当前位置: 仪器信息网 > 行业主题 > >

苯硼酸

仪器信息网苯硼酸专题为您提供2024年最新苯硼酸价格报价、厂家品牌的相关信息, 包括苯硼酸参数、型号等,不管是国产,还是进口品牌的苯硼酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯硼酸相关的耗材配件、试剂标物,还有苯硼酸相关的最新资讯、资料,以及苯硼酸相关的解决方案。

苯硼酸相关的资讯

  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。  该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。  其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。  然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。  RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。  中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。  宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。  5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。  作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。  宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。  “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。  据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。  针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。  根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。  资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。  2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。  宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。  中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。  5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。  李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。  5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。  李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。  在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。  此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。  有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。  有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。  在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。  表格一 拟议的统一分类和标签以及物质使用范例。物质名称EC号CAS号拟议统一分类和标签使用范例环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮218-499-02164-08-1对水生环境有危害对水生环境的危害未分类作为一种除草剂硼酸233-139-210043-35-3生殖毒性硼酸被用于许多行业和专业应用,被添加在消费品中。硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。  *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。  王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 设备更新、降本增效方案之—VELP全自动凯氏定氮仪UDK169:高智能、全自动
    近日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,推动高质量发展,促进高端化、智能化、绿色化的设备更新。VELP“设备更新、降本增效方案”系列文章将帮助您响应政策号召,加快实验室的发展。凯氏定氮法因其实用性和多功能性,已成为测定样品中有机氮和蛋白质含量的标准方法,广泛应用于食品、环境检测、水质分析等多个领域。在现代实验室环境中,效率和成本效益已成为检验分析方法的重要指标。为实现降本增效,VELP唯意朴仪器不断对其产品进行探索创新,推出了新款全自动凯氏定氮仪——UDK 169。提升实验室效率自动化高通量结果稳定⏩ VELP全自动凯氏定氮仪UDK 169为连续工作而开发,提供高样品通量和自动化数据处理。同时还具有高灵敏度,能精确测定多种物质的含量,包括TKN、蛋白质、氨氮、氮(Devarda)、TVBN、亚硫酸盐、酚、挥发性酸、氰化物和酒精含量等,保证结果的可重复性。⏩ UDK169与AutoKjel自动进样器结合使用,能够实现高效、全自动的蒸馏和滴定操作,不仅减轻了实验人员的工作负担,还大大提高了实验效率。同时,自动化控制有利于减少人为误差,确保实验结果的稳定性。⏩ 软件直观易用:提供实时图型,实现自动化结果计算和数据存档并支持多种数据导出格式。⏩ VELP Ermes云平台:通过连接云平台,实现随时随地远程监控,降低日常操作负担同时提升了服务支持。降低实验室成本免维护省水耐腐蚀⏩ UDK169集成了比色滴定仪和高精度滴定管,结果的准确性和精密度都很高,且完全自动化,无需校准、免维护。⏩ 采用VELP专利钛冷凝器和聚合物防溅头,降低用水量、提高耐用性并减少清洁过程中的风险。⏩ VELP独有的常压型蒸汽发生器保证操作人员的安全,同时预热快、耐腐蚀、免维护。全自动凯氏定氮仪UDK 169 结合了VELP创新的TEMS&trade 理念Time 省时快速加热,减少时间浪费Energy 节能节省自来水消耗,减少二氧化碳排放Money节省资金降低每次分析的成本Space 节省空间38.5x78x41.6cm紧凑的占地面积节省实验台空间重量仅31kg接下来,小编将围绕“自动化”及“准确度”来更深入地为大家介绍这款凯氏定氮仪:近年来,实验室自动化的趋势越来越明显。原因何在?提高效率、减少误差和改善数据质量的需求推动了这一转变。为了满足这些需求,一系列新技术应运而生,包括用于自动分析的仪器、可远程控制设备的物联网和云平台以及可减少人工数据录入的数据管理简化解决方案等新技术。好消息是,这场 "技术革新"不仅包括新的分析方法和新仪器。湿化学分析和相关分析以及凯氏定氮分析都受益了!自动化在实验室中的重要性与日俱增,因为它在准确性、效率、精确度和生产率方面有诸多好处。自动化凯氏定氮系统就是分析化学领域自动化如何改变高通量实验室流程的一个例子。分析化学涉及对物质进行分析,以确定其成分、结构和性质,其中包括一系列复杂而耗时的步骤,要求高度精确。传统的分析方法通常需要人工操作,既耗时又容易出现人为错误。自动化可确保简化流程,减少出错的可能性。高效率、高效益地组织实验通过将重复性任务自动化,可加快周转时间并提高生产率,例如自动装载将试管直接送入设备、自动清除残留物以及可编程添加试剂(硼酸、水、氢氧化钠)。由于采用了自动化解决方案,实验室测试的样品量得以提高,可以在更短的时间内分析更多的样品,从而使操作员有时间从事其他活动,并降低因延误和积压而产生的成本。得益于新技术的应用,实验室工作人员甚至可以远程监控仪器、结果和流程。卓越的精准度使用自动消化和蒸馏装置可以实现实验室程序和方法的标准化。分析程序的标准化为实验室提供了更高的一致性和重复性,以及更准确可靠的结果。此外,通过引入自动化流程和数据输入(例如样品重量),实验室成功地避免了传统人工程序中常见的人为错误问题。人工转录导致的错误减少,纠错成本降低,数据管理简化,确保了结果的一致性和可靠性,减少了重复检测的需要,节省了时间和资源。实验室自动化的重要性凯氏定氮法涉及一系列步骤,包括消化、蒸馏和滴定,既耗时又要求高度精确。VELP 凯氏定氮仪的设计最大限度地实现了自动化,解放了实验室工作人员,为获得准确、可重复的结果提供了最佳条件。UDK 169与 AutoKjel自动进样器 结合使用,能够自主处理多达24个自动送入装置的样品,从而显著减少了分析所需的时间,并提高了整体的处理效率。所有这些步骤都按照 21 CFR 第 11 部分的规定执行,以确保记录数据的准确和完整性,并通过具有三个访问级别的用户管理系统将责任正确下放到相应级别。VELP唯意朴仪器的全自动凯氏定氮仪UDK 169实现了高通量、高自动化程度和复杂的数据管理,显著提高了实验室的工作效率和结果的准确性与可靠性,有助于推动分析化学领域发展,创建高端、智能、绿色实验室。
  • 欧盟拟撤消活性物质肯定列表中6种农药
    欧盟拟从活性物质肯定列表中撤消丁苯吗啉等6种农药  2008年12月24日,欧盟委员会发布了修订欧洲议会和理事会指令98/8/EC将丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠作为活性物质包括在附录I中的欧盟委员会指令草案。  这6个欧盟委员会指令草案将可能用于生物农药产品的丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠包括在欧共体活性物质肯定列表中。本欧盟委员决议草案涉及企业原先打算提交风险及功效评估信息—基于此这些活性物质被允许保留在生物农药市场上-的活性物质清单。然而,提交信息的最后截止期限到来时,文件没有被提交。因此,这些物质无法按照生物农药指令98/8/EC第16条第2款规定的10年审查计划被审查,现决定12个月的逐步退出期之后从生物农药市场撤销这些物质。
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 欧盟拟禁止销售使用部分化学物质
    据香港贸发局经济研究官网消息,欧洲化学品管理局修订《化学品注册、评估、授权和限制(REACH)法规》,其中,附件XIV列出了已被或将被禁止在欧盟使用或销售的物质清单。具体包括以下22种化学物质:  1.两种来自煤焦油的物质:蒽油及焦油   2.七种铅物质:四氧化三铅、氧化铅、三碱式硫酸铅、氧化铅与硫酸铅的复合物、矽酸铅、烧绿石锑铅黄、碱式乙酸铅   3.四种硼物质:硼酸、无水四硼酸二钠、三氧化二硼、水合七氧四硼酸二钠   4.七种邻苯二甲酸盐:邻苯二甲酸二异戊酯、邻苯二甲酸二-C6-8-支链庚酯(富C7)、邻苯二甲酸二(C7-11支链与直链)烷基酯、支链与直链的邻苯二甲酸二戊酯、邻苯二甲酸二(2-甲氧基乙)酯、邻苯二甲酸正戊基异戊基酯、邻苯二甲酸二戊酯   5.支链和直链-4-壬基酚   6.溴丙烷。  (中国WTO/TBT国家通报咨询中心供稿)
  • 欧盟REACH法规高关注物质清单新增8种化学物质
    记者昨日从厦门检验检疫局获悉,欧洲化学品管理署(ECHA)7月底正式将三氯乙烯等8种新的化学物质纳入REACH法规中高关注物质(SVHC)清单。截至目前,该清单已包含38种高关注物质。该局提请广大出口欧盟化工品及其下游产品生产企业密切关注REACH法规中高关注物质(SVHC)清单最新情况,尽快做好相关产品是否含有高关注物质的核查工作。  厦门检验检疫局轻纺化矿检验监管处建议,当前广大进出口企业应以下几方面着手准备应对工作,避免出口欧盟产品受阻,遭受损失。  一是对自己生产的产品所含有的化学物质进行充分分析,尽量不使用列入REACH法规公布的高关注物质清单中的化学物质,或者尽早开发使用其他安全的替代物质。  二是要尽量使用已注册过并覆盖自己生产制品用途的化学物质。  三是对于无法开发替代品的高关注物质,并且其使用量超过REACH法规规定的限量要求的,尽快按照REACH法规的要求完成向欧盟化学品管理局通报或注册。  附表:REACH法规高关注物质(SVHC)清单序号物质名称15-叔丁基-2,4,6-三硝基-间-二甲苯(二甲苯麝香)24,4′-二氨基二苯基甲烷(MDA)3短链氯化石蜡(SCCPs)4六溴环十二烷(HBCDD)5邻苯二甲酸二-(2-乙基己)酯(DEHP)6邻苯二甲酸甲醇丁醇酯(BBP)7邻苯二甲酸二丁酯(DBP)8三乙基砷酸盐9蒽10二氯化钴11五氧化二钴12亚砷酐13重铬酸钠14双三丁基氧化锡15砷酸氢铅16蒽油17蒽油,蒽糊,蒸馏轻组分18蒽油,蒽糊,蒽馏分19蒽油,低含蒽量20蒽油,蒽糊21煤焦油沥青(高温)22硅酸铝耐火陶瓷纤维23氧化锆硅酸铝耐火陶瓷纤维242,4-二硝基甲苯25邻苯二甲酸二异丁酯(DIBP)26铬酸铅27钼铬红(C.I.颜料红104)28铅铬黄(C.I.颜料黄34)29磷酸三(2-氯乙基)酯30丙烯酰胺31三氯乙烯32硼酸33无水四硼酸钠34水合硼酸钠35铬酸钠36铬酸钾37重铬酸铵
  • 工信部发布关于16项轻工、有色、稀土行业标准报批公示
    根据行业标准制修订计划,相关标准化技术组织等单位已完成《调味盐》等12项轻工行业标准、《锡冶炼安全生产规范》等3项有色行业标准、《离子型稀土矿原地浸出开采安全生产规范》1项稀土行业标准的制修订工作。在以上16项行业标准批准发布之前,为进一步听取社会各界意见,特予以公示,截止日期2016年3月23日。序号标准编号标准名称标准主要内容代替标准采标情况轻工行业1QB/T2020-2016调味盐  本标准规定了调味盐的要求、试验方法、检验规则、标签及标志、包装、运输、贮存。本标准适用于以食用盐或低钠盐为载体,添加一定量的调味品或能起到调味作用的食品,经加工而成的口味各异的系列固体调味盐。QB2020-2003 2QB/T2573-2016十二烷基硫酸铵  本标准规定了十二烷基硫酸铵的产品分类、要求、试验方法、检验规则、标志、包装、运输、贮存和保质期。本标准适用于各种工艺生产的十二烷基硫酸铵工业产品。QB/T2573-2002 3QB/T4968-2016地板清洁脱蜡剂  本标准规定了地板清洁脱蜡剂的要求、试验方法、检验规则、标志、包装、运输、贮存。本标准适用于由表面活性剂、助剂和溶剂配制而成,主要用于公共设施地板蜡(不包含木地板)的脱蜡剂。  4QB/T4969-2016表面活性剂原材料和按配方制造产品中阳离子表面活性剂含量的测定电位滴定法  本标准规定了测定表面活性剂原材料和按配方制造的产品中阳离子表面活性剂的电位滴定法。本标准适用于分析阳离子表面活性剂。若以质量分数表示分析结果时,则阳离子表面活性剂的平均相对分子质量已知或预先测定。本标准不适用于有阴离子表面活性剂或两性表面活性剂存在时的测定。注1:尿素和乙二胺四乙酸盐和羧甲基纤维钠不干扰。注2:存在非离子表面活性剂时,需视各特殊情况估计其影响。注3:洗涤剂配方中的典型无机组分,如氯化钠、硫酸钠、硼酸钠、三聚磷酸钠、过硼酸钠、硅酸钠等不干扰,但过硼酸钠以外的漂白剂在分析前应予以破坏,且样品应完全溶于水。  5QB/T4970-2016表面活性剂原材料和按配方制造产品中阴离子表面活性剂含量的测定电位滴定法  本标准规定了测定表面活性剂原材料和按配方制造的产品中阴离子表面活性剂的电位滴定法。本标准适用于分析阴离子表面活性剂。若以质量分数表示分析结果时,则阴离子表面活性剂的平均相对分子质量已知或预先测定。本标准不适用于有阳离子表面活性剂存在时的测定。注1:尿素、乙二胺四乙酸盐和羧甲基纤维钠不干扰。注2:存在非离子表面活性剂时,需视各特殊情况估计其影响。注3:洗涤剂配方中的典型无机组分,如氯化钠、硫酸钠、硼酸钠、三聚磷酸钠、过硼酸钠、硅酸钠等不干扰,但过硼酸钠以外的漂白剂在分析前应予破坏,且样品应完全溶于水。  6QB/T4971-2016婴幼儿配方乳粉行业产品质量安全追溯体系规范  本标准规定了婴幼儿配方乳粉行业产品质量安全追溯体系中的术语和定义、追溯信息采集与管理及实施信息追溯的要求。本标准适用于乳粉企业生产的婴幼儿配方乳粉产品质量安全信息追溯管理与信息共享(含进口产品)。  7QB/T4972-2016暂养型海水精  本标准规定了暂养型海水精的术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。本标准适用于以氯化钠为主原料,再添加钾、钙、镁等有利于水产品存活的无机盐,经混合均匀配制而成,稀释后与海水主要成分相类似的、供海水类食用水产品暂养的盐产品。  8QB/T4973.1-2016纺织品印染喷墨第1部分:活性染料墨水  本部分规定了纺织品印染喷墨活性染料墨水的术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。本部分适用于在纺织品印染过程中使用的活性染料喷墨墨水。  9QB/T4973.2-2016纺织品印染喷墨第2部分:分散染料墨水  本部分规定了纺织品印染的分散染料喷墨墨水的术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。本部分适用于纺织品印染过程中使用的分散染料喷墨墨水。  10QB/T4973.3-2016纺织品印染喷墨第3部分:酸性染料墨水  本部分规定了纺织品印染喷墨-酸性染料墨水的术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。本部分适用于在纺织品印染过程中使用的酸性染料墨水。  11QB/T4973.4-2016纺织品印染喷墨第4部分:颜料墨水  本部分规定了纺织品印染喷墨颜料墨水的术语和定义、要求、试验方法、检验规则和标志、包装、运输、贮存。本部分适用于在纺织品印染过程中使用的颜料喷墨墨水。  12QB/T4974-2016喷墨墨水用水性染料技术条件  本标准规定了喷墨墨水用水性染料的要求、试验方法、检验规则和标志、包装、运输、贮存。本标准适用于喷墨墨水使用的水性染料。  有色行业13YS/T1108-2016锡冶炼安全生产规范  本标准规定了锡冶炼安全生产的基本规范和要求。本标准适用于锡冶炼企业的设计、施工、验收、生产、维护、检修和管理。  14YS/T1181-2016海绵钛安全生产规范  本标准规定海绵钛安全生产、工序及设备安全作业、事故应急处理措施的基本要求。本标准适用于镁热法海绵钛生产企业开展安全生产标准化工作及设计、施工、验收、生产、维护、检修和管理等。  15YS/T1182-2016锗单晶安全生产规范  本标准规定了锗单晶安全生产的基本安全要求、工艺作业安全、设备设施安全作业要求、检修维护、危险源辨识、风险评价、风险控制、应急管理、职业健康和事故处理管理等。本标准适用于以区熔锗锭为原料生产锗单晶及晶片的安全生产管理。  稀土行业16XB/T904-2016离子型稀土矿原地浸出开采安全生产规范  本标准规定了离子型稀土矿原地浸出开采安全生产的组织管理、目标管理、教育与培训、设计、施工、生产、应急管理、安全报告与统计分析等过程中的基本要求。本标准适用于采用原地浸矿工艺生产的离子型稀土矿山安全评价、设计、建设、生产。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 基于微液滴可裂解标签的解吸电喷雾电离质谱成像表征功能生物大分子
    近日,斯坦福大学化学系Richard N.Zare教授课题组在Angewandte Chemie上发表了题为“Immuno-Desorption Electrospray Ionization Mass Spectrometry Imaging Identifies Functional Macromolecules by Using Microdroplet-Cleavable Mass Tags”的研究论文。  解吸电喷雾电离质谱成像 (DESI-MSI) 是在常压敞开式环境下,利用电喷雾液滴对生物组织成分软电离,并将其引入质谱进行检测与可视化的一种分析技术。自DESI-MSI技术发展至今,已广泛应用于体内药物分析、临床分子诊断、空间代谢组学等生物医药研究领域,其可检测分子主要涵盖有机合成药物、内源性代谢物和脂质等分子量低于1000的小分子化合物。  靶点研究是药物研发的重中之重,包括在疾病发生发展进程中起关键调控作用的酶、受体、转运体、离子通道等生物大分子。这些药物靶点是参与信号通路及代谢通路调控等功能的重要执行者,且与药物治疗或毒副作用有直接关联。阐明药物干预下靶点及其信号通路分子在体内分布与变化,对预测候选药物的分子靶向性、评价药效与毒性、深入理解药物作用分子机制等至关重要。然而由于上述功能生物大分子的超高分子量、低丰度和低电离效率,直接对组织样本进行蛋白质成像目前仍然是对DESI-MSI的一大挑战。  基于免疫识别与分子标签的成像策略为DESI-MSI实现生物大分子的检测提供了一种切实可行的思路。标签分子及其裂解方式的设计是其中的核心技术问题。根据已知的微液滴化学研究报道,DESI在正模式高压电下产生的微米级水相液滴,在其气-液界面富含高浓度的质子,因此可以加速酸催化有机反应的进程。本研究设计合成了一系列苯硼酸类标签分子,在碱性条件下,将其与抗体非识别区人工修饰侧链上的半乳糖胺通过苯硼酸酯键共价结合。利用酸性电喷雾溶剂可在微秒时间内快速将苯硼酸酯键断裂的特性,实现了标签分子的在线原位释放,使得DESI-MSI 在单张组织切片上定位多个不同的功能生物大分子成为可能,实现了基于DESI质谱成像的多重免疫组化检测,本研究将这种方法被命名为“immuno-DESI-MSI”。  苯硼酸类标签分子硼元素的引入,不仅实现了pH调控的可逆结合/释放,还使标签分子离子在质谱中具有可辨识的独特同位素分布模式(M+1基峰)。标签分子含有叔胺及季胺基团,因此具有极高的解吸电离效率,此外,标签分子中具有高度共轭的刚性平面结构,因此具有荧光发射特性,使得合成的标签分子-抗体探针,具有组织微区域可分辨的质谱成像和细胞分辨的荧光显微成像双重功能。通过常规DESI-MSI与immuno-DESI-MSI图像配准,即可关联药物、靶点、信号通路、酶以及下游代谢通路多个层次的空间关联信息。作为概念验证,本研究最后选取拉帕替尼为受试药物,探究了其对于药物靶点EGFR及其信号通路相关分子的抑制作用以及下游代谢层面的影响。  图1. 设计的标签分子及探针结构和immuno-DESI-MSI的一般工作流程  图 2. 免疫荧光显微镜成像 和 immuno-DESI-MSI 的交叉验证  图3. EGFR通路中6个大分子的immuno-DESI-MSI图像及其与抗EGFR药物拉帕替尼的空间相关性分析  图 4. 由immuno-DESI-MSI 获得的药物、靶点、信号通路和代谢组信息用于药物作用分子机制分析  作者简介  本研究的通讯作者为斯坦福大学化学系理查德杰尔(Richard N.Zare)教授,国际知名物理化学和分析化学家,中国科学院外籍院士,美国国家科学院院士,美国艺术与科学院院士,英国皇家学会外籍院士,欧洲科学院院士,瑞典皇家工程科学院外籍院士,发展中国家科学院院士。主要研究方向包括激光化学、微液滴化学、质谱分析等,目前重点聚焦于微液滴化学的理化性质与基础理论研究,以及微液滴在材料、合成、催化、生物医学诊断等领域的应用。本研究的第一作者宋肖炜,2017年毕业于中国医学科学院/北京协和医学院药物研究所,师从再帕尔教授,获药物分析学博士学位,研究方向为定量质谱成像分析方法及其在药物研发中的应用。2017年9月-2022年6月在复旦大学化学流动站开展博士后工作,期间于2020年1月起在斯坦福大学交流访问和继续博士后工作,主要方向为微液滴化学与常压原位电离质谱分析新方法研究。在PNAS、J. Am. Chem. Soc.、Angewandte、Anal. Chem.、EBiomedicine等综合性期刊、化学、分析化学、质谱分析或生物医学类期刊以第一作者及通讯作者发表论文18篇,申请国家专利6项,主持国家自然科学基金青年基金项目1项、中国博士后基金面上项目1项。  原文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202216969
  • 添加纳米线让锂离子电池更安全
    p style="text-indent: 2em "无论手机、笔记本电脑、还是电动车辆都离不开锂离子电池,它是“点燃”我们日常生活的重要能源。然而近些年,锂离子电池却因为实实在在的着火事件而引起了舆论的关注。怎样才能开发出更为安全的电池呢?据科学家在ACS期刊的纳米板块发表的文章介绍,在电池中加入纳米线不仅可以提升电池的耐火性,同时也能提升电池其他方面的性能。/pp style="text-indent: 2em "在锂离子电池中,锂离子通过电解质往返穿梭于两电极之间,传统锂离子电池的电解质是盐和有机溶剂构成的液体,很容易蒸发,是造成火灾的隐患。因此,学者们将研究的重心转向了固态电解质。被提议担起固态电解质的“人选”有很多,然而这些物质大多或稳定性不够,或不能满足大规模生产的需要,二者不可得兼。这其中,聚合物电解质因其良好的稳定性、低成本和灵活性而被认为是担当固态电解质的潜力股,但是它的导电性和力学性能却较差,因此,科学家们通过添加一系列化合物来设法提升聚合物电解质的性能。陶新永和他的研发团队制备出的硼酸镁纳米线恰好就具有良好的力学性能和导电性,如果把硼酸镁纳米线加入到固态电解质中,是否电池也会被赋予相应的良好特性呢?陶新永的团队对此十分好奇。/pp style="text-indent: 2em "他们在固体电解质中混合了5、10、15、20重量百分比的硼酸镁纳米线并进行实验观察,发现硼酸镁纳米线确实可以提升电解质的导电性,这种提升与离子通过电解质的速度和数量息息相关,离子通过电解质的速度越快,快速通过的数量越多,电解质的导电性能就越好。此外,硼酸镁纳米线的添加还使得电解质能够承受更大的压力。研究团队还测试了加入硼酸镁纳米线后电解质的可燃性,发现它几乎不可燃烧。而由硼酸镁纳米线强化的固态电解质与阴阳极配对所构成的电池,在速率性能和循环容量上都比电解质中不含硼酸镁纳米线的电池有所提升。/p
  • 1月回顾|质谱领域重要科研成果新鲜出炉!
    2023年1月,质谱研究领域的新鲜成果迭出,包括迷你 Orbitrap,一种研究 DNA 甲基化的新方法,Jonathan Sweedler 与 Fan Lam 合作研究阿尔茨海默症,Zare教授团队利用微液滴可裂解标签的解吸电喷雾电离质谱成像表征功能生物大分子,南开大学张新星团队发现微液滴活化转化CO2 新策略等。仪器信息网特别将相关内容进行编译,以飨读者。  mini Orbitrap与太空研究  美国马里兰大学的研究人员推出了一种新的小型化 Orbitrap 分析仪——专为满足 NASA 太空任务的需求而量身定制。他们将这种微型化技术与激光解吸质谱法 (LDMS) 相结合,无需大量样品处理即可对行星材料的有机物含量和化学成分进行原位表征。这种结合可以帮助天体生物学任务——特别是那些专注于生命探测目标和对月球表面的渐进探索的任务。这款新设备拥有与台式仪器相同的优势,但针对太空探索和现场行星材料分析进行了简化。  iDEMS 的强大功能  为了更详细地研究 DNA 甲基化,研究人员开发了一种新的、高度灵敏的基于质谱的方法——称为 iDEMS(简称为“通过 5-乙炔基脱氧尿苷标记 DNA 质谱法”)。 该方法表明,DNA 甲基化水平在复制后稳步增加,超过细胞分裂,并且羟甲基化在姐妹链之间永远不对称,有利于亲本链。这些发现为回答有关 DNA 修饰传播的长期问题奠定了基础。作者希望 iDEMS 可用于“分析不同细胞环境中的甲基化和羟甲基化动力学”——包括衰老和癌症进化。  同位素成像质谱MIMS与肺动脉疾病  肺动脉高压 (PAH) 是一种罕见的肺动脉疾病,可导致瘢痕组织过多和肺血管增厚。为了探索由此产生的生物量增加的起源,研究人员使用多同位素成像质谱 (MIMS) 来检查关键贡献者。MIMS 是一种新的成像模式,它将体内稳定同位素示踪剂方法与纳米级二次离子质谱法相结合——这是它首次用于肺部疾病的研究。 研究结果显示, “对人类 PAH 中的脯氨酸和葡萄糖进行更深入的研究可能会发现抑制生物量形成、防止肺动脉阻塞和降低 PAH 患者心力衰竭几率的机会,”第一作者 Bradley Wertheim 在一份新闻稿中说。  质谱组合技术助力阿尔茨海默症研究  得益于美国国立卫生研究院 300 万美元的资助,磁共振成像 (MRI) 和质谱成像 (MSI) 将以前所未有的规模结合起来开展研究。 Jonathan Sweedler 和 Fan Lam 使用这种独特的技术组合来捕捉阿尔茨海默症动物模型的各种图像。 根据最近的一份新闻稿,研究者提到研究的总体目标是:“了解在阿尔茨海默症小鼠模型中分子水平上发生了什么。”  immuno-DESI-MSI助力药物研发  斯坦福大学化学系Richard N.Zare教授团队基于免疫识别与分子标签的成像策略为DESI-MSI实现生物大分子的检测提供了一种切实可行的思路。标签分子及其裂解方式的设计是其中的核心技术问题。根据已知的微液滴化学研究报道,DESI在正模式高压电下产生的微米级水相液滴,在其气-液界面富含高浓度的质子,因此可以加速酸催化有机反应的进程。本研究设计合成了一系列苯硼酸类标签分子,在碱性条件下,将其与抗体非识别区人工修饰侧链上的半乳糖胺通过苯硼酸酯键共价结合。利用酸性电喷雾溶剂可在微秒时间内快速将苯硼酸酯键断裂的特性,实现了标签分子的在线原位释放,使得DESI-MSI 在单张组织切片上定位多个不同的功能生物大分子成为可能,实现了基于DESI质谱成像的多重免疫组化检测,本研究将这种方法被命名为“immuno-DESI-MSI”。微液滴活化转化CO2新策略  近年来,微液滴化学成为了当下最热门的研究领域之一。现有报道为微液滴气液界面存在的极高电场(109 V/m)提供了证据,该电场可以撕裂氢氧根,生成羟基自由基和自由电子,该电子使某些物质发生自发的还原反应。该文中南开大学张新星研究员团队利用微液滴化学的独特性质,在无需任何催化剂的前提下,还原了五氟碘苯(C6F5I),使其生成阴离子自由基(C6F5I•-),并与CO2反应,快速生成五氟苯甲酸(C6F5CO2H)。
  • 2014年北京波谱年会召开
    仪器信息网讯 2014年5月9日,北京理化分析测试技术学会波谱学会在北科大厦召开&ldquo 2014年北京波谱年会&rdquo 。本次会议的目的是促进北京地区波谱技术的交流与发展,为北京市及周边地区高分辨核磁共振谱仪的用户搭建一个应用技术交流平台,吸引了来自科研院所、高校的老师、学生以及核磁一线操作人员等120多人参加。会议现场  本次会议共安排了7个报告,包括核磁实验方法选择、应用及机理研究、最新技术进展等多方面的内容。国家生物药学分析中心颜贤忠致辞  上海有机所李光玉介绍了硼谱背景信号的消除方法以及背景信号消除方法在其它方面的应用;石油化工科学研究院黄少凯介绍了核磁共振实验条件及油品结果分析方法考察等方面的内容,其中详细介绍了核磁共振技术在重油临氢热转化过程中的应用研究;北京大学林崇熙在报告中详细介绍了如何在核磁共振检测中灵活使用毛细管内标,并现场带来了多根毛细管与大家分享心得;清华大学杨海军介绍了苯硼酸官能团转化反应机理的电子顺磁共振波谱研究,包括金属铜催化、无金属、自由基催化、光催化等内容。上海有机所 李光玉核磁共振背景信号的消除方法石油化工科学研究院 黄少凯核磁共振技术在重油临氢热转化过程中应用研究北京大学 林崇熙如何灵活应用毛细管内标清华大学 杨海军苯硼酸官能团转化反应机理的电子顺磁共振波谱研究  本此会议还得到了很多核磁厂家的支持和赞助,安捷伦科技(中国)有限公司、日本电子株式会社、布鲁克(中国)有限公司、牛津仪器(上海)有限公司、青岛腾龙微波科技有限公司等多家厂商参会。其中布鲁克、安捷伦、日本电子株式会社还在报告中展示了公司的最新技术及产品。瑞士布鲁克公司 单璐布鲁克新技术进展(Continuing Scientific Innovation)安捷伦科技(中国)有限公司 段怡譞安捷伦新技术及高阶核磁实验介绍日本电子株式会社 叶跃奇JEOL NMR
  • 欧盟SVHC第一批通报日期已截止
    2011年6月1日,列入REACH授权候选清单,且符合以下条件的首批高关注物质(SVHC)应依据REACH法规第7条第4款向ECHA进行通报:  该物质在物品中的总含量超过1/t/a/每进口商或制造商   该物质在物品中的总浓度超过了0.1%(w/w)。  此外,还要注意的是,以下两个条件即使满足上述的条件豁免通报,即:  已经对该物质的该用途进行注册   制造商或进口商在包括处置在内的正常或可合理预见使用的条件下,可排除人类或环境的暴露。但此时,制造商或进口商应向物品的接受 者提供适当的说明。  需在2011年6月1日前完成通报的是前三批SVHC,而下一个通报截止节点是2011年的6月15日(即第四批SVHC需完成通报的时间节点)。  在SVHC通报功能开通一个多月以来,全球已有数百家企业完成了SVHC通报,通报物质包括硼酸、硅酸铝耐火陶瓷纤维、氧化锆硅酸铝耐火陶瓷纤维、邻苯二甲酸盐等,我国许多玩具企业、塑料制品企业等均已完成或者正在积极应对通报。 从统计数据来看,除了我国相关企业,欧盟境内的进口商与生产商,日本、韩国、土耳其、美国等国的相关企业也在积极应对。  从SVHC通报物质与企业来看,SVHC通报存在行业集中性,像硼酸就常添加在纤维素聚合物、陶瓷纤维等材料中 硅酸铝耐火陶瓷纤维、氧化锆硅酸铝耐火陶瓷纤维是常用的耐火材料主体成分 而邻苯二甲酸盐(DEHP、BBP、DBP、DIBP)则是软塑料的常用增塑剂,在玩具等物品中经常检出。一般来说,大件复杂物品需要通报的可能性比较小,材料较为单一的小件物品通报SVHC的产品。  目前欧盟已经公布了46种SVHC,还有7种已经通过公开评议,近期将对外正式公布,到时SVHC将会增加到53种。根据欧盟REACH法规,欧盟主管当局(ECHA)将每年更新SVHC清单,最终可能达到2000多种。  专家提醒中国企业: 近年进入欧盟市场的环保门槛日益提高,特别是REACH法规已经成为影响最为广泛的技术性贸易壁垒,中国企业不但应注意产品的性能,也应特别关注是否满足环保性法规的要求,以免出口受阻。
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
  • 科学岛团队开发MOF荧光传感平台用于食品安全可视化监测
    近期,中科院合肥研究院固体所能源材料与器件制造研究部蒋长龙研究员团队在没食子酸(GA)的可视化分析检测方面取得新进展。该团队采用铕离子(Eu3+)与3,5-二羧基苯硼酸(BBDC)配位聚合构建多发射铕金属-有机骨架荧光团,通过便携式传感平台用于对没食子酸的可视化检测。其中,通过设计合成的双发射Eu-MOF荧光探针对茶叶和果汁中没食子酸的共价结合和富集,提出了一种有效的食品添加剂监控策略,以保证食品安全和人体健康,相关成果已发表在国际化学工程类TOP期刊 Chemical Engineering Journal 上。   食品添加剂具有改善感官特性和维持或提高食品营养价值的作用,尤其是具有抗氧化作用的食品添加剂正受到社会各年龄段人群的广泛关注。在茶叶和新鲜果汁中的没食子酸具有还原性和多种生物活性,它通过清除活性氧(ROS) 和其他自由基离子对人体具有抗氧化作用,并能显著降低ROS指数。没食子酸不仅天然存在于绿茶、红茶等多种植物中,还因其强大的抗自由基活性和抗氧化作用而广泛应用于食品和保健品中。没食子酸的快速直观检测对分析化学具有重要意义,因为它不仅具有很强的抗诱变、抗癌、抗氧化活性,而且是评价食品抗氧化能力的重要指标。   研究人员基于硼酸配体和铕金属离子的聚合,开发了单波长激发下的多发射Eu-MOF,用于快速可视化检测没食子酸,并且利用智能手机APP(颜色识别器)识别荧光探针溶液颜色的RGB值完成了对没食子酸的可视化检测。引入硼酸基团后,Eu-MOF在单波长激发下有两个发射中心,在检测没食子酸时,Eu-MOF的发射颜色在紫外灯照射下可由红色变为蓝色,即由Eu-MOF中能量转移效率的转变引起。这种多发射Eu-MOF具有显著的发光性能、高灵敏度和对没食子酸的快速视觉响应,并对没食子酸的检测具有良好的分散性和较低的检测限,可用于茶和果汁等实际样品中没食子酸的检测。结合智能手机制备的荧光传感平台,可进行现场、快速、半定量、可视化的检测。所设计的方法为食品质量控制评价体系的开发提供新的思路与途径,并有望扩展多发射Eu-MOF在化学和分析传感领域的应用。   该项研究工作得到了国家自然科学基金、国家重点研究开发项目和安徽省重点研究开发项目的资助。
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • 化妆品要做哪些检测,你知道吗?
    化妆品常规检测项目常规检测项目:铅、砷、汞、甲醇等。卫生指标:PH、镉、锶、总氟、总硒、氢氧化物、硼酸和硼酸盐、甲醛、苯酚、防晒剂、防腐剂、染料、抗生素、维生素、可溶性锌盐等。化学禁用、限用物质:二甘醇、重金属、色素、防腐剂、甲醇、甲醛等。微生物指标:细菌总数、粪大肠菌群、铜绿假单胞菌、金黄色葡萄球菌、霉菌和酵母菌等 。 激素含量:糖皮质激素、性激素、雌激素、孕激素等。新的《化妆品安全技术规范》自 2016年12月1日起施行《化妆品安全技术规范》是原卫生部印发的《化妆品卫生规范》( 2007 年版) 的修订版。 2015年11月经化妆品标准专家委员会全体会议审议通过, 2015年12月23日由国家食品药品监督管理总局批准颁布,自2016年12月1日起施行。 一、《化妆品安全技术规范》(2015年版)特点1、化妆品安全性保障进一步提高调整了化妆品中的禁限用组分要求调整了部分准用组分的限量要求和限制条件调整了铅、砷的管理限值要求增加了镉的管理限值要求收录了二噁烷和石棉的管理限值要求2、适应性与可操作性进一步提高 对《技术规范》中涉及的名词和术语提供了释义,细化和明确相关概念,重点增加化妆品产品技术要求内容、通用检测方法等与化妆品质量安全密切相关的技术标准与要求在保留《卫生规范》原有相关检验方法的基础上,收录了国家食品药品监管部门颁布的60个针对有关化妆品中禁限用物质的检验方法,满足化妆品技术研发和安全监管的需要。二、化妆品安全通用要求化妆品上市前应进行必要的检验,检验方法包括相关理化检验方法、微生物检验方法、毒理学试验和人体安全试验方法等。
  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。水溶液中硼酸的氟化路径示意图该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。序号物质名称ECCAS可能用途1氯化钴231-589-47646-79-9干燥剂、例如硅胶2重铬酸钠二水合物234-190-37789-12-0金属表面精整、皮革制作、纺织品染色、木材防腐剂3五氧化砷215-116-91303-28-2杀菌剂、除草剂4三氧化二砷215-481-41327-53-3除草剂、杀虫剂5酸式砷酸铅232-064-27784-40-9杀虫剂6三乙基砷酸酯427-700-215606-95-8木材防腐剂7邻苯二甲酸二丁基酯(DBP)201-557-484-74-2增塑剂、粘合剂和印刷油墨的添加剂8邻苯二甲酸二(2-乙基己)204-211-0 117-81-7PVC 增塑剂、液压液体和电容器里的绝缘体酯(DEHP)9邻苯二甲酸丁苄酯(BBP)201-622-7 85-68-7乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂10蒽(Anthracene)204-371-1120-12-7染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。11三丁基氧化锡(TBTO)200-268-056-35-9木材防腐剂12二甲苯麝香201-329-481-15-2香水、化妆品13六溴环十二烷(HBCDD)206-33-9294-62-2阻燃剂14C10-13氯代烃(短链氯化石蜡)(SCCP)287-476-585535-84-8金属加工过程的润滑剂、橡胶和皮革衣料、胶水154,4'-二氨基二苯甲烷(MDA)202-974-4101-77-9偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体16蒽油292-602-790640-80-5主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。17蒽油、蒽糊、轻油295-278-591995-17-418蒽油、蒽糊、蒽馏分295-275-991995-15-219蒽油、少蒽292-604-890640-82-720蒽油、蒽糊292-603-290640-81-621高温煤沥青266-028-265996-93-2主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作22硅酸铝耐火陶瓷纤维 工业绝缘隔热材料23氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料242,4-二硝基甲苯204-450-0121-14-2用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。25邻苯二甲酸二异丁酯(DIBP)201-553-284-69-5增塑剂26铬酸铅231-846-07758-97-6色素,用于塑料、油漆着色27钼铬酸铅红(CI颜料红104)235-759-912656-85-828铬酸铅黄(CI颜料黄34)215-693-71344-37-229三(2-氯乙基)磷酸盐(TCEP)204-118-5115-96-8阻燃剂30丙烯酰胺201-173-71976-6-1丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。31三氯乙烯201-167-41979-1-6金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体32硼酸233-139-210043-35-3具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。33四硼酸钠,无水215-540-41330-43-4具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等34四硼酸钠,水合物235-541-312267-73-135铬酸钠231-889-57775-11-3实验用分析试剂;生产其他含铬化合物36铬酸钾232-140-57789-00-6金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造37重铬酸铵232-143-17789-9-5氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理38重铬酸钾231-906-67778-50-9生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂39硫酸钴233-334-210124-43-3用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。40硝酸钴233-402-110141-05-6用于表面处理、电池、陶瓷颜料、催化剂。41碳酸钴208-169-4513-79-1陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料42醋酸钴(乙酸钴)200-755-871-48-7用于表面处理、合金、颜料、染料和饲料添加剂。43乙二醇单甲醚2-203-713-7109-86-4用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂44乙二醇单乙醚2-203-804-1110-80-5常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。45三氧化铬215-607-81333-82-0用于金属处理和木材防腐剂中的稳定剂。46三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等231-801-5236-881-57738-94-513530-68-2用于金属处理和木材防腐剂中的稳定剂。47乙二醇乙醚醋酸酯203-839-2111-15-9用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程48铬酸锶232-142-67789-6-2用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层49邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP)271-084-668515-42-4用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂50肼206-114-97803-57-8302-01-2防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体511-甲基-2-吡咯烷酮212-828-1872-50-4用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料521,2,3-三氯丙烷202-486-196-18-4用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水53邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP)276-158-171888-89-6用于聚氯乙烯(PVC)塑料增塑剂、密封剂和印刷油墨
  • 东方早报专访——谢应波:检测仪旁的CEO 做亿元生意仍感慨实验室里最幸福
    (转自东方早报) 1月14日,蓝天白云,天气甚好。  1,4-苯二硼酸,液质联用检测结果合格,这意味着又一批产品可以上线销售。上海泰坦公司的董事长兼首席执行官谢应波露出了坦然而自信的笑容。  自行设计和建造实验室  当天上午9点,松江新桥新飞路1500弄66号五楼的实验室内,穿着实验室白大褂的谢应波正在等待检测结果,身旁的液质联用检测仪呼呼地运转着。检测仪上下,放着各式各样的化学品容器盛放甲醛、甲醇、0.25‰甲酸水。  这个实验室和一般的化学实验室不太一样,很干净。实验室的干净有两个原因。一是整幢大楼启用不到3个月,实验室还没有完全投入使用,只具备检测功能。另一个原因则让谢应波引以为傲,这个专业实验室的设计和建造由泰坦科技公司自行完成,里面硬件几乎都是泰坦科技自有品牌,还配备了最先进、最安全的通风系统。  每个实验桌上都有一个艳红色抽气罩,显得有些夸张。“别小看这些颜色。”谢应波说,在实验室里,颜色也是有奥秘的。比如,做化妆品的实验室一般选用白色作为主色,这样看上去干净、放心。而做合成实验等科研的实验室台面则需要选用墨绿或蓝绿这种深色调,因为耐脏,但是这种实验室的配件就需要鲜艳的点缀色,诸如橙色的抽气罩、红色的瓶盖。一则便于拿取东西,更重要的是科研最需要的是创新力,这些亮色可以刺激实验人员的大脑,增加活跃度。这套理论是谢应波带领团队在多年的实验室经历中摸索、梳理出来的,最终运用到了泰坦科技自己出品的实验室硬件中。  泰坦科技公司是谢应波及其团队所创立的公司。泰坦(Titans)源于希腊语,是希腊神话中曾统治世界的古老的神族,这个家族是天穹之神乌拉诺斯和大地女神盖亚的子女,他们曾统治世界。公司取名泰坦是志存高远的,从2007年的40万元注册资金到2013年销售额破2亿元。目前,泰坦科技股改完成,准备上市。如今,上海泰坦公司的产品已分为高端试剂、通用试剂、分析试剂、实验耗材、仪器仪表、安全防护、实验室建设和科研信息化软件八大业务板块,为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域提供全方位的产品与服务。  拿着1,4-苯二硼酸的检测结果,谢应波脱下白大褂快速走出实验室。平头、黑框眼镜,身材不高,穿一件灰绿色冲锋衣,待人极为热情。言行中,重庆人特有的直率奔放显露无遗。现在,身为董事长的谢应波更多的时间用在了公司内部管理和部署公司战略上。但他每周总有那么一两天会呆在实验室,走走、看看或者操作一番。如果遇到重大项目,他甚至还会每天泡在实验室。“在实验室盯着才觉得放心。”  谢应波说,无论做科研还是企业都要有游戏般的心态,“尽最大的努力去做,不要看短期单一的得失,对待结果要有游戏一般的心态。”  整个采访过程中,谢应波谦和、低调,叙述整个创业过程他很少用“我”,绝大部分时候用“我们”也就是泰坦公司6个创始人的团队。他说,他们分工不同,作用都是一样的。不过,泰坦创始人之一的许峰源说,谢应波绝对是这个团队的核心。  唯一几次用“我”表达是谢应波说他自己像郭广昌,“都是平头,创业团队都是校友,哈哈。”谢应波摸了摸脑袋,笑得爽朗大气。在谢应波看来,成功并非单纯取决于努力,更重要的是平台。上海市科委、上海市科技创业中心给他提供了一个很好的创业平台,良好的创新环境、集聚的科技资源、完善的服务体系以及有效落实的科技政策,让他和泰坦有机会实现梦想。  做一个受人尊重的企业,为科研人员提供尽可能专业的服务,让他们安心专心科研,这就是谢应波现在全部的梦想。  接受订单赚得第一桶金  6年前的2008年,也是在这样的冬日。阳光明媚,谢应波和同伴终日呆在实验室,动辄十五六个小时。“那时候(对累)没什么感觉,日子很简单,觉得(呆在实验室)是幸福的事情。”窗外的阳光照在脸上,谢应波微微眯起眼睛,回忆起了人生的第一桶金。  那年冬末春初,泰坦公司接到了有史以来最大的一笔订单。世界500强的诺华公司要求制作1千克某硼酸分子,出价15万元,成本估计在8万元左右,利润近50%。  这个硼酸分子,谢应波及团队曾经做出来过,但是小剂量的,每次合成1至2克。是否能放大,成功率有多少?这些都是未知数!经团队讨论后,决定试一试,“8万元能养活我们6个人很长一段时间”。那时候,泰坦公司刚刚成立不到半年。办公场地位于钦州路100号的上海市科技创业中心。“在1103室,享受到孵化器半年免租金,之后租金减半的优惠政策。”谢应波说,“4个合租的办公桌和几台新买的电脑几乎就是泰坦公司的全部。之后一路上,我们又享受到创新资金、高新技术企业、小巨人培育企业等市科委多项科技政策的扶持。”  华理科技园则是谢应波常去的地方,那里有众多的实验室。不过,没有一个属于谢应波和泰坦。“我们四处租小公司的实验室用,一般300元一天,如果用的仪器多会加价到500元。”为了更加充分地利用实验室,开发出更多的产品,谢应波每天早晨7点多到实验室,晚上十一二点才离开。  某硼酸分子的制作流程需要超过一周的时间。第一次小剂量的尝试成功了,谢应波决定放大实验效果,一次制作500克。“我们4个人轮换着没日没夜地实验”,失之毫厘谬以千里,化学实验需要随时关注分子反应情况。第三天,第一阶段的分子出来了,成功。继续第二阶段,6天后,第二阶段的小分子出来了,但纯度不够。“那时候很担心,纯度不够意味着失败的可能性增加”,因此第三阶段的实验,谢应波很忐忑。埋头于各种数据、各类试管,熬了两个通宵后,反应釜里出现了色泽、形状均匀的晶体。“那一刻简直高兴得飞起来”,谢应波神采飞扬一如当年。第二天,将晶体送检,确实是某硼酸小分子。  东西是做对了,不过纯度却不够,杂质偏多。诺华这样的大公司对品质要求很严格,稍微不合格都无法拿到钱。再熬两天,运用“过柱子”(一种提纯方式)的方式纯化成功。“那笔订单赚了8万元,对那时的我们来讲,绝对是巨款。”谢应波说,更重要的是,从那时候起,诺华成为他们的合作伙伴,而且至今仍然保持了良好的合作关系。  那年,6个来自外地的创始人都没有回家,是在实验室度过了春节。“大家忙得连大年三十都给忘了。”谢应波笑了起来,“那天还是外面的爆竹声把我们给弄醒了,要不然,我们还真不知道何时才会从工作中走出来呢。”  自封为“龙骑士”  谢应波的名片上有一个金光闪闪的骑士图案。他说,在公司只有21个人才能印上这样的骑士图案。  他自封为“龙骑士”,为梦想而生。在泰坦公司,只有2人拥有这样的称号。龙骑士之下,是为变革而活的圣骑士,仅有4人;接下来是为荣誉而战的准骑士,有15人。骑士精神蕴含着谦恭、英勇,为理想和荣誉牺牲的豪爽。谢应波的骑士情结还不止于此,他为公司设计的墙报上将泰坦经历誉为泰坦征途,核心成员誉为骑士兵团。在朋友眼里,谢应波正是一个充满激情的骑士。“我觉得他无论做什么都能成功,因为专注、敢于接受挑战、不怕苦。”许峰源说。  2001年,从重庆农村走出来的谢应波考上了华东理工大学。家境并不宽裕,谢应波在上学期间就开始了他的勤工助学生活。“当同学们还在伸手问父母要零用钱,当朋友们还在为今天去哪唱歌,明天去哪逛街烦恼时,我已经可以自己支付在大学里的学费和生活费了。”每天下午3点后,结束了一天课程的谢应波看着身边同学三三两两结伴外出,心里多少有些不是滋味。“可那也没办法,既然上天没有为我营造良好的生活条件,我只能靠自己去改变,我要靠自己的能力为家人创造更好的生活环境。”  于是,每天出现在学校勤工助学部的管理办,成了谢应波生活中的一个重要组成部分。“我们学校的超市、书报亭、图书馆等公共区域都是由校内的学生来参与管理,而我的工作就是负责调配和管理学校勤工助学学生们的工作安排。”就这样,谢应波一干就是整整4个年头,风雨无阻。而这也在无形之中磨练了他的毅力,同时也使谢应波比同龄人看起来显得更加成熟、稳重。  本科毕业后的他考上了学校的硕博连读。2006年一次偶然的机会,谢应波看到了大学生创业比赛的招募广告。“我觉得挺有意思,也想看看自己的实力到底如何,于是和其他6名同学商量后就报名了。”这一次,谢应波团队捧回了金奖。此后,再次参加全国大赛,获得银奖。两个沉甸甸的奖杯将创业的种子播进了谢应波的心里。“比赛毕竟是假的,真干一场会如何”,创业的种子在心里发了芽。2007年,还在攻读博士的谢应波决定创业。  2007年10月18日,泰坦公司注册成立,起步阶段获得了由上海市大学生科技创业基金上海市科技创业中心分基金会资助的20万元。包括谢应波在内的6个创始人筹集了10万元,这几乎是他们可以筹到的最大金额。“团队中的成员大多来自农村,所以家境并不宽裕,毕业之后,为了节省开支,我们6个人还是挤在了华东理工大学的学校宿舍。”谢应波说,夏天,寝室里没有空调,工作忙累了,就会轮流拿冷水拖地降温。2007年底,泰坦公司的销售额仅有3000元。对于技术出身的谢应波来讲,唯一能做的就是开发产品,无论有没有生意。于是,还在读博的谢应波在学校和租的实验室之间来回奔波。实验服、面罩、防护镜,是他最亲密的朋友。从此以后,谢应波唯一的娱乐运动也几乎没有了。谢应波说,2008年的时候,他10公里仅用42分钟就跑完了,平推能举80公斤,但现在根本跑不动了。  2008年年底,泰坦公司做出了200种左右的化合物分子,销售额近200万元,收支基本持平。“那时候2个创始人全职做,每个月工资1500元,其余4人兼职做,没有工资的”。这让谢应波看到了希望也意识到了困境,于是开始谋划做品牌。  “adamas-beta”成为泰坦的第一个品牌。adamas源于希腊语,是钻石的意思。谢应波说,当时用这个名字主要是为了走向国际化。当然,里面也隐含着谢应波的热血梦想,那就是走向世界,泰坦也想成为中国科学服务首席提供商。2009年,品牌项目启动,却没有资金。向银行贷款是谢应波最初想到的办法,“那时候,我们一天会跑上3到4家银行,为的就是能够获得更多周转资金,可银行原本答应好的,但回头一看我们都没有房产抵押,也就没了回音”。最后,通过各种渠道,2010年初,泰坦从接力基金成功融资150万元,同时也获得了上海市科委创新资金项目资助。这为谢应波和泰坦打开了另一扇门。“adamas-beta”、“general-regeant”等一系列自主品牌开始走向市场,并最终获得业界认可。  整合平台实现公司转型  2011年,谢应波迎来了转型。  用他自己的话来讲,从操作加研究型转变为了研究加布局型。此前,谢应波几乎每天都去实验室,大部分的时间花在新产品、新小分子的研发上。自从2009年,泰坦有了自己的实验室后,这样的趋势越加强烈。  2010年底,泰坦销售额近2000万元,拥有近3000种科研现货产品,人员也扩展到了40人。但是,泰坦还和当时众多的中小化工企业一样,主要做化学试剂。  这时候,谢应波敏锐意识到,按照这个模式,泰坦走到了顶峰。在进行大规模的国际调研后,谢应波发现我国几乎没有研发服务业,也就是专门为科学家提供一站式服务的公司。在美国,研发服务业的上市公司不少于10家,规模最大的“Thermo Fisher Scientific”年销售额超过180亿美元;日本也有2家,规模最大的销售额达65亿元人民币。而我国,做这样整体服务的超过10亿元人民币的公司都没有。这让他看到了发展的新途径。  2011年初,在成功融资1500万元以后,谢应波个人开始转型。“我依然主管研发,但工作重心从实验室转到内部经营”,新注入的资金可以招聘大量的专业科研人员,这让谢应波放心走出实验室。  在谢应波看来,成功的科研成果必须接受市场的检验、得到市场的认可。为此,在他主事下的泰坦开始整合产品,接受科研人员实验室的成果,并帮助推向市场。  “比如大学实验室里面研究出来的一些小分子,我们花钱买过来或者和他们合作,通过泰坦的平台去寻找是否有市场需求,或者再次结合成新的小分子,进入市场。”谢应波说,这可以成为“创新接力”,有助于科学家新成果快速进入市场,了解新用途,能有效提升产业链的成果转化效率。事实证明,谢应波的看法是正确的。此后两年,泰坦迅速发展壮大,整合了信息化、网络销售等跨专业平台,至今销售额超过2亿元,已经成为上海市科技创业领军企业。而今,谢应波更多的工作在于制定公司大战略、定期查看国内化学科研论文、在电脑上使用软件画出新分子的结构图。实验室去得少了,但对实验室的喜爱丝毫不减。  这一年,谢应波在上海扎根,买了房,和相识10年的妻子共结连理,第二年喜得贵子。午饭,在三楼办公室旁的茶室,简单的盒饭。泰坦创始人之一的许峰源说,谢应波太忙了,基本没时间陪儿子,儿子都不让他抱。据说,有一次谢应波心血来潮说要抱抱16个月大的儿子,结果儿子看了看谢应波,默默地走开了。“太忙了,等公司上了轨道可能会好些,还好我儿子争气,从没生过病。”谢应波听着许峰源的调侃,立即笑着回应。回头,看见书架上的一盆兰花,谢应波喜滋滋地拿起来,“看见没有,快开花了。”关注“探索平台”(www.tansoole.com)官方微博及微信,享更多精彩信息!微博:探索平台 微信:tansoole
  • 【培训】要开班啦——食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 【培训】食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制