当前位置: 仪器信息网 > 行业主题 > >

漆黄素

仪器信息网漆黄素专题为您提供2024年最新漆黄素价格报价、厂家品牌的相关信息, 包括漆黄素参数、型号等,不管是国产,还是进口品牌的漆黄素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合漆黄素相关的耗材配件、试剂标物,还有漆黄素相关的最新资讯、资料,以及漆黄素相关的解决方案。

漆黄素相关的资讯

  • Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度
    利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 图2 实验设计和模型开发流程图。【结果】表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。 图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)表2 使用各种光谱分析技术的PLSR模型预测性能。 图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。【结论】红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。请点击如下链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e#rd
  • 《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》等2项团体标准公开征求意见
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱 质谱法》2项团体标准公开征求意见的通知.pdf《牛樟精油》(征求意见稿).pdf《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿).pdf征求意见表.docx.doc
  • 【瑞士步琦】天然抗氧化剂的保护伞——使用步琦微胶囊造粒仪制备叶黄素微球和微胶囊
    1简介叶黄素是植物中常见的天然类胡萝卜素。外表为红橙色,具有天然抗氧化性能,因此也具有氧敏感性;此外,叶黄素基本上也不溶于水。叶黄素和类胡萝卜玉米黄质素存在于人类眼部视网膜中,对视觉非常重要。本研究的目的是保护抗氧化剂免于氧化,并使其在水中分散。因此,利用微胶囊造粒仪 B-390/B-395 Pro 仪器搭配气流振动喷嘴和同心喷嘴分别制备叶黄素微球和微胶囊。制备的微球呈球形、大小均匀,微胶囊由内核和外壳两种不同成分组成。如 下图所示,微球和微胶囊均呈现均匀的球形形貌。含叶黄素的微球模型含叶黄素的微胶囊模型2实验设备和材料实验设备:步琦微胶囊造粒仪 B-390/B-395 Pro实验材料:1.5%(w/w)和1.8%(w/w)海藻酸钠溶液0.1 M CaCl2样品1:7.5g 叶黄素粉末分散于 142.5g 浓度为 1.5% 的海藻酸钠溶液中样品2:5g 叶黄素粉末溶于 100mL 花生油中,磁力搅拌均匀3实验过程实验1:使用气流振动喷嘴制备包埋叶黄素的海藻酸钙基质的微球,仪器参数如下 表1所示。表1:实验 1 的过程参数。仪器微胶囊造粒仪 B-390气流振动喷嘴750 μm(核)/1.5 mm(壳)频率870 Hz进样(外置注射泵)样品1:5.45 mL/min压力1013 mbar喷嘴气体流量1 L/min分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)实验2:使用同心喷嘴制备包埋叶黄素油的核壳结构海藻酸钙微胶囊,仪器参数如下 表2 所示。表2:实验 2 的过程参数。仪器微胶囊造粒仪 B-395 Pro同心喷嘴450 μm(核)/ 700 μm(壳)频率300 Hz进样核:样品2(注射泵进样)壳:1.8 %海藻酸钠溶液(压力瓶进样)核进样速度11.5 mL/min压力300 mbar分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)4实验结果本实验成功使用气流振动喷嘴制得球型叶黄素微粒,如下图(a)所示。图中叶黄素粉末嵌入在海藻酸钙微球内部,微球直径尺寸在 300μm 到 600μm 之间。与叶黄素微球相比,实验2 制备的核壳结构叶黄素微胶囊如下图(b)所示。通过使用同心喷嘴,海藻酸盐基质形成的外壳可以将叶黄素油完全包覆,形成保护层,微胶囊直径在 1200μm 到 1400μm 之间。(a)使用气流振动喷嘴制得的叶黄素微球(b)使用同心喷嘴制得的叶黄素微胶囊5结论本研究提出两种使用微胶囊造粒仪包埋油溶性物质的可行方法,步琦微胶囊造粒仪 B-390 和 B-395 Pro 可用于制备含叶黄素的球型微粒和微胶囊。
  • 惠州市标准化协会发布《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准征求意见稿
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日
  • 惠州市标准化协会关于《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准的立项公告
    各有关单位:根据《惠州市标准化协会团体标准管理办法》的相关规定,协会组织专家对《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准进行立项评审,经专家评审,所申报的团体标准符合立项条件,现予批准立项。同时欢迎与本标准有关的高校、科研机构、技术机构及相关企业单位或个人加入本标准的起草制定工作,有意参与本团体标准起草制定工作的请与协会联系。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com惠州市标准化协会2023年3月9日惠州市标准化协会关于《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》团体标准的立项公告。pdf
  • 婴幼儿食品和乳品中维生素B2的测定
    维生素B2又叫核黄素,是人体必需的维生素之一。维生素B2在体内以辅酶黄素单核苷酸和黄素腺嘌呤二核苷酸的形式参与包括碳水化合物、核酸和脂肪的代谢;细胞的生长代谢;维生素B6和烟酸的代谢;铁的吸收和储运等多种代谢反应,临床上常用来防治唇裂、口角炎、结膜炎等。维生素B2与其他B族维生素一样,不会在体内蓄积,因此需要以食物来补充,婴幼儿食品和乳品中也会添加维生素B2作为营养强化剂之一。目前维生素B2常用的检测方法有荧光分光光度法、高效液相色谱法、高效液相色谱-串联质谱法等。荧光分光光度法存在影响因素多、干扰大、不易控制等缺点。高效液相色谱-串联质谱法的仪器成本高,不利于普及。日立参考《GB5009.85-2016》的高效液相色谱法,使用Chromaster高效液相色谱仪测定了婴幼儿食品和乳品中的维生素B2,结果优异,显示了日立高效液相色谱仪的高性能。 实验部分仪器配置日立Chromaster高效液相色谱仪5110泵,5210自动进样器,5310柱温箱,5440荧光检测器标准品维生素B2图1.色谱分析条件 图2.标准品色谱结果 ( 浓度:0.1mg/L )结果与讨论图3.标准品重现性结果(0.1 mg/L标准液,n=6) 从实验结果可以看出,维生素B2的保留时间和峰面积RSD分别是0.02%和0.27%,均获得了良好的重现性。图4.标准曲线结果维生素B2在0.01 - 1.5 mg/L的浓度范围内线性R2为0.9999,线性良好。图5.实际样品前处理过程 图6.实际样品分析结果 对市售的米粉和奶粉按图5处理后进行测定,每100g样品中维生素B2分别为366μg和1481μg。对米粉和奶粉进行加标回收率实验,维生素B2的加标回收率分别为91.17%和83.15%。 结论 本实验所用方法可用于检测婴幼儿食品和乳品中的维生素B2,标准曲线线性和重现性良好。可用于生产企业、质检等部门对维生素B2的检测。 日立Chromaster高效液相色谱仪性能优异、操作简便、结实耐用,可让您获得精准、高灵敏度的实验结果。关于日立高效液相色谱仪的详情,请参考:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • 你眼里的西红柿,在拉曼看来只不过是番茄红素罢了
    p  strong你眼中的红色/strong/pp  最近德国的一项研究表明,和HPLC相比,表面增强拉曼光谱技术可以更好地研究食物中的类胡萝卜素和微量元素。/pp  抗氧化剂对人类健康是否真的会有益处呢?这个争论到现在依然存在,尤其是人们认为遵循水果和蔬菜中高度着色色素膳食补充元素可以对人体有积极的作用。西红柿富含的番茄红素当中含有大量的红色素,人们认为这种化合物总体来说对人体有益处,尤其是食用大量的西红柿可以预防前列腺癌的发生。/pp  来自德国耶拿大学的科研人员在Analyst杂志上发表了一片文章帮我们弥补了关于番茄红素和其他类胡萝卜素的知识。尽管我们对番茄红素和β胡萝卜素的了解很多,但是对于植物相中的这些化合物却知之甚少。因此他们借助表面增强拉曼光谱技术(SERS)寻找这些植物当中类胡萝卜素的差别。/ppstrong  关于摄入量/strong/pp  科研团队建造了一种模拟矩阵,简单的将两种特定比例的类胡萝卜素混合,之后使用电子束曝光SERS有源衬底和488纳米激励源进行样本的探索。他们从真实的番茄植株中提取类胡萝卜素并对其进行了测量,然后使用主成分分析和偏最小二乘回归法对数据进行统计分析。他们将使用SERS方法得到的样本与HPLC测量得到的提取物进行比较。大多数番茄样本通过HPLC和SERS两种方式得到的结果之间找到了一致性。/pp  之所以说这种技术及其重要,是因为尽管现在科学家已经掌握了600多种已知的类胡萝卜素,但是仅仅有50%会出现在人们的日常饮食当中,而且在这50%当中仅有很少一部分类胡萝卜素可以从人体的血浆当中检测到,这就是我们平时所说的α和β胡萝卜素、β隐黄素、番茄红素,叶黄素和玉米黄质。如果这些化合物真的对人体有益,那么我们好像真的缺少这些化合物的摄入。/pp  通过代谢活动,一些类胡萝卜素是形成维他命A的维他命原,但一些类胡萝卜素有自己的氧和自由基清除性能。如果来自鱼油、动物肝脏和蛋类食物的维他命不能总是满足我们对此类维生素的需求的话,那么我们的发现就会显得非常重要。番茄红素本身,5或6类胡萝卜素通常在血浆中可检测到,他们是最有效的中和活性氧。在癌症扩散期间,中和活性氧可以有效的组织或减少癌症细胞的扩散。而吸烟和酗酒对身体造成的不利影响据说是因为摄入过量的类胡萝卜素所引起。/ppstrong  让我们取悦SERS技术吧/strong/pp  因此从健康饮食的角度,我们必须保持饮食规律的平衡,为了达到这种平衡我们必须拥有关于我们所食用食物的成分和质量的详细信息。研究团队指出,HPLC是衡量食物中所含物质的“黄金标准”分析技术。但是HPLC技术不仅复杂缓慢而且费用昂贵,而SERS技术却可以提供区分现实世界样本中类胡萝卜素的优势。使用HPLC技术和SERS技术对不同成熟程度的番茄进行的测试结果之间达成了很好的一致性,这也为SERS技术的进一步开发提供了奠基。/ppbr//p
  • 贝克曼库尔特 | 高通量筛选大肠杆菌重组蛋白生产用酵母营养素
    随着重组DNA技术的迅猛发展,外源基因在不同宿主中的表达使得各种重组蛋白的工业生物生产成为可能。选择合适的宿主是生物工艺设计中的关键步骤之一,具体取决于:1.上游培养效率2.易于基因编辑和分子工具的可用性3.翻译后修饰的能力,如糖基化4.蛋白质(用于下游加工和作为生物制药成分等)的分泌能力目前,多种生物已被应用于重组蛋白的生产,尤其是大肠杆菌,易于基因改造,具有在酵母水解物等多种基质上快速生长并产生高蛋白滴度的优势。已成为迄今为止业界追捧的主力军。典型的生物工艺优化通常需要进行一些初步试验,以发现适用于宿主菌株并提高目的重组蛋白表达的培养基成分(特别是氮基营养素)。对于此类应用需求,能够提高实验效率和参数准确度的高通量筛选平台成为热门工具。贝克曼库尔特BioLector通过在线测量关键培养参数提供可放大的高通量分析。本案例为通过BioLector对多种酵母营养素就生物量生长和重组蛋白的形成进行评估和比较,筛选出了适合大肠杆菌重组蛋白生产和诱导时间的理想培养基。方法培养菌株:大肠杆菌BL21(DE3)pET-28a(+)EcFbFP。培养基:以标准TB培养基(Carl Roth)为参照物,对多个TB 样(Terrific 液)培养基进行比较。不同的TB 样培养基使用不同的酵母提取物。BioLector培养条件:在接种至微孔板之前,先在250 mL摇瓶中进行预培养, 37°C培养6小时。然后使用48孔梅花板(MTP-BOH2)在 BioLector中进行培养。温度 37°C ,振摇速度:1400 rpm。分别在每个培养孔中填充800μL培养液用于非诱导实验,填充790μL用于诱导实验。诱导实验中,在诱导时间点上添加 10μL 50μM 的 IPTG。环境氧气浓度保持在35%,避免培养物缺氧。BioLector在线测量:培养过程中对生物量、EcFbFP(黄素荧光蛋白)、pH以及 DO进行在线测量。结果不同TB样培养基的生物量生长情况:培养实验中,不同酵母营养素的培养基中生物量的生长情况如上图所示:培养基不同,最终的光密度和生长速率也会不同。ProCel 6 中的大肠杆菌OD最高,培养基 ProCel 3 中的大肠杆菌的OD低。ProCel 6为本特定工艺的最高生长速率。上图为培养过程的DO值。培养基 ProCel 3 和 ProCel 4 中的培养物未达到0%的氧饱和度,这表明由于耗氧量有限,该培养基中的菌株代谢活性较低。相反,其他培养物包括TB标准培养基,均在短时间内达到0%的氧饱和度,表明菌株代谢活性高。不同酵母营养素TB样培养基的产物生成:通过将IPTG 添加到培养物中来诱导 T7 聚合酶的表达促进黄素荧光蛋白的生成。BioLector使用梅花板为48个培养物提供了独立的培养空间,因此可测试不同的诱导时间点。使用自动化工作站整合BioLector后的 RoboLector 系统还可以自动进行培养诱导。首先选择一个固定的诱导时间点。分别为培养启动后的3小时、3.75小时和4.5小时。下图所示为每种TB样培养基在诱导时间下所测荧光的平均值。荧光动力学清晰地表明不同培养基有不同的EcFbFP(黄素荧光蛋白)表达水平。表现出最强荧光信号的两个样本为:ProCel 2,诱导点为3.75小时;ProCel 5,诱导点为 3 小时。经过 7.7 小时的培养,ProCel 5 的荧光值达到102.94a.u.,而ProCel 2 的荧光值达到 101.82 a.u.。本方法的不足之处在于未比较不同样本的生物量对蛋白质产量的影响。经过3小时的培养,一些培养物的OD已达到6,而其他培养物仅达到3。当诱导具有不同光密度的培养物时,可能会对在每种酵母营养素上生长的实验大肠杆菌的蛋白质生产性能造成误解。鉴于此,我们采用了一种新方法,将诱导点与生物量信号耦合。使用BioLector的信号驱动RoboLector,依赖于特定生物量的诱导对于每个单独的孔都是可行的。为自动化工作站设置3、6或8的OD目标值,以根据孔内培养物的生长动力学自动添加IPTG以诱导蛋白质生产。如下图所示,ProCel 2表现最佳,最终值为 146.23 a.u.,培养时间是 12.3 小时;ProCel 5表现次之,最终值为138.1 a.u.。与之前进行的一系列实验相比,本实验中的排名与在特定时间点进行诱导的实验不同。这一观察证明了最佳工艺条件的重要性,并使这些条件具有可比性。此处数据表明:与之前的实验相比,本实验中的荧光值更高。正如该领域诸多论文中所强调的那样,诱导时间确实是一个关键参数。同样,在优化大肠杆菌重组蛋白生产的过程中,也必须评估诱导剂的浓度。另外,与对照TB培养基相比,这里测试的一些酵母氮源产生了更高的重组蛋白产量。这些结果凸显了选择培养基成分的重要性,这些成分能够在特定的生物工艺中实现高而稳定的产量。结论通过BioLector系统,贝克曼库尔特可为用户提供适用于各种应用领域的高通量筛选平台。其独特的梅花形微孔板尤其适用于好氧培养,如同实验室生物反应器,BioLector系统通过非侵入式传感器使客户能够获取更多的在线测量参数。正如本应用,通过BioLector系统可轻松实现培养基的筛选,整合自动化工作站的RoboLector,还可实现更多功能。补料、pH调控以及文中所述的诱导功能,所有这些均可在小规模实验中实现,帮助客户同时兼顾成本和效率。RoboLector高通量自动化微型生物培养平台欲了解该应用详情,请扫描下方二维码下载应用指南《利用BioLector进行大肠杆菌重组蛋白生产用酵母营养素的筛选》
  • 赛智科技推出饲料中维生素B2的液相色谱(HPLC)检测方案
    维生素B2又叫做核黄素,为异咯嗪衍生物,桔黄色,易被碱、光及金属元素破坏。  核黄素是许多氧化还原酶的重要组成部分,参与能量和蛋白质代谢。动物缺乏核黄引起体代谢紊乱。其症状:轻则表现为生长受阻,生产力下降,严重者,猪发生皮炎,形成痂皮及脓肿,眼结膜、角膜炎;母畜缺乏则出现早产,胚胎死亡及胎儿畸形;雏鸡的典型症状为足跟关节肿胀,趾内向弯曲成拳状,急性缺乏症能使腿部完全麻痹、瘫痪;种鸡缺乏时,种蛋孵化率低,雏鸡成活率低。  赛智科技参考国标(GB/T 14701-2002),利用全新高性能的LC-10Tvp高效液相色谱仪,经实践检测可提供饲料中维生素B2的HPLC检测方案,得出的结果准确可靠,检出限好,适用于配合饲料、浓缩饲料、复合预混合饲料、维生素预混合饲料中维生素B2的测定,仅供广大用户参考。  以下是高效液相色谱法对饲料中维生素B2的详细检测方法。1  仪器与试剂1.1 仪器、设备  LC-10Tvp高效液相色谱仪  Vertex 色谱柱:150mm× 4.6mm× 5&mu m;  分析天平;  恒温水浴锅;  针头过滤器。1.2 试剂  乙二胺四乙酸二钠(EDTA)  庚烷磺酸钠  冰乙酸  三乙胺  甲醇  维生素B2标准工作液2  试样溶液的制备  称取维生素预混合饲料0.25g-0.5g,于100ml棕色容量瓶中,加入三分之二的提取液于80-100℃水浴中煮沸30min,待冷却后加入14ml甲醇,用提取液定容至刻度,混匀,过滤。维生素预混合饲料样液需有提取液进一步5倍-10倍,取部分过滤液过0.45µ m滤膜过滤,高效液相色谱仪分析。3  色谱条件  色谱柱:Vertex 色谱柱 150mm× 4.6mm× 5&mu m;  流速:1.0mL/min;  温度:室温;  进样量:20&mu L;  检测波长:单检维生素B2为267nm,多种维生素联检为280nm。  流动相:在已装入700ml去离子水的1000ml容量瓶中,加入50mgEDTA、1.1g庚烷磺酸钠,待全溶解后,加入25ml冰乙酸、5ml三乙胺,用去离子水定容至刻度摇匀。用冰乙酸、三乙胺调解pH至3.4± 0.02,过0.45µ m滤膜,取该溶液860ml与140ml甲醇混合,超声脱气,待用。4  维生素B2标准高效液相色谱图
  • 中国食品添加剂和配料协会着色剂专委员会年会江苏召开
    中国食品添加剂和配料协会着色剂专业委员会2016年行业年会于2016年10月18日至20日在江苏省常熟市成功召开。本次年会会务工作由常熟春来机械有限公司承办,并得到当地政府的大力支持。  来自国内外食用着色剂生产和营销企业、食品加工企业、外贸公司、商检部门、第三方检测机构、设备和仪器生产和经销商、原料基地科技人员、大专院校和科研院所共68个单位,150多名代表参加了会议。中国食品报采访报道了本次年会。  协会理事长齐庆中、名誉理事长吕坚东、副理事长杜雅正、副秘书长孙瑾及协会秘书处工作人员参加并指导了工作。  10月17日下午召开了本次年会预备会,协会领导及专业委员会领导成员单位交流了企业、产业和行业一年来的经济运行情况,主要成绩、存在的主要问题和解决方案 展望了产业发展的趋势和前景。会议认为,我国食用着色剂产业的基本状况良好。我国食用着色剂最大品种焦糖色产销稳定,食用合成色素产销稳定 辣椒红色素产业去产能效果显著,前三年积压的库存已销售一空,价格有所上扬,生产企业的利润有所增加。这是辣椒红色素产业进行供给侧结构性改革成功的典范。会议同时着重强调,由于价格上扬太快而导致出现供大于求的震荡局面再次发生。万寿菊—叶黄素产业在协会2016年4月11日青岛召开的产业研讨会的警示下,有效的抑制了万寿菊花的种植面积,但2016年的种植面积还是有一定幅度的增长,从而导致了叶黄素的价格有10%以上幅度的下滑。红曲红色素、红曲黄色素、栀子黄色素等由于产能过剩原因,导致一定幅度的产销量和价格的下滑。水溶性花色苷色素表现喜人,在全国各行业经济下滑的形势下仍然表现稳增长态势。类胡萝卜素(胡萝卜素、叶黄素、玉米黄质、角黄素、虾青素)微胶囊化制剂产品和叶黄素保健品增长较快,健康发展。  18日举行的年会大会由着色剂专业委员会主任姜祥华主持。协会副理事长杜雅正、常熟市市场监督管理局局长阚国良、常熟春来机械有限公司总经理王庆分别致辞。常熟市市场监督管理局办公室主任吴东、虞山镇镇长钟旅疆等同志到会祝贺。  着色剂专业委员会副秘书长王岩松传达了“中国食品添加剂和配料协会五届五次常务理事会暨五届三次理事会的主要内容、决定和会议纪要。  着色剂专业委员会秘书长张慧做了“着色剂行业发展和2016年专业委员会工作报告”。报告指出,过去的一年,着色剂行业的发展总体保持平稳呈现微增长态势。预计2016年食用着色剂产销总量将达到73.6万吨,同比增长0.016% 总销售额超过58.3亿元人民币,同比下降了3.48% 出口预计超过 10247吨,出口创汇总额超过2.32亿美元。2016年全行业产销将实现“微增长”的目标。其中,天然着色剂紫甘薯色素、萝卜红色素、甘蓝红等品种的产销量有所增长 合成着色剂及其复配产品、焦糖色呈现健康稳定的发展态势 辣椒红色素产业去产能效果明显,价格回升 万寿菊—叶黄素产业因2016年种植面积增大,价格出现一定幅度的下滑。红曲红色素、栀子黄色素、姜黄色素等品种产能过剩,出现了产销量和价格的下滑,应引起行业关注。报告从十三个方面分析了行业、产业发展遇到的主要问题和矛盾,面临的新挑战和新机遇。指出,我国食用着色剂产业的发展已经取得了很大成绩,但在质的方面、在实用化方面、在使用技术方面与发达国家相比还存在一定差距。各企业和全行业要做好供给侧结构性改革,转型和产业升级工作 随着新的食品安全法实施,建议生产企业加大法规执行力度。随着“互联网+”的时代兴起,着色剂生产企业应转变营销模式,迎接“互联网+食用着色剂”新模式。还应注重人才培养和人力资源的建设 加强环境保护意识 坚定不移地走中国特色的自主创新之路,促进我国食用着色剂产业实现新的质的飞跃。  本次会议在各位代表和专家的共同努力下,圆满完成了各项议程:  一、组织了学术报告:  来自院校和企业界的专家分别就技术成果、企业核心技术的专利保护以及行业企业在转型和整合的大趋势下应注意的问题等专题与代表分享了他们经验和体会。报告包括:1、我国食品添加剂和配料法规和标准化进展 2.清洁生产管理实践 3、辣椒成分分析和应用研究 4、不同来源β —胡萝卜素的指纹鉴别。  二、会议期间,与会代表还进行了分组讨论和交流,共识如下:  (一) 专业委员会秘书长张慧所做的行业发展报告客观反映了我国食用着色剂产业的发展状况。2016年,整个行业的经济运行平稳,稳中有微增态势,实现稳增长的目标,为2017年新的发展打下较好的基础。  (二) 我国食用着色剂产销量最大的焦糖色品种生产规范、市场有序,健康发展 自新焦糖色素食品安全国家标准GB1886.64实施以来,要求焦糖色素技术指标出厂批检,对生产企业负荷较重,希望出厂批检和型式检验相结合。另外,焦糖色素生产企业表示积极行动起来,宣传焦糖色素的安全性,坚决抵制一些媒体的误导性宣传。与会代表一致认为,采用普通法生产焦糖色素是今后的产业发展方向。  (三) 万寿菊-叶黄素产业因为2016年万寿菊种植面积过大而出现下滑局面。解决万寿菊—叶黄素产业的关建问题要严格控制万寿菊种植面积,防止叶黄素市场出现供大于的局面,避免价格波动而造成农业资源的浪费。与会代表建议每年11月份召开万寿菊—叶黄素产业发展研讨会,对明年万寿菊的种植面积进行合理的计划,保证产业稳定可持续有序的发展。  (四) 辣椒红色素在今年下半年价格出现翘尾现象,上涨幅度达到40%以上。出现这种局面的原因是2012年以来去产能明显,库存消耗造成的。并不是市场需求扩大所致,对这一点各企业一定要有清醒的认识,不要再盲目扩产。建议辣椒红色素生产企业理性对待这轮上涨现象,合理配备产能。辣椒红生产企业要走综合利用之路 系列产品中的每个产品也要走高端化、高质化、高新化、实用化之路。  (五) 生产企业和当地监管部门对复配着色剂的国家标准以及食品配料的法规方面解读和执行方面存在一定的偏差,希望协会在适当的机会安排关于复配着色剂和配料标准法规方面的学术报告。  (六) 食用合成着色剂生产和销售较为稳定。启动氧化铁黄的申报工作。同时呼吁国家监管部门对进口合成色素的监管加大力度,保证国内高品质产品不受到低价的冲击。  (七) 要改革粗放式发展方式,调整不合理的产业链结构,实现产业整合升级,优势互补,充分发挥资源优势。  (八) 产品安全和生产安全要严格把控,把每个生产和产品环节全面管控,杜绝安全事故发生。  (九) 在“大众创业,万众创新”形势下,科技创新是企业发展的原动力,要打造真正的创新型企业。  (十) 着色剂生产企业加强食品安全标准和法规的重视力度,成立法务部,做好标准制修定的申报工作,加强对食品安全法规的消化吸收工作。  (十一) 会议呼吁停止恶意低价竞争行为。各企业要加强自律,诚实守信,规范经营。  (十二)希望协会以各种形式组织行业内企业进行法规培训。邀请卫计委等相关机构的专家和标准评审专家对着色剂企业进行法规解读和培训指导。  (十三) 启动栀子红、藻蓝、甘蓝红、氧化铁黄、胭脂虫红、胭脂树橙、红曲米粉、叶绿素铜、β -胡萝卜素制剂等品种的制修标工作。  在年会闭幕式上,着色剂专业委员会主任姜祥华做了总结发言。发言中指出,焦糖色素和合成色素表现稳定,水溶性花色苷色素因为市场规模小而产能较小,表现出较为喜人的态势。但另外两大天然色素辣椒红、叶黄素则表现出较大的波动。这也反映了以农副产品为原料的色素加工产业会受到多方面的影响。其中包括气候条件、农副产品收购价格、当地政府的政策推动等。这就决定我们要严格把握好种植和产能两大关口,根据国际市场的需求量,理性决定种植面积、收购价格、加工产能,使产业平稳发展。坚决防止盲目投机行为。另外,着色剂生产企业要加强国家标准和法规的重视力度,坚决按照新的食品安全法进行生产和销售。清洁生产非常重要,科技创新更为重要。加大对新产品的开发力度,走精细化、实用化、制剂化之路,增加企业产品的核心竞争力,满足国内外市场的需求。  最后,会议决定,中国食品添加剂和配料着色剂专业委员会2017年行业年会由广州智特奇生物科技有限公司承办。地点时间待定。  代表们由衷感谢常熟春来机械有限公司的领导和工作人员为年会成功举办付出的辛劳 感谢常熟市、虞山镇政府对本次年会的大力支持。
  • 除了“无抗生素”标签,还有哪些评价蛋品品质的指标?有哪些蛋品专用仪器?
    在广告界,"无抗生素"的鸡蛋就像超级英雄一样,总是站在聚光灯下。但是,评价一颗蛋的品质,可不仅限于“抗生素残留”。其实,国家已经制定的国标里面对"抗生素残留"有严格限定。市场监管局会定期对鸡蛋进行"体检",一旦发现有"超标"的鸡蛋,就会毫不犹豫地开出"罚单"。评价一颗蛋的品质,除了需要留意它是否"无抗生素",还需要从蛋的大小与形状(蛋形指数)、蛋壳的质量以及内在的营养成分这三个维度去看。就像婴儿的诞生受到遗传、环境和母亲健康的影响,蛋品的品质也受到遗传、管理以及禽类疾病等因素的影响。1 蛋形指数蛋形指数是指鸡蛋短径与长径之比,一般情况下,标准值为0.7-0.75。如果蛋形指数小于0.7,说明鸡蛋长而窄;反之,如果蛋形指数大于0.75,说明鸡蛋短而宽。蛋形指数对鸡蛋品质的影响体现在三个方面:(1)外观:过大或过小的蛋形指数会影响鸡蛋的外观。蛋形指数大于标准值时,鸡蛋较为圆胖,甚至会出现畸形鸡蛋,影响外观美观度。反之,蛋形指数小于标准值时,鸡蛋会显得过于细长,不够美观,也不利于储存运输。(2)口感:不同蛋形指数的鸡蛋口感也会有所不同。研究发现,蛋形指数0.65-0.75之间的鸡蛋质地较佳,口感更好。(3)营养:蛋形指数的大小也与鸡蛋中营养成分的分布有关。研究表明,蛋形指数较小的鸡蛋蛋黄中含有更高的蛋白质和胆固醇,而蛋形指数较大的鸡蛋蛋白质和胆固醇含量更高。2 影响蛋壳质量的因素蛋壳质量约占蛋重的10%~11%,蛋壳质量是蛋鸡养殖场和饲料生产者普遍关注的问题,它与种鸡的种蛋入孵率、孵化率、鸡苗质量以及商品蛋鸡的鲜蛋产量、经济效益密切相关,据估计,因蛋壳质量低劣造成的蛋损失约为6%。褐壳蛋在我国市场上占有的比例较大,蛋壳的着色虽然不影响鸡蛋的营养价值,但对消费者的心理有一定影响,所以近几年大家对褐壳蛋着色的关注度比往年更高。3 影响内在营养的因素内在营养与蛋重密切相关,蛋白质、碳水化合物、脂肪和钙的摄入量均可影响蛋重。通过调控鸡群的采食量以及日粮蛋白质、氨基酸与能量水平可以适当调整蛋重。增加采食量,提高日粮蛋白质和蛋氨酸、赖氨酸水平能够增加蛋重 提高日粮能量水平,减少采食量,可以适当降低蛋重。在日粮中加入一定量的油脂,增加饲料中的亚油酸含量,也能够在一定水平上增加蛋重。常见的与蛋品品质检测相关的专业仪器如下表所示:Description产品名称Model No.型号Brand/Origin品牌/产地用途多功能蛋品质分析仪ETP-01美国ORKA鸡蛋重量 蛋白高度蛋黄颜色 哈弗值 国际标准等级一体化蛋品质量测定系统ETU-01美国ORKA测量7个指标包括蛋品分析仪,蛋壳强度,厚度的功能蛋壳强度仪EFR-01美国ORKA蛋壳强度蛋壳厚度测定仪ESTG-2美国ORKA无需破损蛋壳厚度蛋壳颜色测定仪QCR英国TSS蛋壳颜色测定蛋粉蛋液分析仪MULTISCAN3000X澳大利亚NI蛋粉蛋液成分快速测定高胶强度测定仪RTC-3002D日本鸡蛋凝胶强度测定罗氏比色扇FQ-1A罗氏蛋黄颜色比对蛋品质量分析仪CDR FOODLAB意大利CDR对于全蛋蛋液,蛋粉,蛋黄的检测,主要分析L-乳酸,D-3羟丁酸 胆固醇,叶黄素,胡萝卜素含量分析家禽饲养隔离安全柜FIC美国PLAS-LABS提供净化、传递、消毒、负压、自动饲喂、温度控制、红光照明设备自动禽类分级系统VTS2000天翔飞域评估禽胴体长度,宽度,面积,破损,分级等指标数显蛋白高度测定仪EQ-1A北京天翔飞域鸡蛋蛋白高度测定蛋壳强度测定仪KQ-1A北京天翔飞域蛋壳强度测定鸭蛋鹅蛋蛋壳强度测定仪KQ-1B北京天翔飞域鸭蛋鹅蛋蛋壳强度专用便携式蛋壳强度测定仪KQ-1C北京天翔飞域便携式测量蛋壳强度蛋壳厚度测定计TQ-1A北京天翔飞域蛋壳厚度测定蛋壳颜色测定仪SCQ-1A北京天翔飞域蛋壳颜色测定 LAB值蛋壳白度测定仪QCR-1A北京天翔飞域蛋壳白度测量禽蛋相对密度测定仪EggD-1A北京天翔飞域禽蛋密度测量鸡蛋胚胎观察器VIEW-1A北京天翔飞域胚胎发育观察和记录家禽育种体重管理系统PBW-1A北京天翔飞域家禽重量管理以及系统蛋形指数测定计NFN-1A北京天翔飞域鸡蛋长径,短径以及蛋形测定胸角器CAM-1A北京天翔飞域测量鸡鸭等禽类胸的角度,判断胸肌发达情况气室高度测定系统EGCQ-1A北京天翔飞域鸡蛋气室成像,鸡蛋气室高度无损测量,鸡蛋分级蛋粉蛋液冻干机IC-01C初始密码蛋粉蛋液冻干以及水分测定蛋粉蛋液水分测定仪ELP-1A北京天翔飞域蛋粉蛋液水分快速测定数字化蛋斑评定仪Mottled Egg-1A北京天翔飞域蛋斑质量自动评定、蛋壳质量评价蛋壳评分仪ESC-1A北京天翔飞域水印蛋评价,蛋壳质量评价
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。■ 水溶性维生素系列标样产品编号产品名称CAS包装目录价VIT-001N维生素B1盐酸盐 / 硫胺素Vitamin B1 hydrochloride67-03-81 g¥195C 17455500硝酸硫胺 / 维生素B1硝酸盐Thiamine mononitrate532-43-40.25 g¥432C 17561000硫代硫胺素Thiothiamine299-35-41 g¥540VIT-002N维生素B2 / 核黄素Vitamin B283-88-51 g¥195C 16813610核黄素磷酸钠Riboflavine-5 phosphate sodium130-40-50.25 g¥432VIT-003N维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B658-56-01 g¥195VIT-004N抗坏血酸 / 维生素CVitamin C50-81-71 g¥195C 10303100抗坏血酸钙盐Ascorbic acid calcium salt5743-28-20.25 g¥432C 10303900抗坏血酸钠盐 / 维生素C钠盐L-Ascorbic acid sodium salt134-03-20.25 g¥396C 10303930维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate137-66-60.25 g¥432VIT-005N烟酸 / 吡啶-3-羧酸 / 尼克酸Vitamin B359-67-61 g¥195VIT-006N烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide98-92-01 g¥195C 15521030烟酸苄酯Nicotinic acid-benzyl ester94-44-00.25 g¥360VIT-007N叶酸Vitamin M59-30-31 g¥195VIT-008ND-泛酸 / 维生素B5D-Pantothenic acid79-83-40.1 g¥370C 15844500D-泛酰醇D-Panthenol81-13-00.5 g¥936CA15845000泛酸钙单水合物Pantothenic acid calcium salt63409-48-30.25 g¥360VIT-009N-R1D-生物素 / 维生素H / 辅酶RVitamin H58-85-50.1 g¥195VIT-010N-R1维生素B12Vitamin B1268-19-90.025 g¥234VIT-WSK-R1-SET水溶性维生素套装,包括:VIT-001N to VIT-010N10 units¥1,264■ 脂溶性维生素系列标样产品编号产品名称CAS号规格目录价VIT-012N维它命EVitamin E10191-41-00.1 g¥273CA17924320维生素E醋酸酯Vitamin E acetate7695-91-20.5 g¥540VIT-013N胆骨化醇 / 维生素D3Vitamin D367-97-00.1 g¥273CA17924100骨化二醇Vitamin D3 25-hydroxy monohydrate63283-36-30.05 g¥1,134VIT-014N维生素A棕榈酸酯Vitamin A palmitate79-81-20.1 g¥1,206VIT-015N维生素E醋酸酯Vitamin E acetate7695-91-20.1 g¥273VIT-016N维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K184-80-00.1 g¥273VIT-017N维生素K2Vitamin K211032-49-80.1 g¥1,556VIT-018N维生素K3 / 甲萘醌 Vitamin K358-27-50.1 g¥273VIT-019NBETA-胡萝卜素b-Carotene7235-40-70.01 g¥389CA10290900beta-阿扑-8' -胡萝卜醛8' -Apoaldehyde1107-26-20.05 g¥936VIT-020N维生素 E 琥珀酸酯Vitamin E succinate4345-03-30.1 g¥273VIT-022N维生素D2Vitamin D250-14-60.1 g¥273VIT-FSK-R2-SET脂溶性维生素套装,包扩:VIT-012N to VIT-022N10 units¥2,457■ 相关分析耗材产品产品编号产品名称规格目录价116481甲醇 99.9% [HPLC/ACS]4 L¥180134752乙腈 99.9% [HPLC/ACS]4 L¥400187553水 [HPLC]4 L¥375904802乙醇 95%500 mL¥22S02001C18 柱,150 mm× 4.6 mm, 5 &mu m1 支¥2,500S02302C18 柱,250 mm× 4.6 mm, 5 &mu m1 支¥2,800S010125-3002AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960S010525-3002AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m1 支¥3,960ZTLMGL-4.1针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相)100 片/包¥150WKLM-4.2微孔滤膜 Ф50 0.45 &mu m (有机相)100 片/包¥210901275J&K 瓶口分配器(5.0-50.0 mL)1 支¥2,000958945J&K单道手动可调移液器(100-1000 &mu L)1 支¥645928429J&K磁力搅拌器(数显、加热、不锈钢)1 台¥3,1125182-0553螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫)100 个/包¥5275182-0728聚丙烯螺纹瓶盖(无隔垫)100 个/包¥1095183-4759高j绿色隔垫(带预穿孔)50 个/包¥699CER-001-11.5 mL标准毛细储存瓶1 个¥2405183-2086400 &mu L 脱活的玻璃平底内插管500 个/包¥1,4415183-4696单细径锥不分流衬管25 个/包¥6,0305183-4693单细径锥,带玻璃毛不分流衬管5 个/包¥1,4605188-5365衬管O形圈10 个/包¥1435188-5367进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包)1 个¥389
  • 宝藏姜黄——看看步琦如何来挖宝!
    宝藏姜黄——看看步琦如何来挖宝!姜黄也被称为郁金,是有很多功效的植物。姜黄能活血行气,具有降血脂,抗肿瘤等作用。姜黄中主要的成分姜黄素是一种天然化合物,姜黄素是从姜科、天南星科中的一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素 3%~6%,姜黄素为橙黄色结晶粉末,味稍苦,不溶于水,在食品生产中也能用于肠类制品、罐头、酱卤制品等产品的着色。姜黄素具有降血脂、抗肿瘤、抗炎、利胆、抗氧化等作用,另外,也有科学家发现姜黄素有助治疗耐药结核病。在本文中利用全频固液萃取仪 E-800 热萃取法提取的,采用紫外/可见分光光度法测定姜黄素总含量。1仪器BUCHI 全频固液萃取仪 E-800分析天平(精度 ± 0.1 mg)紫外/可见分光光度计BUCHI 旋转蒸发仪 R-1002试剂与样品95%乙醇合成姜黄素为了安全处理,请遵循相应MSDS!示例:有机姜黄素粉,标记姜黄素含量:3.7%,样品是粉末,因此不需要额外的均质。3姜黄素含量的测定包括以下步骤标准溶液的制备姜黄粉直接提取紫外/可见分光光度法测定姜黄素含量3.1 标准溶液的制备将 25mg 姜黄素倒入 100mL 的量瓶中,溶解并稀释至乙醇。注意准确的重量!将 0.5 mL, 1 mL 和 2mL 原液转移到三个不同的 100mL 容量烧瓶中,用乙醇定量。对于0.5 mL、1 mL和2 mL转移的原液,这些标准溶液分别含有 1.25、2.5 和 5 mg/L 的姜黄素(根据确切重量而定)。将萃取纸滤筒放入萃取腔支架中。称 0.1 克均匀样品到萃取纸滤筒中。注意准确的重量。用棉絮覆盖在萃取纸滤筒内的样品。将含有样品的纤维素顶针放入提取室,并将液位传感器调整到样品的高度。将溶剂倒入烧杯中,放在相应的加热板上。关闭防护罩,降下萃取架,激活萃取位置,打开冷却水水龙头或接通连接的冷水机。根据表 1 中列出的参数启动热提取。表1:全频固液萃取仪 E-800 热萃取参数步骤_加热等级萃取方法热萃取_溶剂乙醇上萃取腔 9下加热 18萃取2.5h/3h热萃取淋洗10min18干燥AP11溶剂体积(mL)120_提取液转移到 100mL 容量瓶中。烧杯中的残留成分用额外的乙醇冲洗,然后定容到 100 毫升。注意:回收的溶剂应单独收集。再次使用前,通过测定吸光度来检查溶剂中姜黄素的杂质,并将其与纯溶剂进行比较。如果有杂质,必须使用纯溶剂开始清洗方法(例如淋洗30分钟)来清洗索氏腔。回收的溶剂可以通过蒸馏收集和纯化,例如使用旋转蒸发器 R-100。3.2 UV / Vis 分光光度法样品溶液:将 2.0mL 的提取溶液转移到 25mL 的量瓶中,用乙醇定容。测定样品溶液的吸光度,并与乙醇在 425nm处的吸光度进行了比较。3.3 姜黄素的浓度与吸光度之间的关系可由以下方程得到其中:A:姜黄素类化合物在 425 nm 处的吸收率an:标准溶液 n 在 425 nm 处的吸光度d:光路长度 (1 cm)cn:标准溶液浓度 n,单位为 mg/L3.4 姜黄素百分含量按下式计算其中:% Curcuminoids:样品中姜黄素含量的百分比mSample:样品重量 [g]cs:样品溶液的浓度为 mg/L4结果用紫外/可见分光光度计对标准溶液进行分析。用线性回归法确定了浓度与吸光度的相关性,该方法仅适用于标准溶液所涵盖的范围。对于姜黄素的测定,姜黄样品在 2.5h (150分钟) 和 3 h(180分钟) 提取时间内进行三次分析。结果如表2所示。表2:姜黄粉中姜黄素含量测定结果姜黄素含量测定值为 3.7%,与标记值吻合较好。当提取时间从 2.5 小时增加到 3 小时时,姜黄素含量并没有增加,说明 2.5 小时后提取完全。用全频固液萃取仪 E-800 测定姜黄粉中姜黄素含量,结果可靠,重复性好。6 位可同时进行萃取,提高效率,每个位置独立运行。
  • 使用液相色谱法一次测定多种水溶性维生素
    维生素是人体重要的营养物质,但有些维生素在人体内无法合成,或合成量不能满足机体需要,要从外界摄取以满足人体需要。维生素根据溶解度的不同,分为水溶性和脂溶性两类,水溶性维生素主要有维生素C、B1、B2、B3、B5、B6、B11和B12。不同水溶性维生素的结构差异较大,化学性质不稳定,分离检测较为复杂困难。 目前水溶性维生素的测定方法主要有分光光度法、分子荧光法和高效液相色谱法等。分光光度法的样品前处理较复杂,且干扰物多,测定结果偏高。分子荧光法的样品前处理也复杂,定量不精确。高效液相色谱法的样品前处理简单,用量少,可一次分析多种水溶性维生素,是目前最合适的测定方法。实验部分 采用离子对试剂(四丁铵)作为流动相,由于离子对试剂易吸附在色谱柱上不易彻底清除,因此建议用来分析水溶性维生素的色谱柱专用。 图1. 9种水溶性维生素标准品的色谱图(上)和等高线图(下)1. 维生素 B1 (硫胺素) * 2. 维生素 B6 (吡哆素) * 3. 烟酰胺 4. 维生素 B12 (氰钴胺素) 5. 抗坏血酸糖苷 6. 维生素 C (抗坏血酸) 7. 异抗坏血酸 8. 维生素 B2 (核黄素) 9. 菸碱酸 使用二极管阵列检测器(简称:DAD),除了色谱图外,还可获得光谱图,两者结合可排除仅通过色谱保留时间定性造成的假阳性峰,能对食品和其他含有大量杂质的样品进行精确有效的分析。 图2. 维生素B6的标准曲线 9种水溶性维生素的标准曲线(浓度范围0.1 ~ 50 mg/L)均显示了良好的线性, r2 均≥ 0.996。但采用流动相进行稀释时,维生素C、异抗坏血酸和维生素B12 不稳定,为获得良好的线性,需使用新配制的溶液进行测定。 图3. 保健饮料的测定结果 图4. 营养补充剂的测定结果 该方法可同时检测多种水溶性维生素,标准曲线线性良好。借助二极管阵列检测器,可对食品和其他含有大量杂质的样品进行精确有效的分析,排除假阳性性峰的干扰。由于维生素C和异抗坏血酸不稳定,在样品制备过程中或随着时间的推移,二者容易发生分解,因此难以获得良好的线性和重现性。所以,此方法适用于定量分析,在定量分析时,建议对各维生素单独测定。关于日立高效液相色谱仪,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • 珀金埃尔默专业检测,“乳”此简单 | 乳制品中维生素B7/B9/B12的检测
    背景维生素(vitamin)是人和动物维持正常的生理功能所需要的一种微量有机物质,参与人体多种代谢,是食品的一类重要成分。人体必需维生素可分为两类:水溶性维生素和脂溶性维生素,其中水溶性维生素中又以B族维生素最为重要。B族维生素主要包括VB1(盐酸硫胺素)、VB2(核黄素)、VB3(烟酰胺、烟酸)、VB5(泛酸)、VB6(吡哆醇、吡哆醛和吡哆胺)、VB7(游离生物素)、VB9(叶酸)、VB12(氰钴维生素)等,它们虽然在体内的含量很少,却是调节人体各种新陈代谢必不可少的物质,是婴儿配方乳粉的重要组成部分。乳制品中维生素B7/B9/B12的检测由于食品安全国家标准有关于B7/B9/B12含量的要求,因此乳制品行业需要对其进行定量检测。目前针对维生素B7/B9/B12的国家标准检测方法是微生物方法。微生物法虽然试验周期长、对环境要求高,但因其是国标方法所以是抽检单位必用的检测依据,同时也适用于没有液相色谱仪或质谱仪等大型实验仪器的用户。乳制品中其他维生素的检测方法包括了液相色谱HPLC(或液质联用LCMSMS)、分光光度计、荧光光度计等仪器方法,这些可以为维生素B7/B9/B12的检测提供一些参考。乳制品维生素B7/B9/B12检测方案珀金埃尔默为您提供维生素B7/B9/B12整体检测解决方案,从检测试剂、前处理柱到仪器设备,“从繁至简,从慢到快,从国标方法到仪器确证”,全线产品满足不同条件的客户需求。针对我国国家标准微生物法实验周期长的特点,推出改进的微生物方法检测试剂盒以及ELISA试剂盒的产品。针对目前检测标准,步骤繁锁且重复性稍差的缺点,推出免疫亲和柱配合液相色谱或液质联用的方案。另外维生素B7/B9/B12,对热和氧极其敏感,在加工、储存中容易损失,且在样品中浓度差异较大,在进行样品前处理时也是需要解决的难点。A 微生物法检测试剂盒原理:某种微生物会对某种维生素具有极强的特异性,是其正常生长所必需的维生素,并且在一定条件下,其生长、繁殖速度与溶液中该维生素的含量成一定的对应关系,含量高则生长快,反之则慢,微生物法便利用了这种对应关系间接地测定出样品中该维生素的含量。该微生物检测试剂盒与国际规范保持一致,但试剂盒法相对缩短了检测周期,由原来的5-7天缩短为3-4天。B ELISA试剂盒原理:间接竞争ELISA方法,在酶标板微孔条上预包被抗原,样本和此抗原竞争抗体,同时抗体与酶标二抗(酶标物)相结合,经TMB底物显色得出样品中维生素的含量。特点:快速(1-2小时)、简便和灵敏度高C 液相色谱或液质联用方法特点:快速(1-2小时),方法重复性好。1 采用免疫亲和色谱法对乳制品提取液中的维生素进行富集并去除部分杂质,精密度及特异性高,处理后样品进入高效液相色谱进行分析。免疫亲和净化柱净化 FlexarTM液相色谱仪 免疫亲和柱产品介绍2 采用固相萃取的方法进行除杂,而后用液质联用仪器进行多种B族维生素分析。固相萃取 QSightTM LC/MS/MS 8种B族维生素色谱图扫码获得维生素检测的应用报告和产品介绍。
  • 萃取浓缩姜黄中的有效成分?看看步琦如何给出高效的解决方案!
    萃取浓缩姜黄中的有效成分姜黄,一味活血类中药,早在五代十国时期,就作为药用植物出现在《日华子本草》中,记载其具备治症瘕血块,痈肿,通月经,治跌扑瘀血,消肿毒,止暴风痛冷气,下食等功效。现代药学研究发现,姜黄中的主要有效成分为姜黄素(Curcuma longa L.),一种天然生物活性化合物。提纯的姜黄素在现代医学中常用于抗氧化、抗菌、抗炎、抗突变、抗高脂血症,同时具备减少胀气、降低血糖、预防和治疗阿尔茨海默病和帕金森病等功能。正因为姜黄素的多种优点,其提取和纯化也吸引了许多中药研发课题组。瑞士步琦作为一家样品前处理公司,一直致力于推出高效的解决方案。我们于 2021 年 5 月发布了针对天然产物有效成分提取与浓缩的工业级旋转蒸发仪——R-220 Pro Extraction,这是一款集浓缩与萃取为一体的旋转蒸发仪(点击这里了解更多)。今天我们会以姜黄素为例,把 R-220 Pro Extraction 与传统浸泡萃取做对比,带大家了解这款独特旋转蒸发仪卓越的处理效率。1设备工业级旋转蒸发仪 R-220 Pro Extraction实验室级旋转蒸发仪 R-300真空泵 V-600真空泵 V-300冷却循环水机 F-105冷却循环水机 F-314加热干燥箱2试剂与样品95% 乙醇 8L姜黄原料 2kg3前置处理步骤把姜黄原料放入加热干燥箱内,设置 50-60℃,干燥 24 小时,取出碾碎至小块(图1)。▲ 图1:干燥姜黄块4传统浸泡萃取法取干燥姜黄块 250g,放入 4L 95% 乙醇中(图2),整个浸泡过程持续 3 天,温度为室温。浸泡完毕后通过纱布和滤纸过滤,然后使用 R-300 旋转蒸发仪进行浓缩,浓缩参数如表1。表1:使用旋转蒸发仪 R-300 进行浓缩:参数条件水浴锅温度50 °C冷却循环水机温度5 °C旋转速度90 rpm真空度常压 → 150 → 90 mbar总时长2 小时▲ 图2:使用传统浸泡法萃取姜黄素5使用 R-220 Pro Extraction进行萃取与浓缩为了方便对比,我们采用和传统浸泡法一样的样品与溶剂比例,即把 250g 干燥姜黄块放入 R-220 Pro Extraction 的萃取池(图3),然后在蒸发瓶内倒入 4L 95% 乙醇(图4),萃取完毕后切换至浓缩模式。萃取过程的参数请参考表2,浓缩过程的参数请参考表3。表2:使用 R-220 Pro Extraction 进行萃取:参数条件水浴锅温度55 °C冷却循环水机温度5 °C旋转速度85 rpm真空度常压 → 200 → 150 → 100 → 90 → 80 mbar萃取循环10 次循环 (1 次循环 = 45 min) 表3:使用 R-220 Pro Extraction 进行浓缩:参数条件水浴锅温度55 °C冷却循环水机温度5 °C旋转速度85 rpm真空度80 mbar总时长0.5 小时▲ 图3 和 图4:使用 R-220 Pro Extraction 进行萃取和浓缩6萃取率计算其中:W = 萃取物被浓缩至完全干燥后的重量(g)7结果表4:传统浸泡和 R-220 Pro Extraction 处理效率对比:萃取方法萃取溶剂 [L]萃取与浓缩时间Hours萃取率%Yield传统浸泡法47428.7R-220 Pro Extraction4831.4根据表4 的结果,与浸泡法相比,R-220 Pro Extraction 的萃取率更加高,此外,使用 R-220 Pro Extraction 的提取和浓缩所需的时间比传统浸泡法少得多。事实上,如表4 所示,R-220 Pro Extraction 的提取时间为 8 小时,而传统浸泡法的提取时间为 74 小时。8结论步琦 R-220 Pro Extraction 作为专为天然产物设计的循环萃取浓缩装置,在萃取率和处理时间上都远胜传统的冷热浸泡法。为了方便对比,我们将本次的萃取样品与溶剂比例控制为一致;实际上,在真实的应用环境中,我们完全可以添加更多的姜黄在 R-220 Pro Extraction 的萃取池内,实现更高比例的样品和溶剂比。在保持高萃取率的同时,实现节省溶剂的目的。
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
  • 青岛能源所发现蒽醌类天然产物开环新机制
    以大黄素为代表的蒽醌类化合物是一类广泛存在于植物和丝状真菌中的重要天然产物,因其多样的生物学活性,如消炎、抗病毒、抗肿瘤、抗氧化、泻下等,而备受关注。蒽醌化合物C10-C4a键的切割是导致开环产生裂醌化合物结构多样性的关键。尽管裂醌化合物的生物合成途径已基本清晰,但其中最为关键的蒽醌开环机制却仍存在疑团。  日前,中国科学院青岛生物能源与过程研究所微生物制造工程中心研究人员针对土曲霉地曲霉素生物合成基因簇中关键基因GedF和GedK展开了研究,发现了一类双酶催化的蒽醌双加氧开环新机制,相关成果以Bienzyme-catalytic and dioxygenation-mediated anthraquinone ring opening为题在线发表在《美国化学会志》(J. Am. Chem. Soc.)上。  大黄素-8-甲醚是一种蒽醌类化合物,也是土曲霉地曲霉素生物合成途径中的关键中间体。基于前期同位素追踪实验和日本学者Sankawa等的研究结果,长期以来科学界一直倾向于大黄素-8-甲醚的Baeyer-Villiger氧化开环假说。基于该假说,一个Baeyer-Villiger氧化酶催化大黄素-8-甲醚生成具有七元环结构的中间体,进而水解开环形成开环产物desmethylsulochrin。但是,本工作中研究人员通过一系列体内敲除和体外酶活表征研究发现,GedF和GedK两个酶共同催化了大黄素-8-甲醚的开环过程,其中GedF首先催化还原大黄素-8-甲醚产生大黄素-8-甲醚氢醌,进而大黄素-8-甲醚氢醌在GedK的作用下开环产生desmethylsulochrin。  进一步18O同位素追踪实验显示,开环产物desmethylsulochrin中新增的两个氧原子均来源于同一个O2分子,且GedK执行催化开环功能并不需要辅因子FAD和NADPH的参与,这说明GedK是一类独特的不需要辅因子参与的双加氧酶。上述发现彻底推翻了传统的蒽醌化合物Baeyer-Villiger氧化开环假说,并提出了一种双酶催化双加氧反应介导的蒽醌开环新机制。  有意思的是,还原酶GedF和双加氧酶GedK双酶开环系统具有较广的底物宽泛性,可催化多种蒽醌类化合物开环,且其同源蛋白在自然界裂醌化合物生物合成基因簇中成对出现并存在共进化关系。本研究的开展不仅为阐明更加复杂的裂醌化合物生物合成机制提供了借鉴,更为合成生物学元件库提供了两种全新的酶学元件。  研究工作获得了国家自然科学基金、山东省人才计划和国家重点研发计划的支持。
  • 82项食品安全国家标准于3月起实施
    与百姓生活密切相关的82项食品安全检测标准已于2017年3月1日起实施。  新实施的国家标准包括GB 4789食品微生物学检验、 GB 5009食品理化检测、GB 14883食品中放射性物质检测、GB 31604食品接触材料及制品检测等。产品涉及食盐、味精、食醋、水果、蔬菜、酒、水产品、生乳、婴幼儿食品、食品接触材料及制品等,检测项目涵盖肠杆菌科、水分、灰分、过氧化值、酸价、维生素B1、叶黄素、生物素以及放射性物质钋-210、碘-131等。  这些即将实施的国家标准中,多数是替代老的标准,也有部分是新制定的标准,如GB 4789.41-2016《食品安全国家标准 食品微生物学检验 肠杆菌科检验》、GB 5009.258-2016 《食品安全国家标准 食品中棉子糖的测定》,是为了适应国内食品安全需要而新制定的国标。  江苏的食品企业较多,检验检疫部门提醒相关企业及检测机构关注标准变化,仔细解读新的食品安全国家标准,及时完成标准变更。
  • 18种食品添加剂拟扩大使用范围和使用量
    卫生部8月12日发布通知,拟批准姜黄素等18种食品添加剂扩大使用范围及使用量。  其中包括腌渍蔬菜中使用的防腐剂脱氢乙酸钠、山梨酸钾 热凝固蛋制品中使用的水分保持剂焦磷酸钠、三聚磷酸钠、六偏磷酸钠 去皮、切块或切丝的蔬菜水果中使用的抗氧化剂抗坏血酸 糖果中使用的着色剂姜黄素、叶黄素以及焙烤食品中使用的着色剂葡萄皮红、栀子蓝等。  卫生部表示,公众可以于2010年9月10日前通过传真电话010-67711813或电子信箱gb2760@gmail.com,反馈意见。  18种拟批准扩大使用范围、使用量的食品添加剂序号名称类别食品分类号食品名称/分类最大使用量(g/kg)备注1. 葡萄皮红着色剂07.0焙烤食品2.0 2. 姜黄素着色剂05.02糖果0.7 3. 叶黄素着色剂05.02糖果0.15 4. 栀子蓝着色剂07.0焙烤食品1.0 5. 山梨酸钾防腐剂04.02.02.03腌渍的蔬菜1.0 6. 脱氢乙酸钠防腐剂04.02.02.03腌渍的蔬菜1.0 7. 微晶纤维素稳定剂01.05.01稀奶油 按生产需要适量使用 8. 羧甲基纤维素钠稳定剂01.05.01稀奶油按生产需要适量使用 9. 焦磷酸钠水分保持剂10.03.02热凝固蛋制品5.0单独使用或与六偏磷酸钠、三聚磷酸钠复配使用。10. 三聚磷酸钠水分保持剂10.03.02热凝固蛋制品5.0单独使用或与六偏磷酸钠、焦磷酸钠复配使用。11. 六偏磷酸钠水分保持剂10.03.02热凝固蛋制品5.0单独使用或与三聚磷酸钠、焦磷酸钠复配使用。12. 麦芽糖醇甜味剂01.02.02调味和果料发酵乳按生产需要适量使用 05.01 可可制品、巧克力和巧克力制品,包括类巧克力和代巧克力11.04餐桌甜味料13. 山梨糖醇(液)甜味剂16.06膨化食品按生产需要适量使用 14. 柠檬酸食品工业用加工助剂02.01.01.01植物油2.0 15. L(+)-酒石酸酸度调节剂15.03.01葡萄酒4.0g/L 16. 普鲁兰多糖增稠剂03.0冷冻饮品(除外03.04食用冰)10.0 17. 乳铁蛋白其他01.02发酵乳1.0 01.01.02调制乳14.03.01含乳饮料18. 抗坏血酸抗氧化剂04.01.01.03去皮或预切的鲜水果5.0 04.02.01.03去皮、切块或切丝的蔬菜
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • 营养饮料三维荧光的快速分析
    1. 前言三维荧光光谱技术可以获取样品特有的荧光光谱,采用多变量分析方法可以对多个特征荧光强度进行分析,实现样品的快速判别,从而进行合格与否判别/异物鉴别/产地溯源等。此分析手段在食品、环境、医药等领域应用广泛。本次实验采用多变量分析方法对市售营养饮料进行了分析。2. 应用数据营养饮料主要包括药物、保健品和能量饮料,实验采用F-7100分光光度计搭配微孔板附件和自动滤光器采集了两个类别保健品和能量饮料中每个样品的三维荧光光谱。图1 微孔板附件(左)和自动滤光器(右)图2 市售12种饮料的三维荧光光谱市售12种饮料的三维荧光光谱如图2所示,可以看出每种饮料的三维荧光特征信息不同,为了探究不同饮料的成分差异,使用多变量分析软件3D SpectAlyze进行平行因子分析(PARAFAC),实现成分分离。图3 两种分类饮料的平行因子分析由PARAFAC分析结果可知,该样品至少含有4种成分。根据以往报告中各成分的激发和发射波长数据,推测出两类样品含有的成分如下。①核黄素(维生素B2)②烟酸(维生素B3)③吡哆醇(维生素B6)④生育酚(维生素E)。通过选用平行因子分析中的核黄素和烟酸进行主成分分析,对12种市售饮料进行能量饮料和营养饮料的分类。 图4 载荷和得分图从图中可以看出,核黄酸(维生素B2)和烟酸(维生素B3)对分类1能量饮料的贡献大,可以判定,能量饮料中含有的核黄素(维生素B2)和烟酸(维生素B3)高。因此可以根据主成分分析的结果,确定各饮料的分类情况。3. 结论三维荧光光谱结合多变量分析可以实现多样品的快速分析。日立提供软件和硬件的一体化全面解决方案。F-7100荧光分光光度计具有60000nm/min的超高扫描速度,快速获取样品荧光数据,多变量分析软件3D SpectAlyze配备常用分析方法,操作简单,5分钟即可输出分析结果,全面助力于您的科研分析!
  • “100家实验室”专题:访中科院兰州化学物理研究所甘肃天然药物重点实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。近期,仪器信息网工作人员参观访问了本次活动的第二十四站:中科院兰州化学物理研究所甘肃天然药物重点实验室。实验室主任师彦平研究员及学生李佳博士热情接待了我们。  甘肃省天然药物重点实验室是在中国科学院兰州化学物理研究所分离分析科学和有机化学学科基础上于2002年7月经甘肃省科技厅批准挂牌运行的重点实验室。分离分析学科50年来,在气相色谱、液相色谱、毛细管电泳及核磁共振波谱等研究领域做出了卓有成效的工作,成为国内外有重要影响的研究单元之一。甘肃省天然药物重点实验室面向甘肃和西部特色中药和民族药资源,有效运用现代分离分析和结构鉴定科技手段,研究其物质基础和作用机理,解决中药和民族药资源研发中的若干关键科技问题,不断强化中药/民族药新药以及功能产品的研发 发展新的高效、快速、微量的天然产物分离、分析、纯化、结构鉴定和活性测试的集成技术,提高天然药物研究技术水平 研究中药化学成分、体内代谢、作用靶点和作用机制等。 研究室拥有高效液相色谱仪、制备液相色谱仪、毛细管电泳仪、液相色谱―质谱联用仪、毛细管电泳 —质谱联用仪、质谱仪、气相色谱仪、气相色谱―质谱联用仪、超临界流体萃取仪、核磁共振仪、X—光粉末衍射仪、微量热仪、紫外分光光度仪、荧光分光光度仪、等离子体发射光谱仪等先进仪器设备。面向国家经济建设,开展了油田分析、环境分析、植物化学成分分析、医药分析、手性分离等集成技术研究,获国家科技进步奖、中科院重大科技成果奖和省部级科技进步奖30多项。Agilent公司 气相色谱Waters公司 UPLCAgilent公司 液相色谱PE公司 原子吸收戴安公司 离子色谱江苏华安 超临界流体色谱中药中试设备Agilent公司 毛细管电泳仪 据师老师介绍,现实验室下设五个研究组:药物分离材料研究组、药物工艺标准研究组、药物分子识别研究组、药物化学成分研究组及药物手性分离研究组,现有研究人员32人,其中包括研究员7人,副高级人员11人,并且设有分析化学博士、硕士学位授予点及博士后流动站。实验室占地2200平方米,有总价值3000多万元的专业化仪器设备,设备分布在各课题组实验室。  当问及实验室研究经费来源时,师老师表示,目前实验室的经费主要来源于科研人员申请的课题和项目,科研仪器的购买也和课题有关。但依据仪器价格的不同,中科院、研究所及课题组共同按比例出资购买。实验室的项目或课题每年有十多项,涉及国家科技部项目、国家基金委项目、甘肃省科研项目及中国科学院项目(部分项目如下表所示)。  中科院兰化所甘肃天然药物重点实验室在研项目列表序号项目名称经费来源1原油与驱油体系构效关系与吸附研究国家科技部2原油与驱油体系分析研究国家科技部3新型调剂聚合物结构表征与分析国家科技部4当归、黄芪、大黄质量控制技术研究及相关标准制定国家科技部5海洋红藻中独特结构卤代化合物的快速识别等研究国家科技部863子课题6基于介孔氧化物包覆无孔硅胶的核壳材料HPLC新型固定相的系统研究国家基金委7杯吡咯键合毛细管柱分离阳离子性能及机理研究国家基金委8基于代谢组学与HPLC方法筛选青龙衣中抗癌活性成分研究国家基金委9双吲哚基光化学感应受体设计及其阴离子识别研究国家基金委10Al2O3/SiO2核—壳型色谱填料的研究国家基金委青11甘肃金盏花深加工技术和产品产业化开发中科院西部行动12番茄红素制备技术及软胶囊的开发中科院科技支甘13红景天有效成分提取分离与鞣质成分去除的关键技术及其产业化中科院科技支青14前列泰片超声法制备关键技术与产业化中科院科技支甘15西部特色中药研发中的关键技术研究中科院百人计划16甘肃金盏花叶黄素功能产品开发与应用中科院联合学者17党参功能产品研究与开发中科院西部之光18岷上红三叶异黄酮规模化制备技术及质量标准研究中科院西部之光  在师老师领我们参观研究室成果展示区的时候,我们很是惊讶,实验室成立短短7年时间,科研人员已取得了很多成果,主要分为以下几类:一、区域特色可再生植物资源提取物,如金盏花黄色素、红三叶异黄酮、沙棘叶黄酮、番茄番茄红素等 二、区域特色天然资源功能产品,如黄芪咀嚼片、党参健康含片、当归精油软胶囊等 三、区域特色资源中藏药新药,如康尔肾片及海归愈胶囊等。实验室的部分成果与企业合作实现了产业化。 实验室的研究成果  关于实验室的对外测试服务,师老师说,实验室的仪器也加入到研究所公共技术服务平台和中科院兰州分院分析测试中心,通过此平台对外提供测试服务,但一些专业化强的仪器主要用于研究所承担的科研课题和项目中。谈及仪器的售后服务,师老师对此表示还比较满意,而且特别提到如安捷伦、Waters等厂商每年2次的巡访,问及仪器的使用情况及对仪器改进有何要求等。  参观的最后,师老师表示,实验室地处西部,人才的引进常常比较困难,他希望更多的有识之士能够来到这里,发挥自己的才能,为西部的发展做出自己的贡献。  实验室主任师彦平老师与本网工作人员的合影
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 中药研究系列专题——中药材鉴定及溯源
    影响中药材品质及疗效的因素很多,人们通常需要通过多种手段对对其进行鉴定,包括来源、性状、显微、理化、生物等鉴定法。此外,产地也是历代中医评价中药材品质的一个关键标准。有效成分的结构鉴定、道地药材真伪鉴别,作为中药研究的一个重要课题,在控制中药质量中发挥着独特的作用。 LCMS-9030四极杆飞行时间液质联用仪 举重若轻,超凡性能★ 室温波动环境下获取稳定的质量精度★ 低浓度范围中保持可靠的质量准确度 应用案例 利用高分辨率四极杆飞行时间质谱靶向筛选香豆素类化合物 香豆素类化合物是一种存在于很多植物中的化合物,很多具有抗肿瘤、抗菌等生理活性,秦皮、前胡、肿节风、补骨脂等中药中的香豆素类化合物都是其主要药效成分。 在没有完整标准品的情况下,用LCMS-9030完成了针对35种香豆素类化合物的靶向筛选。初步确认的工作基于高质量精度的精确质量数完成;在无标准的情况下,通过与Metlin的MSMS数据库进行比对,可以完成二次确认工作。 实际样品中筛查出的部分香豆素类化合物的提取离子色谱图 甲基香豆素在Metlin数据库中的MSMS谱图甲氧基香豆素的二级质谱图确认 iMScope QT成像质谱显微镜 iMScope QT是岛津最新一代的旗舰级成像质谱显微镜,继承了iMScope系列质谱仪配备光学显微镜的概念。iMScope QT不仅完美融合了形态学研究,而且具有出色的速度,灵敏度和空间分辨率,可对中药材有效成分或指标成分的分子进行定性鉴定、定量研究和可视化分布分析。 应用案例 iMScope对黄玛咖中芥子油苷类物质的空间分布评价 中药材中特定成分表达水平以及局部分布模式的差别,不仅可以鉴别其品种和产地,还能帮助探索有效成分的代谢通路。 用质谱成像的方法直接观察黄玛咖中不同次级代谢产物在植物组织中的分布特征及其相对含量,对于鉴定其产地和品种并进一步揭示其生物代谢途径具有广泛的应用前景。 如图所示,在高空间分辨率下成像后,明确了葡萄糖苷类物质主要分布在黄玛咖的木质部。 iMScope对干姜根中姜黄素的空间分布评价 对干姜根样品进行径向和纵向切片并用质谱成像的方法进行研究,发现姜黄具有非常规则的内部分布。纵向切片结果显示,姜黄素具有线性分布特征,推测姜黄素在植物体内是管状结构分布。 MultiNA微芯片电泳系统 小巧精致,功能强大 ★ 可重复利用的微芯片大大降低分析成本。★ 高速自动化分析,周期低至75秒。★ 采用LED激发的高灵敏度荧光检测器。★ 分离缓冲液和内标保证分析可靠性和重现性。★ 控制和数据处理软件图形化界面显示,操作更简便。 应用案例 应用MultiNa鉴定中药材金银花和山银花 由于不同的物种具有其特异性的生物遗传信息,使用分子生物学手段PCR方法结合电泳检测,通过检测样品的特异性基因信息,可以实现准确鉴定品种的目的。应用全自动化、且具有高分辨率的微芯片电泳仪 MultiNA,即可自动化地检测不同生物品种 PCR 产物。 金银花引物和山银花引物分别扩增金银花和山银花样品的PCR产物电泳图 金银花+金银花引物的PCR产物电泳图 山银花+山银花引物的PCR产物电泳图
  • 南京大学/厦门大学/中科大团队Nat. Catal.:可见光直接激发驱动的新光酶催化
    融合化学创新的生物制造,是可持续生物经济发展的原动力,也是当前中美科技博弈的焦点之一。生物制造的关键“芯片”是酶,然而现有酶的催化功能有限等问题极大地限制了生物制造的范畴。南京大学黄小强课题组自2021年建组以来,致力于融合生物与化学,实现新酶元件的创制和新分子生化体系的开发。近期,黄小强课题组与合作者以烯烃还原酶(ene-reductases, ER)为切入点,开发了可见光直接激发的新策略,实现了一例烯烃的不对称自由基氢芳基化转化。相关工作发表于Nature Catalysis。将酶催化和光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为当下开发新酶功能最有效的策略之一。ER是一类以黄素腺嘌呤单核苷酸(FMN)为辅因子的氧化还原酶,在自然界中催化C=C双键的双电子还原反应。前期Hyster、Huimin Zhao、吴起和徐鉴等课题组,通过可见光激发电子供体-受体(EDA)络合物的策略,开发了一系列净还原的自由基反应(图1b)。然而,直接可见光激发黄素蛋白催化非天然的双分子反应仍未有报道。图1. 受自然启发的光酶的氢芳基化。图片来源:Nat. Catal.除了光引发的自由基反应固有的选择性控制难题外,激发态的黄素蛋白面临很多竞争途径。首先,可见光激发的醌态黄素容易被反应缓冲液或氨基酸残基还原(图2,路径b)。其次,自由基碳碳成键步骤必须足够高效,以实现与无效的电子回转的竞争(图2,路径c)。第三,溶液中游离的未结合黄素可能引起消旋背景反应。受自然界中黄素依赖的脂肪酸光脱羧酶的启发,作者提出了一种直接光激发烯烃还原酶的新催化循环(图2)。首先,ER结合的辅因子FMNox被蓝色LED激发,由基态到达激发态FMNox*(Int. B)。激发态FMNox*单电子氧化富电子芳烃产生芳基自由基阳离子中间体以及半醌状态黄素辅因子FMNsq(Int. C)。随后的自由基C-C键形成,生成前手性自由基中间体(Int. D)。最后,酶活性位点内的电子和质子(或氢原子)转移,生成对映体富集的产物,并再生FMNox(Int. E)。图2. 设计的催化循环。图片来源:Nat. Catal.为了验证所设计的生物催化循环方案,作者选择了3-甲氧基噻吩1a和α-甲基苯乙烯2a作为模板底物,450-460 nm蓝色LED光照,发现几类烯还原酶可以以较低的反应性实现催化加氢芳基化(表1)。进一步研究发现,通过额外加入催化量的FMN作为添加剂,能够显著提高反应收率而不影响对映异构体选择性。通过条件优化,作者筛选到的葡萄糖酸杆菌来源的烯还原酶(GluER)可以实现对模板反应的高产率、高选择性催化,产物具有 (R) 选择性(97.5:2.5 er,entry 5);而来自酿酒酵母的老黄酶(OYE1)的产率为60%,具有 (S) 选择性(90:10 er,entry 6)。对以老黄酶为母本的突变体进行筛选,发现老黄酶的突变体(OYE1-F296A)的产率为65%,具有更好的 (S) 选择性(95:5 er,entry 7)。控制实验表明,惰性气氛、光照、酶都是反应正常进行所必需的。同时,降低酶催化剂的负载量到0.2 mol%,也能有52%的中等收率和优异的 (R) 选择性(95:5 er,entry 11)。表1. 条件优化。图片来源:Nat. Catal.接下来,作者使用GluER(ER1)、GluER_T36A-Y177F(ER2)、OYE1_F296A(ER3)、OYE1_F296G(ER4)对底物的适用性进行了考察(图3)。总体来看,该催化体系具有良好的底物适用范围和官能团耐受性,活化烯烃、内烯烃、非活化烯烃、以及各类芳基底物,都能顺利发生反应(27例,最高达99%收率)。通过使用不同的酶,该体系能够分别获得产物的两个对映异构体,即实现立体发散式生物合成。同时,反应可以以相同的效率和对映选择性放大到1 mmol级,如 (R)-3a的合成所示。此外,单晶X射线衍射研究确认ER3-4催化的产物的绝对构型为 (S)。图3. 代表性底物。图片来源:Nat. Catal.随后,作者进行了一系列的机理研究来验证所提出的催化反应机理。1)紫外-可见吸收光谱鉴定可见光直接激发FMN的关键过程(图4a);2)低温电子顺磁共振(EPR)实验和自由基捕获实验证实了该反应涉及的相关自由基中间体;3)自由基开环实验验证生成的自由基中间体,证实了Int. D的存在(图4d);4)氘代实验探索了自由基终止步骤的氢来源(图4e)。图4. 机理实验。图片来源:Nat. Catal.为了更好地理解关键的光氧化机制,作者进行了含时密度泛函理论(TDDFT)计算。计算结果显示,从1a到激发态FMNox*的单电子转移放热2.3 kcal/mol(图5a),支持可见光引发的单电子氧化在热力学上是有利的。作者为了研究OYE1_F296G中自由基反应过程的对映体选择性(Int. C → Int. E),进行了经典的MD模拟、QM/MM MD模拟和QM/MM计算,模拟结果支持自由基阳离子加成→质子转移→氢原子转移这个反应途径(图5c)。有趣的是,Int. C中的底物2a可以采用两种不同的构象,CH3基团可以朝里的,也可以是朝外的(图5b)。2a通过甲基(CH3-in → CH3-out)的翻转而发生的构象变化在动力学上非常容易,具有2.1 kcal/mol的较小能垒。从Int. C开始,QM/MM计算表明,对于CH3-in构象,1a+和2a之间的C-C耦合的能垒为15.6 kcal/mol,而CH3-out构象的能垒为12.7 kcal/mol,表明CH3-out构象更适合C-C偶联。这主要是因为2a的双键在CH3-out构象(3.75 Å)中与1a+-C2保持的距离比在CH3-in构象(4.17 Å)中更近。从IM1开始,计算表明阴离子FMNsq的N5可以作为从噻吩基C2位点提取质子的碱,CH3-in构象质子转移的能垒为12.9 kcal/mol,在CH3-out构象中,这一步反应能垒为13.5 kcal/mol。最后,前手性碳自由基可以从中性FMNsq物种中发生氢原子提取(HAT),分别从Int. D(CH3-in)得到 (R)-3a,从Int. D(CH3-out)得到 (S)-3a。图5c表明,对映选择性主要由1a+和2a之间的C-C偶联步骤决定。由于OYE1_F296G活性位点对底物的定位,(S)-3a的形成在动力学上优于(R)-3a,这与OYE1突变体形成的产物绝对构型一致。而对GluER催化反应的进一步计算表明,立体选择性也主要由C-C偶联步骤决定。图5. OYE1_F296G催化加氢芳基化的计算研究。图片来源:Nat. Catal.总之,南大/厦大/中科大团队合作报道了一例可见光直接激发黄素蛋白实现烯烃的不对称自由基加氢芳化反应,以优异的产率(最高达99%)和对映选择性(最高达99:1 er)制备了一系列对映体富集的氢芳基化产物。与先前报道的基于烯烃还原酶的光酶催化净还原体系不同,本文发展了一种机理上独特的氧化还原中性的催化循环,关键步骤是可见光直接激发黄素蛋白,并引发后续的单电子氧化和自由基加成途径。本文的理论计算部分由厦门大学王斌举课题组完成,电子顺磁共振实验部分由中国科学技术大学生命科学学院/中国科学院强磁场科学中心田长麟课题组完成,其余部分由南京大学黄小强课题组完成。南京大学博士研究生赵贝贝、厦门大学博士研究生冯键强和中国科学院强磁场科学中心于璐副研究员为论文的共同第一作者。黄小强特聘研究员、王斌举教授和田长麟教授为论文的共同通讯作者。论文得到了南京大学启动经费、科技部重点研发计划(2022YFA0913000, 2019YFA0405600, 2019YFA0706900)、国家自然科学基金(22277053, 22121001, 21927814, 21825703)、江苏省自然科学基金(BK20220760)、中国科学院青促会(2022455)等项目,以及稳态强磁场实验装置(SHMFF)的支持。原文(扫描或长按二维码,识别后直达原文页面):Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylationBeibei Zhao, Jianqiang Feng, Lu Yu, Zhongqiu Xing, Bin Chen, Aokun Liu, Fulu Liu, Fengming Shi, Yue Zhao, Changlin Tian, Binju Wang & Xiaoqiang HuangNat Catal., 2023, DOI: 10.1038/s41929-023-01024-0通讯作者简介黄小强博士,南京大学化学化工学院特聘研究员、国家青年人才(海外)、重点研发计划青年首席;已在Nature, Nat. Catal.(3), Nat. Commun., JACS (3), ACIE (2), Acc. Chem. Res.(2)等杂志发表一作/通讯论文多篇。实验室正在招聘生物合成和化学合成方向的博士后、博士研究生,详见课题组主页:https://www.x-mol.com/groups/huang_xiaoqiang
  • 海南大学新检测技术将有效预警海洋核污染物
    海南大学南海海洋资源利用国家重点实验室王宁和袁益辉研究团队提出利用DNA结构实现超灵敏和高选择性锶离子检测的方法,可快速有效实现海洋放射性污染物监测,助力核电产业绿色可持续高质量发展。相关成果近日发表在国际学术期刊《自然可持续发展》上。  随着核能的广泛应用,防治放射性核污染成为人们关注的话题。作为235U的裂变产物,90Sr是最常见的放射性核污染元素之一。其化学性质与钙相似,易在环境与生物体内富集,对人体的辐射可引起骨癌、白血病等疾病,此外,因其半衰期长达29年,具有长期危害性,是人类不可忽视的一大隐患。然而,由于锶离子缺乏特征能量射线,使用现有技术无法快速、全面且精准地进行锶元素检测,如何精准检测一直是个行业难题。  鉴于此,王宁和袁益辉研究团队提出了一种以鸟嘌呤-四联体DNA(脱氧核糖核酸)结构实现超灵敏和高选择性检测Sr2+离子的方法。该团队通过利用荧光染料硫黄素T触发DNA折叠,形成鸟嘌呤-四联体DNA结构,并利用Sr2+与该DNA结构的高结合亲和力,取代结构中的荧光染料硫黄素T,从而导致荧光强度衰减。  此项研究提供了一种快速高选择性核污染检测技术的方法,首次实现低至2.11纳摩的检测限,具有超高灵敏度、高选择性、广泛适用性和高可靠性。
  • 近期即将实施的标准及使用仪器设备汇总
    受疫情影响,有些时日没有整理即将实施的标准,今日特意抽出时间将化学检测仪器分析的标准汇总于下表,以及所涉及到使用的仪器设备汇总,供大家方便使用,免去查找的繁琐步骤。  说明:因发标准布不久或者是版权问题,免费版还未公开暂时无法提供下载,表格中标准号有超链接,点击即可跳转标准阅读页面,输入验证码即可阅读全文。序号标准号标准名称实施日期1GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施2GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施3GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施4GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施5GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施6GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施7GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-11-01实施8GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-10-01实施GB/T 19427-2022蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法2022-10-01实施  仪器和设备:  1.液相色谱-串联质谱仪:配有电喷雾离子源。  2.液相色谱仪:配有紫外(或二极管阵列)检测器.  3.超声波清洗仪。  4.分析天平:感量0.01mg和0.001g。  5.离心机:转速不低于4000r/min。  6.微量可调移液器:10ul-100ul,和0.1ml-1ml。  7.微孔滤膜:孔径0.22um。GB/T 41133-2022番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法2022-10-01实施  仪器和设备:  1. 超高效液相色谱仪:配有二元及以上梯度泵,带二极管阵列检测器或紫外检测器。  2. 紫外分光光度计。  3. 分析天平:感量为0.01 mg和0.01 g。  4. 组织捣碎机。  5. 涡旋振荡器。  6. 减压浓缩装置。  7. 固相萃取装置。  8. 离心机:转速不低于5000 r/min。GB/T 38479-2021壳聚糖含量测定 高效液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配有蒸发光散射检测器。  2. 色谱柱:氨基柱(250 mm X4.6 mm,5 μm)。  3. 有机相微孔滤膜:0.45 μm。  4. 电子分析天平:感量为0.1 mg.0.01 g。  5. 电热恒温鼓风干燥箱。  6. 粉碎机。  7. 0.3mm标准检验筛。  8. 恒温磁力搅拌器。  9. 集热式磁力恒温搅拌器。  10. 旋转蒸发仪。GB/T 38478-2021虾青素旋光异构体含量的测定 液相色谱法2022-07-01实施  仪器和设备:  1. 高效液相色谱仪:配紫外检测器。  2. 分析天平:感量0.0001g。  3. 冷冻离心机。  4. 超声波清洗机。  5. 恒温水浴锅。  6. 玻璃匀浆器:20 mL.  GB/T 41456-2022纳米技术生产环境纳米二氧化钛粉尘浓度检测方法 分光光度法2022-11-01实施  设备和仪器:  1. 采样器:符合JJG 956的大气采样器。  2. 电子天平:精度0.1 mg。  3. 超声波发生器:设备参数应覆盖以下范围:频率25 kHz~100 kHz,功率100 W~300 W。  4. 浊度计:符合JJG 880的浊度计,量程下限不高于0.1 NTU.  5. 电热板:加热板面积不小于150 mmX 150 mm,温度不低于200℃。  6. 紫外-可见分光光度计:波长范围200 nm-600 nm,精度优于1nm。GB/T 41442-2022山羊绒净绒率试验方法 近红外光谱法2022-11-01实施  仪器设备  近红外光谱分析仪:  1. 推荐采用傅里叶变换色散原理的光谱仪,其他近红外光谱分析仪也可以采用。  2. 波长范围:4000 cm-1-10000 cm-1。  3. 分辨率:2 cm-1、4 cm-1 、8 cm-1均可,推荐4 cm。  4. 检测聚苯乙烯,取峰位4571.00 cm-1,准确度要求士0.5 cm-1。  5. 检测空气中的水分,取峰位7181.68 cm-1 ,准确度要求士0.1 cm-1。GB/T 14571.4-2022工业用乙二醇试验方法第4部分:紫外透光率的测定 紫外分光光度法2022-04-15发布 2022-11-01实施  仪器设备:  1. 紫外分光光度计:  双光束,测定波长200 nm~400 nm,吸光度精度优于0.001。仪器工作波长划分为两段,分别是A段(190 nm~340 nm)、B段(340 nm~400 nm)。A段波长准确度为士0.5 nm,波长重复性为≤0.2 nm 透射比准确度为士0.5%,透射比重复性≤0.2%。B段波长准确度为士1.0nm,波长重复性为≤0.5nm 透射比准确度为士0.5% ,透射比重复性≤0.2%。在220 nm处杂散光不大于0.1%。  2. 石英吸收池:  光径为10mm士0.01mm的石英吸收池和光径20mm士0.01mm的石英吸收池。以空气为参比,10mm的参比池和样品池在待测的各个波长处的吸光度差值不超过0.002。以空气为参比,20 mm的吸收池与10 mm的参比池在待测的各个波长处吸光度差值不超过0.002。  3. 氮气吹脱装置:将无油减压阀固定在氮气钢瓶上或氮气管道,并通过适当材质的管线(如聚乙烯管)与流量控制阀及插人25 mL容量瓶或锥形瓶中的收口玻璃管(6.6)相连。各部件需清洁、无污染。试样应避免与含有增塑剂的塑料制品接触。  4. 试剂瓶:容量至少500mL,配备密封性较好的瓶盖。  5. 容量瓶或锥形瓶:容量25 mL。  6. 收口玻璃管:胶头滴管玻璃部分。GB/T 41497- 2022钒铁 钒、硅、磷、锰、铝、铁含量的测定吗波长色散X射线荧光光谱法2022-04-15发布 2022-10-01实施  仪器与设备  1. 波长色散X射线荧光光谱仪:应符合GB/T 16597规定。  2. 坩埚和铸型模:坩埚和铸型模(或坩埚兼作铸型模)由不浸润的铂合金(95%Pt+5%Au)制成。坩埚容积宜大于30mL,铸型模要求底部平整光滑(底部厚度应足以防止变形)。  3. 高温炉:温度可控并至少能加热到1 000 C士20 C。  4. 熔融炉:温度可控并至少能加热到1 050 C士20 C。  5. 天平:感量不大于0.1 mg。  6. 瓷坩埚:容积约50 ml。  7. 瓷坩埚:容积约100 ml.  作者:小泥人
  • 荧光增强传感器可追踪组织深处分子 有助于癌症诊断或监测
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。  科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。  为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。  这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。  但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。  当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。  这种传感器还可以用于检测肿瘤细胞死亡的分子特征。  除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。  研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 赛默飞世尔UHPLC/MS鉴定伪麻黄碱
    赛默飞世尔科技UHPLC/MS确保有效鉴定违禁药品混合物中的伪麻黄碱加利福尼亚州圣何塞( 2009年2月2日) -服务科技、世界领先的赛默飞世尔科技公司,发布了一种新的、快速和稳定的UHPLC / MS方法,有效地分离和鉴定了伪麻黄素,麻黄素,苯丙胺,甲基苯丙胺和摇头丸。 该应用方法详细介绍了如何用Accela ™ UHPLC系统和MSQ Plus™ 单四极质谱高通量分离和鉴定违禁药物中的各个组分的分析方法,而且在www.thermo.com / appnotes可免费下载题为“UHPLC / MS定量分析伪麻黄碱片”( Quantitative Analysis of Pseudoephedrine Tablets by UHPLC/MS)论文。 伪麻黄素常用于治疗普通感冒的药物,如Sudafed , Benadryl 和Claritin 。 伪麻黄碱是I类化学品,毒贩用其制造非法毒品市场二类受控物质---冰毒。含伪麻黄碱的非处方药的改造是冰毒制造和在全世界泛滥的一个主要因素,成功地分离和鉴定含伪麻黄碱的非法药物的混合物可以帮助确定在非法毒品市场上冰毒的确切的来源和生产方法的途径。 非法药物的混合物通常是利用传统的分析技术,如气相或液相色谱。 当被分析物是极性的或者热稳定,或者在气相色谱前需要化学衍生的,一般用高效液相色谱法分析。此外,超高效液相色谱( UHPLC )比传统的气相色谱更具竞争力。 UHPLC / MS能提供快速,高效分离和高灵敏的检测与质量确认。 基于此,三个含有伪麻黄碱非处方感冒药作为一种活性成分可直接进行UHPLC / MS分析,只需要一个简单提取离子流的过程,而不需要任何的化学衍生。利用UHPLC/MS方法,伪麻黄碱被确定为所有三个品牌主要活性成分。 Thermo Scientific拥有独特的Accela 高速液相色谱和亚2微米色谱柱可将普通HPLC的压力提升到15,000psi。而且在单一仪器上可将运行时间缩短10倍,并将有更好的分离度和柱效。具有纳克/毫升灵敏度和质量数确认的UHPLC/MS能明确鉴定和定量在药物制剂和非法药物样品中的伪麻黄碱和相关化合物。 欲了解更多有关Thermo Scientific UHPLC / MS分析解决方案,请登陆www.thermo.com / appnotes 或www.thermo.com.cn 。 关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制