,5mC的异常甲基化模式与包括癌症在内的多种疾病的发生发展密切相关,为疾病的早期诊断和监测提供了有效的生物标志物。对5mC位点的精准检测对基础研究和疾病检测的准确性至关重要。尽管亚硫酸氢盐测序(BS-seq)技术在基础研究和临床上应用广泛,但目前用于5mC检测的常规BS-seq方法有明显缺陷:1)反应时间长,限制了其在临床上的快速检测。2)在高GC DNA区域或高度结构化的DNA(例如线粒体DNA),C到U的转化不完全,导致高背景和假阳性。3)DNA降解严重,对微量的样品如cell-free DNA(cfDNA)的检测带来挑战。4)常规BS处理造成非甲基化的区域优先降解,使得甲基化水平被高估。在临床上能用小量样品进行快速而准确地检测5mC一直是DNA表观遗传领域的一项挑战。而用于RNA m5C 检测的BS-seq同样困难重重。RNA的降解问题尤其严重。RNA的二级结构或稳定的RNA(比如tRNA)导致严重的高背景和假阳性。目前还缺乏准确有效的检测m5C的方法。2024年1月2日,芝加哥大学何川团队在 Nature Biotechnology 期刊发表了题为:Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA 的研究论文。该研究开发出了对微量DNA和RNA上的5-甲基胞嘧啶修饰进行快速,准确检测的测序方法——Ultrafast Bisulfite Sequencing(简称为UBS-seq)。何川课题组的戴庆博士根据BS-seq的机理以及由于BS反应而造成的DNA降解机制,发现用亚硫酸氢铵盐代替钠盐可以大大提高BS的效率,C能够在几分钟内完全转化为U而5mC保持不变(图1a),并且由于反应的时间大为缩短,DNA的降解也显著降低(图1b)。UBS-seq测序背景噪音比常规BS-seq降低10倍以上,并且UBS-seq整体转化效率更加一致(图1d)。图1:UBS-seq在DNA样品上的的转化效率UBS-seq不仅可以用于微量mESC基因组的测序,还可用于极少量细胞样品,甚至单细胞,在背景噪音和假阳性等方面要比常规BS-seq低得多。研究团队进一步应用UBS-seq来比对早期结直肠癌病人组和对照组的血液中提取的cfDNA 样品,发现明显的甲基化区别。这些结果显示UBS-seq在寻找5mC作为疾病的早期诊断的指标方面具有广泛的应用前景。另外,由于具有快速且能减少DNA的降解而特别适用于小量样品的特点,UBS-seq在从少量样品中检测已知的5mC疾病指标,以及在临床快速诊断和手术中的实时决策方面,具有独特的优势和应用前景。除了快速准确检测DNA中的5mC外,UBS-seq也可以用于快速准确检测RNA中的m5C。m5C广泛存在于多种类型的RNA中,影响细胞功能,并在多种癌症中发挥重要作用。然而,由于缺乏灵敏、准确的定量测序方法,m5C在不同RNA类型上的位置及化学计量一直有争论。与DNA中的5mC相比,mRNA中m5C的修饰位点以及修饰水平要低得多,因此如何避免常规 BS-seq中所产生的假阳性,降低RNA降解从而精准地检测到m5C位点并定量其修饰比例,一直是 RNA BS-seq 的主要挑战。研究人员进一步优化了UBS-seq 的配方,发现在98度下加热9分钟后,rRNA上所有的C位点的未转化率(背景噪音)仅有1%,而两个已知的m5C位点的未转化率(阳性信号)高达95%(图2a)。UBS-seq在rRNA样品上的准确性大大优于几种已发表的m5C BS-seq 方法(图2b)。随后研究团队将UBS-seq应用于具有复杂二级结构的tRNA,检测并且观察到NSUN2修饰位点的修饰比例能响应NSUN2基因的敲除(图2c),进一步验证了BS-seq的有效性和准确性。研究人员用UBS-seq对HeLa和HEK293T的mRNA进行了测序,发现了近两千多具有保守序列模式的位点(图2d)。随着NSUN2基因敲除,绝大多数m5C位点的修饰比例下降(图2e)。当把NSUN2的基因再转入敲除的细胞后,m5C位点的修饰比例又回升了(图2f)。这些结果证明了m5C UBS-seq 方法不仅非常灵敏高效,而且非常准确。为研究m5C的生物功能提供了有力的工具。图2:UBS-seq在RNA样品上的的转化效率,以及不同类型RNA上m5C位点的检测何川教授的团队近年来相继开发出了SAC-seq用于定量检测m6A,BID-seq用于定量检测等测序新方法,极大的促进了表观转录学领域的发展。随着UBS-seq的发表,将会进一步促进m5C的生物功能的研究,并和SAC-seq,BID-seq一起引领RNA表观转录组领域步入新的阶段。
  • 畜禽养殖,中国抗生素污染源爆点
    六十秒读懂专题:中国是抗生素滥用最为严重的国家。在医疗领域之外,畜禽养殖业中抗生素的大量应用,以及养殖废水处理监管的缺失同样需要我们注意,因为正是其造成了中国严重的抗生素污染,进而导致细菌耐药性越来越强这一严峻形势。   中国环境遭受抗生素污染,河流污染情况尤其严重   &ldquo 近日,包括《纽约时报》《南华早报》在内的多家媒体发表文章,引用内地研究者在《中国科学》杂志社发布的科学通报,称中国环境正在遭受严重的抗生素污染。国际媒体所言非虚,近年来不断的报道也印证了这一结论。在2014年12月25日,《焦点访谈》报道称珠江广州段受抗生素污染非常严重,脱水红霉素、磺胺嘧啶、磺胺二甲基嘧啶的含量分别为460纳克/升、209纳克/升和184纳克/升,远远高出了欧美发达国家河流中100纳克/升以下的含量。   类似的情况并不只存在于珠江流域,北京师范大学水科学研究院对中国部分地表水取样检测后发现,全国主要河流,包括海河、长江入海口、黄浦江、珠江和辽河等河流都检出抗生素。2014年5月,另一项研究称中国的地表水被检测出含有68种抗生素,其中珠江、黄浦江等地检出的抗生素频率高达100%,除检出频率外,地表水抗生素浓度水平也大大高于西方国家。以黄浦江为例,磺胺甲嘧啶在所有的采样点中均被检出,枯水期检出频率为100%,浓度峰值达到每升623.3纳克(1纳克=1/1000微克),对比德国莱茵河2003年数据,其峰值也不足60纳克,而在美国和日本,该物质几乎没有检出。磺胺类药物属于广谱抗菌药,用于敏感细菌及其他敏感病原微生物所致的感染。水体与土壤的抗生素交叉污染,使得这一问题变得越发棘手。   畜禽养殖消耗大量抗生素,一为抗病,二为增肥   大部分抗生素都是通过人与动物的排泄物进入水体,这揭示了中国抗生素污染的一个重要来源&mdash &mdash 畜禽养殖。前文提及的调查报告显示,中国是世界抗生素使用第一大国。2013年中国抗生素使用量近于世界其他国家的总和,其中人类消耗量为48%,52%为动物消耗,也就是养殖业消耗。养殖场在畜禽养殖过程中应用抗生素原因有以下两点:   一,降低畜禽患病率。相较于野外,养殖场的畜禽密度显然要高的多,所以一旦发生动物疫情,传染速度非常快,就会给养殖户带来严重损失。在养殖过程中添加抗生素,可以预防与治疗疫病,避免遭受此类损失。   二,相当一部分抗生素可以通过杀灭有害菌,调节畜禽肠道内细菌总数促进畜禽消化,进而影响生长,增加畜禽个体重量。部分饲料企业会在其产品中预先添加入此类抗生素,养殖户则采用此种饲料刺激畜禽增重以提高收入。   中国养殖业抗生素滥用,无钱处理闷声大排污   在中国,由于养殖密度大、畜禽疫病复杂多样再加上监管不力等多种原因,普遍存在抗生素过量使用甚至滥用等问题。养殖户在使用含抗生素饲料之外,还会采用注射、灌服等多种手段再次添加抗生素。对于畜禽养殖场,抗生素支出占用药总支出的70%到80%。   故此,抗生素在国内所占成本比重要大大高于国外。以肉用鸡为例,据报道,2012年中国抗生素约占总成本的10% 而2015年,麦当劳宣布在两年内其在全美提供的鸡肉将不含抗生素,供应商泰森食品公司声称这一计划将使公司养殖成本提升3%。鉴于抗生素一直是畜禽供应商基于经济考量作出的选择,我们可以推断出,在美国,肉用鸡抗生素所占成本比重是必然低于3%这一数值的。   相较于大部分人关注的食品安全&mdash &mdash 也就是抗生素在畜禽体内的残留而言,更严重的是养殖废水的问题。因为绝大多数的抗生素都会被代谢出体外,最终以养殖废水的形式进入环境,如不加以处理,就会造成严重的污染。而中国还没有如何处理养殖废水的强制规定,如何处理含有抗生素的废水完全取决于养殖场的环保意识。国家环保总局于2007年编制完成了《畜禽养殖业污染治理工程技术规范》,但由于废水处理成本较高(每万头猪场污水处理设备投资就需至少120万元),加上监管和专项补贴基金的双重空缺,所以小型养殖场更倾向于直接把废水排入河流。故而在中国各大河流甚至是地下水中检出高浓度抗生素也就不足为奇了。   抗生素环境污染,细菌耐药性越来越强,旧疾病卷土重来   部分人对抗生素污染相当不以为意。如南京鼓楼自来水中检出阿莫西林等两种抗生素,官方部门首先声称南京水务集团供水完全达到国家标准&mdash &mdash 因为国家标准根本没有对抗生素的检测指标,继而又有专家声称每升水8纳克这样的浓度,对于正常人的身体健康不会有大的影响。实际情况是,抗生素不同于重金属等污染,虽然这样低的浓度短期内不会直接损害人类健康,但这样的抗生素环境就像是细菌的角斗场,那些通过环境考验的细菌抗药性会大大增强。面对这样的超级细菌,现有的抗生素逐渐会变得不再有效,就好像老奸巨猾的犯罪分子不再害怕警察一样。   时至今日,细菌耐药性发展的速度逐渐赶上了新抗生素的研发速度。以结核病为例,世界卫生组织估计,2011年全世界有50万耐多药结核病新发病例,而以往的特效药物对于这样的结核病不再起作用。这些病例中,有60%就发生在巴西、中国、印度、俄罗斯联邦和南非(&ldquo 金砖五国&rdquo )。2015年,估计将需要20亿美元用于耐多药结核病的诊断和治疗。   美国:FDA政策收紧,买抗生素要找兽医开处方   美国曾经一度是畜禽养殖业抗生素泛滥的重灾区,据调查,美国抗生素有八成消耗在养殖业上(当然必须指出,这与美国严格限制抗生素在医疗中的使用是有关系的)。在20世纪70年代,已经有官员担心抗生素的滥用会导致耐药性传染病。据统计每年至少有2.3万美国人死于耐药性感染。2013年,美国食品药品管理局(FDA)转变其之前相对宽松的政策,严格限制养殖业中抗生素的应用。FDA与各抗生素生产厂商联手,修改抗生素使用条件,规定食用动物生产商不得再使用抗生素加快动物生长。而如果农场主想要用抗生素为他们的动物治疗疫病,就需要有执照的兽医为其开出处方,凭处方才能购买抗生素。也正是因为FDA的强力政策,美国麦当劳才主动提出要&ldquo 在两年内停用抗生素鸡&rdquo ,当然,中国的麦当劳则不在此列。   虽然缺乏相关的政策与标准,但中国现也仍在对抗抗生素滥用的道路上,这又尤以寻找抗生素替代品为重点。目前,以&ldquo 中草药替代抗生素&rdquo 最为炙手可热。如搜索专利号CN 103168919 A,即可发现这是一种&ldquo 增强免疫和促进生长的饲料添加剂&rdquo ,具有&ldquo 扶正祛邪、益气固表、健脾开胃、消食化积、补血生津&rdquo 等功效,令人叹服。
  • 电纺纳米纤维在创面治疗中的应用
    1.Mater. Lett.:负载磺胺嘧啶银的聚羟基丁酸-明胶纳米纤维基质的制备及其在烧伤创面治疗中的应用 ➣ 设计一种替代的伤口敷料是非常必要的,以克服诸如接触时间短、住院时间延长和防止继发感染等难题。➣ 研究者报告了负载磺胺嘧啶银(SSD)(0.2%w/v)的聚羟基丁酸(PHB)-明胶(70:30)纳米纤维基质的静电纺丝,以作为载体防止二度烧伤创面感染。➣ 纳米纤维基质具有良好的抗渗出物吸收和透氧性能。SSD的受控传输会降低敷料更换的频率。利用NIH3T3成纤维细胞评估了其生物相容性和细胞粘附。➣ 从第18天开始,体内烧伤创面支持增强的再上皮化和MMP-9的产生,显示出快速的伤口愈合趋势。➣ 作为一种替代的伤口敷料,纳米纤维支架通过降低敷料的更换频率和减少抗生素的不良反应来治疗烧伤创面。DOI:10.1016/j.matlet.2020.128541 2. ACS Biomater. Sci. Eng.:具有不同双重药物释放的多功能壳聚糖/聚己内酯纳米纤维支架,可用于伤口愈合 ➣ 第三军医大学张波设计并制备了具有多种功能的盐酸利多卡因(LID)和莫匹罗星负载壳聚糖/聚己内酯(CSLD-PCLM)支架,可用作伤口敷料。➣ 通过双喷头静电纺丝技术,支架获得了纳米纤维结构,这增强了支架与血细胞之间的界面相互作用,并显示出良好的凝血能力。➣ 负载LID和莫匹罗星的支架表现出LID的快速释放和莫匹罗星的持续释放。含有莫匹罗星的CSLD-PCLM支架具有出色的抗菌活性。此外,在全层皮肤缺损模型中,该支架显著促进了伤口愈合过程,并伴随完全重新上皮化以及胶原蛋白沉积。➣ CSLD-PCLM纳米纤维支架可以很好地满足伤口愈合过程的各种要求,是未来临床应用中很有前景的创面敷料。DOI:10.1021/acsbiomaterials.0c00674 3. Adv. Sci.:微流控3D打印技术制备立体超顺滑织物用于创面引流 ➣ 南京大学医学院赵远锦教授团队设计了一种受猪笼草超滑结构启发的,基于微流控3D打印技术的立体超顺滑织物。该织物实现了液体在三维空间、复杂维度内无损快速的运输,为提高创面引流效率提供了新的思路。➣ 研究人员利用微流控技术连续制备了SLIPS聚氨酯微纤维,通过电镜表征可以看出微纤维的表面具有较为均匀的孔洞且内部孔洞相互连通。➣ 由于液体石蜡的润滑性能,渗出物和血液可以快速无残留地通过超滑表面,织物因此可以不被杂质污染,从而降低感染的风险。此外,超顺滑织物隔离了海绵与创面,减少了海绵对组织的二次损伤,有效提升了创面修复的效果。DOI: 10.1002/advs.202000789 4. J. Photochem. Photobiol. A Chem.:具有有效光动力抗菌活性的金属-有机骨架/聚(ε-己内酯)杂化电纺纳米纤维膜 ➣ 中科院应化所栾世方通过可生物降解的PCL基质和光敏金属有机骨架(MOF)纳米晶体的共静电纺丝制备抗菌电纺垫的可行方法。➣ 将玫瑰孟加拉红(RB)一步封装到沸石咪唑酸酯骨架8(ZIF-8)中以获得光动力抗菌性RB@ZIF-8纳米粒子,然后与PCL基质共混,通过共静电纺丝制备复合聚合物纳米纤维。➣ 通过调节PCL中RB@ZIF-8的含量,在纳米纤维表面存在足够的MOF颗粒。得益于纳米纤维膜在可见光照射下产生活性氧(ROS),从而在体外对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌(E.coli)进行剂量和时间依赖性灭活。➣ 细菌感染的伤口愈合实验表明,纳米纤维膜具有更好的修复细菌伤口感染和加速创面愈合的能力。DOI: 10.1016/j.jphotochem.2020.112626 5. Biomater. Sci.:含硫酸软骨素的镁矿化抗菌纳米纤维敷料的伤口愈合特性—共混和核-壳纳米纤维的比较 ➣ 研究了硫酸软骨素对含矿化镁的聚多巴胺交联电纺明胶纳米纤维的形态、机械性能、润湿性和生物相容性的影响。为了延长敷料的耐用性,研究者制备了以聚己内酯(PCL)和明胶为共混物或核-壳纳米纤维的复合敷料。➣ 在猪皮肤烧伤模型中,与未经治疗的烧伤相比,混合和核-壳纳米纤维敷料均显示出更好的再上皮化、伤口闭合和临床结果。➣ 活检组织的组织学研究表明,与未处理的烧伤相比,用核-壳纳米结构处理的烧伤具有平滑的再生和胶原组织。这项研究比较了复合纳米纤维的理化和生物学特性,该纤维能够加速烧伤创面愈合并具有抗菌特性,突出了它们作为伤口敷料和皮肤替代品的潜力。DOI:10.1039/D0BM00530D 6. Carbohydr. Polym.:含蜂蜜和荆芥的壳聚糖/聚乙烯醇生物纳米纤维创面愈合性能的体内评价 ➣ 构建生物支架以改善皮肤组织再生仍然是医疗保健方面的一项挑战。为了解决这一问题,研究者报告了负载蜂蜜和荆芥属植物的电纺聚乙烯醇和壳聚糖(PVA/Chit)纳米纤维垫的制备和表征,以加快伤口愈合。➣ 通过SEM和TEM检查了纳米纤维垫的形态。利用FT-IR和TGA/DTA对纳米纤维进行了物理化学和热稳定性表征,揭示了纳米纤维中蜂蜜和所需植物的存在。➣ 研究了PVA/Chit@Nep/Hon作为一种潜在的治疗药物在伤口愈合治疗中的作用。对大鼠进行了为期21天的体内伤口愈合研究,发现蜂蜜和植物掺入纳米纤维垫后,三周内伤口愈合更快,因此这种纳米纤维垫在急慢性伤口愈合应用中显示出巨大潜力。DOI:10.1016/j.carbpol.2020.116315
  • 2010版中国药典新增修订解决方案!
    2010年版《中国药典》新增变更HPLC和SPE方法解决方案专题 根据国家药典委员会2010年版《中国药典》征求意见,新增和变更了200余种化药原料药和制剂,300余种中药和制剂的HPLC方法或SPE样品前处理方法。 为了方便广大医药生产企业更能方便的的执行新版药典方法,博纳艾杰尔科技将逐步按照新版药典标准重现分离,供广大用户参考。 博纳艾杰尔科技欢迎广大用户提供使用博纳艾杰尔科技产品实现的新版药典分离结果,博纳艾杰尔提供相应的奖励。 醋酸奥曲肽、注射用醋酸奥曲肽、醋酸奥曲肽注射液有关物质及含量测定 2009-10-9 鲑降钙素 2009-11-6 HPLC法测定胸腺法新、注射用胸腺法新中的有关物质 2009-11-6 HPLC法测定格列齐特片中格列齐特的含量 2009-12-26 HPLC法测定甲硝唑片中甲硝唑的含量 2009-12-26 HPLC法测定地塞米松磷酸钠的含量 2009-12-26 HPLC法检测舒血宁注射液中总黄酮的含量 2009-12-26 HPLC辛伐他汀测定的含量 2009-12-26 益母草中盐酸水苏碱的测定 2010-2-2 合成多肽中的醋酸测定方法 2010-3-17 Venusil C18柱测定桑叶中芦丁的含量 2010-4-12 Venusil XBP C18(L)测定阿奇霉素片中阿奇霉素的含量 2010-4-12 Venusil C18测定丙硫氧嘧啶片中有关物质 2010-4-12 Venusil C18测定醋酸泼尼松片中醋酸泼尼松的含量 2010-4-12 Venusil C18测定格列本脲片中格列本脲的含量 2010-4-12 Venusil C18测定甲氧氯普胺片中甲氧氯普胺的含量 2010-4-12 Venusil C18测定枸橼酸喷托维林片中枸橼酸喷托维林的含量 2010-4-12 Venusil C18测定醋酸曲安奈德乳膏中醋酸曲安奈德的含量 2010-4-12 Venusil C18测定丁酸氢化可的松乳膏中丁酸氢化可的松的含量 2010-4-12 详情请见:http://www.agela.com.cn/web/news/detail.asp?id=660
  • 【难点解析】丨多兽残标准GB 31658.17-2021
    2021年11月,由农业农村部、国家卫生健康委员会、国家市场监督管理总局联合发布的36项兽药残留检测标准,将于2022年2月1日正式实施。 其中,多兽残检测标准GB 31658.17-2021《动物性食品中四环素类、磺胺类和喹诺酮类药物多残留量的测定》,采用同一方法,可在9分钟内完成4种四环素、19种磺胺、13种喹诺酮,共计36个目标物的检测。快速高效,推动了多兽残检测标准的进展,可谓是36个新标准中的一大亮点。今天小编就和大家一起来解读这个标准,并对其技术关键点进行说明。 标准品配置▶ 四环素类、磺胺类药物采用甲醇配置,喹诺酮类药物由于部分种类溶解度较差,采用NaOH溶液配置。▶ 标准中给出了标准溶液的保存温度和有效期,请按照标准进行标准物质期间核查。因四环素类药物稳定性较差,需要特别关注。▶ 采用空白基质配标准曲线。 前处理过程▶ 提取液采用Mcllvaine-Na2EDTA。众所周知,此缓冲液是提取四环素类兽残的常用试剂,极性较大,在磺胺类和喹诺酮类的前处理中并不常见。由此可以推论,该标准中所涉及的磺胺类、喹诺酮类药物的极性也偏大,否则提取效果不理想。▶ 离心速率较一些老标准有大幅提高,GB 31658.17-2021的离心转速在10000r/min以上,离心效果明显提升。▶ 采用HLB固相萃取柱净化。 仪器分析条件▶ 有机流动相采用——甲醇:乙腈(2:8,含0.1%甲酸,v/v)溶液,此处甲醇的加入,可对部分磺胺类药物的分离起到一定贡献。▶ 从离子对信息来看,存在多个同分异构体,母离子与子离子均相同,需要特别注意保留时间的差别,避免误判。●四环素—多西环素●恶喹酸—氟甲喹●磺胺二甲异嘧啶—磺胺二甲嘧啶、磺胺间甲氧嘧啶—磺胺甲氧哒嗪—磺胺对甲氧嘧啶、磺胺邻二甲氧嘧啶—磺胺间二甲氧嘧啶 关键技术点就基本介绍完了,为了能让大家更轻松地应对标准,接下来介绍岛津的应用方案。 猪肉中喹诺酮类、磺胺类和四环素类兽药残留的测定岛津LCMS-8000系列三重四极杆液质联用仪 ▶ 色谱柱:Shim-pack GIST C18(100×2.1 mm,2 μm ;P/N:227-30001-04);▶ 固相萃取小柱:SHIMSEN Styra HLB 200 mg/6mL (P/N:5010-81976)▶ 前处理步骤与标准相同▶ 质谱条件 雾化气:氮气3L/min加热气:氮气10L/min干燥气:氮气10L/min接口温度:300℃DL温度:250℃ 图1 目标物的MRM色谱图(10 μg/L) 表1 部分目标物回收率和RSD结果 本文内容非商业广告,仅供专业人士参考。
  • 细胞增殖检测新技术——EdU 取代BrdU
    直接测定DNA合成是细胞增殖检测的最准确方法之一,是测定物质毒性、评估药物安全评价、细胞健康的基本方法,其中以前常用的方式是利用胸腺嘧啶核苷酸类似物&mdash &mdash BrdU进行检测。因为在细胞周期的S期,和细胞一起孵育的BrdU能掺入DNA分子中,再结合BrdU抗体与渗入DNA的BrdU特异性结合,就能够检测到DNA复制活跃的细胞。 但BrdU有一大缺点,就是需要变性DNA后才能与抗体结合,但这就破坏了DNA双链结构,影响了其他染料的结合染色,导致染色弥散,准确性降低等问题。哈佛大学医学院细胞生物学家Adrian Salic就认为:&ldquo 为了能够暴露BrdU的抗原表位,必须用高浓度的盐酸,乙酸或酶解,但经历了如此严重的处理后,细胞原本精巧细致的结构在显微镜下就变得惨不忍睹了。&rdquo 事实上,现在有一种新的检测方法能避免这种情况的发生&mdash &mdash EdU检测。EdU (5-乙炔基-2&rsquo 脱氧尿嘧啶核苷)也是一种胸腺嘧啶核苷类似物,但其连有的炔羟基团在天然化合物中很少见,在细胞增殖时能够插入正在复制的DNA分子中,基于EdU与染料的共轭反应可以进行高效快速的细胞增殖检测分析,可以有效地检测处于S期的细胞百分数。与传统的免疫荧光染色(BrdU)检测方法相比,更简单,更快速,更准确。EdU只有BrdU抗体大小的1/500,在细胞内更容易扩散,不需要严格的样品变性(酸解、热解、酶解)处理,有效地避免了样品损伤,有助于在组织、器官的整体水平上观测细胞增殖的真实情况,具有更高的灵敏度和更快的检测速度。Adrian Salic特别强调:&ldquo 与传统的免疫荧光染色不同,EdU反应能在几分钟内完成,且不需要进行严格的样品变性处理,使得组织成像更简单易行。&rdquo 细胞增殖检测方法基于EdU与Apollo?荧光染料的完美结合准确检测新合成的DNA,简单,快速,准确。这种检测方法非常快速,且只需简单的几个步骤,因此也适用于高通量筛选试验,如在药物筛选中检测加药后细胞的活力。 图1 BrdU 与EdU 检测原理示意图 表1 BrdU 与EdU 检测优缺点比较 图2 BrdU 需要DNA 变性后才能与抗体结合,导致BrdU、Hoechst 染色弥散,边缘模糊不清; 而EdU 边缘清晰完整,检测更灵敏、更准确EdU可以检测新合成的DNA,而EU则可以检测新合成的RNA。EU是一种尿嘧啶核苷类似物,能够在RNA转录时期代替尿嘧啶( U )渗入正在合成的RNA分子,基于EU与Apollo?荧光染料的特异性反应进行RNA检测。EU能够在体内和体外水平检测时间和空间上RNA合成的变化,能够更方便地研究RNA转录位点,结合相关抗体标记能够检测与RNA有相互作用的蛋白。结合EdU和EU进行检测新合成的DNA和新合成的RNA,可以深入开展细胞增殖、细胞周期、细胞毒性、DNA复制及修复、信号通路等方面的研究。
  • 中科院生物物理所在蛋白调节DNA去甲基化的新发现
    11月10日,《分子细胞》(Molecular Cell)杂志在线发表了题为Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine 的研究文章,报道了在小鼠胚胎干细胞中,SALL4A蛋白与TET家族双加氧酶共同调节增强子上5-甲基胞嘧啶(5mC)的氧化过程。  哺乳动物DNA的胞嘧啶甲基化修饰被认为是最稳定的表观遗传修饰,在维持性DNA甲基转移酶的作用下,亲代细胞基因组的DNA甲基化信息经过有丝分裂以半保留复制的方式传递给子代细胞。近年来的研究发现,TET家族蛋白能够将5mC逐步氧化成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),并走向最终的去甲基化。这种动态变化拓展了DNA甲基化所承载的表观遗传信息的可塑性。在基因组上,5mC的氧化受到严格地控制,在某些基因组区域,5hmC会稳定存在,而在别的基因组区域5hmC只是进一步氧化和去甲基化的中间体。这一选择性事件的分子基础尚不明朗。  该研究利用稳定同位素标记的细胞培养(SILAC)联合亲和纯化与蛋白质定量质谱技术,发现锌指结构域蛋白SALL4A倾向于结合含有5hmC修饰的DNA。SALL4是早期胚胎发育过程中的一个重要基因,它的突变会导致常染色体显性遗传的Duane-radial ray综合症。Sall4基因敲除的小鼠胚胎在围着床期即停止发育,并很快死亡。该研究发现,在小鼠胚胎干细胞中,SALL4A蛋白主要定位于增强子,其与染色质的结合在很大程度上依赖于TET1蛋白。进一步分析基因组上SALL4A结合位点的胞嘧啶修饰状态发现,这些位点上缺乏稳定的5hmC,却富集了进一步氧化的产物5fC和5caC,提示SALL4A可能促进5hmC的进一步氧化。果然,敲除Sall4导致在原先的SALL4A结合位点上积累较高水平的5hmC,因为敲除Sall4降低了TET2的稳定结合,不利于5hmC的进一步氧化。  这一工作丰富了对TET家族蛋白调控的DNA氧化和去甲基化过程的理解,并提出了5mC的协同性递进氧化概念。促进了对DNA甲基化的动态性及其在胚胎干细胞功能及重编程中作用的理解。  中国科学院生物物理研究所研究员朱冰和副研究员张珠强为本文的共同通讯作者。朱冰课题组熊俊和张珠强为本文的并列第一作者。同济大学教授高绍荣和博士陈嘉瑜,北京生命科学研究所研究员陈涉、丁小军和许雅丽,中科院生态环境研究中心研究员汪海林和博士黄华,中科院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良,日本熊本大学教授Ryuichi Nishinakamura也参与了该项研究。该研究得到国家自然科学基金委、科技部、中科院战略性先导专项和美国霍华德?休斯医学研究所国际青年科学家项目的资助。图示:SALL4A促进由TET1和TET2介导的5mC氧化过程
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 中央电视:记者调查 滥用的抗生素
    昨日,央视《焦点访谈》节目报道称,记者暗访发现山东企业鲁抗医药大量偷排抗生素污水,浓度超自然水体10000倍!南京自来水甚至检出阿莫西林&hellip &hellip 全国主要河流黄浦江、长江入海口、珠江等也都检出抗生素。其中,珠江广州段受抗生素污染非常严重,脱水红霉素含量达460纳克/升、磺胺嘧啶含量达209纳克/升、磺胺二甲基嘧啶含量达184纳克/升,远远超过欧美河流中同类物质含量不超过100纳克/升的标准。   除了在河流中检出抗生素超标外,部分地区居民自来水中也被检出抗生素。比如在安庆、铜陵、阜阳、蚌埠等地,自来水中检出含有四环素、土霉素、金霉素、强力霉素、磺胺二甲基嘧啶等抗生素。专家称长期饮用含有抗生素的自来水,会对这些抗生素产生抗药性。   央视报道称,造成河流中抗生素含量惊人的主要原因是制药企业违法排污、检测公司数据造假、环保部门监管走过场。   其实,珠江抗生素污染早有所闻,两年前,中科院广州地球化学研究所研究员张干就称,珠三角已成典型抗生素污染区,连地下水都检出存在抗生素。在珠江广州河段,红霉素、罗红霉素等9种常用抗生素总浓度最高超过每升水2000纳克。广州有污水处理厂检出氧氟沙星、诺氟沙星、红霉素、罗红霉素和磺胺甲嗯唑5种抗生素。
  • 岛津推出猪肉中磺胺类药物的三重四极杆质谱法检测方案
    磺胺类药物(sulfa drug)是一类人工合成的抗菌药。因磺胺类药物抗菌谱广、使用方便、价格低廉,为了提高养殖产量,在饲料添加和动物生长中被广泛使用。磺胺类药物本身服用过量会导致胃肠刺激、肾损伤、过敏、抗药性等副作用,而磺胺类药物残留可使对这类药物过敏的食用者发生过敏反应,这类药物在体内长期蓄积也会引发过敏反应,甚至引发癌症。国际食品法典委员会(CAC)与欧美等大多数国家对食品业饲料中磺胺类药物残留都有限量标准,我国农业部第235号公告《动物性食品中兽药最高残留量》中规定,磺胺类药物在各靶组织中的最大允许残留总量为100 &mu g/kg。兽药残留的监控是保证食品安全的重要措施,也是保障人民身体健康的重要手段。 本方案参考农业部1025号公告-23-2008《动物源食品中磺胺类药物残留量检测液相-串联质谱法》中的样品提取纯化过程和分析方法,采用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用的方法测定猪肉中9种磺胺类药物:磺胺嘧啶(SD)、磺胺甲基嘧啶(SM1)、磺胺二甲嘧啶(SM2)、磺胺甲氧哒嗪(SMP)、磺胺甲恶唑(SMZ)、磺胺间甲氧嘧啶(SMM)、磺胺异恶唑(SIZ)、磺胺间二甲氧嘧啶(SDM)、磺胺喹恶啉(SQX)。本测定方案分析速度快、系统精密度良好、灵敏度高。定量限达到0.04~0.31 &mu g/kg,满足农业部1025号公告-23-2008中0.5 &mu g/kg测定低限的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定猪肉中磺胺类药物 &rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • DNA碱基家族或许迎来第六名成员
    西班牙科学家在最新出版的《细胞》杂志上撰文指出,或许存在着第六种碱基&mdash &mdash 甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。   脱氧核糖核酸(DNA)是遗传物质的主要组成成分,一般认为,它由A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)和T(胸腺嘧啶)四种碱基结合而成,这些碱基组合成数千种可能的排序,从而提供了遗传多样性,使得活体生物呈现出多种多样的面貌和功能。   上世纪80年代初,由这四种&ldquo 经典&rdquo DNA碱基组成的家族中迎来了第五名成员:甲基胞嘧啶(mC),其源于胞嘧啶。mC的出现引发了科学家们极大的关注,并获得了广泛的研究。上世纪90年代后期,mC被广泛看成是表观遗传机制的主要原因:它能够根据每个组织的生理需要,打开或关闭基因。而且,随着研究的进一步深入,科学家们现在知道,作为一种重要的表观遗传修饰,mC参与基因表达调控、X-染色体失活、基因组印记、转座子的长期沉默和癌症的发生。   据每日科学网4日报道,西班牙Bellvitge生物医学研究所表观遗传学和癌症生物学计划负责人、巴塞罗那大学遗传学教授曼奈· 埃特雷在《细胞》杂志上发表文章,描述了第六种碱基&mdash &mdash mA存在的可能性,他认为,这种碱基也帮助确定表观基因组,并因此在细胞生命过程中发挥着重要作用。   埃特雷在论文中表示:&ldquo 早在数年前,我们就知道,在我们生物学上的远亲&mdash &mdash 细菌的基因组内就存在mA,主要作用保护其免受其他生物体遗传物质的入侵,但当时科学家们认为,这一现象只出现在原始细胞内。&rdquo   埃特雷继续解释说:&ldquo 现在《细胞》杂志发表的三篇论文表明,藻类、蠕虫以及苍蝇都拥有mA,这些生物的细胞像人体细胞一样都是真核细胞,说明人体细胞内也可能拥有第六种碱基。研究表明,mA的主要功能是调控某些基因的表达,因此,构成了一种新的表观遗传标记。在我们所描述的这些基因组内,mA的浓度都很低,但随着拥有高灵敏度分析方法的发展,使得这项研究成为了可能。除此之外,mA可能也在干细胞和发育初期发挥重要作用。&rdquo   研究人员表示,他们接下来打算对相关数据进行确认,以厘清是否包括人在内的哺乳动物也拥有这第六种碱基以及其作用究竟是什么。
  • 睿科推出水中抗生素检测的完整解决方案
    据央视《焦点访谈》节目报道,全国主要河流黄浦江、长江入海口、珠江等都检出抗生素。其中,珠江广州段受抗生素污染非常严重,脱水红霉素含量达460纳克/升、磺胺嘧啶含量达209纳克/升、磺胺二甲基嘧啶含量达184纳克/升,远远超过欧美河流中同类物质含量不超过100纳克/升的标准。除了在河流中检出抗生素超标外,部分地区居民自来水中也被检出抗生素。比如在安庆、铜陵、阜阳、蚌埠等地,自来水中检出含有四环素、土霉素、金霉素、强力霉素、磺胺二甲基嘧啶等抗生素。专家称长期饮用含有抗生素的自来水,会对这些抗生素产生抗药性。 睿科作为专业的全自动固相萃取仪生产厂家,拥有雄厚的技术能力,目前利用AutoSPE-06D全自动固相萃取仪,已经实现了水中磺胺类、喹诺酮类、四环素类等抗生素的检测。AutoSPE-06D适用于地表水、地下水、污水、自来水等各类水源中抗生素的检测,能够实现水中抗生素色谱分析前的前处理全过程的自动化(活化,上样,淋洗,吹干,洗脱,浓缩,定容),是目前市面上自动化程度最高的全自动固相萃取仪。AutoSPE-06D全自动固相萃取仪 对于水中抗生素的检测,睿科推出多种抗生素检测方案,详细信息如下(链接查看): 1.水中磺胺类药物的检测方案 2.水中喹诺酮类药物的检测方案 3.水中四环素类药物的检测方案
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 牛奶中抗生素的检测方法汇总
    一、 牛奶中抗生素的种类β-内酰胺类属于此类的抗生素的有青霉素类和头孢霉素类,常用于奶牛等家畜的个体临床治疗,残留在牛乳中。四环素类常见种类有四环素、金霉素、土霉素、强力霉素等,是一类广谱抗生素。氨基糖苷类常见种类有庆大霉素、链霉素、二氢链霉素、新霉素、壮观霉素等,是常用于家畜的氨基糖苷类抗生素。氯霉素类包括以下三种化合物:氯霉素,甲砜霉素,氟甲砜霉素。这类药物都是严格限制使用的兽药,有些国家禁止使用。大环内酯类常见种类有红霉素、秦乐霉素、林可霉素、螺旋霉素和盐霉素等。磺胺类常见种类有磺胺二甲嘧啶、磺胺二甲氧嘧啶、磺胺甲嘧啶、磺胺嘧啶等,甲氧苄啶是磺胺增效剂,不单独使用。二、抗生素残留的危害抗生素的残留对人体的健康、生态平衡、奶制品价格及奶制品的国际贸易均有不同程度的危害。三、牛奶中抗生素检测方法1.传统的微生物检测法微生物检测法出现较早,从出现至今,大大改善了我国抗生素检测手段的发展,其测定原理是基于抗生素对微生物的生理机能、代谢具有一定的抑制效果,与临床应用保持一致,相对而言,其耗费的时间久,且存在着较大的误差,目前最常应用的是TTC法、戴尔沃检测(Delvotest SP)法、BY法等。2.国际通用的检测法相对而言,其是国际上应用较早的通用测定方法,也是我国制定的监测方法,其原理是:如果牛奶中含有抗生素,则加入菌种(嗜热链球菌)经培育2.5-3h后,加入TTC指示剂(三苯基四氮唑)不发生还原反应,所以样品呈无色状态。如果牛奶中不含抗生素,则样品呈红色。相对而言,这一方法费用较低,但是耗时,因此应用不算太广,发展受到一定的限制。3.蓝黄检测法该方法是一种广谱的微生物抑制法,相对而言,耗时短,可以在短时间内检查出抗生素的残留情况,只要通过颜色对比既可以得出结论,通过这一检测方法得到的检测结果存在着一定的误差,容易造成误检,但是耗时短,费用低。4.现代仪器分析法这一方法主要是借助现代仪器进行检测,测定其残留的抗生素种类,最常用的是色谱法、荧光法、毛细管电泳、色谱质谱联用技术等。运用不同的理论,采用不同的手段进行检测,提高检测的标准,加强检测的质量。相对而言,该方法分离速度快,高效,实现自动化控制,可以检测出抗生素的具体含量,其结果更加准确,但待检样品需经一系列的预处理,繁琐费时,还必须有相应的价格昂贵的仪器设备。一般在大型实验室使用,适合于精确测定。5.生化免疫法这是近年来随着新科技的发展而逐渐发展起来的,其是以抗原与抗体的特异性与可逆性进行结合,是一种分析就技术。基本原理家就是抗原体的竞争性结合,可分为酶联免疫测定法(ELISA)、荧光免疫测定法(FIA)、免疫分析技术与常规理化分析技术联用的方法等。几种方法各有优缺点,必须注重其综合使用,提高检测的质量与准确度。从其实践的结果来看,其对抗生素的残留现状检测效果良好,灵敏度极高,达到ng级水平 检测快速、专一性强。相对而言,此法具有高度的专一性,每检测一种抗生素就要制备或购买相应的抗原或抗体,导致检测费用较高。因此生化免疫检测法不可能取代色谱或光谱等常规分析方法,只能作为其重要的补充。6.专一试剂盒法所谓的专一试剂盒法就是根据含有芽孢杆菌的琼脂培养基和PH指示剂在一定的温度下进行培养,一般维持在65℃左右,孢子发育生长,降低培养基pH值,在pH指示剂的作用下,蓝(紫)色变为绿-黄色。生鲜牛乳中的抗生素残留使微生物生长和酸的产生受到抑制,由于没有酸生成,颜色将不会改变。天津兰博现 诚征省市分销商招商电话:022-23592982  24小时服务热线:13920418181、400-616-1607
  • 耐药性与甲基化|naica® 微滴芯片数字PCR系统助力霍乱弧菌耐药性机制分析
    导读自青霉素发现以来,抗生素已经成为人类对抗细菌的最有效武器,挽救了无数人的生命,但随着抗生素使用上的无节制,抗生素耐药性已成为一个重大的全球问题。因此了解微生物对抗生素适应的分子机制成为抗击抗生素耐药性(AMR)的一个重要途径。近日,法国巴斯德研究所的科学家运用转录组测序、naica® 微滴芯片数字PCR等技术证实VchM(霍乱弧菌特有甲基转移酶)参与应对氨基糖苷类抗生素的应激反应,这表明,DNA甲基化在氨基糖苷类抗生素的耐药机制中也发挥着重要作用,该文章刊载于《PLOS GENETICS》。应用亮点:▶ 运用naica® 微滴芯片数字PCR系统分析霍乱弧菌操纵子表达情况。▶ VchM缺失会导致生长缺陷,但却可以使霍乱弧菌对氨基糖苷产生应激。▶ VchM直接调节groES-2(伴侣蛋白编码基因)的胞嘧啶甲基化,从而改变其表达情况,影响霍乱弧菌耐药性。氨基糖苷(AGs,如:妥布霉素、链霉素、卡那霉素、庆大霉素和新霉素)是一类针对细菌核糖体小亚基的抗生素,其破坏翻译保真度,增加细胞中错误折叠蛋白质的水平。而本文的研究主要针对霍乱弧菌对其的耐药性机理。科学家们在之前的研究中发现,特定DNA甲基转移酶基因突变(VchM)的霍乱弧菌相比WT具有更强的耐药性,这表明DNA甲基化可能在霍乱弧菌适应AGs中发挥作用。VchM编码一种Orphan m5C DNA甲基转移酶,导致5‘-RCCGGY-3’基序的胞嘧啶甲基化,虽然VchM的缺失会导致生长缺陷,但霍乱弧菌细胞可以在亚致死浓度和致死浓度的抗生素下对氨基糖苷应激。▲图1:霍乱弧菌ΔVchM对亚致死浓度氨基糖苷的敏感性较低。GAs类,TOB(妥布霉素),0.6 μg/ml、GEN(庆大霉素),0.5 μg/ml、NEO(新霉素),2.0 μg/ml;非Gas类,CAM(氯霉素),0.4 μg/ml和CARB(β -内酰胺类西林),2.5 μg/ml对于ΔVchM霍乱弧菌的转录组测序和遗传分析发现,ΔVchM菌株中有4个直接参与蛋白质折叠的基因被上调。包括groEL-1,groEL-2,groES-1,groES-2。通过naica® 微滴芯片数字PCR系统对基因表达进行验证分析发现,ΔVchM霍乱弧菌中groES-2的表达在不同时期均有较大上调。进一步通过缺失验证表明了groESL-2对ΔVchM的抗生素高耐受性的作用。▲图2:ΔVchM菌株中groESL-2操纵子上调(对数生长期,Exp, OD600 ≈ 0.3;指数生长期,Stat, OD600 ≈ 1.8–2.0)在groESL-2区域观察存在四个VchM甲基化基序存在。进一步对基序分析发现,破坏这些基序会导致groESL-2基因表达增加(如图3)。且基序破环越多,则导致的表达上调更加明显。同时,ΔVchM中的groESL-2基因表达一直高于基序突变,表明还存在其他因素与甲基化协同控制groESL-2表达。这些结果表明,在霍乱杆菌中,一组特定的伴侣蛋白编码基因受DNA胞嘧啶甲基化的控制,将DNA甲基化与伴侣蛋白表达的调节和对抗生素的耐受联系起来。▲图3:在WT中,groESL-2区域的VchM位点突变导致基因表达增加法国巴斯德研究所是世界上最著名的研究所之一,成立130余年来一直走在世界科技前沿,是微生物学、免疫学、传染病学等学科的起源地,曾开发出狂犬病疫苗、天花疫苗、流感疫苗、黄热病疫苗等多个造福人类的疫苗产品,并培养了10名诺贝尔奖生理学或医学奖获得者,实现研究、教育、健康、创新“四位一体”的研究机构。
  • 分析科学仪器助力!陨石中发现DNA的主要成分
    日本北海道大学的大场康弘(Yasuhiro Oba)和合作者研究发现,组成DNA和RNA必不可少的嘧啶碱基可能是由富碳陨石带来地球的。相关研究4月26日发表于《自然—通讯》。 组成DNA和RNA离不开两类化学成分,也称碱基。这两类化学成分是嘧啶和嘌呤,其中嘧啶包括胞嘧啶、尿嘧啶、胸腺嘧啶,嘌呤包括鸟嘌呤、腺嘌呤。 目前为止,只有嘌呤碱基和尿嘧啶在陨石中发现过。然而,研究人员在模拟星际介质——恒星之间的空间——条件的实验中发现了嘧啶,有人据此推测它们可能是通过陨石抵达地球的。 大场康弘和同事使用了专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:默奇森陨石、默里陨石和塔吉什湖陨石。 除了之前在陨石中已检测到的化合物,如鸟嘌呤、腺嘌呤、尿嘧啶之外,他们还首次发现了达到十亿分比浓度的各种嘧啶碱基,如胞嘧啶和胸腺嘧啶。 这些化合物存在的浓度与模拟太阳系形成前条件的实验预测的差不多。 作者认为,研究结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星。这些化合物最终通过陨石抵达地球,对于早期生命出现的遗传学功能可能起到了一定作用。
  • 欧盟廉价快速DNA基因组测序与解码技术获得突破
    欧盟第七研发框架计划(FP7)提供220万欧元资助,总研发投入290万欧元,由欧盟6个成员国及联系国塞尔维亚(总协调)、德国、英国、爱尔兰、瑞士和以色列跨学科科研人员组成的欧洲NANODNASEQUANCING研发团队。历时3年多的研发创新活动终于修成正果,即廉价快速的DNA基因组测序与解码技术获得重大突破。新技术每分钟可测序100万个碱基对,意味着人类个体约30亿DNA碱基对,完成DNA测序与解码仅需数小时。   NANODNASEQUANCING研发团队廉价快速的DNA基因组测序与解码技术,基于单个分子的电学特性,跳过了耗时费力又容易出错的DNA复制和化学反应步骤。研发团队在研究中发现,四大基本核苷酸碱基(Nucleotide Bases):腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胞核嘧啶(Cytosine)和胸腺嘧啶(Thymine),在2伏特电压下均显示出导电性。根据此原理,研发团队设计开发出全新的紧凑型便携式DNA检测装置,促使DNA核苷酸碱基通过具有纳米结构侧电极(Side-Electrodes)的微细纳米孔(Tiny Nanopores)。试片充电后核苷酸碱基将自然形成DNA链排序。关键技术突破在于解决了离子阻塞电流和横穿电流通过纳米孔的DNA测序两大技术难关,并申请了单分子电学特性与DNA测序亚纳米结栅器件(Sub-Nanometre Junction-Gate Device)发明专利。   研发团队总协调人、塞尔维亚贝尔格莱德(Belgrade)物理研究所的塞黑奇(ZIKIC)教授称,廉价快速的人类DNA基因组测序与解码技术突破,应该成为科学史上的革命性事件。其开发应用前景如何评价均不过分,将为人类开启动植物个性化研究的全新路径。例如,医生可根据病患自身独特的DNA结构,早期诊断和治疗相关疾病。
  • 紫外专栏 | 救命!祖传的DNA要热化了
    蝉鸣声声入夏来,烈日高照,暑气炎炎,欢迎来到一年一度的人间大火炉时节——夏季。夏天,我们享受着天然免费的汗蒸和干蒸,不仅大脑热到颤抖,连dna都要化了,离变异也不远了。冇使惊,冰冻西瓜、冰可乐、雪糕刺客、空调… … 解暑降温神器纷纷登场,救我一命。勇敢的朋友还可以剃个光头过个清凉的夏天。综上可见,生物对温度的变化是很敏感的,温度的变化影响着世间万物。从古至今,对于温度的控制和热量的利用,也在人类生活生产中扮演了至关重要的角色。在生命科学研究领域,温度是实验中非常重要的一个参数。例如,使用紫外法测定dna熔解温度(tm)就是一项非常经典的需要样品控温的实验。dna 的变性的特点是爆发式的, 变性作用发生在一个很窄的范围。通常把dna 的双螺旋结构失去一半时的温度称为该dna 的熔点或熔解温度( melting temperature ) , 用tm 表示。dna 的tm 值一般在70~85 ℃之间。dna的变性从开始解链到完全解链,是在一个相当小的温度范围内完成的,一系列物化性质也发生改变: 260 nm 区紫外吸收值增高(增色效应) , 粘度降低, 浮力密度降低等。所以,我们可以利用紫外可见分光光度计检测dna样品在260nm处吸光度随温度的变化,对解链过程进行监测。不同种类dna的tm值不同:g-c 的含量越高, tm 越高(由于鸟嘌呤-胞嘧啶(g≡c)核苷酸之间有3个氢键,而腺嘌呤-胸腺嘧啶(a=t)之间有2个氢键,g≡c核苷酸解离所需能量大于a=t碱基对所需能量。), 由tm 值可推算出gc含量。其经验公式为: ( g-c)% = ( tm - 69.3 ) ×2.44在以下示例实验中,使用梅特勒-托利多紫外可见分光光度计uv7配备酷t(cuvet)恒温器,测定20℃-95℃升温范围内鲑鱼精dna在260nm处的吸光度变化,以监测其变性过程。我们用各温度点测得的吸光度绘制图谱,可得到一条温度-吸光度s形曲线,如下图所示:图:260nm处鲑鱼精dna的熔解曲线(案例来源梅特勒公众号)在此实验案例中,鲑鱼精dna的tm值通过确定s形曲线的拐点来确定。经测定和计算,鲑鱼精dna的tm值为64.4℃,说明其g≡c碱基对的浓度相对较低。确定熔解温度的另外一种方法是用切线法对s形曲线的拐点进行图形化评估。我司已为广大相信光的实验奥特曼准备好了应用秘笈和成套装备,轻松应对需要对样品进行温控的紫外实验。梅特勒-托利多超越系列紫外可见分光光度计可搭载酷t帕尔贴控温系统或劳达(lauda)等水浴恒温系统,实现对样品精准快速的温度控制:梅特勒-托利多紫外可见分光光度计+酷t帕尔贴控温系统方案:梅特勒-托利多紫外可见分光光度计+劳达(lauda)水浴温控系统联用方案:
  • 3项液相色谱-串联质谱法相关团体标准将在4月21日正式实施!
    对于食品检测来说,它面临的最大的难题是对复杂基质中痕量成分的多残留组分的检测分析,传统的仪器检测方法很难解决这些问题。液相色谱-串联质谱联用技术已成为食品检测中广泛使用的仪器,它不仅分离能力强、选择性好、灵敏度高,而且还可以对复杂基质中的痕量物质进行确认分析。 3月21日深圳市分析测试协会发布了3项使用液相色谱-串联质谱法检测食品中多种化合物的团体标准,这3项标准也将在4月21日正式实施。 T/SATA 039-2023水产品中多类禁、限用药物残留量的测定 液相色谱-串联质谱法 适用范围:本文件规定了水产品中多类禁、限用药物残留量的液相色谱-串联质谱测定方法 。本文件适用于鱼、虾、贝等水产品的可食组织中硝基呋喃类代谢物(呋喃西林代谢物、呋喃妥因代谢物、呋喃它酮代谢物、呋喃唑酮代谢物)、三苯甲烷类(孔雀石绿、隐色孔雀石绿)、磺胺类(磺胺嘧啶、磺胺二甲嘧啶、磺胺甲基嘧啶、磺胺甲噁唑、磺胺间二甲氧嘧啶、磺胺喹噁啉、磺胺二甲异噁唑、磺胺噻唑、磺胺二甲噁唑、磺胺二甲异嘧啶、磺胺间甲氧嘧啶、磺胺甲氧哒嗪、磺胺甲噻二唑、磺胺邻二甲氧嘧啶)和喹诺酮类(氧氟沙星、培氟沙星、诺氟沙星、依诺沙星、氟罗沙星、环丙沙星、洛美沙星、丹诺沙星、恩诺沙星、沙拉沙星、氟甲喹、恶喹酸、萘啶酸)、酰胺醇类(氯霉素、甲砜霉素、氟苯尼考)药物残留量的测定。T/SATA 040-2023食品中胆碱和左旋肉碱的测定 液相色谱-串联质谱法 适用范围:本文件规定了胆碱和左旋肉碱的液相色谱-串联质谱测定方法,适用于食品中胆碱和左旋肉碱的测定。T/SATA 042-2023鲜湿米粉中米酵菌酸的测定 液相色谱-串联质谱法 适用范围:本文件规定了鲜湿米粉中米酵菌酸的液相色谱-串联质谱法,适用于鲜湿米粉中米酵菌酸的测定。
  • BioNtech和Moderna mRNA疫苗研究新技术 | ProteinSimple Ella 全自动微流控ELISA
    随着中国复星医药引进德国BioNtech mRNA新冠疫苗脚步加快,特别是近期国家药监局已完成专家评审,正在进行行政审批阶段,上市已经指日可待。鉴于中国大陆目前广泛接种了灭活病毒疫苗和腺病毒疫苗,此mRNA疫苗一旦获批,面对多款不同技术路径疫苗,如何施打? 是需要进一步研究和探讨的课题,是否可作为加强针与中国现有的疫苗混打?这些课题需要参考国际上相关研究成果和经验。本文重点综述mRNA疫苗研究中Ella全自动微流控ELISA技术应用案例,包括疫苗混打研究中相关指标检测。Ella全自动微流控ELISA技术是ProteinSimple研发和生产,作为创新型循环系统蛋白质标志物检测平台,已被广泛用于新冠病毒研究和mRNA疫苗开发中。01柳叶刀:BioNtech和阿斯利康疫苗混打研究本研究(CombiVacS)旨在评估第一针接种ChAdOx1-S疫苗(Vaxzevria, AstraZeneca, Oxford, UK)人群,第二针接种BNT162b2 (Comirnaty, BioNTech, Mainz, Germany)作为加强针的免疫原性和反应原性。本研究是西班牙五所大学附属医学院进行的一项多中心、开放标签、随机对照的临床II期实验研究。采用假病毒中和试验来评估抗体功能,并采用干扰素-γ(IFN- γ) 免疫试验来评估细胞免疫反应。血浆中细胞因子IFN- γ浓度采用Ella全自动微流控ELISA定量评估。作为新一代免疫学检测技术Ella以全自动化、标准化和高精度等技术优点受到了专家们认可,适合进行多中心临床实验数据检测和对比统计分析。本研究结果发现,对照组在第0天和14天IFN- γ浓度值无明显变化,而混打疫苗干预组,14天IFN- γ浓度(521.22 pg/mL)比第0天IFN- γ浓度(129.63 pg/mL)有显著增加。采用Ella检测IFN- γ水平,已成为评价疫苗细胞免疫效果的重要和快速技术手段。图1. 干预组与对照组在混合接种疫苗D0和D14天 IFN-γ释放值对比02bioRxiv:感染过新冠病人可能无需注射第二针疫苗针对COVID-19 mRNA疫苗开发和部署加速了全球疫苗接种计划,目前德国BioNtech疫苗BNT162b2已被证明在未感染个体可提供95%的效力,但第二针疫苗对先前感染新冠康复个体的影响一直受到质疑。该研究是西班牙La Paz医院、美国纽约西奈山伊坎医学院和杜克-新加坡国立大学医学院等多个单位合作,作者通过比较未感染和先前感染个体接种BNT162b2疫苗的体液免疫和细胞免疫指标,发现对第二剂可提高未感染个体的体液免疫和细胞免疫,而与之相反,第二剂疫苗导致COVID-19康复个体细胞免疫力降低。图2结果表明,注射第一剂疫苗10天后,与未感染个体相比(110.4 pg/mL, N=20),先前感染COVID-19康复个体(520 pg/mL,N=21)具有更强的IFN-γ反应。20天时,新冠康复个体维持T细胞免疫反应,而未感染个体IFN-γ反应迅速下降。令人预想不到的是,接种第二针后10天,COVID-19康复个体的IFN-γ产生浓度显著下降,这些发现表明,康复个体似乎没有从第二针接种中受益。图2. 不同时间截点,采用Ella平台检测和评估IFN-γ浓度03bioRxiv:快速检测新冠T细胞免疫应答宽动态范围方法2021年6月,杜克-新加坡国立大学Antonio Bertoletti教授团队,发表题为“Rapid determination of the wide dynamic range of SARS‐CoV‐2 Spike 1 T cell responses in whole blood of vaccinated and naturally infected”文章。该研究详细描述一种简单快速实验方案,可高效评估接种新冠疫苗和自然感染者全血中T细胞免疫应答。目前,主要采用ELISPOT和基于流式细胞技术活化诱导细胞标志物方法,这些传统方法的复杂性限制了病毒特异性细胞毒性T细胞应答检测能力。作者开发了一种基于Ella微流控ELISA技术的全血细胞因子释放测定 (CRA) 实验,可快速、简单和准确的对大量人群中的新冠T 细胞进行常规测量。现有研究表明,血清中和抗体的数量无法预测个体中相应的Spike特异性T细胞反应,基于Ella平台全血细胞因子释放实验可更精确地评估T细胞在感染或疫苗接种后的保护能力,可与抗体检测互补,有助于确定当前疫苗策略。图3. 工作流程对比示意图04Moderna:mRNA化学和制造工艺对先天免疫激活的影响先天免疫是人体免疫系统的第一道防线,可通过模式识别受体(PPR)识别入侵抗原的病原体相关模式分子(PAMP),启动级联反应进行免疫应答。mRNA作为外源核酸物质,进入体内可激活先天免疫应答,可阻止mRNA表达并降解mRNA。在体外RNA合成过程中会产生双链RNA(dsRNA),也会通过I型干扰素介导的免疫反应阻止mRNA翻译和降解mRNA。从这些方面看,mRNA本身和制造过程中杂质都可诱导先天免疫激活反应,导致对产品本身影响,需要尿嘧啶化学修饰和生产工艺调整,防止细胞先天免疫激活和随之而来的蛋白质表达减少。Moderna公司科学家通过设计多种细胞和体内模型,比较了编码人类促红细胞生成素(hEPO)mRNA经过经典尿嘧啶或N1-甲基假尿嘧啶(1mΨ)修饰,还有合成过程杂质dsRNA对免疫激活的影响。研究发现,尿嘧啶修饰和减少dsRNA杂质对于控制治疗性mRNA的免疫激活是必要和充分的。本研究采用Ella微流控ELISA检测细胞培养上清液和小鼠血清中hEPO和INF-β。图4. hEPO和INF-β检测结果Ella全自动微流控ELISA系统已成为国际领先的mRNA疫苗研发生物技术手段,并被众多临床机构所采用。同时,Ella平台也被用于新冠病毒病人细胞因子风暴CRS临床监测。Ella,以技术先进性、高灵敏度、高精度和高度自动化标准化,成为欧美细胞因子等蛋白标志物检测主流技术平台。参考文献:1. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet. Published Online June 25, 2021. S0140-6736(21)01420-32. Camara C, Lozano-Ojalvo D, Lopez-Granados E, Paz-Artal E, Pion M, Correa-Rocha R, et al. Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naïve and COVID-19 recovered individuals. bioRxiv. 2021:2021.03.22.436441. 3. Le Bert N, Clapham HE, Tan AT, Chia WN, Tham CYL, Lim JM, et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J Exp Med. 2021 218(5). 4. Anthony Tan, Joey Ming Er Lim, et.al. Rapid determination of the wide dynamic range of SARS‐CoV‐2 Spike 1 T cell responses in whole blood of vaccinated and naturally infected. bioRxiv preprint, this version posted June 29, 2021. 5. Impact ofmRNA chemistry and manufacturing process on innate immune activation. Nelson et al., Sci. Adv. 2020
  • 安捷伦科技公司推出首款针适用于疾病研究的 DNA 甲基化靶向序列捕获产品
    安捷伦科技公司推出首款针适用于疾病研究的DNA甲基化靶向序列捕获产品 2012 年 2 月 14 日,佛罗里达州马科岛(基因组生物学和技术,AGBT)- 安捷伦科技公司(纽约证交所:A)推出其靶向序列捕获平台的新成员,SureSelect XT 人甲基化测序系统,适用于表观遗传学研究中 DNA 甲基化位点检测。这是市场上第一款采用靶向序列捕获技术的全面 DNA 甲基化发现系统。安捷伦将于明日在基因组生物学技术进展年会上揭晓该产品的技术细节。 Agilent SureSelect XT 甲基化测序系统基于液相杂交,是可以分析人类基因组中低甲基化与过度甲基化的胞嘧啶位点的独特研究工具。亚硫酸盐测序技术是 DNA 甲基化研究的黄金标准,也是第一种可以全面研究DNA 甲基化的发现系统。Agilent SureSelect XT 甲基化测序系统将市场领先的靶向序列捕获平台 SureSelect 与亚硫酸盐测序结合在一起,挑选了与表观遗传学研究最相关的基因组序列,包含了与多种疾病(例如,癌症、基因组印记疾病、行为和精神障碍等等)相关的区域,实现了前所未有的序列覆盖范围。 &ldquo DNA 甲基化是重要的表观遗传学特征之一。&rdquo 华盛顿大学西北参考表观基因组图谱中心主任 John Stamatoyannopoulos 说,&ldquo 如果拥有一种经济实惠的可以在亚硫酸盐测序过程中智能地检测数百万 CpG 的平台,那么将大大降低成本并大幅扩展基因组规模 DNA 甲基化分析的范围和适用性。&rdquo &ldquo Agilent SureSelect XT 甲基化测序系统涵盖了所有基因组中癌症研究领域关注的甲基化胞嘧啶位点,投入产出比相当好。&rdquo 马克斯普朗克分子遗传学研究所 Michal-Ruth Schweider 医学博士说道。 &ldquo 我们很高兴能为用户提供这种新工具来满足医学界日益增加的需求。&rdquo 安捷伦副总裁基因组学总经理 Robert Schueren 说道。&ldquo 由于异常甲基化是可逆的,因此这种分析方法非常有利于开发新的治疗方法。&rdquo Agilent SureSelect XT 甲基化测序系统使研究人员能够分析超过 370 万个CpG 核苷酸序列位点,研究它们的甲基化状态。该系统针对启动子、经典 的CpG 岛以及最近被关注的位于CpG 岛上下游 2kb范围内的&ldquo shores&rdquo 和&ldquo shelves&rdquo 区域设计。研究表明,许多甲基化变化并不发生在启动子或 CpG 岛,而是发生在 CpG 岛上下游2kb 范围内,也就是 CpG 岛shores区域。除上述区域外,Agilent SureSelect XT 甲基化测序系统的设计还包含了已知的差异性甲基化区域。 与全基因组亚硫酸盐测序相比,Agilent SureSelect XT 甲基化测序系统具有更高的通量和更低的成本。它可以识别限制性内切酶或免疫沉淀法不能检测的区域。因为该产品也属于SureSelect XT 产品系列,安捷伦为用户提供全套工作流程解决方案。并配有适用于文库构建和靶序列捕获的所有必备试剂。 要了解更多信息,请访问 www.agilent.com/genomics/ngs。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn
  • 喝水=吃药?迪马科技水中抗生素检测解决方案
    据央视报道,全国主要河流,黄浦江、长江入海口、珠江等都被检出了抗生素。其中,珠江广州段受抗生素污染非常严重,脱水红霉素、磺胺嘧啶、磺胺二甲基嘧啶的含量分别为460纳克/升、209纳克/升和184纳克/升,远远高出了欧美发达国家河流中100纳克/升以下的含量。此外,南京、安庆、铜陵、阜阳、蚌埠等部分地区的居民自来水中也被检出抗生素。 据专家解释,目前,国家对自来水内的抗生素含量并无专业手段进行检测,现行国家颁布的生活饮用水水质标准106项指标中也无抗生素指标检测标准,该项指标的检测较为困难。 迪马科技一直致力于为水质检测工作保驾护航,对于地表水及生活饮用水检测可提供全面详尽的解决方案。对于水中抗生素的检测,迪马科技最新推出多种抗生素检测方案,详细信息如下: 一、水中磺胺类药物的检测(SPE-HPLC方法) 适用于水中磺胺嘧啶、磺胺甲基嘧啶、磺胺吡啶、磺胺二甲嘧啶和磺胺甲氧哒嗪的检测,方法检出限是0.5 &mu g /L。 二、 水中氯霉素的检测(SPE-HPLC方法) 适用于水中氯霉素的检测,方法检出限是1.0 &mu g /L。 三、 水中喹诺酮类药物的检测(SPE-HPLC方法) 适用于水中马波沙星、恩诺沙星、双氟沙星和沙拉沙星的检测,方法检出限是0.5 &mu g /L。 四、 水中氯霉素、磺胺类、四环素类、脱水红霉素以及喹诺酮类等14种抗生素的测定(SPE-UHPLC/MS/MS方法) 适用于水中氯霉素、磺胺类、四环素类、脱水红霉素以及喹诺酮类等抗生素检测,氯霉素的检出限是0.1 ng /L,磺胺嘧啶的检出限是0.8 ng /L,磺胺甲基嘧啶的检出限是1.2 ng /L,磺胺吡啶的检出限是0.9 ng /L,磺胺二甲嘧啶的检出限是2.3 ng /L,磺胺甲氧哒嗪的检出限是0.6 ng /L,土霉素的检出限是29 ng /L,金霉素的检出限是35 ng /L,四环素的检出限是20 ng /L,脱水红霉素的检出限是1.1 ng /L,马波沙星的检出限是14.2 ng /L,沙拉沙星的检出限是13.0 ng /L,恩诺沙星的检出限是4.8 ng /L,双氟沙星的检出限是8.8 ng /L。 详细检测方案请点击:http://www.dikma.com.cn/Doc/read/id/3804 水中抗生素药物检测相关产品信息货号 红色产品货号#30039、#30040、#1034、#1035火热促销中
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
  • 纳米孔测序技术有望颠覆DNA测序市场
    p /p p style=" TEXT-ALIGN: center" img src=" http://img1.17img.cn/17img/images/201711/uepic/1912aaae-6c47-454e-9f5f-1d6a5c9540a3.jpg" / /p p style=" TEXT-ALIGN: center TEXT-INDENT: 2em" Scott Tighe(左)等研究人员利用MinION设备在南极泰勒谷测序微生物DNA。 /p p style=" TEXT-ALIGN: center TEXT-INDENT: 2em" 图片来源:Sarah Johnson /p p style=" TEXT-INDENT: 2em" Christopher Mason有一个喜欢在会议上展示的技巧。通过从志愿者手机上收集的化验样本获取DNA,他和同事能在一个小时内现场进行谱系分析,甚至详细描述出捐赠者一天的生活细节。“我们能从手机上的残留物预言谁刚吃了一个橘子或者谁吃了猪肉。”美国纽约威尔康奈尔医学院计算生物学家Mason表示。 /p p style=" TEXT-INDENT: 2em" 他通过利用一种由英国牛津纳米孔技术公司(ONT)研发、名为MinION的手持测序设备实现了这种快速分析。MinION会让DNA长链穿过被称为纳米孔的小孔,并且探测由DNA的4个核苷酸组件引发的电流微小变化,从而阅读序列信息。虽然Mason的展示是对该设备性能的轻松说明,但早期用户也积累了一些引人注目的科学成就。MinION在监控2015年埃博拉病毒爆发上扮演了举足轻重的角色,乘船到达过南极甚至进入了太空轨道。 /p p style=" TEXT-INDENT: 2em" 不过,大小和一幅扑克牌相当的MinION仅在全球测序市场上占据了一小部分份额。这个市场仍由位于加州圣地亚哥的启迪公司主导。虽然启迪领先了近10年,但ONT及其用户也正在努力克服技术挑战——最突出的挑战是较高的出错率。与此同时,竞争的企业希望对这种概念上很简单但技术上很复杂的测序策略稍加创新,从而超越ONT。 /p p style=" TEXT-INDENT: 2em" strong 在传染病研究人员中最受欢迎 /strong /p p style=" TEXT-INDENT: 2em" 事实证明,MinION在传染病研究人员中尤其受欢迎。例如,伯明翰大学微生物基因学家、MinION早期采用者Nicholas Loman同全球病毒“热点区域”的同行合作,共同监控埃博拉在西非以及寨卡在巴西的传播。“他们基本上能在48小时内建立一个测序实验室并使其运行,并且可以把设备打包装到能携带的行李箱里。”加州大学生物物理学家Mark Akeson表示。Akeson开展了纳米孔测序法方面的一些基础性研究,并且是ONT咨询委员会成员。Loman表示,这种可携带性是一种巨大的优势,但大量的数据输出可能会难以掌控。“我们在巴西几乎要成功了,但因为设备过热,我的苹果电脑崩溃了。” /p p style=" TEXT-INDENT: 2em" 一些团队正在探寻临床微生物学应用。澳大利亚昆士兰大学生物信息学家Lachlan Coin开发了实时数据分析算法,以便检测血液样本中的耐药细菌。在利用培养细菌开展的早期测试中,Coin团队能在10个小时内辨别出一个样本中的所有抗药基因。Coin介绍说,现在的技术能让这一时间减半,但利用真实样本(人类DNA会将细菌DNA淹没)的做法正在令这一过程复杂化。“我认为,再过一年左右,我们将能在6个小时内辨别出病人样本中的抗药基因。” /p p style=" TEXT-INDENT: 2em" 其他研究人员正在探寻宏基因组学,目标是全面描述样本中的所有生物体。原则上,流动细胞中的每个纳米孔都能被用于同时检测不同的基因组。“你可以获得存在的任何物种——细菌、病毒和人类DNA的完整基因图谱。”Mason介绍说。他利用纳米孔测序对因肮脏出名的纽约地铁系统开展了宏基因组学调查,并且雄心勃勃地计划对更加荒凉的环境——包括火星进行分析。Mason同美国宇航局的科学家合作证实,MinION在国际空间站零重力条件下表现良好。他和同事希望,有一天能将该技术用于研究火星,并且为正在进行的寻找地外生命提供帮助。 /p p style=" TEXT-INDENT: 2em" 回到地球,佛蒙特大学遗传学家Scott Tighe在南极麦克默多干河谷运行了MinION。在那里,他的团队用了两个多小时对微生物样本进行了测序。“设备停止运行的原因在于外面太冷了:电池到最后没电了。”同Tighe就若干项目有过合作的Mason解释说。 /p p style=" TEXT-INDENT: 2em" strong 瞄准哺乳动物基因组 /strong /p p style=" TEXT-INDENT: 2em" 诸如美国国家人类基因组研究所所长Adam Phillippy等纳米孔方面的资深专家将微生物基因组组装视为“一个已经解决的问题”。如今,他们有了更高远的目标:含有数十亿个而非几百万个核苷酸的哺乳动物基因组。今年,一个包括Phillippy、Loman和加拿大安大略癌症研究所生物信息学家Simpson在内的研究团队报告称,他们仅利用达到很高准确度的MinION数据便组装了完整的人类基因组。Simpson介绍说,平均的重叠群大小达到百万碱基级别,精度值最高为99.44%。搭配使用启迪公司的短序列技术,该团队将准确度提升至99.96%,尽管这仍落后于99.99%的金标准准确度。 /p p style=" TEXT-INDENT: 2em" 不过,在人类基因组分析的其他方面,纳米孔要更加擅长。例如,目前的人类基因组组装仍不完整,因为高度重复的区域对短序列分析“并不感冒”。一个由加州大学基因组学研究人员Karen Miga领导的团队证实,纳米孔能帮助研究人员填补这些空白。Miga团队利用150千碱基对序列重构了人类着丝点,即真核生物染色体上高度重复的基因组。对该领域的研究此前是一片空白。同Miga开展合作的Akeson预测,离组装出真正完整的基因组序列可能仅有几年时间。 /p p style=" TEXT-INDENT: 2em" 纳米孔分析还非常适合绘制外基因标记——对单个核苷酸进行的微小化学修饰,会影响基因表达。大多数测序平台利用的是清除这些标记的样品制备方法,但纳米孔平台可直接分析修饰的DNA。Simpson和来自约翰斯· 霍普金斯大学的Winston Timp证实,他们能训练软件区分甲基化胞苷酸和正常胞嘧啶的电信号,准确度约为90%。Akeson也实现了类似的成功。“我们能探测到任何试图看到的修饰。”Akeson表示,“它甚至能区分两个氢原子之间的差别。” /p p style=" TEXT-INDENT: 2em" strong 更多期待 /strong /p p style=" TEXT-INDENT: 2em" 不过,一些用户发现,纳米孔样本准备工具具有不可预知性。例如,一些DNA样本需要广泛的优化。“一些人做得非常好并且获得了惊人的成果,但其他人仍在挣扎。”位于马萨诸塞州的药物研发公司Warp Drive Bio首席科学家Keith Robison 表示。在去年12月的一次演讲中,ONT首席科技官Clive Brown宣称:“公司正在投入很多努力,为人们提供针对特定样本类型的调试协议,从而帮助他们优化获得的样本。” /p p style=" TEXT-INDENT: 2em" 诸多问题为竞争者带来了机遇。跟得最紧的是位于瑞士的罗氏公司。2014年,该公司并购了总部位于加州的纳米孔初创企业——珍妮亚技术公司。虽然罗氏公司对它的系统秘而不宣,但珍妮亚公司在2016年公开的一份文件中描述了“通过合成开展纳米孔测序”的策略。该技术将DNA合成酶同蛋白纳米孔配对。这种酶会读取目标DNA,并且利用带有化学标签的核苷酸建立互补序列。在每个碱基被包括进不断延长的DNA链时,它的标签被释放并穿过纳米孔,从而产生不同的电信号。 /p p style=" TEXT-INDENT: 2em" 不过,ONT并未止步不前。和此前的模型相比,其两个最新的桌上型系统能传送大很多的数据量。在今年3月发布的GridION基本上可并行运行多个MinION设备。相比之下,PromethION利用的是一种完全不同的流动细胞,并且面向的是人类基因组规模的项目。“很明显,他们想让该系统在输出量方面同启迪公司的平台相媲美。”Loman表示。 /p p style=" TEXT-INDENT: 2em" 虽然该领域取得了很多进展,但不容否认,纳米孔测序占据了支配地位。其低成本、可靠测序的前景令研究人员兴奋不已。“作为计算机科学家,我总是非常渴望数据。”Phillippy表示,“所有微生物学实验室和大学课堂都能产生测序数据的想法非常诱人。”& nbsp /p
  • 585万!通辽市农畜产品质量安全中心采购相关试剂及设备
    项目概况产品分析仪器仪表招标项目的潜在投标人应在内蒙古自治区政府采购网获取招标文件,并于2021年09月08日 09时00分(北京时间)前递交投标文件。一、项目基本情况项目编号:TLSZCS-G-H-210063项目名称:产品分析仪器仪表采购方式:公开招标预算金额:5,850,000.00元采购需求:合同包1(分析及鉴定系统):合同包预算金额:3,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表农畜产品品质及产地溯源分析系统1(套)详见采购文件1,600,000.001,600,000.001-2其他专用仪器仪表高分辨农畜产品农兽药残留分析及鉴定系统1(套)详见采购文件2,200,000.002,200,000.00本合同包不接受联合体投标合同履行期限:合同签订后30个日历日内交货合同包2(兽药残留检测标准物质耗材):合同包预算金额:550,055.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他专用仪器仪表甲磺酸培氟沙星(液体)10(支)详见采购文件1,200.001,200.002-2其他专用仪器仪表盐酸沙拉沙星(液体)10(支)详见采购文件600.00600.002-3其他专用仪器仪表诺氟沙星(液体)10(支)详见采购文件600.00600.002-4其他专用仪器仪表盐酸洛美沙星(液体)10(支)详见采购文件680.00680.002-5其他专用仪器仪表氧氟沙星(液体)10(支)详见采购文件600.00600.002-6其他专用仪器仪表盐酸环丙沙星(液体)10(支)详见采购文件600.00600.002-7其他专用仪器仪表甲磺酸达诺沙星(液体)10(支)详见采购文件600.00600.002-8其他专用仪器仪表恩诺沙星(液体)10(支)详见采购文件110.00110.002-9其他专用仪器仪表氘代盐酸恩诺沙星-D5(液体)10(支)详见采购文件3,550.003,550.002-10其他专用仪器仪表喷布特罗盐酸盐10(支)详见采购文件20,600.0020,600.002-11其他专用仪器仪表氯丙那林(液体)10(支)详见采购文件680.00680.002-12其他专用仪器仪表盐酸妥布特罗(液体)10(支)详见采购文件680.00680.002-13其他专用仪器仪表非诺特罗氢溴酸盐(液体)10(支)详见采购文件4,400.004,400.002-14其他专用仪器仪表西马特罗(液体)10(支)详见采购文件600.00600.002-15其他专用仪器仪表克伦特罗(液体)10(支)详见采购文件17,800.0017,800.002-16其他专用仪器仪表莱克多巴胺10(支)详见采购文件8,750.008,750.002-17其他专用仪器仪表沙丁胺醇(液体)10(支)详见采购文件5,900.005,900.002-18其他专用仪器仪表特布他林10(支)详见采购文件7,060.007,060.002-19其他专用仪器仪表克伦特罗-D9(液体)10(支)详见采购文件3,900.003,900.002-20其他专用仪器仪表沙丁胺醇-D3(液体)11(支)详见采购文件22,330.0022,330.002-21其他专用仪器仪表莱克多巴胺-D3(液体)11(支)详见采购文件10,780.0010,780.002-22其他专用仪器仪表氯丙那林-D710(支)详见采购文件19,800.0019,800.002-23其他专用仪器仪表西马特罗D7(液体)10(支)详见采购文件3,900.003,900.002-24其他专用仪器仪表妥布特罗D9(液体)10(支)详见采购文件52,800.0052,800.002-25其他专用仪器仪表特布他林D910(支)详见采购文件16,400.0016,400.002-26其他专用仪器仪表非诺特罗-d610(支)详见采购文件24,000.0024,000.002-27其他专用仪器仪表喷布特罗D910(支)详见采购文件43,700.0043,700.002-28其他专用仪器仪表金霉素10(支)详见采购文件5,050.005,050.002-29其他专用仪器仪表土霉素(液体)10(支)详见采购文件2,200.002,200.002-30其他专用仪器仪表四环素10(支)详见采购文件4,500.004,500.002-31其他专用仪器仪表强力霉素10(支)详见采购文件7,400.007,400.002-32其他专用仪器仪表金刚烷胺(液体)10(支)详见采购文件1,080.001,080.002-33其他专用仪器仪表金刚烷胺D15(液体)10(支)详见采购文件13,000.0013,000.002-34其他专用仪器仪表氟苯尼考(液体)10(支)详见采购文件680.00680.002-35其他专用仪器仪表氟苯尼考胺(液体)10(支)详见采购文件680.00680.002-36其他专用仪器仪表甲砜霉素(液体)10(支)详见采购文件680.00680.002-37其他专用仪器仪表氯霉素(液体)10(支)详见采购文件3,060.003,060.002-38其他专用仪器仪表氯霉素-D5(液体)10(支)详见采购文件13,600.0013,600.002-39其他专用仪器仪表有色孔雀石绿(液体)10(支)详见采购文件600.00600.002-40其他专用仪器仪表无色孔雀石绿(液体)10(支)详见采购文件600.00600.002-41其他专用仪器仪表有色孔雀石绿D5(液体)10(支)详见采购文件3,550.003,550.002-42其他专用仪器仪表无色孔雀石绿D6(液体)10(支)详见采购文件2,400.002,400.002-43其他专用仪器仪表AOZ(液体)10(支)详见采购文件680.00680.002-44其他专用仪器仪表AMOZ(液体)10(支)详见采购文件680.00680.002-45其他专用仪器仪表AHD(液体)10(支)详见采购文件680.00680.002-46其他专用仪器仪表SEM(液体)10(支)详见采购文件5,800.005,800.002-47其他专用仪器仪表AOZ-D4(液体)10(支)详见采购文件3,600.003,600.002-48其他专用仪器仪表AMOZ-D5(液体)10(支)详见采购文件10,200.0010,200.002-49其他专用仪器仪表AHD-C3(液体)10(支)详见采购文件31,520.0031,520.002-50其他专用仪器仪表SEM-13C(液体)10(支)详见采购文件43,240.0043,240.002-51其他专用仪器仪表磺胺噻唑(液体)10(支)详见采购文件1,400.001,400.002-52其他专用仪器仪表磺胺间二甲氧嘧啶(液体)10(支)详见采购文件680.00680.002-53其他专用仪器仪表磺胺甲噻二唑(液体)10(支)详见采购文件600.00600.002-54其他专用仪器仪表磺胺氯哒嗪(液体)10(支)详见采购文件1,400.001,400.002-55其他专用仪器仪表磺胺嘧啶(液体)10(支)详见采购文件600.00600.002-56其他专用仪器仪表磺胺甲基嘧啶(液体)10(支)详见采购文件2,000.002,000.002-57其他专用仪器仪表磺胺多辛(液体)10(支)详见采购文件600.00600.002-58其他专用仪器仪表磺胺异噁唑(液体)10(支)详见采购文件600.00600.002-59其他专用仪器仪表磺胺间甲氧嘧啶(液体)10(支)详见采购文件1,100.001,100.002-60其他专用仪器仪表磺胺二甲嘧啶(液体)10(支)详见采购文件1,300.001,300.002-61其他专用仪器仪表磺胺甲噁唑(液体)10(支)详见采购文件1,100.001,100.002-62其他专用仪器仪表磺胺二甲氧嘧啶(液体)10(支)详见采购文件1,100.001,100.002-63其他专用仪器仪表磺胺喹噁啉(液体)10(支)详见采购文件600.00600.002-64其他专用仪器仪表替米考星(液体)10(支)详见采购文件4,100.004,100.002-65其他专用仪器仪表阿维菌素(液体)10(支)详见采购文件600.00600.002-66其他专用仪器仪表阿苯达唑(液体)10(支)详见采购文件600.00600.002-67其他专用仪器仪表阿苯达唑砜(液体)10(支)详见采购文件800.00800.002-68其他专用仪器仪表阿苯达唑亚砜(液体)10(支)详见采购文件600.00600.002-69其他专用仪器仪表地克利珠(液体)10(支)详见采购文件2,300.002,300.002-70其他专用仪器仪表土霉素对照品7(支)详见采购文件700.00700.002-71其他专用仪器仪表阿维菌素对照品7(支)详见采购文件3,815.003,815.002-72其他专用仪器仪表地塞米松磷酸钠对照品7(支)详见采购文件1,785.001,785.002-73其他专用仪器仪表氨基比林对照品7(支)详见采购文件1,925.001,925.002-74其他专用仪器仪表氯氰碘柳胺钠对照品5(支)详见采购文件3,400.003,400.002-75其他专用仪器仪表伊维菌素对照品5(支)详见采购文件1,240.001,240.002-76其他专用仪器仪表氟苯尼考对照品7(支)详见采购文件3,815.003,815.002-77其他专用仪器仪表恩诺沙星对照品7(支)详见采购文件2,870.002,870.002-78其他专用仪器仪表安替比林对照品7(支)详见采购文件1,225.001,225.002-79其他专用仪器仪表乳酸环丙沙星对照品7(支)详见采购文件2,485.002,485.002-80其他专用仪器仪表萘普生对照品7(支)详见采购文件1,260.001,260.002-81其他专用仪器仪表青霉素对照品7(支)详见采购文件1,925.001,925.002-82其他专用仪器仪表头孢噻呋对照品7(支)详见采购文件4,760.004,760.002-83其他专用仪器仪表阿苯达唑对照品7(支)详见采购文件1,505.001,505.002-84其他专用仪器仪表烟酸诺氟沙星对照品7(支)详见采购文件2,870.002,870.002-85其他专用仪器仪表氨苄西林对照品7(支)详见采购文件1,260.001,260.002-86其他专用仪器仪表卡那霉素标准品7(支)详见采购文件525.00525.002-87其他专用仪器仪表林可霉素对照品6(支)详见采购文件1,650.001,650.002-88其他专用仪器仪表绿原酸对照品7(支)详见采购文件1,470.001,470.002-89其他专用仪器仪表黄芩苷对照品7(支)详见采购文件2,555.002,555.002-90其他专用仪器仪表无水葡萄糖对照品7(支)详见采购文件735.00735.002-91其他专用仪器仪表氟喹诺酮类试剂盒3(盒)详见采购文件7,800.007,800.002-92其他专用仪器仪表阿维菌素试剂盒3(盒)详见采购文件9,600.009,600.002-93其他专用仪器仪表阿苯达唑试剂盒3(盒)详见采购文件9,000.009,000.002-94其他专用仪器仪表替米考星试剂盒3(盒)详见采购文件9,600.009,600.002-95其他专用仪器仪表磺胺喹恶啉试剂盒3(盒)详见采购文件7,800.007,800.002-96其他专用仪器仪表地克珠利试剂盒3(盒)详见采购文件12,300.0012,300.00本合同包不接受联合体投标合同履行期限:合同签订后30个日历日内交货合同包3(农药残留检测标准物质耗材):合同包预算金额:599,529.00元品目号品目名称
  • 浙江省市场监督管理局批准发布 《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准
    2022年4月16日,浙江省市场监督管理局批准发布了DB33/T 2481-2022《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准,2022年5月16日起实施。 1 范围本标准规定了畜禽排泄物中磺胺醋酰、磺胺吡啶、磺胺嘧啶、磺胺甲噁唑、磺胺噻唑、磺胺甲基嘧啶、磺胺二甲噁唑、磺胺异噁唑、磺胺甲噻二唑、苯甲酰磺胺、磺胺二甲嘧啶、磺胺异嘧啶、磺胺对甲氧嘧啶、磺胺甲氧哒嗪、磺胺间甲氧嘧啶、磺胺氯哒嗪、磺胺喹噁啉、磺胺邻二甲氧嘧啶、磺胺间二甲氧嘧啶、磺胺苯吡唑的液相色谱-串联质谱测定方法。本标准适用于畜禽排泄物中上述20种磺胺类药物残留量的测定。本标准的检出限为2 mg/kg,定量限为5 mg/kg。 注: 畜禽排泄物包括畜禽排泄的粪便或粪便和尿液的混合物。2 规范性引用文件下列文件中的内容通过规范性文件的引用而构成本标准必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本标准;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB/T 6682 分析实验室用水规格和试验方法GB/T 25169 畜禽监测技术规范3 术语和定义本标准没有需要界定的术语和定义。4 原理试样中残留的磺胺类药物经酸化乙腈溶液提取,氮气吹干后用磷酸盐溶液复溶,固相萃取柱净化, 液相色谱-串联质谱仪测定,基质匹配标准曲线校准,外标法定量。5 试剂或材料除非另有规定,均使用分析纯试剂。5.1 水:GB/T 6682,一级。 5.2 甲醇(CH3OH):色谱纯。5.3 正己烷(C6H14)。 5.4 90 %酸化乙腈溶液:取 900 mL 乙腈,加冰乙酸 10 mL,加水稀释至 1 000 mL,混匀。5.5 0.05 mol/L 磷酸盐溶液:取 1.48 g 磷酸二氢钠和 14.50 g 磷酸氢二钠,加水溶解稀释至 1 000 mL, 混匀。 5.6 5 %甲醇溶液:取 50 mL 甲醇,加水稀释至 1 000 mL,混匀。 5.7 5 %氨化甲醇:取 5 mL 氨水,加甲醇稀释至 100 mL,混匀。 5.8 0.1 %甲酸溶液:取 1.0 mL 甲酸,加水稀释至 1 000 mL,混匀。 5.9 乙腈甲酸溶液:取 10 mL 乙腈,用 0.1 %甲酸溶液稀释至 100 mL,混匀。 5.10 0.1%甲酸甲醇溶液:取 1.0 mL 甲酸,加甲醇稀释至 1 000 mL,混匀。 5.11 磺胺类标准品:各标准品信息见附录 A,纯度≥95 %。5.12 标准贮备溶液(1 mg/mL):分别称取磺胺类标准品(5.11)约 10 mg(准确至 0.01 mg),分别置 10 mL 棕色容量瓶中,用甲醇(5.2)溶解并定容至刻度,混匀。-20 ℃以下保存,有效期 6 个月。 5.13 混合标准中间溶液Ⅰ(10 mg/mL):分别吸取标准贮备溶液(5.12)各 1.00 mL,置于 100 mL 棕色容量瓶中,用甲醇(5.2)稀释至刻度,混匀,-20 ℃以下保存,有效期 1 个月。 5.14 混合标准中间溶液Ⅱ(250 ng/mL):准确吸取混合标准中间溶液Ⅰ(5.13)250 mL,置于 10 mL 棕色容量瓶中,用乙腈甲酸溶液(5.9)稀释至刻度,混匀,现用现配。 5.15 系列混合标准工作溶液:准确吸取混合标准中间溶液Ⅱ(5.14)适量,用乙腈甲酸溶液(5.9) 稀释成浓度为 2.0 ng/mL、5.0 ng/mL、25.0 ng/mL、50.0 ng/mL、100.0 ng/mL、250.0 ng/mL 的系列标准工作溶液,现用现配。 5.16 N-乙烯吡咯烷酮和二乙烯基苯混合固相萃取柱(HLB):60 mg/3 mL 或性能相当者。5.17 微孔滤膜:0.22 mm,水系。6 仪器设备6.1 液相色谱-串联质谱仪:配有电喷雾离子源。 6.2 分析天平:感量 0.01 mg、0.01 g。 6.3 真空冷冻干燥机:冷阱温度-50 ℃,真空度 10 Pa。 6.4 离心机:转速不低于 10 000 r/min。 6.5 氮吹仪。 6.6 固相萃取装置。 6.7 振荡仪。 6.8 涡旋混合器。 6.9 超声提取仪。 6.10 样品粉碎设备。 6.11 分析筛:0.5 mm 孔径。7 样品制备与保存按照GB/T 25169采集畜禽排泄物,用四分法缩减至约200 g,-40 ℃以下真空冷冻干燥24 h,使样品中的水分在10 %以下,粉碎,过0.5 mm孔径的分析筛(6.11),装入密闭容器中,于-20 ℃以下保存备用。取不含待测磺胺类药物的样品适量,按上述方法制备,作为空白试样。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之二:稳定同位素标记磺胺类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。本期向您推荐稳定同位素标记的磺胺类化合物。部分稳定同位素标记磺胺类化合物:产品号中文名称英文名称推广规格溶剂1ST4018磺胺嘧啶-D4Sulfadiazine-D4100μg/mL,1mL甲醇1ST4026磺胺邻二甲氧嘧啶-D3Sulfadoxine-d3100μg/mL,1mL甲醇1ST4025磺胺间二甲氧嘧啶-D6Sulfadimethoxine-d6100μg/mL,1mL甲醇1ST4022D4磺胺二甲基嘧啶-D4Sulfamethazine-D4100μg/mL,1mL甲醇1ST4033磺胺间甲氧基嘧啶-D4Sulfamonomethoxine-d4100μg/mL,1mL甲醇1ST4043D4磺胺脒-D4Sulfaguanidine-d45mg100μg/mL,1mL甲醇1ST4037磺胺对甲氧嘧啶-D4Sulfameter-D4100μg/mL,1mL甲醇1ST4006D4磺胺邻二甲氧嘧啶-D4Sulfadoxine-d45mg100μg/mL,1mL乙腈1ST4057磺胺苯吡唑-D4Sulfaphenazole-d4100μg/mL,1mL甲醇1ST4051磺胺噻唑-D4Sulfathiazole-d45mg100μg/mL,1mL甲醇1ST4048磺胺间二甲氧嘧啶-D4Sulfadimethoxine-d45mg100μg/mL,1mL甲醇1ST4050磺胺甲恶唑-D4Sulfamethoxazole-d45mg100μg/mL,1mL乙腈1ST4008D4磺胺甲噻二唑-D4Sulfamethizole-d45mg100μg/mL,1mL甲醇1ST4003D4磺胺吡啶-D4Sulfapyridine-d45mg100μg/mL,1mL甲醇了解更多产品或需要定制服务,请联系我们
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制